七年级数学下册同步试题第四章单元检测卷
浙教版2019-2020学年七年级下册数学第4章单元同步试卷及答案
第4章因式分解测试题(时间:90分钟,满分:120分)一、选择题(每小题3分,共30分)1、下列分解因式正确的有()个.(1)x2+(-y)2=(x+y)(x-y);(2)4a2-1=(4a+1)(4a-1);(3)-9+4x2=(3+2x)(2x-3);(4)a2-b2=(a-b)(a+b).A、1B、2C、3D、42、-(a+3)(a-3)是多项式()分解因式的结果.A、a2-9B、a2+9C、-a2-9D、-a2+93、-1+0.09x2分解因式的结果是().A、(-1+0.3x)2B、(0.3x+1)(0.3x-1)C、(0.09x+1)(0,09x-1)D、不能进行4、下列各式中能用完全平方公式分解因式的有().(1)a2+2a+4;(2)a2+2a-1;(3)a2+2a+1;(4)-a2+2a+1;(5)-a2-2a-1;(6)a2-2a-1.A、2个B、3个C、4个D、5个5、下列分解因式不正确的是().A、4y2-1=(4y+1)(4y-1)B、a4+1-2a2=(a-1)2(a+1)2C、2291314923x x x⎛⎫-+=-⎪⎝⎭D、-16+a4=(a2+4)(a-2)(a+2)6、若64x2+axy+y2是一个完全平方式,那么a的值应该是().A、8B、16C、-16D、16或-167、已知54-1能被20~30之间的两个整数整除,则这两个整数是()A、25,27B、26,28C、24,26D、22,248、64-(3a-2b)2分解因式的结果是().A、(8+3a-2b)(8-3a-2b)B、(8+3a+2b)(8-3a-2b)C、(8+3a+2b)(8-3a+2b)D、(8+3a-2b)(8-3a+2b)9、若4a2+18ab+m是一个完全平方式,则m等于().A 、9b 2B 、18b 2C 、81b 2D 、481 b 2 10、下列各多项式中: ① x 2-y 2,② x 3 +2,③ x 2+4x ,④ x 2-10x+25,其中能直接运用公式法分解因式的个数是( )A 、1B 、2C 、3D 、4二、填空题(每小题3分,共30分)11、分解因式0.81x 2-16y 2=(0.9x+4y )(__).12、将9(a+b )2-64(a -b )2分解因式为____________.13、分解因式4x 3-x=____________.14、分解因式 5x 2-10x+5=__________.15、一个正方形的面积是(a 2+8a+16) cm 2,则此正方形的边长是__________cm.16、一块边长为a m 的正方形广场,扩建后的正方形边长比原来长2 m ,则扩建后面积增大了m 2.在括号内填入适当的代数式,使下列三项式可以写成完全平方的形式:17、100m 2+(_________)mn 2+49n 4=(____________)2.18、9a 2+36ab+(_________)=(_____________)2.19、分解因式:a 2-a+41=____________. 20、x 2+6x+9当x=___________时,该多项式的值最小,最小值是_____________.三、解答题(共60分)21、(8分)将下列各式分解因式(1)16a 2b 2-1; (2)811x 2-0.16y 2;(3)(a+2)2-(a+3)2; (4)12ab -6(a 2+b 2).22、(8分)(每小题5分,共10分)用简便方法计算(1)20112-20102; (2)172+2×17×13+132.23、(5分)已知(a +b )(a+b -8)+16=0,求2(a+b )的值.24、(6分)幸福小区里有一块边长为25.75 m 的正方形休闲区域,其中有一座正方形儿童 滑梯,占地约为4.252 m 2,那么余下的面积为多少?25、(6分)已知a -2b=21,ab=2,求-a 4b 2+4a 3b 3-4a 2b 4的值.26、(5分)一个正方形的边长增加3cm ,它的面积就增加39cm 2,则这个正方形的边长是多少?27、(8分)如果两个正方形的周长相差8cm,它们的面积相差36cm2,则这两个正方形的边长分别是多少?28、(6分)证明:无论a、b为何值时,代数式(a+b)2+2(a+b)+2的值均为正值.29、(10分)按下列程序计算,把答案填写在表格里,然后看看有什么规律,想想为什么会有这个规律?(1)填写表内空格:(2)你发现的规律是____________.(3)用简要过程说明你发现的规律的正确性。
北师大版七年级数学下册第四章同步测试题及答案
∴∠BAC=180°﹣∠ABC﹣∠ACB=60°.
∵AE平分∠BAC,
∴∠BAE= ∠BAC=30°.
(2)∵∠CAE=∠BAE=30°,∠ACB=80°,
∴∠AEB=∠CAE+∠ACB=110°,
∵AD是BC边上的高,
∴∠ADE=90°,
∴∠DAE=∠AEB﹣∠ADE=20°.
13.解:(1)∵a+b=4,a2+b2=8,
∴(a+b)2=a2+2ab+b2=8+2ab=16,
∴ab=4,
(a﹣b)2=(a+b)2﹣4ab=16﹣16=0;
(2)∵a、b、c是△ABC的三边,
∴a+b>c,b+c>a,a+c>b,
∴|a+b﹣c|﹣|c﹣a+b|﹣|b﹣c﹣a|+|b﹣a﹣c|
(第10题图)
三.解答题(共8小题)
11.(1)下列图中具有稳定性是(填序号)
(2)对不具稳定性的图形,请适当地添加线段,使之具有稳定性.
(3)图5所示的多边形共条对角线.
(第11题图)
12.小辉用7根木条钉成一个七边形的木架,他为了使该木架稳固,想在其中加上四根木条,请你在图1、2、3中画出你的三种想法,并说明加上木条后使该木架稳固所用的数学道理.
(第12题图)
13.如图1,直线AM⊥AN,AB平分∠MAN,过点B作BC⊥BA交AN于点C;动点E、D同时从A点出发,其中动点E以2m/s的速度沿射线AN方向运动,动点D以1m/s的速度运动;已知AC=6cm,设动点D,E的运动时间为t.
(1)当点D在射线AM上运动时满足S△ADB:S△BEC=2:1,试求点D,E的运动时间t的值;
北师大版七年级数学下册 第四章 三角形 单元测试训练卷(word版 含解析)
北师大版七年级数学下册第四章 三角形单元测试训练卷一、单选题(共10小题,每小题4分,共40分)1.下列各组数为边,能构成三角形的是( )A .1,2,3B .2,3,4C .4,4,8D .3,5,9 2.如图,65A ∠=︒,45B ∠=︒,则ACD ∠=( )A .65°B .60°C .45°D .110° 3.如图,12,AC AD ∠=∠=,要使ABC AED ≌△△,还需添加一个条件,那么在以下条件中不能选择的是( )A .AB AE = B .BC ED = C .C D ∠=∠ D .BE ∠=∠ 4.若△ABC 的一个外角等于其中一个内角,则( )A .必有一个内角等于30°B .必有一个内角等于45°C .必有一个内角等于60°D .必有一个内角等于90° 5.如果一个三角形的两边长分别为3和7,则第三边长可能是( ). A .3 B .4 C .7 D .10 6.如图,一名工作人员不慎将一块三角形模具打碎成三块,他要带其中一块或两块碎片到商店去配一块与原来一样的三角形模具,他带( )去最省事.A.△B.△C.△D.△△7.已知:如图,在长方形ABCD中,AB=4,AD=6,延长BC到点E,使CE=2,连接DE,点P 以每秒2个单位的速度沿BC﹣CD﹣DA向终点A运动,设点P的运动时间为t秒()秒时.△ABP和△DCE全等.A.1B.1或3C.1或7D.3或78.如图,△CAB=△DBA,再添加一个条件,不一定能判定△ABC△△BAD的是()A.AC=BD B.△1=△2C.△C=△D D.AD=BC 9.如图,在△ABC中,△BAC=90°,AB=AC,AD是经过A点的一条直线,且B、C在AD的两侧,BD△AD于D,CE△AD于E,交AB于点F,CE=10,BD=4,则DE的长为()A.6B.5C.4D.810.如图,在ABC中,△ACB=45°,AD△BC,BE△AC,AD与BE相交下点F,连接并延长CF交AB于点G,△AEB的平分线交CG的延长线于点H,连接AH.则下列结论:△△EBD=45°;△AH=HF;△ABD△CFD;△CH=AB+AH;△BD=CD﹣AF.其中正确的有()个.A .5B .4C .3D .2二、填空题(共6小题,每小题4分,共24分)11.用木棒钉成一个三角架,两根小棒长分别是7cm 和10cm,第三根小棒长为x cm,则x 的取值范围是___.12.如图所示,某同学把一块三角形的玻璃打碎成了三块,现在要到玻璃店去配一块完全一样的玻璃,那么最省事的办法是带________去玻璃店.13.如图,AB =AC ,D ,E 分别是AB ,AC 上的点,添加一个条件能判断△ABE △△ACD 的是____.14.如图,A E ∠=∠,AC BE ⊥,AB EF =,25BE =,8=CF ,则AC =_______.15.在△ABC 中,D 、E 分别是BC 、AD 的中点,S △ABC =4cm 2,则S △ABE =_____.16.如图,ABC 和ADE 均为等边三角形,D ,E 分别在边AB ,AC 上,连接BE ,CD ,若15ACD =︒∠,则CBE =∠__________.三、解答题(共6小题, 56分)17.如图,在ABC ∆中,AD BC ⊥,垂足为D ,BE AC ⊥,垂足为E ,AE BE =,AD 与BE 相交于点F .(1)请说明AEF BEC ∆∆≌的理由.(2)如果2AF BD =,试说明AD 平分BAC ∠的理由.18.如图,△ABC中,D为BC上一点,△C=△BAD,△ABC的角平分线BE交AD于点F.(1)求证:△AEF=△AFE;(2)G为BC上一点且FE平分△AFG.求证:AB=GB19.如图,已知AE△AB,AF△AC,AE=AB,AF=AC.求证:(1)EC=BF;(2)EC△BF.20.探索归纳:(1)如图1,已知ABC 为直角三角形,90A ∠=︒,若沿图中虚线剪去A ∠,则12∠+∠=________︒.(2)如图2,已知ABC 中,40A ∠=︒,剪去A ∠后成四边形,则12∠+∠=__________︒.(3)如图2,根据(1)与(2)的求解过程,请你归纳猜想12∠+∠与A ∠的关系是___________.(4)如图3,若没有剪掉,而是把它折成如图3形状,试探究12∠+∠与A ∠的关系并说明理由.21.在△BAC中,△BAC=90°,AB=AC,AE是过A的一条直线,BD△AE于点D,CE△AE于E.(1)如图(1)所示,若B,C在AE的异侧,易得BD与DE,CE的关系是DE=;(2)若直线AE绕点A旋转到图(2)位置时,(BD<CE),其余条件不变,问BD与DE,CE 的关系如何?请予以证明;(3)若直线AE绕点A旋转,(BD>CE),问BD与DE,CE的关系如何?请直接写出结果,不需证明.22.如图,AB=12cm,AC△AB,BD△AB,AC=BD=9cm,点P在线段AB上以3cm/s的速度,由A向B运动,同时点Q在线段BD上由B向D运动;设点P的运动时间为t秒.(1) PB=________ cm.(用含t的代数式表示)(2)如图1,若点Q的运动速度与点P的运动速度相等,当运动时间t=1秒时,△ACP与△BPQ是否全等?并说明理由.(3)如图2,将“AC△AB,BD△AB”改为“△CAB=△DBA”,其余条件不变;设点Q的运动速度为xcm/s,是否存在实数x,使得△ACP与△BPQ全等?若存在,求出相应的x、t的值;若不存在,请说明理由.参考答案:1.B【解析】【分析】根据三角形的三边关系:两边之和大于第三边,两边之差小于第三边,逐项分析判断即可.【详解】解:A. 1+2=3 ,不能构成三角形,故该选项不符合题意;B. 2+3>4,能构成三角形,故该选项符合题意;C. 4+4=8,不能构成三角形,故该选项不符合题意;D. 3+5<9,不能构成三角形,故该选项不符合题意;故选B【点睛】本题考查了构成三角形的条件,掌握三角形三边关系是解题的关键.2.D【解析】【分析】根据三角形外角的性质求解即可.【详解】解:△65A ∠=︒,45B ∠=︒,△110ACD A B ∠=∠+∠=︒,故选:D .【点睛】本题考查了三角形外角的性质,熟练掌握三角形外角的性质是解题的关键.3.B【解析】【分析】由△1=△2,可得∠BAC=∠EAD ,又AC=AD ,可知在△ABC 和△AED 中,已知一角及其临边对应相等,要证两三角形全等,任意再找一对角对应相等,或者找已知角的另一边对应相等,由此可得答案.解:△△1=△2,△∠BAC=∠EAD ,当AB=AE 时,根据SAS 可得ABC AED ≌△△;当C D ∠=∠时,根据ASA 可得ABC AED ≌△△;当B E ∠=∠时,根据AAS 可得ABC AED ≌△△;当BC=ED 时,SSA 不能判定两个三角形全等,故答案为:B【点睛】本题考查三角形全等的判定,角的和差是常考的判定已知角相等的方法,熟知三角形全等的判定定理是解题的关键.4.D【解析】【分析】根据三角形的外角性质、邻补角的概念计算即可.【详解】解:△三角形的一个外角大于和它不相邻的任何一个内角,△△ABC 的一个外角等于其中一个内角时,这个外角等于它的邻补角,△这个三角形必有一个内角等于90°,故选:D .【点睛】本题考查的是三角形的外角性质,掌握三角形的一个外角大于和它不相邻的任何一个内角是解题的关键.5.C【解析】【分析】根据三角形三边之间的关系即可判定.【详解】解:设第三边长为x ,则4<x <10,所以选项中符合条件的整数只有7.故选:C .本题考查了三角形三边关系,三角形中,任意两边之差小于第三边,任意两边之和大于第三边.6.C【解析】【分析】根据全等三角形的判定方法“角边角”可以判定应当带△去.【详解】解:由图形可知,△有完整的两角与夹边,根据“角边角”可以作出与原三角形全等的三角形, 所以,最省事的做法是带△去.故选:C.【点睛】本题考查了全等三角形的判定方法,正确理解“角边角”的内容是解题的关键.7.C【解析】【分析】分P点在线段BC上和P点在线段AD上两种情况讨论,当P点在线段BC上时得到△ABP=△DCE=90°,BP=CE=2进而求解;当P点在线段AD上时得到△BAP=△DCE=90°,AP=CE=2进而求解.【详解】解:由题意可知:AB=CD,当P点在线段BC上时:△ABP=△DCE=90°,BP=CE=2,此时△ABP△△DCE(SAS),由题意得:BP=2t=2,△t=1;当P点在线段AD上时:△BAP=△DCE=90°,AP=CE=2,此时△BAP△△DCE(SAS),由题意得:AP=16-2t=2,△t=7.△当t的值为1或7秒时.△ABP和△DCE全等.故答案为:C.【点睛】本题考查了三角形全等的判定方法,注意要分类讨论,熟练掌握三角形全等判定方法是解题的关键.8.D【解析】【分析】根据全等三角形的判定定理(SAS,ASA,AAS,SSS)判断即可.【详解】解答:解:A.△AC=BD,△CAB=△DBA,AB=AB,△根据SAS能推出△ABC△△BAD,故本选项错误;B.△△CAB=△DBA,AB=AB,△1=△2,△根据ASA能推出△ABC△△BAD,故本选项错误;C.△△C=△D,△CAB=△DBA,AB=AB,△根据AAS能推出△ABC△△BAD,故本选项错误;D.根据AD=BC和已知不能推出△ABC△△BAD,故本选项正确;故选:D.【点睛】本题考查了对全等三角形的判定定理的应用,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS.9.A【解析】【分析】根据△BAC=90°得到△BAD+△CAD=90°,由于CE△AD于E,于是得到△ACE+△CAE=90°,根据余角的性质得到△BAD=△ACE,推出△ABD△△CAE,根据全等三角形的性质即可得到结论.【详解】解:△△BAC=90°,△△BAD+△CAD=90°,△CE△AD于E,△△ACE+△CAE=90°,△△BAD=△ACE,在△ABD 与△CAE 中,90D AEC BAD ACE AB AC ∠=∠=︒⎧⎪∠=∠⎨⎪=⎩, △△ABD △△CAE (AAS ),△AE =BD =4,AD =CE =10,△DE =AD ﹣AE =6.故选:A .【点睛】本题考查全等三角形的判定与性质,解题的关键是利用余角的性质得到△BAD =△ACE . 10.A【解析】【分析】△利用三角形内角和定理即可说明其正确;△利用垂直平分线的性质即可说明其正确;△利用SAS 判定全等即可;△利用△中的结论结合等量代换和等式的性质即可得出结论;△利用△中的结论结合等量代换和等式的性质即可得出结论.