多元统计分析应用 第四章课后习题

合集下载

多元统计分析课后练习答案

多元统计分析课后练习答案

多元统计分析课后练习答案第1章多元正态分布1、在数据处理时,为什么通常要进⾏标准化处理?数据的标准化是将数据按⽐例缩放,使之落⼊⼀个⼩的特定区间。

在某些⽐较和评价的指标处理中经常会⽤到,去除数据的单位限制,将其转化为⽆量纲的纯数值,便于不同单位或量级的指标能够进⾏⽐较和加权。

其中最典型的就是0-1标准化和Z 标准化。

2、欧⽒距离与马⽒距离的优缺点是什么?欧⽒距离也称欧⼏⾥得度量、欧⼏⾥得度量,是⼀个通常采⽤的距离定义,它是在m 维空间中两个点之间的真实距离。

在⼆维和三维空间中的欧⽒距离的就是两点之间的距离。

缺点:就⼤部分统计问题⽽⾔,欧⽒距离是不能令⼈满意的。

每个坐标对欧⽒距离的贡献是同等的。

当坐标表⽰测量值时,它们往往带有⼤⼩不等的随机波动,在这种情况下,合理的⽅法是对坐标加权,使变化较⼤的坐标⽐变化较⼩的坐标有较⼩的权系数,这就产⽣了各种距离。

当各个分量为不同性质的量时,“距离”的⼤⼩与指标的单位有关。

它将样品的不同属性之间的差别等同看待,这⼀点有时不能满⾜实际要求。

没有考虑到总体变异对距离远近的影响。

马⽒距离表⽰数据的协⽅差距离。

为两个服从同⼀分布并且其协⽅差矩阵为Σ的随机变量与的差异程度:如果协⽅差矩阵为单位矩阵,那么马⽒距离就简化为欧⽒距离,如果协⽅差矩阵为对⾓阵,则其也可称为正规化的欧⽒距离。

优点:它不受量纲的影响,两点之间的马⽒距离与原始数据的测量单位⽆关。

由标准化数据和中⼼化数据计算出的⼆点之间的马⽒距离相同。

马⽒距离还可以排除变量之间的相关性的⼲扰。

缺点:夸⼤了变化微⼩的变量的作⽤。

受协⽅差矩阵不稳定的影响,马⽒距离并不总是能顺利计算出。

3、当变量X1和X2⽅向上的变差相等,且与互相独⽴时,采⽤欧⽒距离与统计距离是否⼀致?统计距离区别于欧式距离,此距离要依赖样本的⽅差和协⽅差,能够体现各变量在变差⼤⼩上的不同,以及优势存在的相关性,还要求距离与各变量所⽤的单位⽆关。

如果各变量之间相互独⽴,即观测变量的协⽅差矩阵是对⾓矩阵, 则马⽒距离就退化为⽤各个观测指标的标准差的倒数作为权数的加权欧⽒距离。

应用多元统计分析课后习题答案高惠璇第四章部分习题解答

应用多元统计分析课后习题答案高惠璇第四章部分习题解答


4
第四章 回归分析

L(a0 , 2 ) 2 2 L(a0 , ) 2 [( y1 a0 ) ( y2 a0 ) 3( y3 3a0 ) 0 a0 2
可得
令 ln L(a ˆ0 , 2 ) 3 1 2 ˆ [( y a ) ] 0 1 0 2 2 2 2 2 2( ) drf 可得 ˆ 2 1 2 ˆ0 ) 2 ( y2 a ˆ0 ) 2 ( y3 3a ˆ0 ) 2 ˆ0 ( y1 a
1
经验证:① B-A是对称幂等阵; ② rank(B-A)=tr(B-A)=2-1=1;
25 80 35 1 256 112 330 49
8
第四章 回归分析
③ A(B-A)=O3×3 .由第三章§3.1的结论6知
Y AY与Y ( B A)Y相互独立;也就是 ˆ ˆ 与 ˆ 相互独立.
ˆi y ˆ ) ( yi y )( y i 1
n n n i 1 i 1 2
R
2
2 2 ˆ ˆ ( y y ) ( y y ) i i