【详解】如图所示,设EH 与AD 交于点M ,△△ACB =45°,BE △AC ,△△EBD =90°﹣△ACD =45°,故△正确;△AD △BC ,△EBD =45°,△△BFD =45°,△△AFE =△BFD =45°,△BE △AC ,△△F AE =△AFE =45°,△△AEF 为等腰直角三角形,△EM 是△AEF 的平分线,△EM △AF ,AM =MF ,即EH 为AF 的垂直平分线,△AH =HF ,△△正确;△AD △BC ,△ACD =45°,△△ADC 是等腰直角三角形,△AD =CD ,同理,BD =DF ,在△ABD 和△CFD 中,90AD CD ADB CDF BD FD =⎧⎪∠=∠=︒⎨⎪=⎩, △△ABD △△CFD (SAS ),△△正确;△△ABD △△CFD ,△CF =AB ,△CH =CF +HF ,由△知:HF =AH ,△CH =AB +AH ,△△正确;△BD =DF ,CD =AD ,又△DF =AD ﹣AF ,△BD =CD ﹣AF ,△△正确,综上,正确结论的个数为5个.故选:A .【点睛】本题考查了直角三角形的性质,全等三角形的判定与性质,等腰直角三角形的判定与性质,垂直平分线的判定与性质等相关知识,综合性较强,难度较大,做题时要分清角的关系与边的关系.11.3<x<17【解析】【分析】根据三角形的三边关系:两边之和大于第三边,两边之差小于第三边,确定出第三边的取值范围即可得出答案.【详解】解:设第三根小棒的长为x cm,根据三角形的三边关系可得:10-7<x<10+7,即3<x<17,故答案为3<x<17.【点睛】本题考查了三角形的三边关系.三角形的三边关系:第三边大于两边之差而小于两边之和.12.△【解析】【分析】观察每块玻璃形状特征,利用ASA判定三角形全等可得出答案.【详解】第一块和第二块只保留了原三角形的一个角和部分边,根据这两块中的任一块均不能配一块与原来完全一样的;第三块不仅保留了原来三角形的两个角还保留了一边,则可以根据ASA 来配一块一样的玻璃.应带△去.故答案为:△.【点睛】本题属于利用ASA判定三角形全等的实际应用,难度不大,但形式较颖,要善于将所学知识与实际问题相结合.13.AD=AE(答案不唯一)【解析】【分析】根据全等三角形的判定定理添加条件可以,添加AD =AE ,根据SAS 证明△ABE △△ACD 即可.【详解】解:添加的条件是AD =AE ,理由是:在△ABE 和△ACD 中,AE AD A A AB AC =⎧⎪∠=∠⎨⎪=⎩,△△ABE △△ACD (SAS ),故答案为:AD =AE (答案不唯一).【点睛】本题考查了全等三角形的判定定理,熟练掌握全等三角形的判定定理是解题的关键. 14.17【解析】【分析】由“AAS ”可证ABC EFC ∆≅∆,可得AC CE =,9BC CF ==,即可求解.【详解】解:AC BE ⊥,90ACB ECF ∴∠=∠=︒,在ABC ∆和EFC ∆中,A E ACB ECF AB EF ∠=∠⎧⎪∠=∠⎨⎪=⎩, ()ABC EFC AAS ∴∆≅∆,AC CE ∴=,8BC CF ==,25817AC CE BE BC ∴==-=-=,故答案为:17.【点睛】本题考查了全等三角形的判定和性质,解题的关键是证明三角形全等.15.1cm 2【解析】【分析】根据三角形的中线把三角形分成两个面积相等的三角形的性质分析,即可得到答案.【详解】∵D 是BC 的中点,S △ABC =4cm 2∴S △ABD =12S △ABC =12×4=2cm 2∵E 是AD 的中点,∴S △ABE =12S △ABD =12×2=1cm 2故答案为:1cm 2.【点睛】本题考查了三角形中线的知识;解题的关键是熟练掌握三角形中线的性质,从而完成求解. 16.45︒##45度【解析】【分析】根据题意利用全等三角形的判定与性质得出()BD C S ED E SA ≅和15EBD ACD ︒∠=∠=,进而依据CBE =∠ABC EBD ∠-∠进行计算即可.【详解】解:△ABC 和ADE 均为等边三角形,△,,AB AC AE AD EC DB ===,△60,120,AED ADE ABC DEC EDB ︒︒∠=∠=∠=∠=∠=在CED 和BDE 中, EC DB DEC EDB ED ED =⎧⎪∠=∠⎨⎪=⎩, △()BD C S ED E SA ≅,△15EBD ACD ︒∠=∠=,△CBE =∠601545ABC EBD ︒︒︒∠-∠=-=.故答案为:45︒.【点睛】本题考查全等三角形的判定与性质以及等边三角形的性质,熟练掌握全等三角形的判定与性质是解题的关键.17.(1)见解析(2)见解析【解析】【分析】(1)由余角的性质可证DAC EBC ∠=∠,根据“ASA”可证结论成立;(2)由AEF BEC ∆∆≌可得AF BC =,结合2AF BD =可知BD CD =,然后根据“SAS”证明△ABD △△ACD 可证结论成立.(1)证明:AD BC ⊥,BE AC ⊥,90ADC ∴∠=,△AEB =△CEB =90°,90DAC C +∠=∴∠,△EBC +△C =90°,DAC EBC =∠∴∠,在AEF ∆与BEC ∆中,EAF EBC AEF BEC AE BE ∠=∠⎧⎪∠=∠⎨⎪=⎩, ()ΔΔASA AEF BEC ∴≌.(2)解:由(1)知,AF BC =,2AF BD =,2BC BD ∴=,D ∴是BC 的中点,BD CD ∴=,在△ABD 和△ACD 中AD AD ADB ADC BD CD =⎧⎪∠=∠⎨⎪=⎩, △△ABD △△ACD ,△BAD CAD ∠=∠,AD ∴平分BAC ∠.【点睛】本题考查了全等三角形的判定和性质,余角的性质,角平分线的定义,熟练掌握全等三角形的判定和性质是解题的关键.18.(1)证明见解析(2)证明见解析【解析】【分析】(1)先根据角平分线的定义得到△1=△2,再由三角形外角的性质得到△AEF=△2+△C,△AFE=△1+△BAD,由△C=△BAD,即可推出△AEF=△AFE;(2)根据角平分线的定义得到△AFE=△GFE,再由△AFB+△AFE=180°,△BFG+△GFE=180°,得到△AFB=△BFG,然后证明△ABF△△GBF即可得到AB=GB.(1)解:△BE是△ABC的角平分线,△△1=△2,△△AEF、△AFE分别是△BCE、△ABF的外角,△△AEF=△2+△C,△AFE=△1+△BAD,又△△C=△BAD,△△AEF=△AFE;(2)解:△FE平分△AFG,△△AFE=△GFE,△△AFB+△AFE=180°,△BFG+△GFE=180°,△△AFB=△BFG,在△ABF和△GBF中12AFB BFG BF BF∠=∠⎧⎪=⎨⎪∠=∠⎩, △△ABF △△GBF (ASA )△AB =GB .【点睛】本题主要考查了角平分线的定义,全等三角形的性质与判定,三角形外角的性质,熟知相关知识是解题的关键.19.(1)见解析(2)见解析【解析】【分析】(1)先求出△EAC =△BAF ,然后利用“边角边”证明△ABF 和△AEC 全等,根据全等三角形对应边相等即可证明;(2)根据全等三角形对应角相等可得△AEC =△ABF ,设AB 、CE 相交于点D ,根据△AEC +△ADE =90°可得△ABF +△ADM =90°,再根据三角形内角和定理推出△BMD =90°,从而得证.(1)△AE △AB ,AF △AC ,△△BAE =△CAF =90°,△△BAE +△BAC =△CAF +△BAC ,即△EAC =△BAF ,在△ABF 和△AEC 中,AE AB EAC BAF AF AC =⎧⎪∠=∠⎨⎪=⎩, △△ABF △△AEC (SAS ),△EC =BF ;(2)如图,设AB 交CE 于D根据(1),△ABF△△AEC,△△AEC=△ABF,△AE△AB,△△BAE=90°,△△AEC+△ADE=90°,△△ADE=△BDM(对顶角相等),△△ABF+△BDM=90°,在△BDM中,△BMD=180°-△ABF-△BDM=180°-90°=90°,所以EC△BF.【点睛】本题考查等腰直角三角形的性质、全等三角形的判定和性质等知识,解题的关键是正确寻找全等三角形解决问题,学会利用“8字型”证明角相等.20.(1)270(2)220∠+∠=︒+∠(3)12180A(4)122A∠+∠=∠,理由见解析【解析】【分析】(1)利用三角形的外角定理及直角三角形的性质求解;(2)利用三角形的外角等于与它不相邻的两个内角和求解;(3)根据(1)、(2)中思路即可求解;∠=︒-∠, (4)根据折叠对应角相等,得到AFE PFE∠=∠,AEF PEF∠=∠,进而求出11802AFE∠+∠=︒-∠即可求解.AFE AEF A∠=︒-∠,最后利用18021802AEF(1)解:如下图所示:在△AEF中,由外角性质可知:△1=△A+△EF A=90°+△EF A,△2=△A+△AEF=90°+△AEF,△△1+△2=(90°+△EF A)+( 90°+△AEF)=180°+△EF A+△AEF,△△ABC为直角三角形,△△A=90°,△EF A+△AEF=180°-△A=90°,△△1+△2=180°+90°=270°.(2)解:如下图所示:在△AEF中,由外角性质可知:△1=△A+△EF A,△2=△A+△AEF,△△1+△2=(△A+△EF A)+( △A+△AEF)=(△A +△EF A+△AEF)+∠A=180°+40°=220°.(3)解:由(1)、(2)中思路,由三角形外角性质可知:△1=△A +△EF A ,△2=△A +△AEF ,△△1+△2=(△A +△EF A )+( △A +△AEF )=(△A +△EF A +△AEF)+∠A =180°+∠A ,△12∠+∠与A ∠的关系是:△1+△2=180°+∠A .(4)解:12∠+∠与A ∠的关系为:122A ∠+∠=∠,理由如下:如图,△EFP △是由EFA △折叠得到的,△AFE PFE ∠=∠,AEF PEF ∠=∠,△11802AFE ∠=︒-∠,21802AEF ∠=︒-∠,△()12(1802)(1802)3602AFE AEF AFE AEF ∠+∠=︒-∠+︒-∠=︒-∠+∠,又△180AFE AEF A ∠+∠=︒-∠,△()1236021802A A ∠+∠=︒-︒-∠=∠,△12∠+∠与A ∠的关系122A ∠+∠=∠.【点睛】主要考查了折叠的性质及三角形的内角和外角之间的关系:三角形的外角等于与它不相邻的两个内角和、三角形的内角和是180度.求角的度数常常要用到“三角形的内角和是180°”这一隐含的条件.21.(1)BD ﹣EC(2)BD =DE ﹣CE .见解析(3)当B ,C 在AE 的同侧时,BD =DE ﹣CE ;当B ,C 在AE 的异侧时,BD =DE +CE .【解析】【分析】(1)通过互余关系可得△ABD =△CAE ,进而证明△ABD △△ACE (AAS ),即可求得BD =AE ,AD =EC ,进而即可求得关系式;(2)方法同(1)证明△ABD △△CAE (AAS ),进而得出结论;(3)综合(1)(2)结论,分当B ,C 在AE 的同侧或异侧时,写出结论即可.(1)结论:DE =BD ﹣EC .理由:如图1中,△BD △AE ,CE △AE ,△△ADB =△CEA =90°,△△ABD +△BAD =90°,又△△BAC =90°,△△EAC +△BAD =90°,△△ABD =△CAE ,在△ABD 与△ACE 中,ADB CEA ABD CAE AB AC ∠=∠⎧⎪∠=∠⎨⎪=⎩, △△BAD △△ACE (AAS ),△BD =AE ,AD =EC ,△BD =DE +CE ,即DE =BD ﹣EC .故答案为:BD ﹣EC ;(2)结论:BD =DE ﹣CE .理由:如图2中,△BD △AE ,CE △AE ,△△ADB =△CEA =90°,△△ABD +△BAD =90°,又△△BAC =90°,△△EAC +△BAD =90°,△△ABD =△CAE ,在△ABD 与△CAE 中,ADB CEA ABD CAE AB AC ∠=∠⎧⎪∠=∠⎨⎪=⎩, △△ABD △△CAE (AAS ),△BD =AE ,AD =EC ,△BD =DE ﹣CE ;(3)归纳:由(1)(2)可知:当B ,C 在AE 的同侧时,BD =DE ﹣CE ;当B ,C 在AE 的异侧时,BD =DE +CE .【点睛】本题考查了全等三角形的性质与判定,掌握全等三角形的性质与判定是解题的关键. 22.(1)(12-3t )(2)△CAP △△PBQ ,理由见解析(3)满足条件的点Q 的速度为3或92cm /s . 【解析】【分析】(1)求出AP ,再根据题意写出PB 的值即可;(2)求出AP ,PB ,BQ 的值,根据SAS 证明△CAP △△PBQ (SAS )即可;(3)分两种情形分别求解:△由(1)可知,Q 的速度为3cm /s 时,△ACP △△BPQ ,这种情形符合题意.△当P A =PB ,AC =BQ 时,△APC △△BPQ (SAS ),首先确定运动时间,再求出点Q 的运动速度即可.(1)解:由题意:P A =3t (cm ),△AB =12cm ,△PB =AB -AP =12-3t (cm ),故答案为:(12-3t );(2)解:△CAP△△PBQ,理由如下:由题意:t=1(s)时,P A=BQ=3(cm),△AB=12cm,△PB=AB-AP=12-3=9(cm),△AC=9cm,△AC=BP,△△CAP=△PBQ=90°,P A=BQ,△△CAP△△PBQ(SAS);(3)解:△由(2)可知,Q的速度为3cm/s时,△ACP△△BPQ,这种情形符合题意.△当P A=PB,AC=BQ时,△APC△△BPQ(SAS),△t=63=2(s),△点Q的运动速度为92cm/s.△满足条件的点Q的速度为3或92cm/s.【点睛】本题考查的是全等三角形的判定与性质,掌握全等三角形的判定定理和性质定理、注意分类讨论思想的灵活运用是解题的关键.。
北师大版七年级数学下册第四章三角形同步测试题
北师大版七年级数学测试卷(考试题)第4章三角形一、选择题1.下列说法正确的是()A. 全等三角形是指形状相同的三角形B. 全等三角形是指面积相等的两个三角形C. 全等三角形的周长和面积相等D. 所有等边三角形是全等三角形2.已知某三角形的两边长是6和4,则此三角形的第三边长的取值可以是()A. 2B. 9C. 10D. 113.下列各组图形中,一定是全等图形的是()A. 两个周长相等的等腰三角形B. 两个面积相等的长方形C. 两个斜边相等的直角三角形D. 两个周长相等的圆4.下列各组长度的三条线段能组成三角形的是()A. 1cm,2cm,3cmB. 1cm,1cm,2cmC. 1cm,2cm,2cmD. 1cm,3cm,5cm5.画△ABC的边AB上的高,下列画法中,正确的是()A. B.C. D.6.有长为2cm、3cm、4cm、6cm的四根木棒,选其中的3根作为三角形的边,可以围成的三角形的个数是A. 1个B. 2个C. 3个D. 4个7.在如图所示的长方形网格中,每个小长方形的长为2,宽为1,A、B两点在网格格点上,若点C也在网格格点上,以A、B、C为顶点的三角形面积为2,则满足条件的点C的个数是()A. 2B. 3C. 4D. 58.如图所示,∠1+∠2+∠3+∠4的度数为()A. 100°B. 180°C. 360°D. 无法确定9.如图,把△ABC纸片沿DE折叠,当点A落在四边形BCDE内部时,则∠A与∠1+∠2之间有一种数量关系始终保持不变,请试着找一找这个规律,这个规律是()A. ∠A=∠1+∠2B. 2∠A=∠1+∠2C. 3∠A=2∠1+∠2D. 3∠A=2(∠1+∠2)10.将一副直角三角尺按如图所示摆放,则图中锐角∠α的度数是()A. 45°B. 60°C. 70°D. 75°11.长为l的一根绳,恰好可围成两个全等三角形,则其中一个三角形的最长边x的取值范围为()A. B. C. D.12.我国的纸伞工艺十分巧妙。
人教版七年级数学下册第四章、第五章综合检测试卷及答案
人教版七年级数学下册第四章、第五章综合检测试卷(答案附后)一、选择题(共8个小题)1.下面四个选项中的图形分别是节能、节水、低碳和绿色食品标志,在这四个标志中,是轴对称图形的是( )2.一个三角形的两边长分别为4cm 和9cm ,则此三角形第三边长可能是( ) A .13cmB .8cmC .4cmD .5cm3.如图,在△ABC 中,AD 是高,AE 是角平分线,AF 是中线,则下列说法中错误的是( ) A .BF =CF B .∠C+∠CAD =90°C .∠BAF =∠CAFD .S △ABC =2S △ABF4.如图,△ABC 与△A ′B ′C ′关于直线l 对称,且∠A =105°,∠C ′=30°,则∠B =( ) A .45°B .25°C .30°D .20°5.如图,AB =AC ,若要使△ABE ≌△ACD .则添加的一个条件不能是( ) A .∠B =∠CB .∠ADC =∠AEBC .BD =CED .BE =CD6.如图为正方形网格,则∠1+∠2+∠3=( ) A .105°B .120°C .135°D .115°7.如图,把△ABC 沿EF 对折,叠合后的图形如图所示.若∠A =60°,∠1=85°,则∠2的度数为( ) A .35° B .25° C .30° D .20°8.如图,分别以△ABC 的边AB ,AC 所在直线为对称轴作△ABC 的对称图形△ABD 和△ACE ,∠BAC =150°,线段BD 与CE 相交于点O ,连接BE 、ED 、DC 、OA ,有如下结论:①∠EAD =90°;②∠BOE =60°;③OA 平分∠BOC ;其中正确的结论个数是( )第3题图第6题图第5题图第4题图第7题图第8题图二、填空题(共5个小题)9.等腰三角形的一个角是80°,则它的底角的度数是 .10.如图所示,要测量池塘AB 宽度,在池塘外选取一点P ,连接AP ,BP 并分别延长,使PC =PA ,PD =PB , 连接CD .测得CD 长为10m ,则池塘宽AB 为 m ,理由是 .11.如图,△ABC 中,AB=AC ,点D 在AC 边上,且BD=BC=AD ,则∠A 的度数为 .12.如图,BP 是△ABC 中∠ABC 的平分线,CP 是∠ACB 的外角的平分线,如果∠ABP =20°,∠ACP =50°, 则∠P 的度数是 .13.如图,在锐角三角形ABC 中,AB =4,△ABC 的面积为8,BD 平分∠ABC .若M 、N 分别是BD 、BC 上的动点,则CM+MN 的最小值是 . 三、解答题(共3个小题)14.已知:如图,点A ,F ,C ,D 在同一直线上,AF =DC ,AB ∥DE ,AB =DE ,求证:BC ∥EF .15.如图,在△ABC 中,AB =AC ,DE 是边AB 的垂直平分线,交AB 于E 、交AC 于D ,连接BD . (1)若∠A =40°,求∠DBC 的度数;(2)若△BCD 的周长为16cm ,△ABC 的周长为26cm ,求BC 的长. 第14题图第15题图 第11题图第12题图第13题图第10题图16.在△ABC中,AB=AC,D是直线BC上一点,以AD为一条边在AD的右侧作△ADE,使AE=AD,∠DAE=∠BAC,连接CE.(1)如图,当点D在BC延长线上移动时,若∠BAC=25°,则∠DCE =.(2)设∠BAC=α,∠DCE=β.①当点D在BC延长线上移动时,α与β之间有什么数量关系?请说明理由;②当点D在直线BC上(不与B,C两点重合)移动时,α与β之间有什么数量关系?请直接写出你的结论.答案见下页第16题图备用图备用图七下数学第四章、第五章综合检测卷参考答案一、选择题(共8个小题)1.下面四个选项中的图形分别是节能、节水、低碳和绿色食品标志,在这四个标志中,是轴对称图形的是( D )2.一个三角形的两边长分别为4cm 和9cm ,则此三角形第三边长可能是( B ) A .13cmB .8cmC .4cmD .5cm3.如图,在△ABC 中,AD 是高,AE 是角平分线,AF 是中线,则下列说法中错误的是( C ) A .BF =CF B .∠C+∠CAD =90°C .∠BAF =∠CAFD .S △ABC =2S △ABF4.如图,△ABC 与△A ′B ′C ′关于直线l 对称,且∠A =105°,∠C ′=30°,则∠B =( A ) A .45°B .25°C .30°D .20°5.如图,AB =AC ,若要使△ABE ≌△ACD .则添加的一个条件不能是( D ) A .∠B =∠CB .∠ADC =∠AEBC .BD =CED .BE =CD6.如图为正方形网格,则∠1+∠2+∠3=( C ) A .105°B .120°C .135°D .115°7.如图,把△ABC 沿EF 对折,叠合后的图形如图所示.若∠A =60°,∠1=85°,则∠2的度数为( A ) A .35° B .25° C .30° D .20°解:∵∠A =60°,∴∠AEF +∠AFE =180°﹣60°=120°, ∴∠FEB +∠EFC =360°﹣120°=240°,第3题图第6题图第5题图第4题图第7题图第8题图∴∠1+∠2=240°﹣120°=120°, ∵∠1=85°,∴∠2=120°﹣85°=35°, 故选:A .8.如图,分别以△ABC 的边AB ,AC 所在直线为对称轴作△ABC 的对称图形△ABD 和△ACE ,∠BAC =150°,线段BD 与CE 相交于点O ,连接BE 、ED 、DC 、OA ,有如下结论:①∠EAD =90°;②∠BOE =60°;③OA 平分∠BOC ;其中正确的结论个数是( B )A .0个B .3个C .2个D .1个解:∵△ABD 和△ACE 是△ABC 的轴对称图形,∴∠BAD =∠CAE =∠BAC ,∴∠EAD =3∠BAC ﹣360°=3×150°﹣360°=90°,故①正确. ∴∠BAE =∠BAD ﹣∠DAE =150°﹣90°=60°, 由翻折的性质得,∠AEC =∠ABD , 又∵∠EPO =∠BPA ,∴∠BOE =∠BAE =60°,故②正确. ∵△ACE ≌△ADB , ∴S △ACE =S △ADB ,BD =CE ,∴BD 边上的高与CE 边上的高相等, 即点A 到∠BOC 两边的距离相等, ∴OA 平分∠BOC ,故③正确. 故选:B .二、填空题(共5个小题)9.等腰三角形的一个角是80°,则它的底角的度数是 80°或50° .10.如图所示,要测量池塘AB 宽度,在池塘外选取一点P ,连接AP ,BP 并分别延长,使PC =PA ,PD =PB , 连接CD .测得CD 长为10m ,则池塘宽AB 为 10 m ,理由是 全等三角形的对应边相等 .第11题图第12题图第13题图第10题图第8题图12.如图,BP是△ABC中∠ABC的平分线,CP是∠ACB的外角的平分线,如果∠ABP=20°,∠ACP=50°,则∠P 的度数是30°.解:∵BP是△ABC中∠ABC的平分线,CP是∠ACB的外角的平分线,∴∠ABP=∠CBP=20°,∠ACP =∠MCP=50°,∵∠PCM是△BCP的外角,∴∠P=∠PCM﹣∠CBP=50°﹣20°=30°,故答案为:30°.13.如图,在锐角三角形ABC中,AB=4,△ABC的面积为8,BD平分∠ABC.若M、N分别是BD、BC上的动点,则CM+MN的最小值是4 .解:过点C作CE⊥AB于点E,交BD于点M′,过点M作MN′⊥BC于N′,∵BD平分∠ABC,M′E⊥AB于点E,M′N′⊥BC于N∴M′N′=M′E,∴CE=CM′+M′E∴当点M与M′重合,点N与N′重合时,CM+MN的最小值.∵三角形ABC的面积为8,AB=4,∴×4•CE=8,∴CE=4.即CM+MN的最小值为4.三、解答题(共3个小题)14.已知:如图,点A,F,C,D在同一直线上,AF=DC,AB∥DE,AB=DE,求证:BC∥EF.证明:∵AB∥DE,∴∠A=∠D,∵AF=CD,∴AF+FC=CD+FC即AC=DF,第14题图在△ABC和△DEF中,∴△ABC≌△DEF(SAS),∴∠BCA=∠EFD,∴BC∥EF.15.如图,在△ABC 中,AB =AC ,DE 是边AB 的垂直平分线,交AB 于E 、交AC 于D ,连接BD . (1)若∠A =40°,求∠DBC 的度数;(2)若△BCD 的周长为16cm ,△ABC 的周长为26cm ,求BC 的长. 解:(1)∵AB =AC ,∠A =40°∴∠ABC =∠C ==70°,∵DE 是边AB 的垂直平分线, ∴DA =DB ,∴∠DBA =∠A =40°,∴∠DBC =∠ABC ﹣∠DBA =70°﹣40°=30°;(2)∵△BCD 的周长为16cm ,∴BC +CD +BD =16, ∴BC +CD +AD =16, ∴BC +CA =16,∵△ABC 的周长为26cm , ∴AB =26﹣BC ﹣CA =26﹣16=10, ∴AC =AB =10,∴BC =16﹣AC =16﹣10=6cm .16.在△ABC 中,AB =AC ,D 是直线BC 上一点,以AD 为一条边在AD 的右侧作△ADE ,使AE =AD ,∠DAE =∠BAC ,连接CE .(1)如图,当点D 在BC 延长线上移动时,若∠BAC =25°,则∠DCE = 25° . (2)设∠BAC =α,∠DCE =β.①当点D 在BC 延长线上移动时,α与β之间有什么数量关系?请说明理由;②当点D 在直线BC 上(不与B ,C 两点重合)移动时,α与β之间有什么数量关系?请直接写出你的结论.(1)解:∵∠DAE =∠BAC ,∴∠DAE +∠CAD =∠BAC +∠CAD , 即∠BAD =∠CAE , 第15题图第16题图备用图备用图,∴△BAD≌△CAE(SAS),∴∠B=∠ACE,∵∠ACD=∠B+∠BAC=∠ACE+∠DCE,∴∠BAC=∠DCE,∵∠BAC=25°,∴∠DCE=25°,故答案为:25°;(2)解:当点D在线段BC的延长线上移动时,α与β之间的数量关系是α=β,理由是:∵∠DAE=∠BAC,∴∠DAE+∠CAD=∠BAC+∠CAD,∴∠BAD=∠CAE,在△BAD和△CAE中,∴△BAD≌△CAE(SAS),∴∠B=∠ACE,∵∠ACD=∠B+∠BAC=∠ACE+∠DCE,∴∠BAC=∠DCE,∵∠BAC=α,∠DCE=β,∴α=β;(3)解:当D在线段BC上时,α+β=180°,当点D在线段BC延长线或反向延长线上时,α=β.。
北师大版七年级数学下册第四章(4.1认识三角形)同步测试试题(含答案)
北师大版七年级数学下册第四章(4.1认识三角形)同步测试题(时间:100分钟满分:100分)一、选择题(每小题3分,共30分)1.两根长度分别为5 cm,9 cm的钢条,下面为第三根的长,则可组成一个三角形框架的是(C)A.3 cmB.4 cmC.9 cmD.14 cm2.如图,△ABC中AB边上的高线是(D)A.线段AGB.线段BDC.线段BED.线段CF3.如图,在△ABC中,AD,AE,AF分别是三角形的高线,角平分线及中线,那么下列结论错误的是(C)A.AD⊥BCB.BF=CFC.BE=ECD.∠BAE=∠CAE4.不一定在三角形内部的线段是(C)A.三角形的角平分线B.三角形的中线C.三角形的高D.三角形的高和中线5.已知在△ABC中,∠A=20°,∠B=∠C,那么△ABC是(A)A.锐角三角形B.直角三角形C.钝角三角形D.以上都有可能6.一副三角板,如图所示叠放在一起,则图中∠α的度数是(A)A.75°B.60°C.65°D.55°7.若有一条公共边的两个三角形称为一对“共边三角形”,则图中以BC为公共边的“共边三角形”有(B)A.2对B.3对C.4对D.6对8.已知a,b,c是△ABC的三条边长,化简|a+b-c|-|c-a-b|的结果为(D)A.2a+2b-2cB.2a+2bC.2cD.09.如图,在△ABC中,∠ACB=100°,∠A=20°,D是AB上一点,将△ABC沿CD折叠,使B点落在AC边上的B′处,则∠ADB′等于(A)A.40°B.20°C.55°D.30°10.如图,在△ABC中,∠A=20°,∠ABC与∠ACB的平分线交于点D1,∠ABD1与∠ACD1的平分线交于点D2,依此类推,∠ABD4与∠ACD4的平分线交于点D5,则∠BD5C的度数是(B)A.24°B.25°C.30°D.36°二、填空题(每小题4分,共20分)11.一个三角形有3条高,3条中线,3条角平分线.12.如图,当BD=DC时,AD是△ABC的中线;当∠BAD=∠CAD时,AD是△ABC的角平分线.13.如图,∠BAC=90°,AD⊥BC,∠BAD=30°,则∠C=30°.14.已知等腰三角形的周长为29,一边长为7,则此等腰三角形的腰长为11.15.如图,△ABC三边的中线AD,BE,CF的交点是点G.若S△ABC=12,则图中阴影部分面积是4.提示:设△AFG,△BFG,△BDG,△CDG,△CEG,△AEG的面积分别为S1,S2,S3,S4,S5,S6,根据中线平分三角形面积可得:S1=S2,S3=S4,S5=S6,S1=S3,S3=S6,所以S1=S2=S3=S4=S5=S6=2.故阴影部分的面积为4.三、解答题(共50分)16.(8分)如图,在△ABC中,∠ABC是钝角,请画出:(1)∠ABC的平分线;(2)AC边上的中线;(3)BC边上的高.解:如图所示,BD即为∠ABC的平分线,BE即为AC边上的中线,AF即为BC边上的高.17.(8分)在新农村建设中,张爷爷想把一块三角形的花卉园(如图)分成面积相等的四部分,然后分别种上不同的花卉,便于培植与管理.请你帮张爷爷设计三种不同的方案.解:如图所示.18.(10分)如图,AD ,CE 是△ABC 的两条高.已知AD =10,CE =9,AB =12. (1)求△ABC 的面积; (2)求BC 的长.解:(1)S △ABC =12AB·CE=12×12×9=54.(2)因为S △ABC =12BC·AD,所以12×10×BC=54.所以BC =545.19.(12分)等腰三角形的两边长满足|a -4|+|b -9|=0,求这个等腰三角形的周长. 解:因为|a -4|+|b -9|=0,所以a -4=0,b -9=0,解得a =4,b =9. 若a 为腰长,则另一腰长为4,因为4+4=8<9,所以不符合三角形的三边关系; 若b 为腰长,则这个等腰三角形的周长为9+9+4=22. 综上所述,这个等腰三角形的周长为22.20.(12分)如图,在△ABC 中,∠B<∠C,AD ,AE 分别是△ABC 的高和角平分线. (1)若∠B=30°,∠C=50°,试确定∠DAE 的度数; (2)试写出∠DAE,∠B,∠C 的数量关系,并说明理由.解:(1)因为∠B=30°,∠C=50°, 所以∠BAC=180°-∠B-∠C=100°. 又因为AE 是△ABC 的角平分线, 所以∠BAE=12∠BAC=50°.因为AD 是△ABC 的高,所以∠BAD=90°-∠B=90°-30°=60°. 所以∠DAE=∠BAD-∠BAE=60°-50°=10°. (2)∠DAE=12(∠C-∠B),理由如下:因为AD 是△ABC 的高, 所以∠DAC=90°-∠C. 因为AE 是△ABC 的角平分线, 所以∠EAC=12∠BAC.因为∠B AC =180°-∠B-∠C, 所以∠DAE=∠EAC-∠DAC =12∠BAC-(90°-∠C)=12(180°-∠B-∠C)-90°+∠C=12(∠C-∠B).。
北师大版七年级数学下册第四章同步测试题及答案
3.如图,△ABC中,AD平分∠BAC,DE平分∠ADC,∠B=45°,∠C=35°,则∠AED=( )
(第3题图)
A.80°B.82.5°C.90°D.85°
4.若三角形的三条高的交点在这个三角形的内部,那么这个三角形是( )
A.锐角三角形B.直角三角形C.钝角三角形D.等边三角形
∴∠4=∠ABC.
∵∠1+∠ABC+∠=180°,
∴ ∠4+∠4+∠4=180°,
∴∠4=72°.
15.解:如图,延长BC交AD于点E.
∵∠ADC=30°,∠BCD=142°,
∴∠DEC=∠BCD﹣∠ADC=142°﹣30°=112°.
∵∠BAD=90°,
∴∠B=∠DEC﹣∠BAD=112°﹣90°=22°.
3.长为l的一根绳,恰好可围成两个全等三角形,则其中一个三角形的最长边x的取值范围为( )
A. B. C. D.
4.下列命题中:
(1)形状相同的两个三角形是全等形;
(2)在两个全等三角形中,相等的角是对应角,相等的边是对应边;
(3)全等三角形对应边上的高、中线及对应角平分线分别相等,其中真命题的个数有( )
5.要组成一个三角形,三条线段的长度可以是( )
A.1,2,3B.3,4,5
C.4,6,11D.1.5,2.5,4.5
二.填空题(共5小题)
6.如图,图中的三角形共有个,∠C的对边是.
(第6题图)
7.如图所示:在△AEC中,AE边上的高是.
(第7题图)
8.如图,在△ABC中,BC⊥AC,CD是AB边上的高,若AB=10cm,BC=6cm,AC=8cm,那么CD=.
北师大版七年级数学下册 第四章《三角形》单元测试卷(含答案)
高的交点恰好是三角形的一个顶点,那么这个三角形是直角三角形;④如果∠A=∠B= 1 ∠C, 2
那么△ABC 是直角三角形;⑤若三角形的一个内角等于另两个内角之差,那么这个三角形是
直角三角形;⑥在 ABC 中,若∠A+∠B=∠C,则此三角形是直角三角形。
A、3 个
B、4 个
C、5 个
D、6 个
7.在 ABC 中, B, C 的平分线相交于点 P,设 A = x, 用 x 的代数式表示 BPC 的
B
21.(本题 6 分)有人说,自己的步子大,一步能走三米多,你相信吗?
用你学过的数学知识说明理由。
C D
第 20 题图
22.(本题 6 分)小颖要制作一个三角形木架,现有两根长度为 8m 和 5m 的木棒。如果要 求第三根木棒的长度是整数,小颖有几种选法?第三根木棒的长度可以是多少?
2/5
知识像烛光,能照亮一个人,也能照亮无数的人。--培根
度。
14.如图,∠1=_____.
A
A
C
B
E
D 第 11 题图 第 12 题图
D
B
C
第 13 题图
80
1
140
第 14 题图
第 16 题图
15.若三角形三个内角度数的比为 2:3:4,则相应的外角比是
.
16.如图,⊿ABC 中,∠A = 40°,∠B = 72°,CE 平分∠ACB,CD⊥AB 于 D,DF⊥CE,
2
2
2
2
∠CDE=∠AED-∠C=(90°- 1 x)-[90°- 1 (40°+x)]=20°.
2
2
5/5
度数,正确的是( )
(A) 90 + 1 x (B) 90 − 1 x
北师大版初中七年级下学期数学第四章第4单元测试题及答案
第四章三角形测试题1.一定在△ABC内部的线段是()A.锐角三角形的三条高、三条角平分线、三条中线B.钝角三角形的三条高、三条中线、一条角平分线C.任意三角形的一条中线、二条角平分线、三条高D.直角三角形的三条高、三条角平分线、三条中线2.下列说法中,正确的是()A.一个钝角三角形一定不是等腰三角形,也不是等边三角形B.一个等腰三角形一定是锐角三角形,或直角三角形C.一个直角三角形一定不是等腰三角形,也不是等边三角形D.一个等边三角形一定不是钝角三角形,也不是直角三角形3.如图,在△ABC中,D、E分别为BC上两点,且BD=DE=EC,则图中面积相等的三角形有()A.4对B.5对C.6对D.7对(注意考虑完全,不要漏掉某些情况)4.如果一个三角形的三条高的交点恰是三角形的一个顶点,那么这个三角形是()A.锐角三角形B.钝角三角形C.直角三角形D.无法确定5.若等腰三角形的一边是7,另一边是4,则此等腰三角形的周长是()A.18 B.15 C.18或15 D.无法确定6.两根木棒分别为5cm和7cm,要选择第三根木棒,将它们钉成一个三角形,如果第三根木棒长为偶数,那么第三根木棒的取值情况有()种A.3 B.4 C.5 D.6A.180°B.360°C.720°D.540°7.如图:(1)AD⊥BC,垂足为D,则AD是________的高,∠________=∠________=90°;(2)AE平分∠BAC,交BC于点E,则AE叫________,∠________=∠________=∠________,AH叫________;(3)若AF=FC,则△ABC的中线是________;(4)若BG=GH=HF,则AG是________的中线,AH是________的中线.8.在等腰△ABC中,如果两边长分别为6cm、10cm,则这个等腰三角形的周长为________.9.如图,△ABC中,∠ABC、∠ACB的平分线相交于点I.(1)若∠ABC=70°,∠ACB=50°,则∠BIC=________;(2)若∠ABC+∠ACB=120°,则∠BIC=________;(3)若∠A=60°,则∠BIC=________;(4)若∠A=100°,则∠BIC=________;(5)若∠A=n°,则∠BIC=________.10.如图,在△ABC中,∠BAC是钝角.画出:(1)∠ABC的平分线;(2)边AC上的中线;(3)边AC上的高.11.如图,AB∥CD,BC⊥AB,若AB=4cm,,求△ABD中AB边上的高.12.学校有一块菜地,如下图.现计划从点D表示的位置(BD∶DC=2∶1)开始挖一条小水沟,希望小水沟两边的菜地面积相等.有人说:如果D是BC的中点的话,由此点D 笔直地挖至点A就可以了.现在D不是BC的中点,问题就无法解决了.但有人认为如果认真研究的话一定能办到.你认为上面两种意见哪一种正确,为什么?13.一块三角形优良品种试验田,现引进四个良种进行对比实验,需将这块土地分成面积相等的四块.请你制订出两种以上的划分方案.14.一个三角形的周长为36cm,三边之比为a∶b∶c=2∶3∶4,求a、b、c.15.如图,AB∥CD,∠BMN与∠DNM的平分线相交于点G,(1)完成下面的证明:∵MG平分∠BMN(),∴∠GMN=∠BMN(),同理∠GNM=∠DNM.∵AB∥CD(),∴∠BMN+∠DNM=________().∴∠GMN+∠GNM=________.∵∠GMN+∠GNM+∠G=________(),∴∠G=________.∴MG与NG的位置关系是________.(2)把上面的题设和结论,用文字语言概括为一个命题:_______________________________________________________________.16.已知,如图D是△ABC中BC边延长线上一点,DF⊥AB交AB于F,交AC于E,∠A=46°,∠D=50°.求∠ACB的度数.17.已知,如图△ABC中,三条高AD、BE、CF相交于点O.若∠BAC=60°,求∠BOC的度数.18.已知,如图△ABC中,∠B=65°,∠C=45°,AD是BC边上的高,AE是∠BAC的平分线.求∠DAE的度数.1.A;2.D;3.A;4.C;5.C;6.B;7.(1)BC边上,ADB,ADC;(2)∠BAC的角平分线,BAE,CAE,BAC,∠BAF的角平分线;(3)BF;(4)△ABH,△AGF;8.22cm或26cm;9.(1)120°;(2)120°;(3)120°;(4)140°;(5);10.略;11.,∴AB·BC=12,AB=4,∴BC=6,∵AB∥CD,∴△ABD中AB边上的高=BC=6cm.12.后一种意见正确.13.不作垂线,一个直角三角形,即:1=2×0+1,作一条垂线,三个直角三角形,即:3=2×1+1,同理,5=2×2+1,找出相应的规律,当作出时,图中共有2×k+1,即2k+1个直角三角形.14.设三边长a=2k,b=3k,c=4k,∵三角形周长为36,∴2k+3k+4k=36,k=4,∴a=8cm,b=12cm,c=16cm.15.(1)已知,角平分线定义,已知,180°,两直线平行同旁内角互补,90°,180°,三角形内角和定理,90°,互相垂直.(2)两平行直线被第三条直线所截,它们的同旁内角的角平分线互相垂直.16.94°17.120°18.10°;七年级数学下册三角形单元测试题(北师大版)姓名:________ 得分:________一、相信你的选择1. 下列说法:①全等三角形的对应边相等;②全等三角形的对应角相等;③若两个三角形全等且有公共顶点,则公共顶点就是它们的对应顶点;④若两个三角形全等,则对应边所对的角是对应角.其中正确的有()A.1个B.2个C.3个D.4个2.下列作图语句正确是()D EABC图5OBCED图6AABDC图7图8A.延长射线AB 到点CB.以点O 为圆心作弧C.作线段AB ,使a =ABD.作∠AOB ,使∠AOB =∠α3. 如图1,△ABC 中,∠C =90°,AD 是∠BAC 的平分线,DE ⊥AB 于E ,若BC =8cm ,则BD + DE的值是 ( ) A.10cm B.9cm C.8cm D.7cm4. 如图2,在△ABC 中,AB =AC ,AD 是底边BC 上的高,E 为AD 上任一点,则图中全等三角形一共有 ( ) A.1对 B.2对 C.3对 D.4对5. 如图3,在等边三角形ABC 中,D 是形外一点,且BD =CD ,∠BDC =120°,点E 、F 分别在AB 、AC 上,∠EDF =60°,则下列结论错误的是 ( )A .AD垂直平分BC B .点D 在∠EFC 的平分线上C .△AEF ≌△DEFD .△AEF的周长为2BC6. 如图4,△ABC 中,P 、G 分别是AC 、BC 上的点,作PE ⊥AB 于E ,PF ⊥BC 于F ,若BG =PG ,PE =PF .下列结论:①BF =BE ;②GP ∥BE ;③△AEP ≌△CFP ,其中正确的是 ( )A.①②③B.①和②C.②和③D.①和③二、试试你的身手7. 如图5,要使△ABC ≌△DEC ,只需满足____________________.8. 如图6,OA =OB ,OC =OD,∠O =60°,∠C =25,则∠BED =__________.9. 已知Rt △ABC ≌Rt △DEF ,∠C =∠F =90°,若∠B =25°,BC =7,则∠E =___, EF = _____.10. 如图7,等腰三角形ABC 中,AB =AC ,D 为AC 上一点,且AD =BD =BC ,则图中共有____个等腰三角形,顶角∠A =______.11. 如图8,在△ABC 中,∠A =90°,AB =AC ,CD 平分∠ACB ,DE ⊥BC 于E ,若BC =15cm ,则△DEB 的周长是______ .三、挑战你的技能12. 如图9,AB =CD ,BC =AD ,则∠B 与∠D 相等吗?试说明你的理由.图2图3CBDEAC图1C图413. 如图10,在△ABC中,∠A=2∠B,CD平分∠ACB.求证:BC=AC+AD.14. 如图11,△ABC为等边三角形,延长AC到E,使CE=AC,过C作CD∥AB,连接BD、DE,求证:△DBE是等腰三角形.15. 如图12,在△ABC中,∠ACB=90°,CE⊥AB于E,D为AB上一点,AD=AC,AF平分∠CAE交CE于F.请你猜想FD与BC有怎样的关系?并证明你的猜想.16. 两河AO、BO汇于O,在△AOB内建造两个养鸡场C和D,使两个养鸡场的图上距离为定长a,现要设计一个抽水站E,使得点E到两个养鸡场的距离相等,且使点E到河岸AO、BO的距离相等,用尺规作图,保留痕迹,画出点C、D、E.有人说这样画的图中找不到点E,你认为有这种可能吗?请说明理由.参考答案:AB OaADB C图10A CDB图9DABEC图11FACDE图12一、1.C 2.D 3.C 4.A 5.C 6.B二、7. AC=DC,CB=CE(答案不唯一);8.70°;9.25°,7;10.三,36°;11.15cm;三、12.∠B=∠D.证明:连接AC,因AB=CD,AC=AC,BC=AD,故△ABC≌△CDA,故∠B=∠D.13.证明:在BC上截取CE=CA,易证得△ADC≌△EDC,故∠A=∠DEC,从而∠DEC=2∠B,又∠DEC=∠B+∠BDE,故∠B=∠BDE,故BE=DE,于是BC=AC+AD.14.证明:因△ABC为等边三角形,又AC=CE,故BC=CE.又CD∥AB,故∠DCA=∠A=60°,故∠DCE=120°.在△DBC和△DCE中,因DC=DC,∠BCD=∠DCE=120°,BC=CE,故△DBC≌△DCE,故BD=DE,即△DBC是等腰三角形.15.FD∥BC.证明:由AF平分∠CAE,得∠CAF=∠EAF.又AC=AD,AF=AF,故△ACF≌△ADF.故∠ACF=∠ADF.又∠ACB=90°,CE⊥AB,故∠CBE和∠ACE都是∠ECB的余角,故∠CBE=∠ACE,故∠ADF=∠CBE,故FD∥BC.16.在∠AOB内部作线段CD=a,作∠AOB的平分线与CD的垂直平分线,两线交于点E(图形略).当∠AOB的平分线与CD的垂直平分线平行时,就找不到点E.附赠第四章三角形三角形三边关系三角形三角形内角和定理角平分线三条重要线段中线高线全等图形的概念全等三角形的性质SSS三角形SAS全等三角形全等三角形的判定ASAAASHL(适用于RtΔ)全等三角形的应用作三角形一、三角形概念1.不在同一条直线上的三条线段首尾顺次相接所组成的图形,称为三角形,可以用符号“Δ”表示。
七年级数学下册《第四章 三角形》单元测试卷(附答案解析)
七年级数学下册《第四章三角形》单元测试卷(附答案解析)一、选择题(共10小题,每小题3分,共30分)1.下面是一位同学用三根木棒拼成的图形,其中符合三角形概念的是( )A B C D2.下列说法正确的是( )A.两个面积相等的图形一定是全等图形B.两个全等图形形状一定相同C.两个周长相等的图形一定是全等图形D.两个正方形一定是全等图形3.如图,在△ABC中,∠ACB=90°,CD⊥AB于D,图中的线段可以作为△ABC的高的有( )A.2条B.3条C.4条D.5条4.经常开窗通风,可以有效地利用阳光和空气中的紫外线杀死病菌,清除室内空气中的有害气体,如图,一扇窗户打开后,用窗钩AB可将其固定,这里所运用的几何原理是( )A.三角形的稳定性B.两点之间线段最短C.两点确定一条直线D.垂线段最短5.下列图形中,是直角三角形的是( )A BC D6.根据下列已知条件,能画出唯一的△ABC的是( )A.∠A=36°,∠B=45°,AB=4B.AB=4,BC=3,∠A=30°C.AB=3,BC=4,CA=8D.∠C=90°,AB=67.如图,用四个螺丝将不能弯曲的木条围成一个木框,不计螺丝大小,其中相邻两个螺丝的距离依次为3、4、6、8,且相邻两根木条的夹角均可以调整,若调整木条的夹角时不破坏此木框,则任意两个螺丝间的距离的最大值是( )A.7B.10C.11D.148.如图,在△ABC中,AD是∠BAC的平分线,P为AD延长线上一点,PE⊥BC于点E,若∠B=75°,∠P=25°,则∠C的度数是( )A.25°B.75°C.15°D.50°9.如图,△ABC的三条中线AD,BE,CF相交于点G,且四边形CDGE的面积是12,则图中阴影部分的面积为( )A.16B.12C.10D.610.如图,四边形ABCD和四边形EFGH均为正方形,点E、F、G、H分别在AF、BG、CH、DE上,若AE=a,AF=b,则△ABF的面积可以表示为( )ab D.a+bA.abB.2abC.12二、填空题(共6小题,每小题3分,共18分)11.如图,AB=DE,AC=DF,BC=EF,则∠D的度数= .12.若等腰三角形两边的长分别为3 cm和7 cm,则第三边的长是cm.13.△ABC的三边长分别是a,b,c,化简|a-b+c|+|a-c-b|-|b-c-a|的结果为.14.如图,∠B=∠C,AB=AC,要使△ABD≌△ACE,只需增加的一个条件是(只需填写一个你认为适合的条件).15.某段河流的两岸是平行的,数学兴趣小组想测得河的宽度,为了保证安全,在老师带领下不用涉水过河就可以测量,他们是这样做的:①在河流的一条岸边B点,选对岸正对的一棵树A;②沿河岸直走20米有一棵树C,继续前行20米到达D处;③从D处沿河岸垂直的方向行走,当到达树A正好被树C遮挡住的E处时停止行走;④测得DE的长为5米.则河的宽度为米.16.现有一块如图所示的草地,经测量,∠B=∠C,AB=10米,BC=8米,CD=12米,点E是AB边的中点.点P从点B出发以2米/秒的速度沿BC向点C运动,同时点Q从点C出发沿CD向点D运动.当点Q的速度为米/秒时,能够在某一时刻使△BEP与△CPQ全等.三、解答题(共5小题,共52分)17.(8分)沿着图中的虚线,将图形分割成四个全等的图形.18.(10分)如图,在△ABC中,∠ACB=90°,点E在AC的延长线上,ED⊥AB于点D,若BC=ED,求证:CE=DB.19.(10分)小明沿一段笔直的人行道行走,边走边欣赏风景,在由C处走向D处的过程中,通过隔离带PM的缝隙P,刚好浏览完对面人行道宣传墙AB上的一条标语,具体信息如下:如图,AB∥PM∥CD,AC,BD相交于点P,PD⊥CD,垂足为D,△ABP中AB边上的高与△CDP中CD边上的高相等.小明根据自己步行的路程(CD的长)为16 m,测出标语AB的长度也为16 m,请说明理由.20.(12分)如图,在△ABC中,AC=BC,D是AB上的一点,AE⊥CD于点E,BF⊥CD于点F,若CE=BF,AE=EF+BF.试判断AC与BC的位置关系,并说明理由.21.(12分)小明不小心将等腰直角三角尺掉到了两堆砖块之间,如图所示.(1)求证:△ADC≌△CEB;(2)若DE=35 cm,请你帮小明求出砖块的厚度a的大小(每块砖的厚度相同).参考答案与解析1.D 三角形是由不在同一条直线上的三条线段首尾顺次相接所组成的图形.故选D.2.B A.两个面积相等的图形不一定是全等图形,故A错误,不符合题意;B.两个全等图形形状一定相同,故B正确,符合题意;C.两个周长相等的图形不一定是全等图形,故C错误,不符合题意;D.两个正方形不一定是全等图形,故D错误,不符合题意.故选B.3.B △ABC的高有AC、BC、CD,共3条,故选B.4.A5.B A.第三个角的度数是180°-60°-60°=60°,∴该三角形是等边三角形,不符合题意;B.第三个角的度数是180°-55.5°-34.5°=90°,∴该三角形是直角三角形,符合题意;C.第三个角的度数是180°-30°-30°=120°,∴该三角形是钝角三角形,不符合题意;D.第三个角的度数是180°-40°-62.5°=77.5°,∴该三角形是锐角三角形,不符合题意.故选B.6.A A.已知两角及这两角的夹边,能画出唯一的△ABC,符合题意;B.已知两边及其中一边的对角,不能画出唯一的△ABC,不符合题意;C.∵AB=3,BC=4,CA=8,3+4<8,∴AB+BC<CA,∴不能画出△ABC,不符合题意;D.已知一角和一边,不能画出唯一的△ABC,不符合题意.故选A.7.B ①当长度为3,4的两根木条共线时,∵7+6>8,∴此时两个螺丝间的最大距离为8;②当长度为6,4的两根木条共线时,∵3+8>10,∴此时两个螺丝间的最大距离为10;③当长度为3,8的两根木条共线时,∵4+6<11,∴此时会破坏木框,故此种情况不成立;④当长度为6,8的两根木条共线时,∵3+4<14,∴此时会破坏木框,故此种情况不成立.综上所述,任意两个螺丝间的距离的最大值为10,故选B.8.A ∵PE⊥BC,∴∠PEB=90°.∵∠P=25°,∴∠ADB=∠PDE=90°-∠P=65°.∵∠B=75°,∴∠BAD=180°-∠B-∠ADB=180°-75°-65°=40°.∵AD是∠BAC的平分线,∴∠BAC=2∠BAD=80°.∴∠C=180°-∠B-∠BAC=180°-75°-80°=25°.故选A.9.B ∵△ABC的三条中线AD,BE,CF相交于点G,∴S△AGE=S△CGE,S△BGD=S△CGD,∴S阴影=S△AGE+S△BGD=S△CGE+S△CGD=S四边形CDGE=12.故选B.10.C 在正方形ABCD中,AB=AD,∠DAB=90°,∴∠DAE+∠FAB=90°,在正方形EFGH中,∠HEF=∠EFG=90°,∴∠AED=∠BFA=90°,∴∠FAB+∠ABF=90°,∴∠DAE=∠ABF,∴△AED≌△BFA(AAS),∴BF=AE=a,∵BF=a,AF=b,∠AFB=90°,ab.∴S△ABF=12故选C.11.100°解析∵AB=DE,AC=DF,BC=EF,∴△ABC≌△DEF,∴∠A=∠D,在△ABC中,∠A=180°-50°-30°=100°,∴∠D=100°.12.7解析 当3 cm 为腰长时,3+3<7,不合题意,舍去. 当7 cm 为腰长时,3+7>7,故第三边的长为7 cm . 故答案是7. 13.b +c -a解析 ∵a ,b ,c 是△ABC 的三边长,∴b +c >a ,a +c >b ,∴a -b +c >0,a -c -b <0,b -c -a <0, ∴|a -b +c |+|a -c -b |-|b -c -a | =(a -b +c )-(a -c -b )+(b -c -a ) =a -b +c -a +c +b +b -c -a =b +c -a. 故答案为b +c -a. 14.BD =CE (答案不唯一) 解析 添加的条件是BD =CE , 在△ABD 和△ACE 中,{AB =AC,∠B =∠C,BD =CE,∴△ABD ≌△ACE (SAS),答案不唯一. 15.5解析 由题意知,在△ABC 和△EDC 中,{∠ABC =∠EDC =90°,BC =DC,∠ACB =∠ECD,∴△ABC ≌△EDC (ASA), ∴AB =ED ,则AB =DE =5米,即河的宽度是5米. 故答案是5. 16.2或52解析 设运动的时间为t 秒,则BP =2t 米,CP =(8-2t )米, ∵AB =10米,E 为AB 的中点,∴BE =5米, ∵∠B =∠C ,∴①当BE=CP=5米,BP=CQ时,△BPE≌△CQP,此时5=8-2t,,解得t=32=3米,∴BP=CQ=2×32=2(米/秒);此时点Q的运动速度为3÷32②当BE=CQ=5米,BP=CP时,△BPE≌△CPQ,此时2t=8-2t,解得t=2,∴点Q的运动速度为5÷2=5(米/秒).2.故答案为2或5217.解析答案不唯一.如图所示:18.证明∵ED⊥AB,∴∠ADE=∠ACB=90°,又∵∠A=∠A,BC=ED,∴△ABC≌△AED(AAS),∴AE=AB,AC=AD,∴CE=BD.19.解析∵AB∥CD,∴∠ABP=∠CDP,∵PD⊥CD,∴∠CDP=90°,∴∠ABP=90°,即PB⊥AB,∵△ABP中AB边上的高与△CDP中CD边上的高相等, ∴PD=PB,在△ABP与△CDP中,{∠ABP =∠CDP,PB =PD,∠APB =∠CPD,∴△ABP ≌△CDP (ASA), ∴CD =AB =16米.20.解析 AC ⊥BC.理由:∵AE ⊥CD ,BF ⊥CD , ∴∠AEC =∠BFC =90°, ∴∠CAE +∠ACE =90°, ∵CF =CE +EF ,CE =BF , ∴CF =EF +BF , ∵AE =EF +BF , ∴AE =CF ,在△ACE 和△CBF 中,{AC =BC,AE =CF,CE =BF,∴△ACE ≌△CBF (SSS), ∴∠BCF =∠CAE ,∴∠ACB =∠BCF +∠ACE =∠CAE +∠ACE =90°, ∴AC ⊥BC.21.解析 (1)证明:由题意得AC =BC ,∠ACB =90°,AD ⊥DE ,BE ⊥DE , ∴∠ADC =∠CEB =90°,∠ACD +∠BCE =90°, ∴∠ACD +∠DAC =90°, ∴∠BCE =∠DAC ,在△ADC 和△CEB 中,{∠ADC =∠CEB,∠DAC =∠BCE,AC =CB,∴△ADC ≌△CEB (AAS). (2)∵一块砖的厚度为a , ∴AD =4a ,BE =3a , 由(1)得△ADC ≌△CEB , ∴DC =BE =3a ,CE =AD =4a , ∴DC +CE =7a =35 cm,∴a=5 cm.答:砖块的厚度a为5 cm.第11 页共11 页。
北师大版七年级数学下册第四章三角形单元检测练习试题(有答案)
第四章单元检测题一.选择题1.下列长度的四根木棒中,能与长为4cm,9cm的两根木棒围成一个三角形的是()A.4cm B.5cm C.9cm D.14cm2.如图,线段AD把△ABC分为面积相等的两部分,则线段AD是()A.三角形的角平分线B.三角形的中线C.三角形的高D.以上都不对3.如图,∠A=∠B,∠C=α,DE⊥AC,FD⊥AB,则∠EDF等于()A.αB.C.90°﹣αD.180°﹣2α4.下列条件中,能判定△ABC为直角三角形的是()A.∠A=2∠B=3∠C B.∠A+∠B=2∠CC.∠A=∠B=30°D.∠A=∠B=∠C5.下列说法错误的有()①只有两个三角形才能完全重合;②如果两个图形全等,它们的形状和大小一定都相同;③两个正方形一定是全等图形;④边数相同的图形一定能互相重合.A.4个B.3个C.2个D.1个6.如图,△ABC与△DEF是全等三角形,即△ABC≌△DEF,那么图中相等的线段有()A.1组B.2组C.3组D.4组7.如图,AB∥CD,BC∥AD,AB=CD,BE=DF,图中全等的三角形的对数是()A.3B.4C.5D.68.如图,△ABC中,P、Q分别是BC、AC上的点,作PR⊥AB,PS⊥AC,垂足分别是R、S,若AQ=PQ,PR=PS,下面三个结论:①AS=AR②QP∥AR③△BRP≌△QSP.其中正确的是()A.①③B.②③C.①②D.①②③9.如图,工人师傅做了一个长方形窗框ABCD,E、F、G、H分别是四条边上的中点,为了使它稳固,需要在窗框上钉一根木条,这根木条不应钉在()A.A、C两点之间B.E、G两点之间C.B、F两点之间D.G、H两点之间10.等腰三角形是一腰上的高与另一腰的夹角为60°,则这个等腰三角形的顶角的度数为()A.30°或120°B.150°C.30°或150°D.30°二.填空题11.已知三角形的两边长分别为7和2,第三边的数值是奇数,则该三角形的周长为.12.如图,在△ABC中,CD=DE,AC=AE,∠DEB=110°,则∠C=.13.如图所示,在△ABC中,∠C=90°,AD平分∠BAC,DE⊥AB于E,BC=8cm,则DE+DB=.14.如图,点D、E分别在线段AB、AC上,BE、CD相交于点O,AE=AD,要使△ABE≌△ACD,需添加一个条件是.(答案不唯一,只要写一个条件)15.如图,一个顶角为40°的等腰三角形纸片,剪去顶角后,得到一个四边形,则∠1+∠2=度.16.如图,AB=AC,点D、E分别在AC、AB上,AF⊥CE,AG⊥BD,垂足分别为F、G,AF=AG,下列结论中:①∠B=∠C;②AD=AE;③∠EAF=∠DAG;④BE=CD.其中正确的结论是(填序号)三.解答题17.如图,已知△ABC,用三角尺和量角器作△ABC的:①中线AD;②角平分线BE;③高CH.18.如图,在△ABC中,AD是高,AE是角平分线,∠B=70°,∠DAE=18°,求∠C的度数.19.如图,已知AD∥BC,AD=BC,AE=CF.E,F两点在直线AC上,试说明DE∥BF.20.已知一直角边和这条直角边的对角,求作直角三角形(用尺规作图,不写作法,但要保留作图痕迹)已知:线段a和∠α,如图所示.求作:Rt△ABC使BC=a,∠C=90°,∠A=∠α21.如图,一条输电线路需跨越一个池塘,池塘两侧A,B处各立有一根电线杆,但利用现有皮尺无法直接测量出A,B的距离,请你根据所学三角形全等的知识,设计一个方案,测出A,B的距离(要求画出图形,写出测量方案和理由)22.如图,已知正方形ABCD的边长为10厘米,点E在边AB上,且AE=4厘米,如果点P在线段BC上以2厘米/秒的速度由B点向C点运动,同时,点Q在线段CD上由C点向D点运动.设运动时间为t 秒.(1)若点Q的运动速度与点P的运动速度相等,经过2秒后,△BPE与△CQP是否全等?请说明理由;(2)若点Q的运动速度与点P的运动速度不相等,则当t为何值时,能够使△BPE与△CQP全等;此时点Q的运动速度为多少.参考答案一.选择题1.C.2.B.3.B.4.D.5.B.6.D.7.A.8.C.9.B.10.C.二.填空题11.16.12.70°13.8cm.14.∠ADC=∠AEB.15.220.16.①②③④.三.解答题17.解:(1)(2)(3)如图所示:..18.解:∵AD是高,∠B=70°,∴∠BAD=20°,∴∠BAE=20°+18°=38°,∵AE是角平分线,∴∠BAC=76°,∴∠C=180°﹣70°﹣76°=34°.19.解:∵AD∥BC,∴∠1=∠2,∴∠DAE=∠BCF,在△DAE和△BCF,,∴△DAE≌△BCF(SAS),∴∠E=∠F,∴DE∥BF.20.解:如图,Rt△ABC为所作.21.解:分别以点A、点B为端点,作AQ、BP,使其相交于点C,使得CP=CB,CQ=CA,连接PQ,测得PQ即可得出AB的长度.理由:由上面可知:PC=BC,QC=AC,在△PCQ和△BCA中,∴△PCQ≌△BCA(SAS),∴AB=PQ.22.解:(1)△BPE与△CQP全等.(1分)∵点Q的运动速度与点P的运动速度相等,且t=2秒∴BP=CQ=2×2=4厘米(2分)∵AB=BC=10厘米,AE=4厘米,∴BE=CP=6厘米,∵四边形ABCD是正方形,∴在Rt△BPE和Rt△CQP中,,∴Rt△BPE≌Rt△CQP;(4分)(2)∵点Q的运动速度与点P的运动速度不相等,∴BP≠CQ,(5分)∵∠B=∠C=90°,∴要使△BPE与△OQP全等,只要BP=PC=5厘米,CQ=BE=6厘米,即可.(6分)∴点P,Q运动的时间t=此时点Q的运动速度为(厘米/秒).(8分)。
2020-2021学年 北师大版七年级数学下册 第四章 《三角形》单元综合检测(含答案)
北师大版七年级数学下册第四章《三角形》单元综合检测姓名:_________ 班级:___________学号:__________一、单选题1.对于任意三角形的高,下列说法不正确的是()A. 直角三角形只有一条高B. 锐角三角形有三条高C. 任意三角形都有三条高D. 钝角三角形有两条高在三角形的外部2.如果线段a,b,c能组成三角形,那么,它们的长度比可能是()A. 1∶2∶4B. 1∶3∶4C. 2∶3∶4D. 3∶4∶73.等腰三角形两边长为2,5,则第三边的长是()A. 2B. 5C. 12D. 2或54.已知△ABC中,∠A=2∠B=3∠C,则△ABC为()A. 钝角三角形B. 直角三角形C. 锐角三角形D. 无法确定5.如图,在△ABC和△DEC中,已知AB=DE,还需添加两个条件才能使△ABC≌△DEC,不能添加的一组条件是()A. BC=DC,∠A=∠DB. BC=EC,AC=DCC. ∠B=∠E,∠BCE=∠ACDD. BC=EC,∠B=∠E6.如图所示是两个全等三角形,由图中条件可知,∠α=()A. 65°B. 30°C. 85°D. 30°或65°7.如图,△ABC≌△DEF,BE=4,AE=1,则DE的长是()A. 5B. 4C. 3D. 28.下列说法错误的有()①全等三角形的对应边相等;②全等三角形的对应角相等;③全等三角形的面积相等,周长相等;④有两边和其中一边所对的角对应相等的两个三角形全等;⑤有两边和其中一边上的高对应相等的两个三角形全等;⑥全等三角形的对应边上的中线相等。
A. 1个B. 2个C. 3个D. 5个9.如图,ΔABC≅ΔDBE,点D在线段AC上,线段BC与DE交于点F下面各项中,不能推导出的结论是()A. ∠EBF=∠ABDB. ∠EBF=∠FDCC. ∠ABD=∠FDCD. ∠ABD=∠FBD10.如图所示,有两个长度相同的滑梯(即BC=EF),左边滑梯的高度AC与右边滑梯水平方向的长度DF相等,则下列结论:(1)AB=DE;(2)∠ABC+∠DFE=90°;(3)∠ABC=∠DEF中正确的有()A. 1个B. 2个C. 3个D. 0个二、填空题1.等腰三角形有两条边长为4cm和9cm,则该三角形的周长是________.2.要使六边形木架不变形,至少要钉上________ 根木条.3.如图,AB∥CD,DB⊥BC,∠2=50°,则∠1的度数是________.4.如图,点D、E分别在线段AB,AC上,AE=AD,不添加新的线段和字母,要使△ABE≌△ACD,需添加的一个条件是________________________________________(只写一个条件即可).5.如图,把两根钢条AB′、BA′的中点连在一起,可以做成一个测量工件内槽宽的工具(卡钳),若测得AB=5米,则槽宽为________米.6.在△ABC中,AB=AC,点D在BC上(不与点B,C重合).只需添加一个条件即可证明△ABD≌△ACD,这个条件可以是________(写出一个即可)7.如图,点C,D在AB的同侧,AC=5,AB=13,BD=10,点M为AB的中点,若∠CMD=120°,则CD的最大值是________.三、解答题1.如图,点B,E,C,F在一条直线上,AB=DE,AC=DF,BE=CF.试说明:∠A=∠D.2.已知:如图,P是OC上一点,PD⊥OA于D,PE⊥OB于E,F、G分别是OA、OB上的点,且PF=PG,DF=EG.求证:OC是∠AOB的平分线.3.如图,在三角形ABC中,DE是AC边的垂直平分线,且分别交BC、AC于点D和E,∠B=60°,∠C= 30°,求证:ΔABD是等边三角形.4.如图,E是∠AOB的平分线上一点,EC⊥OA,ED⊥OB,垂足分别是C,D.试证明:OC=OD.第3页共8页◎第4页共8页5.用一根长为20cm的细绳围成一个等腰三角形.(1)如果腰长是底边长的2倍,求这个三角形各边的长.(2)能围成有一边的长是5cm的等腰三角形吗?为什么?6.如图,要测量河岸相对两点A,B的距离,可以从AB的垂线BF上取两点C,D,使BC=CD.过点D作DE⊥BF,且A,C,E三点在一直线上.若测得DE=15米,即可知道AB也为15米.请说明理由.北师大版七年级数学下册第四章《三角形》单元综合检测答案一、单选题1. A2. C3. B4. A5. A6. A7.A8. B9. D 10. C二、1.22cm 2. 3 3. 40° 4. ∠B=∠C(答案不唯一) 5. 5 6. ∠BAD=∠CAD(或BD=CD)7. 21.5三、1. 证明:∵BE=CF,∴BC=EF,又∵AB=DE,AC=DF,∴△ABC≌△DEF.∴∠A=∠D.2.证明:在Rt△PFD和Rt△PGE中,,∴Rt△PFD≌Rt△PGE(HL),∴PD=PE,∵P是OC上一点,PD⊥OA,PE⊥OB,∴OC是∠AOB的平分线3. 证明:∵DE垂直平分线段AC,∴DA=DC,∴∠DAC=∠C=30°,∴∠ADB=∠DAC+∠C=60°,∵∠B=60°,∴∠BAD=180°-∠B-∠ADB=60°,∴∠BAD=∠B=∠ADB=60°,∴△ABD是等边三角形.4.证明:∵EC⊥OA,ED⊥OB,∴∠OCE=∠ODE=90°.又∵OE平分∠AOB,∴EC=ED,在Rt△OCE和Rt△ODE中,,∴Rt△OCE≌Rt△ODE(HL).∴OC=OD5. (1)解:设底边长为xcm,则腰长为2xcm,则2x+2x+x=20解得,x=4第7页 共8页 ◎ 第8页 共8页∴2x=8∴各边长为:8cm ,8cm ,4cm(2)解:①当5cm 为底时,腰长=7.5cm ;②当5cm 为腰时,底边=10cm ,因为5+5=10,故不能构成三角形,故舍去; 故能构成有一边长为5cm 的等腰三角形,另两边长为7.5cm ,7.5cm 6. 解: ∵AB ⊥BF , DE ⊥BF , ∴∠ABC =∠EDC =90° ,在 △ABC 和 △EDC 中, {∠ABC =∠EDCBC =CD∠ACB =∠ECD, ∴△ABC ≌ △EDC(ASA) , ∴AB =DE ,故测得 DE =15 米,即可知道AB 也为15米.。
北师大数学七年级下《第四章三角形》章节检测题含答案
北师大版数学七年级下册第四章三角形章节检测题一、选择题1.在下列长度的四根木棒中,能与长为4 cm,9 cm的两根木棒钉成一个三角形的是( )A.4 cm B.5 cm C.9 cm D.13 cm2.在△ABC中,∠A=20°,∠B=60°,则△ABC的形状是( )A.等边三角形 B.锐角三角形 C.直角三角形 D.钝角三角形3.下列说法中正确的是( )A.面积相等的两个图形是全等图形B.周长相等的两个图形是全等图形C.所有正方形都是全等图形D.能够完全重合的两个图形是全等图形4.如图,AB∥FC,DE=EF,AB=15,CF=8,则BD等于( )A.8 B.7 C.6 D.55.如图,为测量B点到河对面的目标A之间的距离,他们在B点同侧选择了一点C,测得∠ABC=70°,∠ACB=40°,然后在M处立了标杆,使∠CBM=70°,∠BCM=40°,那么需要测量________才能测得A,B之间的距离( )A.AB B.AC C.BM D.CM6.如图,∠A=∠B,∠C=α,DE⊥AC,FD⊥AB,则∠EDF等于( )A.α B.90°-12α C.90°-α D.180°-2α7.一副三角板叠在一起如图放置,最小锐角的顶点D恰好放在等腰直角三角板的斜边AB上,BC与DE交于点M.如果∠ADF=100°,那么∠BMD为( )A.95° B.85° C.90° D.100°二、填空题8.如图,直线l1∥l2,若∠1=130°,∠2=60°,则∠3=_______.9.如图,以△ABC的顶点A为圆心,以BC长为半径作弧;再以顶点C为圆心,以AB长为半径作弧,两弧交于点D;连接AD,CD.若∠B=65°,则∠ADC的大小为________.10.如图是一副三角板叠放的示意图,则∠α=________.11.如图,在△ABC中,AD是BC边上的高,点E在线段BD上,且AE平分∠BAC,若∠B=40°,∠C=78°,则∠EAD=____°.12.一角为80°的三角形中,另两角的角平分线相交所成的锐角是________.13.如图,在△ABC中,BD是边AC上的中线,E是BC的中点,连接DE.如果△BDE的面积为2,那么△ABC的面积为____.三、解答题14.如图,点C,F在线段BE上,BF=EC,∠1=∠2,请你添加一个条件,使△ABC≌△DEF,并加以证明.(不再添加辅助线和字母)15.(·河北)如图,点B,F,C,E在直线l上(F,C之间不能直接测量),点A,D在l异侧,测得AB =DE,AC=DF,BF=EC.(1)求证:△ABC≌△DEF;(2)指出图中所有平行的线段,并说明理由.16.如图,在△ABC中,BE,CF分别是AC,AB两条边上的高,在BE上截取BD=AC,在CF的延长线上截取CG=AB,连接AD,AG.求证:AG=AD.17.某段河流的两岸是平行的,数学兴趣小组在老师带领下不用涉水过河就测得河的宽度,他们是这样做的:①在河流的一条岸边B点,选对岸正对的一棵树A;②沿河岸直走20步有一棵树C,继续前行20步到达D处;③从D处沿河岸垂直的方向行走,当到达A树正好被C树遮挡住的E处停止行走;④测得DE的长就是河宽AB.请你证明他们做法的正确性.18.如图,在Rt△ABC中,∠ACB=90°,∠B=30°,AD平分∠CAB.(2)延长AC 至点E ,使CE =AC ,求证:DA =DE.答案:一、1---7 CDDBC BB二、8. 70°9. 65°10. 75°11. 19 °12. 50°13. 8三、14. 解:答案不唯一,如添加AC =DF ,证明:∵BF =EC ,∴BF -CF =EC -CF ,即BC =EF ,在△ABC 和△DEF 中,⎩⎪⎨⎪⎧AC =DF ,∠1=∠2,BC =EF ,∴△ABC ≌△DEF15. 解:(1)∵BF =CE ,∴BF +CF =CE +CF ,即BC =EF ,又∵AB =DE ,AC =DF ,∴△ABC ≌△DEF(SSS) (2)AB ∥DE ,AC ∥DF.理由:∵△ABC ≌△DEF ,∴∠ABC =∠DEF ,∠ACF =∠DFE ,∴AB ∥DE ,AC16. 解:∵BE ,CF 分别是AC ,AB 两条边上的高,∴∠ABD +∠BAC =90°,∠GCA +∠BAC =90°,∴∠GCA =∠ABD ,在△GCA 和△ABD 中,∵GC =AB ,∠GCA =∠ABD ,CA =BD ,∴△GCA ≌△ABD ,∴AG =AD17. 解:做法正确.证明:在△ABC 和△EDC 中,∴△ABC ≌△EDC(ASA),∴AB =DE18. 解:(1)∵在Rt △ABC 中,∠ACB =90°,∠B =30°,∴∠CAB =60°.又∵AD 平分∠CAB ,∴∠CAD =12∠CAB =30° (2)∵∠ACD +∠ECD =180°,且∠ACD =90°,∴∠ECD =90°,∴∠ACD =∠ECD.在△ACD 与△ECD 中,⎩⎪⎨⎪⎧AC =EC ,∠ACD =∠ECD ,CD =CD ,∴△ACD ≌△ECD(SAS),∴DA =DE。
北师大版数学七年级下册第四章单元测试卷(含答案)
北师大版数学七年级下册第四章单元测试卷一、选择题(本题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一个是符合要求的)1.若三角形有两个内角的和是85°,那么这个三角形是()A.钝角三角形B.直角三角形C.锐角三角形D.不能确定2.如图,已知AB∥CD,∠A=40°,∠C=65°,则∠P的度数为() A.20°B.35°C.30°D.25°(第2题)(第5题)3.现有3 cm,4 cm,7 cm,9 cm长的四根木棒,任取其中三根组成一个三角形,那么可以组成的三角形的个数是()A.1 B.2 C.3 D.44.下列说法正确的是()A.全等三角形是指形状相同的三角形B.全等三角形是指面积相等的三角形C.全等三角形的周长和面积相等D.所有等边三角形是全等三角形5.如图,AD是△ABC的角平分线,过点D向AB,AC两边作垂线,垂足分别为E,F,那么下列结论中不一定...正确的是()A.BD=CD B.DE=DFC.AE=AF D.∠ADE=∠ADF6.如图,AD∥BC,AB∥CD,AC,BD交于点O,过点O的直线EF交AD于点E,交BC于点F,且BF=DE,则图中的全等三角形共有()A.6对B.5对C.3对D.2对(第6题)(第7题)7.工人师傅常用角尺平分一个任意角.做法如下:如图,∠AOB是一个任意角,在边OA,OB上分别取OM=ON,移动角尺,使角尺两边相同的刻度分别与点M,N重合,过角尺顶点C作射线OC.由此作法便可得△MOC≌△NOC,其依据是()A.SSS B.SAS C.ASA D.AAS8.下列四个图形中,线段BE是△ABC的高的是()9.根据下列已知条件,能画出唯一一个....△ABC的是()A.AB=3,BC=4,AC=8B.AB=4,BC=3,∠A=30°C.∠A=60°,∠B=45°,AB=4D.∠C=90°,AB=610.如图,在△ABC中,AC⊥CB,CD平分∠ACB,点E在AC上,且CE=CB,则下列结论:①DC平分∠BDE;②BD=DE;③∠B=∠CED;④∠A+∠CED =90°.其中正确的有()A.1个B.2个C.3个D.4个(第10题)(第11题)二、填空题(本题共6小题,每小题3分,共18分)11.如图,照相机的底部用三脚架支撑着,这样做的依据是____________________.12.如图,要测量池塘两岸相对的两点A,B的距离,可以在池塘外取AB的垂线BF上的两点C,D,使BC=CD,再画出BF的垂线DE,使E与A,C在一条直线上.若想知道两点A,B的距离,只需要测量出线段____________的长度即可.(第12题) (第13题)13.如图,点C,F在线段BE上,BF=EC,∠1=∠2.请你添加一个条件,使△ABC ≌△DEF,这个条件可以是____________(不再添加辅助线和字母).14.如图,AD,AE分别是△ABC的角平分线、高线,且∠B=50°,∠C=70°,则∠EAD=________.15.如图,在△ABC中,点D是BC的中点,点E是AC上一点,EC=2AE,AD =2AF,已知△ABC的面积为30,那么四边形CDFE的面积为______________.(第15题)(第16题)16.如图,已知四边形ABCD中,AC平分∠BAD,CE⊥AB于点E,且AE=12(AB3+AD ),若∠D =115°,则∠B =________.三、解答题(本题共6小题,共52分.解答应写出文字说明、证明过程或演算步骤)17.(8分)如图,已知:AD =BC ,AD ∥BC ,E ,F 是AC 上两点,且AF =CE .试说明:DE =BF .请补全下面的推理过程. 解:因为AD ∥BC (已知),所以∠____=∠____(两直线平行,内错角相等). 因为AF =CE (已知),所以______________(等式的基本性质). 即AE =CF .在△ADE 和△CBF 中, ⎩⎪⎨⎪⎧( ),( ),( ),所以△ADE ≌△CBF (________). 所以DE =BF (__________________).18.(8分)如图,在△ABC 中,AD 是角平分线,∠B =54°,∠C =76°. (1)求∠ADB 和∠ADC 的度数;(2)若DE ⊥AC 于点E ,求∠EDC 的度数.19.(10分)七年级(2)班的篮球啦啦队为了在明天的比赛中给同学们加油助威,每人提前制作了一面同一规格的三角形彩旗.小贝放学回家后,发现自己的彩旗破损了一角(如图①),她想用彩纸(如图②)重新制作一面彩旗.(1)请你帮助小贝,用直尺与圆规在彩纸上作出一个与破损前完全一样的三角形(不写作法,保留作图痕迹);(2)你作图的理由是判定三角形全等条件中的“________”.20.(8分)如图,要测量河岸相对两点A,B的距离,可以从AB的垂线BF上取两点C,D,使BC=CD,过D作DE⊥BF,且A,C,E三点在一条直线上,若测得DE=15米,即可知道AB也为15米,请你说明理由.21.(8分)如图,△ABC和△ECD都是等腰直角三角形,∠ACB=∠DCE=90°,D为AB边上一点.试说明:BD=AE.522.(10分)如图①,AB=7 cm,AC⊥AB,BD⊥AB,垂足分别为A,B,AC=5 cm.点P在线段AB上以2 cm/s的速度由点A向点B运动,同时点Q在射线BD 上运动.它们运动的时间为t(s)(当点P停止运动时,点Q随之停止运动).(1)AP=________cm,BP=________cm(用含t的代数式表示).(2)若点Q的运动速度与点P的运动速度相等,当t=1时,△ACP与△BPQ是否全等?并判断此时线段PC和线段PQ的位置关系,请分别说明理由.(3)如图②,若“AC⊥AB,BD⊥AB”改为“∠CAB=∠DBA”,点Q的运动速度为xcm/s,其他条件不变,当点P,Q运动到何处时有△ACP与△BPQ全等?求出相应的x的值.7 答案一、1.A 2.D 3.B 4.C 5.A 6.A 7.A 8.D 9.C 10.D二、11.三角形具有稳定性 12.DE 13.CA =FD (答案不唯一) 14.10°15.252 点拨:如图,连接CF ,因为点D 是BC 的中点,S △ABC =30,所以S △ADB =S △ADC =12S △ABC =15.因为AD =2AF ,所以AF =DF , 所以S △BDF =S △ABF =12S △ABD =152. 因为EC =2AE ,S △ABC =30 , 所以S △BEC =23S △ABC =20,所以S 四边形CDFE =S △BEC -S △BDF =20-152=252.16.65° 点拨:过点C 作CF ⊥AD ,交AD 的延长线于点F .因为AC 平分∠BAD ,所以∠CAF =∠CAE .因为CF ⊥AF ,CE ⊥AB ,所以∠AFC =∠AEC =90°.在△CAF 和△CAE 中,⎩⎨⎧∠CAF =∠CAE ,∠AFC =∠AEC ,AC =AC ,所以△CAF ≌△CAE (AAS).所以FC =EC ,AF =AE .因为AE =12(AB +AD ),所以AF =12(AE +EB +AD ),易得AF =BE +AD .又因为AF =AD +DF ,所以DF =BE .在△FDC 和△EBC 中,⎩⎨⎧CF =CE ,∠CFD =∠CEB =90°,DF =BE ,所以△FDC ≌△EBC (SAS).所以∠FDC =∠B .又因为∠ADC =115°,所以∠FDC =180°-115°=65°.所以∠B =65°.三、 17.A ;C ;AF -EF =CE -EF ;AD =BC ;∠A =∠C ;AE =CF ;SAS ;全等三角形的对应边相等18.解:(1)因为∠B =54°,∠C =76°,所以∠BAC =180°-54°-76°=50°.因为AD 平分∠BAC ,所以∠BAD =∠CAD =25°.所以∠ADB =180°-54°-25°=101°,所以∠ADC =180°-101°=79°.(2)因为DE ⊥AC ,所以∠DEC =90°.所以∠EDC =180°-90°-76°=14°. 19.解:(1)如图所示,△ABC 为所求作的三角形.(2)ASA20.解:因为AB ⊥BF ,DE ⊥BF ,所以∠B =∠CDE =90°.在△ABC 和△EDC 中,⎩⎨⎧∠B =∠CDE ,BC =CD ,∠ACB =∠DCE ,所以△ABC ≌△EDC (ASA).所以AB =DE =15米. 21.解:因为△ABC 和△ECD 都是等腰直角三角形,且∠ACB =∠DCE =90°, 所以AC =BC ,CD =CE , ∠ACE +∠ACD =∠BCD +∠ACD . 所以∠ACE =∠BCD . 在△ACE 和△BCD 中,⎩⎨⎧AC =BC ,∠ACE =∠BCD ,CE =CD ,所以△ACE ≌△BCD (SAS).所以BD =AE . 22.解:(1) 2t ;(7-2t )(2)△ACP 与△BPQ 全等,PC ⊥PQ .理由:因为点Q 的运动速度与点P 的运动速度相等,所以当t=1时,AP=BQ=2 cm,BP=7-2=5 (cm).因为AC=5 cm,所以AC=BP.又因为∠A=∠B=90°,所以△CAP≌△PBQ(SAS),所以∠ACP=∠BPQ.因为∠ACP+∠CP A=90°,所以∠BPQ+∠CP A=90°,所以∠CPQ=90°,所以PC⊥PQ.(3)△ACP与△BPQ全等有两种情况:①当AC=PB,AP=BQ时,AC=PB=5 cm,AP=BQ=7-5=2(cm) ,因为AP=2t cm,BQ=xt cm,所以2t=2,xt=2,解得t=1,x=2.②当AC=BQ,AP=PB时,AC=BQ=5 cm,AP=PB=72cm,因为AP=2t cm,BQ=xt cm,所以2t=72,xt=5,解得t=74,x=207.综上,当AP=BQ=2 cm或AP=72cm,BQ=5 cm时,△ACP与△BPQ全等,相应的x的值分别为2,20 7.9。
最新北师大版七年级下册数学第四章同步过关检测试卷及答案
单元质量达标(四)(第四章)一、选择题1.下列各组数作为三条线段的长,能作为三角形的三条边的一组是(D) A.2,6,3 B.5,6,13 C.2,2,4 D.4,4,72.在下列四组图形中,是全等形的是(C)3.(2021·梧州中考)在△ABC中,∠A=20°,∠B=4∠C,则∠C等于(A) A.32°B.36°C.40°D.128°4.下列说法中错误的是(D)A.三角形的三个内角中,最多有一个钝角B.三角形三个内角中,至少有两个锐角C.直角三角形中有两个锐角互余D.三角形中两个内角和必大于90°5.如图,为估计池塘岸边A,B的距离,小方在池塘的一侧选取一点O,测得OA=10米,OB=8米,A,B间的距离不可能是(A)A.20米B.16米C.14米D.10米6.如图,已知P是三角形ABC的边AB上一个动点,AB=6,三角形ABC的面积为12,则CP的最小长度为(D)A.1 B.2 C.3 D.47.(2021·三明期末)如图,BD是△ABC的中线,点E,F分别为BD,CE的中点,若△ABC的面积为12.则△AEF的面积是(B)A.2 B.3 C.4 D.68.如图,点A,O,D在一条直线上,OC∥AB,OC=OA,OD=AB,则下列结论正确的是(C)A.∠AOB=∠COD B.∠OAB=∠OCD C.OB=CD D.AB=CD 9.如图,点B,C,E在同一条直线上,∠B=∠E=∠ACF=60°,AB=CE,则与线段BC相等的线段是(D)A.AC B.AF C.CF D.EF10.如图,在△ABC与△AEF中,AB=AE,BC=EF,∠ABC=∠AEF,∠EAB=40°,AB交EF于点D,连接EB.下列结论:①∠F AC=40°;②AF=AC;③∠EBC =110°;④AD=AC;⑤∠EFB=40°,正确的个数为____个(C)A.1 B.2 C.3 D.4二、填空题11.如图,△ABC中,CD平分∠ACB,若∠A=68°,∠BCD=31°,则∠B=__50°__.12.如图,△ABC中,AB=15,BC=9,BD是AC边上的中线,若△ABD的周长为30,则△BCD的周长是__24__.13.如图,已知,在△ABC中,∠C=90°,BE平分∠ABC,且BE∥AD,∠BAD=20°,则∠AEB=__110__°.14.把两根钢条AD,BC的中点连在一起,可以做成一个测量工件内槽宽的工具(卡钳),如图,若测得AB=8厘米,则槽宽为__8__厘米.15.如图,在△ACD与△BCE中,AD与BE相交于点P,若AC=BC,AD=BE,CD=CE,∠DCE=55°,则∠APB的度数为__55°__.16.如图,C是线段AB上的一点,△ACD和△BCE都是等边三角形,AE交CD 于M,BD交CE于N,交AE于O,则①DB=AE;②∠AMC=∠DNC;③∠AOB =60°;④DN=AM;⑤△CMN是等边三角形.其中,正确的有__①②④⑤__.三、解答题17.已知∠α,线段a,b,求作:△ABC,使∠B=∠α,AB=2a,BC=b.(要求:用直尺和圆规作图,保留作图痕迹,不写作法及证明)【解析】如图,△ABC为所作.18.如图,AC=AE,∠C=∠E,∠1=∠2.求证:△ABC≌△ADE.【证明】∵∠1=∠2, ∴∠1+∠EAC =∠2+∠EAC , ∴∠BAC =∠DAE , 在△ABC 和△ADE 中, ⎩⎪⎨⎪⎧∠BAC =∠DAE AC =AE∠C =∠E, ∴△ABC ≌△ADE (ASA).19.如图,A ,B 两建筑物位于河的两岸,要测它们之间的距离,可以从B 点出发在河岸上画一条射线BF ,在BF 上截取BC =CD ,过点D 作DE ∥AB ,使E ,C ,A 在同一直线上,则DE 的长就是A ,B 之间的距离,请你说明道理.【解析】∵DE ∥AB ,∴∠A =∠E , 在△ABC 和△EDC 中, ⎩⎪⎨⎪⎧∠A =∠E ∠ACB =∠ECD BC =CD,∴△ABC ≌△EDC (AAS), ∴DE =AB ,即DE 的长就是A ,B 之间的距离.20.如图,点A ,B 分别在射线OM ,ON 上运动(不与点O 重合),AC ,BC 分别是∠BAO 和∠ABO 的角平分线,BC 延长线交OM 于点G . 解决问题:(1)若∠OBA =80°,∠OAB =40°,则∠ACG =________;(直接写出答案)(2)若∠MON =100°,求出∠ACG 的度数.【解析】(1)∵AC ,BC 分别是∠BAO 和∠ABO 的角平分线,∴∠CBA =12 ∠ABO ,∠CAB =12 ∠BAO ,∵∠OBA =80°,∠OAB =40°, ∴∠CBA =40°,∠CAB =20°, ∴∠ACG =∠CBA +∠CAB =60°. 答案:60°(2)∵∠MON =100°,∴∠BAO +∠ABO =180°-100°=80°,∵AC ,BC 分别是∠BAO 和∠ABO 的平分线,∴∠CBA =12 ∠ABO ,∠CAB =12 ∠BAO ,∴∠CBA +∠CAB =12 (∠ABO +∠BAO )=12 ×80°=40°, ∴∠ACG =∠CBA +∠CAB =40°.21.如图,△ABC 中,AB =AC ,点E ,F 在边BC 上;BE =CF . (1)求证:△ABE ≌△ACF ;(2)若点D 在AF 的延长线上,AD =AC ,∠BAE =30°,∠BAD =75°,求证:AB ∥DC .【解析】(1)∵AB =AC ,∴∠B =∠ACF , 在△ABE 和△ACF 中,⎩⎪⎨⎪⎧AB =AC∠B =∠ACF BE =CF,∴△ABE ≌△ACF (SAS);(2)∵△ABE ≌△ACF ,∠BAE =30°,∴∠BAE =∠CAF =30°, ∵AD =AC ,∴∠ADC =∠ACD , ∴∠ADC =180°-30°2=75°, ∵∠BAD =75°,∴∠BAD =∠ADC ,∴AB ∥DC .22.如图,AE 与BD 相交于点C ,AC =EC ,BC =DC ,AB =6 cm ,点P 从点A 出发,沿A →B →A 方向以3 cm/s 的速度运动,点Q 从点D 出发,沿D →E 方向以1 cm/s 的速度运动,P ,Q 两点同时出发.当点P 到达点A 时,P ,Q 两点同时停止运动.设点P 的运动时间为t (s).(1)求证:AB ∥DE .(2)写出线段BP 的长(用含t 的式子表示). (3)连接PQ ,当线段PQ 经过点C 时,求t 的值. 【解析】(1)在△ABC 和△EDC 中,⎩⎪⎨⎪⎧AC =EC ∠ACB =∠ECD BC =DC,∴△ABC ≌△EDC (SAS), ∴∠A =∠E ,∴AB ∥DE ;(2)当0≤t ≤2时,BP =(6-3t ) cm , 当2<t ≤4时,BP =(3t -6) cm ,综上所述,线段BP 的长为(6-3t ) cm 或(3t -6) cm ; (3)由(1)得:∠A =∠E ,ED =AB =4 cm , 在△ACP 和△ECQ 中,⎩⎪⎨⎪⎧∠A =∠E AC =CE ∠ACP =∠ECQ ,∴△ACP ≌△ECQ (ASA), ∴AP =EQ ,当0≤t ≤2时,3t =6-t , 解得:t =1.5;当2<t ≤4时,12-3t =6-t , 解得:t =3;综上所述,当线段PQ 经过点C 时,t 的值为1.5 s 或3 s .。
浙教版2019-2020学年七年级数学第二学期第4章单元同步试卷及答案
第4章因式分解测试题(时间:90分钟,满分:120分)一、选择题(每小题3分,共30分)1、下列分解因式正确的有()个.(1)x2+(-y)2=(x+y)(x-y);(2)4a2-1=(4a+1)(4a-1);(3)-9+4x2=(3+2x)(2x-3);(4)a2-b2=(a-b)(a+b).A、1B、2C、3D、42、-(a+3)(a-3)是多项式()分解因式的结果.A、a2-9B、a2+9C、-a2-9D、-a2+93、-1+0.09x2分解因式的结果是().A、(-1+0.3x)2B、(0.3x+1)(0.3x-1)C、(0.09x+1)(0,09x-1)D、不能进行4、下列各式中能用完全平方公式分解因式的有().(1)a2+2a+4;(2)a2+2a-1;(3)a2+2a+1;(4)-a2+2a+1;(5)-a2-2a-1;(6)a2-2a-1.A、2个B、3个C、4个D、5个5、下列分解因式不正确的是().A、4y2-1=(4y+1)(4y-1)B、a4+1-2a2=(a-1)2(a+1)2C、2291314923x x x⎛⎫-+=-⎪⎝⎭D、-16+a4=(a2+4)(a-2)(a+2)6、若64x2+axy+y2是一个完全平方式,那么a的值应该是().A、8B、16C、-16D、16或-167、已知54-1能被20~30之间的两个整数整除,则这两个整数是()A、25,27B、26,28C、24,26D、22,248、64-(3a-2b)2分解因式的结果是().A、(8+3a-2b)(8-3a-2b)B、(8+3a+2b)(8-3a-2b)C、(8+3a+2b)(8-3a+2b)D、(8+3a-2b)(8-3a+2b)9、若4a2+18ab+m是一个完全平方式,则m等于().A 、9b 2B 、18b 2C 、81b 2D 、481 b 2 10、下列各多项式中: ① x 2-y 2,② x 3 +2,③ x 2+4x ,④ x 2-10x+25,其中能直接运用公式法分解因式的个数是( )A 、1B 、2C 、3D 、4二、填空题(每小题3分,共30分)11、分解因式0.81x 2-16y 2=(0.9x+4y )(__).12、将9(a+b )2-64(a -b )2分解因式为____________.13、分解因式4x 3-x=____________.14、分解因式 5x 2-10x+5=__________.15、一个正方形的面积是(a 2+8a+16) cm 2,则此正方形的边长是__________cm.16、一块边长为a m 的正方形广场,扩建后的正方形边长比原来长2 m ,则扩建后面积增大了m 2.在括号内填入适当的代数式,使下列三项式可以写成完全平方的形式:17、100m 2+(_________)mn 2+49n 4=(____________)2.18、9a 2+36ab+(_________)=(_____________)2.19、分解因式:a 2-a+41=____________. 20、x 2+6x+9当x=___________时,该多项式的值最小,最小值是_____________.三、解答题(共60分)21、(8分)将下列各式分解因式(1)16a 2b 2-1; (2)811x 2-0.16y 2;(3)(a+2)2-(a+3)2; (4)12ab -6(a 2+b 2).22、(8分)(每小题5分,共10分)用简便方法计算(1)20112-20102; (2)172+2×17×13+132.23、(5分)已知(a +b )(a+b -8)+16=0,求2(a+b )的值.24、(6分)幸福小区里有一块边长为25.75 m 的正方形休闲区域,其中有一座正方形儿童 滑梯,占地约为4.252 m 2,那么余下的面积为多少?25、(6分)已知a -2b=21,ab=2,求-a 4b 2+4a 3b 3-4a 2b 4的值.26、(5分)一个正方形的边长增加3cm ,它的面积就增加39cm 2,则这个正方形的边长是多少?27、(8分)如果两个正方形的周长相差8cm,它们的面积相差36cm2,则这两个正方形的边长分别是多少?28、(6分)证明:无论a、b为何值时,代数式(a+b)2+2(a+b)+2的值均为正值.29、(10分)按下列程序计算,把答案填写在表格里,然后看看有什么规律,想想为什么会有这个规律?(1)填写表内空格:(2)你发现的规律是____________.(3)用简要过程说明你发现的规律的正确性。
北师大新版七年级下册《第四章测试卷》2024年单元测试卷+答案解析
北师大新版七年级下册《第四章测试卷》2024年单元测试卷一、选择题:本题共10小题,每小题3分,共30分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.关于三角形的中线,下列说法正确的是()A.是线段B.是射线C.是直线D.都可以2.如图所示的是一个网球场地,在A,B,C,D,E,F六个图形中,其中全等图形有()A.1对B.2对C.3对D.4对3.课堂上,老师把教学用的两块三角板叠放在一起,得到如图:所示的图形,其中三角形的个数为()A.3B.4C.5D.64.如图,用直尺和圆规求作一个角等于已知角的依据是()A.SASB.AASC.SSSD.以上都不对5.下列各三角形中,正确画出AC边的高的是()A. B.C. D.6.下列长度的各组线段,能构成三角形的是()A.3,4,8B.5,6,10C.5,6,11D.2,3,67.一个三角形三个内角的度数之比为2:3:7,这个三角形一定是()A.等腰三角形B.直角三角形C.锐角三角形D.钝角三角形8.小明不慎将一块三角形的玻璃摔碎成如图所示的四块即图中标有1、2、3、4的四块,你认为将其中的哪一块带去玻璃店,就能配一块与原来一样大小的三角形玻璃.应该带()A.第4块B.第3块C.第2块D.第1块9.如图,已知,,增加下列条件之一:①;②;③;④其中能使≌的条件有()A.1个B.2个C.3个D.4个10.如图1,已知,D为的角平分线上面一点,连接BD,CD;如图2,已知,D、E为的角平分线上面两点,连接BD,CD,BE,CE;如图3,已知,D、E、F为的角平分线上面三点,连接BD,CD,BE,CE,BF,CF;…,依此规律,第10个图形中有全等三角形的对数是()A.36B.45C.55D.66二、填空题:本题共5小题,每小题3分,共15分。
11.一个缺角的三角形ABC残片如图,若量得,,则这个三角形残缺前的______.12.如图,AD是的角平分线,CE是的高,,,则的度数______13.如图,D、E分别是边AB、BC上的点,,,设的面积为,的面积为,若,则的值为______.14.如图,由平面上五个点A、B、C、D、E连接而成,则______.15.如图,在,AE是的平分线,AD是BC边上的高,若,,则的度数为______.三、解答题:本题共5小题,共40分。
人教版七年级第二学期数学第四章检测题
人教版七年级第二学期数学第四章检测题一、精心选一选(本大题共10小题,每题3分,共30分)。
相信你一定会选对!1、下列生活现象中,属于平移的是()A。
足球在草地上滚动B。
拉开抽屉C。
投影片的文字经投影转换到屏幕上D。
钟摆的摆动2、下列方程中,是二元一次方程的是-()A。
+2y=1B。
+=2C。
32+y=4D。
2+=83、王老师对本班40名学生的血型作了统计,列出如下的统计表,则本班B型血的组别A型B型AB型O型频率0。
40。
350。
10。
15人数是()A。
16B。
14C。
4D。
64、下列调查方式适合用全面调查的是。
…()A。
了解我校学生每天完成回家作业的时间。
B。
了解湖州市的空气污染指数。
C。
日光灯管厂要检测一批灯管的使用寿命。
D。
飞机起飞前的检查。
5、下列计算正确的是()A。
B。
C。
D。
6。
如图,一把直尺放在一把30°三角尺上,已知∠1=40°,则∠2的度数是()A。
300B。
400C。
500D。
6007。
如图,七年级(下)教材第4页给出了利用三角尺和直尺画平行线的一种方法,能说明AB∥DE的条件是-()A。
∠CAB=∠FDEB。
∠ACB=∠DFEC。
∠ABC=∠DEFD。
∠BCD=∠EFG8。
把2-y2-2y-1分解因式结果正确的是()。
A。
(+y+1)(-y-1)B。
(+y-1)(-y-1)C。
(+y-1)(+y+1)D。
(-y+1)(+y+1)9。
已知,则的值是()。
A。
B。
-C。
2D。
-210。
如图是一个风景区,,,是这一风景区内的五个主要景点,现观光者聚于点。
假若你是导游,要带领游客欣赏这五个景点后再回到点,但又不想多走“冤枉路”(不能走重复的路线和经过同一个景点),你认为可选择行走路线有()种。
A。
4B。
5C。
6D。
7二、细心填一填(本大题共10小题,每小题2分,共20分)。
请把结果直接填在题中的横线上。
只要你理解概念,仔细运算,积极思考,肯定行!11、1纳米=0。
精品试卷:浙教版初中数学七年级下册第四章因式分解同步测评试题(含答案解析)
初中数学七年级下册第四章因式分解同步测评(2021-2022学年 考试时间:90分钟,总分100分)班级:__________ 姓名:__________ 总分:__________一、单选题(15小题,每小题3分,共计45分)1、下列各式由左到右的变形中,属于因式分解的是( )A.﹣a 2﹣ab ﹣ac =﹣a (a +b +c )B.x 2+x +1=(x +1)2﹣x C.(x +2)(x ﹣1)=x 2+x ﹣2 D.a 2+b 2=(a +b )2﹣2ab 2、若()()223x x x a x b --=-+,则-a b 的值为( )A.3B.3-C.2D.2-31x -,则2x x -的值为( )A.0和1B.0和2C.0和-1D.0或±14、下列各式从左到右的变形是因式分解的是( )A.ax +bx +c =(a +b )x +cB.(a +b )(a ﹣b )=a 2﹣b 2C.(a +b )2=a 2+2ab +b 2D.a 2﹣5a ﹣6=(a ﹣6)(a +1) 5、下列因式分解正确的是( )A.x 2﹣4=(x +4)(x ﹣4)B.4a 2﹣8a =a (4a ﹣8)C.a 2+2a +2=(a +1)2+1D.x 2﹣2x +1=(x ﹣1)2 6、把多项式﹣x 2+mx +35进行因式分解为﹣(x ﹣5)(x +7),则m 的值是( )A.2B.﹣2C.12D.﹣127、已知2x y -=,12xy =,那么32233x y x y xy ++的值为( )A.3B.6C.132D.1348、下列各式从左到右的变形,因式分解正确的是( )A.x 2+4=(x +2)2B.x 2﹣10x +16=(x ﹣4)2C.x 3﹣x =x (x 2﹣1)D.2xy +6y 2=2y (x +3y )9、下列因式分解正确的是( )A.x 2+9=(x +3)(x ﹣3)B.x 2+x ﹣6=(x ﹣2)(x +3)C.3x ﹣6y +3=3(x ﹣2y )D.x 2+2x ﹣1=(x ﹣1)210、下列各式中,不能用完全平方公式分解的个数为( )①21025x x -+;②2441a a +-;③221x x --;④214m m -+-;⑤42144x x -+.A.1个B.2个C.3个D.4个11、在下列从左到右的变形中,不是因式分解的是( )A.x 2﹣x =x (x ﹣1)B.x 2+3x ﹣1=x (x +3)﹣1C.x 2﹣y 2=(x +y )(x ﹣y )D.x 2+2x +1=(x +1)212、对于①3(13)x xy x y -=-,②2(3)(1)23x x x x -+=--,从左到右的变形,表述正确的是()A.都是因式分解B.都是乘法运算C.①是因式分解,②是乘法运算D.①是乘法运算,②是因式分解13、已知210x x --=,则代数式321x x -+的值为( )A.1-B.1C.2-D.214、下列四个式子从左到右的变形是因式分解的为( )A.(x ﹣y )(﹣x ﹣y )=y 2﹣x 2B.a 2+2ab +b 2﹣1=(a +b )2﹣1C.x 4﹣81y 4=(x 2+9y 2)(x +3y )(x ﹣3y )D.(a 2+2a )2﹣8(a 2+2a )+12=(a 2+2a )(a 2+2a ﹣8)+1215、下列各式中,能用完全平方公式因式分解的是( )A.2161x +B.221x x +-C.214x x -+ D.2224a ab b +-二、填空题(10小题,每小题4分,共计40分)1、已知x 2﹣y 2=21,x ﹣y =3,则x +y =___.2、已知20192019a x =+,20192020b x =+,20192021c x =+,则222a b c ab ac bc ++---=________.3、因式分解:()()32m x y n y x ---=______.4、多项式x 3y ﹣xy 的公因式是_____.5、因式分解:256x x --=______.6、若ab =2,a -b =3,则代数式ab 2-a 2b =_________.7、分解因式:3a (x ﹣y )+2b (y ﹣x )=___.8、分解因式:216y -=______.9、已知3a b +=,225a b -=,则a b -=____.10、因式分解:4811x -=__.三、解答题(3小题,每小题5分,共计15分)1、因式分解(1)3263654a a a -+-(2)229()49()a x y b y x -+-2、对于一个三位数,若其十位上的数字是3、各个数位上的数字互不相等且都不为0,则称这样的三位数为“太极数”;如235就是一个太极数.将“太极数”m 任意两个数位上的数字取出组成两位数,则一共可以得到6个两位数,将这6个两位数的和记为D (m )例如:D (235)=23+25+32+35+52+53=220.(1)最小的“太极数”是 ,最大的“太极数”是 ;(2)求D (432)的值;(3)把D (m )与22的商记为F (m ),例如F (235)=(235)2202222D ==10.若“太极数”n 满足n =100x +30+y (1≤x ≤9,1≤y ≤9,且x ,y 均为整数),即n 的百位上的数字是x 、十位上的数字是3、个位上的数字是y ,且F (n )=8,请求出所有满足条件的“太极数”n .3、因式分解:(1)2484x y xy y -+ (2)22214a a---------参考答案-----------一、单选题1、A【分析】根据因式分解是把一个多项式转化成几个整式的积的形式,可得答案;【详解】解:A 、把一个多项式转化成了几个整式的积,故A 符合题意;B 、没把一个多项式转化成几个整式积,故B 不符合题意;C 、是整式的乘法,故C 不符合题意;D 、没把一个多项式转化成几个整式积,故D 不符合题意;故选:A.【点睛】本题考查了因式分解的意义,解题的关键是掌握因式分解是把一个多项式转化成几个整式积.2、C【分析】根据十字相乘法可直接进行求解a 、b 的值,然后问题可求解.【详解】解:()()22331x x x x --=-+,∴3,1a b ==,∴2a b -=;故选C.【点睛】本题主要考查因式分解,熟练掌握因式分解的方法是解题的关键.3、B【分析】根据已知条件得出(x -1)3-(x -1)=0,再通过因式分解求出x 的值,然后代入要求的式子进行计算即可得出答案.【详解】1x =-,∴x -1=(x -1)3,∴(x -1)3-(x -1)=0,(x -1)[(x -1)2-1]=0,(x -1)(x -1+1)(x -1-1)=0, x (x -1)(x -2)=0,∴x1=0,x2=1,x3=2,∴x2-x=0或x2-x=12-1=0或x2-x=22-2=2,故选:B.【点睛】此题考查了立方根,因式分解的应用,解题的关键是通过式子变形求出x的值.4、D【分析】根据因式分解的定义对各选项进行逐一分析即可.【详解】解:A、ax+bx+c=(a+b)x+c,等式的右边不是几个整式的积,不是因式分解,故此选项不符合题意;B、(a+b)(a﹣b)=a2﹣b2,等式的右边不是几个整式的积,不是因式分解,故此选项不符合题意;C、(a+b)2=a2+2ab+b2,等式的右边不是几个整式的积,不是因式分解,故此选项不符合题意;D、a2﹣5a﹣6=(a﹣6)(a+1),等式的右边是几个整式的积的形式,故是因式分解,故此选项符合题意;故选:D.【点睛】本题考查了分解因式的定义.解题的关键是掌握分解因式的定义,即把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,也叫做分解因式.5、D【分析】各式分解得到结果,即可作出判断.【详解】解:A 、原式=(x +2)(x ﹣2),不符合题意;B 、原式=4a (a ﹣2),不符合题意;C 、原式不能分解,不符合题意;D 、原式=(x ﹣1)2,符合题意.故选:D .【点睛】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.6、B【分析】根据整式乘法法则进行计算﹣(x ﹣5)(x +7)的结果,然后根据多项式相等进行对号入座.【详解】解:∵﹣(x ﹣5)(x +7)=2235x x --+,∴2m =-,故选:B.【点睛】此题主要考查了多项式的乘法法则以及多项式相等的条件,即两个多项式相等,则它们同次项的系数相等.7、D【分析】根据完全平方公式求出225x y +=,再把原式因式分解后可代入求值.【详解】解:因为2x y -=,12xy =,所以()24x y -=, 22425x y xy +=+=所以32233x y x y xy ++()223xy x xy y =++115322134⎛⎫=+⨯ ⎪⎝⎭= 故选:D【点睛】考核知识点:因式分解的应用.灵活应用完全平方公式进行变形是解题的关键.8、D【分析】根据因式分解的方法解答即可.【详解】解:A 、x 2+4≠(x +2)2,因式分解错误,故此选项不符合题意;B 、x 2-10x +16≠(x -4)2,因式分解错误,故此选项不符合题意;C 、x 3-x =x (x 2-1)=x (x +1)(x -1),因式分解不彻底,故此选项不符合题意;D 、2xy +6y 2=2y (x +3y ),因式分解正确,故此选项符合题意;故选:D.【点睛】本题考查了因式分解的方法,明确因式分解的结果应是整式的积的形式.运用提公因式法分解因式时,在提取公因式后,不要漏掉另一个因式中商是1的项.9、B【分析】利用公式法对A 、D 进行判断;根据十字相乘法对B 进行判断;根据提公因式对C 进行判断.【详解】解:A 、x 2+9不能分解,所以A 选项不符合题意; B 、x 2+x ﹣6=(x ﹣2)(x +3),所以B 选项符合题意;C 、3x ﹣6y +3=3(x ﹣2y +1),所以C 选项不符合题意;D 、x 2+2x ﹣1在有理数范围内不能分解,所以D 选项不符合题意.故选:B .【点睛】本题考查了因式分解﹣十字相乘法等:对于x 2+(p +q )x +pq 型的式子的因式分解.这类二次三项式的特点是:二次项的系数是1;常数项是两个数的积;可以直接将某些二次项的系数是1的二次三项式因式分解:x 2+(p +q )x +pq =(x +p )(x +q ).10、C【分析】分别利用完全平方公式分解因式得出即可.【详解】解:①x 2-10x +25=(x -5)2,不符合题意;②4a 2+4a -1不能用完全平方公式分解;③x 2-2x -1不能用完全平方公式分解;④−m 2+m −14=-(m 2-m +14)=-(m -12)2,不符合题意;⑤4x 4−x 2+14不能用完全平方公式分解.故选:C.【点睛】此题主要考查了完全平方公式的应用,熟练掌握完全平方公式的形式是解题关键.11、B【分析】根据因式分解的定义,逐项分析即可,因式分解指的是把一个多项式分解为几个整式的积的形式.【详解】A. x 2﹣x =x (x ﹣1),是因式分解,故该选项不符合题意;B. x 2+3x ﹣1=x (x +3)﹣1,不是因式分解,故该选项符合题意;C. x 2﹣y 2=(x +y )(x ﹣y ),是因式分解,故该选项不符合题意;D. x 2+2x +1=(x +1)2,是因式分解,故该选项不符合题意;故选B【点睛】本题考查了因式分解的定义,掌握因式分解的定义是解题的关键.12、C【分析】根据因式分解和整式乘法的有关概念,对式子进行判断即可.【详解】解:①3(13)x xy x y -=-,从左向右的变形,将和的形式转化为乘积的形式,为因式分解; ②2(3)(1)23x x x x -+=--,从左向右的变形,由乘积的形式转化为和的形式,为乘法运算; 故答案为C.【点睛】此题考查了因式分解和整式乘法的概念,熟练掌握有关概念是解题的关键.13、D【分析】由已知等式可得21x x -=,21x x -=,将321x x -+变形,再代入逐步计算.【详解】解:∵210x x --=,∴21x x -=,21x x -=,∴321x x -+=31x x x --+=()211x x x --+=21x x -+=2故选D.【点睛】本题考查了代数式求值,因式分解的应用,解题的关键是掌握整体思想,将所求式子合理变形.14、C【分析】根据因式分解的定义判断即可.把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,也叫做分解因式.【详解】解:A 选项,B ,D 选项,等号右边都不是积的形式,所以不是因式分解,不符合题意;C 选项,符合因式分解的定义,符合题意;故选:C .【点睛】本题考查了因式分解的定义,掌握因式分解的定义是解题的关键.15、C【分析】根据完全平方公式的特点判断即可;【详解】2161x +不能用完全平方公式,故A 不符合题意;221x x +-不能用完全平方公式,故B 不符合题意;221142x x x ⎛⎫-+=- ⎪⎝⎭,能用完全平方公式,故C 符合题意; 2224a ab b +-不能用完全平方公式,故D 不符合题意;故答案选C .【点睛】本题主要考查了因式分解公式法的判断,准确判断是解题的关键.二、填空题1、7【分析】根据平方差公式分解因式解答即可.【详解】解:∵x 2﹣y 2=(x ﹣y )(x +y )=21,x ﹣y =3,∴3(x +y )=21,∴x +y =7.故答案为:7.【点睛】此题考查平方差公式分解因式,关键是根据平方差公式展开解答.2、3【分析】根据a =2019x +2019,b =2019x +2020,c =2019x +2021,可以得到a -b 、a -c 、b -c 的值,然后将所求式子变形,即可求得所求式子的值.【详解】解:∵a =2019x +2019,b =2019x +2020,c =2019x +2021,∴a -b =-1,a -c =-2,b -c =-1,∴222a b c ab ac bc ++--- =()()()22222212222a ab b a ac c b bc c ⎡⎤-++-++-+⎣⎦ =(2221[()())2a b a c b c ⎤-+-+-⎦ =(2221[(1)(2)1)2⎤-+-+-⎦ =3.故答案为:3.【点睛】本题考查了因式分解的应用,解答本题的关键是明确题意,利用因式分解的方法解答.3、()()32x y m n -+【分析】先将原式变形为()()32m x y n x y -+-,再利用提公因式法分解即可.【详解】解:原式()()32m x y n x y =-+-()()32x y m n =-+,故答案为:()()32x y m n -+.【点睛】本题考查了提公因式法分解因式,熟练掌握因式分解的方法是解决本题的关键.4、xy【分析】根据公因式的找法:①当各项系数都是整数时,公因式的系数应取各项系数的最大公约数;②字母取各项的相同的字母,而且各字母的指数取次数最低的;③取相同的多项式,多项式的次数取最低的.【详解】解:多项式x 3y ﹣xy 的公因式是xy .故答案为:xy .【点睛】此题考查了找公因式,关键是掌握找公因式的方法.5、()()16x x +-【分析】根据十字相乘法分解即可.【详解】解:256x x --=()()16x x +-,故答案为:()()16x x +-.【点睛】本题考查了因式分解,熟练掌握十字相乘法是解题的关键.6、6【分析】用提公因式法将ab 2-a 2b 分解为含有ab ,a -b 的形式,代入即可.【详解】解:∵ab =2,a -b =3,∴ab 2-a 2b =-ab (a -b )=2×3=6,故答案为:6.【点睛】本题考查了用提公因式法因式分解,解题的关键是将ab 2-a 2b 分解为含有ab ,a -b 的形式,用整体代入即可.7、()()32x y a b --【分析】根据提公因式法因式分解即可.【详解】3a (x ﹣y )+2b (y ﹣x )=()()()()3232a x y b x y x y a b ---=-- 故答案为:()()32x y a b --【点睛】本题考查了提公因式法因式分解,正确的计算是解题的关键.8、()()44y y +-【分析】根据平方差公式——22()()a b a b a b -=+- 进行因式分解,即可.【详解】解:222164(4)(4)-=-=+-y y y y ,故答案为:()()44y y +-【点睛】本题主要考查了因式分解的方法,解题的关键是根据多项式的特点选合适的方法进行因式分解. 9、53【分析】先将22a b -进行因式分解,然后根据已知条件,即可求解.【详解】解:∵()()22a b a b a b -=+-,225a b -=, ∴()()5+-=a b a b ,∵3a b +=, ∴53-=a b . 故答案为:53.【点睛】本题主要考查了平方差公式的应用,熟练掌握()()22a b a b a b -=+-是解题的关键.10、2(91)(31)(31)x x x ++-【分析】先把原式化为22291,x 再利用平方差公式分解因式,再把其中一个因式按照平方差公式继续分解,从而可得答案.【详解】解:原式22(91)(91)x x =+-2(91)(31)(31)x x x =++-, 故答案为:2(91)(31)(31)x x x ++-.【点睛】本题考查的是利用平方差公式分解因式,注意分解因式一定要分解到每个因式都不能再分解为止.三、解答题1、(1)()263a a --;(2)()()()3737x y a b a b -+- 【分析】(1)直接提取公因式﹣6a ,再利用完全平方公式分解因式得出答案;(2)直接提取公因式x ﹣y ,再利用平方差公式分解因式即可;【详解】解:(1)原式()2669a a a -=-+()263a a =--;(2)原式()()22949x y a b =-- ()()()3737x y a b a b -+-=此题主要考查了提取公因式法以及公式法分解因式,正确运用乘法公式分解因式是解题关键.2、(1)132,938;(2)198;(3)134,431【分析】(1)根据太极数的含义直接可得答案;(2)根据()D n 的含义直接列式计算即可得到答案;(3)由新定义及()D n 的含义可得:5,x y += 再结合方程的正整数解可得答案.【详解】解:(1)根据题意得:最小的“太极数”为132,最大的“太极数”为938;故答案为:132,938;(2)D (432)=43+42+34+32+24+23=198;(3)∵F (n )=8,∴F (n )=()822D n =, ∵“太极数”n 满足n =100x +30+y (1≤x ≤9,1≤y ≤9,且x ,y 均为整数),∴D (n )=10x +3+10x +y +30+x +30+y +10y +x +10y +3=22x +22y +66=22(x +y +3),∴()223822x y ++=,则x +y +3=8,得x +y =5, ∴当x =1时,y =4,此“太极数”为:134;当x =2时,y =3,不符合“太极数”;当x =3时,y =2,不符合“太极数”;当x =4时,y =1,此“太极数”是431.满足所有条件的“太极数”有134,431.本题考查的是新定义运算,二元一次方程的正整数解,因式分解的应用,理解新定义的含义,清晰的分类讨论是解题的关键.3、(1)()241y x -;(2)()()2211a a -+【分析】(1)先提出公因式,再利用完全平方公式,即可求解;(2)先利用平方差公式,再利用完全平方公式,即可求解.【详解】解:(1)2484x y xy y -+()2421y x x =-+ ()241y x =- ; (2)22214a a221212a a a a2211a a .【点睛】本题主要考查了多项式的因式分解,熟练掌握多项式的各种因式分解的方法,并根据多项式的特征选用合适的方法是解题的关键.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
单元检测卷时间:120分钟 满分:120分题号一二三总分得分一、选择题(每小题3分,共30分) 1.若三角形的两个内角的和是85°,则这个三角形是( )A.钝角三角形B.直角三角形C.锐角三角形D.不能确定2.下列长度的三条线段不能组成三角形的是( )A.5,5,10 B.4,5,6C.4,4,4 D.3,4,53.如图,BC⊥AE于点C,CD∥AB,∠DCB=40°,则∠A的度数是( )A.70° B.60° C.50° D.40°第3题图第4题图4.如图,△ABC≌△DEF,若∠A=50°,∠C=30°,则∠E的度数为( )A.30° B.50° C.60° D.100°5.如果某三角形的两边长分别为5和7,第三边的长为偶数,那么这个三角形的周长可以是( )A.10 B.11 C.16 D.266.如图,已知∠ABC=∠BAD,添加下列条件还不能判定△ABC≌△BAD的是( ) A.AC=BD B.∠CAB=∠DBA C.∠C=∠D D.BC=AD第6题图 第7题图7.如图,已知方格纸中是4个相同的正方形,则∠1与∠2的和为( )A.45° B.60° C.90° D.100°8.如图,两棵大树间相距13m,小华从点B沿BC走向点C,行走一段时间后他到达点E,此时他仰望两棵大树的顶点A和D,两条视线的夹角正好为90°,且EA=ED.已知大树AB的高为5m,小华行走的速度为1m/s,则小华走的时间是( )A.13s B.8s C.6s D.5s第8题图 第9题图9.如图,在△ABC 和△BDE 中,点C 在BD 上,边AC 交边BE 于点F ,若AC =BD ,AB =ED ,BC =BE ,则∠ACB 等于( )A .∠EDB B .∠BED C.∠AFB D .2∠ABF 1210.如图,AE 是△ABC 的角平分线,AD ⊥BC 于点D ,点F 为BC 的中点,若∠BAC =104°,∠C =40°,则有下列结论:①∠BAE =52°;②∠DAE =2°;③EF =ED ;④S △ABF =S △ABC .其中正确的个数有( )12A .1个B .2个C .3个D .4个二、填空题(每小题3分,共24分)11.人字架、起重机的底座,输电线路支架等,在日常生活中,很多物体都采用三角形结构,这是利用了三角形的__________.12.如图,AD 是△ABC 的一条中线,若BC =10,则BD =________.13.若直角三角形中两个锐角的差为20°,则这两个锐角的度数分别是________.14.如图,AB ∥CD ,AD 与BC 交于点E .若∠B =35°,∠D =45°,则∠AEC =________°.第14题图 第15题图15.如图,在四边形ABCD 中,∠1=∠2,∠3=∠4.若AB =6cm ,AD =8cm ,则CD =________cm.16.如图,在△ABC 中,∠B =30°,∠C =70°,AD 平分∠BAC ,交BC 于F ,DE ⊥BC 于E ,则∠D =________°.第16题图 第17题图17.如图,△ABC 的中线BD ,CE 相交于点O ,OF ⊥BC ,且AB =6,BC =5,AC =4,OF =1.4,则四边形ADOE 的面积是________.18.如图,已知四边形ABCD 中,AC 平分∠BAD ,CE ⊥AB 于点E ,且AE =(AB +12AD ),若∠D =115°,则∠B =________°. 三、解答题(共66分)19.(8分)如图,在△ABC 中,AD 是角平分线,∠B =54°,∠C =76°.(1)求∠ADB 和∠ADC 的度数;(2)若DE ⊥AC ,求∠EDC 的度数.20.(8分)如图,点B,C,E,F在同一直线上,BC=EF,AC⊥BC于点C,DF⊥EF 于点F,AC=DF.试说明:(1)△ABC≌△DEF;(2)AB∥DE.21.(8分)如图,已知线段m,n,如果以线段m,n分别为等腰三角形的底或腰作三角形,能作出几个等腰三角形?请作出.不写作法,保留作图痕迹.22.(10分)已知△ABN和△ACM位置如图所示,AB=AC,AD=AE,∠1=∠2.试说明:(1)BD=CE;(2)∠M=∠N.23.(10分)如图,A,B是两棵大树,两棵大树之间有一个废弃的圆形坑塘,为开发利用这个坑塘,需要测量A,B之间的距离,但坑塘附近地形复杂不容易直接测量.(1)请你利用所学知识,设计一个测量A,B之间的距离的方案,并说明理由;(2)在你设计的测量方案中,需要测量哪些数据?为什么?24.(10分)如图,B,C都是直线BC上的点,点A是直线BC上方的一个动点,连接AB,AC得到△ABC,D,E分别为AC,AB上的点,且AD=BD,AE=BC,DE=DC.请你探究,线段AC与BC具有怎样的位置关系时DE⊥AB?为什么?25.(12分)如图,在△ABC中,∠ACB=90°,AC=7cm,BC=3cm,CD为AB边上的高.点E从点B出发沿直线BC以2cm/s的速度移动,过点E作BC的垂线交直线CD 于点F.(1)试说明:∠A=∠BCD;(2)当点E运动多长时间时,CF=AB.请说明理由.参考答案与解析1.A 2.A 3.C 4.D 5.C6.A 7.C 8.B 9.C 10.C11.稳定性 12.5 13.55°,35°14.80 15.6 16.20 17.3.518.65 解析:过C 作CF ⊥AD ,交AD 的延长线于F .∵AC 平分∠BAD ,∴∠CAF =∠CAE .又∵CF ⊥AF ,CE ⊥AB ,∴∠AFC =∠AEC =90°.在△CAF 和△CAE 中,∵{∠CAF =∠CAE ,∠AFC =∠AEC ,AC =AC ,)∴△CAF ≌△CAE (AAS),∴FC =EC ,AF =AE .又∵AE =(AB +AD ),∴AF =(AE +1212EB +AD ),即AF =BE +AD ,∴DF =BE .在△FDC 和△EBC 中,{CF =CE ,∠CFD =∠CEB ,DF =BE ,)∴△FDC ≌△EBC (SAS),∴∠FDC =∠EBC .又∵∠ADC =115°,∴∠FDC =180°-115°=65°,∴∠B =65°.19.解:(1)∵∠B =54°,∠C =76°,∴∠BAC =180°-54°-76°=50°.(2分)∵AD 平分∠BAC ,∴∠BAD =∠CAD =25°,∴∠ADB =180°-∠B -∠BAD =180°-54°-25°=101°,∴∠ADC =180°-∠ADB =180°-101°=79°.(5分)(2)∵DE ⊥AC ,∴∠DEC =90°,∴∠EDC =90°-∠C =90°-76°=14°.(8分)20.解:(1)∵AC ⊥BC ,DF ⊥EF ,∴∠ACB =∠DFE =90°.(2分)又∵BC =EF ,AC =DF ,∴△ABC ≌△DEF (SAS).(5分)(2)∵△ABC ≌△DEF ,∴∠B =∠DEF ,∴AB ∥DE .(8分)21.解:能作出两个等腰三角形,如图所示.(8分)22.解:(1)在△ABD 和△ACE 中,∴△ABD ≌△ACE (SAS),∴BD ={AB =AC ,∠1=∠2,AD =AE ,)CE .(4分)(2)∵∠1=∠2,∴∠1+∠DAE =∠2+∠DAE ,即∠BAN =∠CAM .(6分)∵△ABD ≌△ACE ,∴∠B =∠C .(7分)在△ACM 和△ABN 中,{∠C =∠B ,AC =AB ,∠CAM =∠BAN ,)∴△ACM ≌△ABN (ASA),∴∠M =∠N .(10分)23.解:(1)方案为:①如图,过点B 画一条射线BD ,在射线BD 上选取能直接到达的O ,D 两点,使OD =OB ;②作射线AO 并在AO 上截取OC =OA ;③连接CD ,则CD 的长即为AB 的长.(3分)理由如下:在△AOB 和△COD 中,∵∴△AOB ≌△COD (SAS),∴AB =CD .(6分){OA =OC (测量方法),∠AOB =∠COD (对顶角相等),OB =OD (测量方法),)(2)根据这个方案,需要测量5个数据,即:线段OA ,OB ,OC ,OD ,CD 的长度,并使OC =OA ,OD =OB ,则CD =AB .(10分)24.解:当AC ⊥BC 时,DE ⊥AB .(3分)理由如下:∵AC ⊥BC ,∴∠C =90°.在△AED和△BCD 中,∵∴△AED ≌△BCD (SSS).(7分)∴∠AED =∠C =90°,{AD =BD ,AE =BC ,DE =DC ,)∴DE ⊥AB .(10分)25.解:(1)∵∠ACB =90°,CD ⊥AB ,∴∠A +∠ACD =90°,∠BCD +∠ACD =90°,∴∠A =∠BCD .(3分)(2)如图,当点E 在射线BC 上移动5s 时,CF =AB .可知BE =2×5=10(cm),∴CE =BE -BC =10-3=7(cm),∴CE =AC .∵∠A =∠BCD ,∠ECF =∠BCD ,∴∠A =∠ECF .(5分)在△CFE 与△ABC 中{∠ECF =∠A ,CE =AC ,∠CEF =∠ACB ,)∴△CFE ≌△ABC ,∴CF =AB .(7分)当点E 在射线CB 上移动2s 时,CF =AB .可知BE ′=2×2=4(cm),∴CE ′=BE ′+BC =4+3=7(cm),∴CE ′=AC .(9分)在△CF ′E ′与△ABC中∴△CF ′E ′≌△ABC ,∴CF ′=AB .综上可知,当点E 运动5s 或2s {∠E ′CF ′=∠A ,CE ′=AC ,∠CE ′F ′=∠ACB ,)时,CF =AB .(12分)。