2 ˆi y ) ( y i 1
n n n i 1 i 1
2
2 2 ˆ ˆ ( y y ) ( y y ) i i
(因 1n C张成的空间 , 这里有H1n 1n )
n n i 1 i 1
(2) 因 ( yi y )( y ˆi y ˆ ) ( yi y ˆi y ˆ i y )( y ˆi y )
ˆ i )( y ˆi y ) ( y ˆi y )2 ( yi y

应用多元统计分析课后答案-朱建平版

应用多元统计分析课后答案-朱建平版
统计量 拒绝域
均值向量的检验: 在单一变量中 当已知 当未知
(作为的估计量) 一个正态总体 协差阵已知 协差阵未知
() 两个正态总体 有共同已知协差阵 有共同未知协差阵
(其中 ) 协差阵不等 协差阵不等 多个正态总体 单因素方差 多因素方差 协差阵的检验 检验
检验 统计量
3.2 试述多元统计中霍特林
,使总平均损失达到极小。 基本方法: 令,则 若有另一划分, 则在两种划分下的总平均损失之差为
因为在上对一切成立,故上式小于或等于零,是贝叶斯判别的解。 从而得到的划分为 4.5 简述费希尔判别法的基本思想和方法。 答:基本思想:从个总体中抽取具有个指标的样品观测数据,借助方差 分析的思想构造一个线性判别函数 系数可使得总体之间区别最大,而使每个总体内部的离差最小。将新样 品的个指标值代入线性判别函数式中求出值,然后根据判别一定的规 则,就可以判别新的样品属于哪个总体。 4.6 试析距离判别法、贝叶斯判别法和费希尔判别法的异同。 答:① 费希尔判别与距离判别对判别变量的分布类型无要求。二者只 是要求有各类母体的两阶矩存在。而贝叶斯判别必须知道判别变量的分 布类型。因此前两者相对来说较为简单。 ② 当k=2时,若
0 10 210 543 0 876 30 10 9 8 5 2 0 由上表易知
中最小元素是 于是将
, , 聚为一类,记为 计算距离阵
0 30 63 0 85 2 0
中最小元素是 =2 于是将 , 聚为一类,记为 计算样本距离阵
0 30 63 0
中最小元素是 于是将 , 聚为一类,记为 因此,
,其各自的分布密度函数,假设k个总体各自出现的概率分别为,,。设将 本来属于总体的样品错判到总体时造成的损失为,
。 设个总体

多元统计分析课后习题解答_第四章

多元统计分析课后习题解答_第四章

多元统计分析课后习题解答_第四章(共12页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--第四章判别分析简述欧几里得距离与马氏距离的区别和联系。

答:设p维欧几里得空间中的两点X=和Y=。

则欧几里得距离为。

欧几里得距离的局限有①在多元数据分析中,其度量不合理。

②会受到实际问题中量纲的影响。

设X,Y是来自均值向量为,协方差为的总体G中的p维样本。

则马氏距离为D(X,Y)=。

当即单位阵时,D(X,Y)==即欧几里得距离。

因此,在一定程度上,欧几里得距离是马氏距离的特殊情况,马氏距离是欧几里得距离的推广。

试述判别分析的实质。

答:判别分析就是希望利用已经测得的变量数据,找出一种判别函数,使得这一函数具有某种最优性质,能把属于不同类别的样本点尽可能地区别开来。

设R1,R2,…,Rk 是p 维空间R p 的k 个子集,如果它们互不相交,且它们的和集为,则称为的一个划分。

判别分析问题实质上就是在某种意义上,以最优的性质对p 维空间构造一个“划分”,这个“划分”就构成了一个判别规则。

简述距离判别法的基本思想和方法。

答:距离判别问题分为①两个总体的距离判别问题和②多个总体的判别问题。

其基本思想都是分别计算样本与各个总体的距离(马氏距离),将距离近的判别为一类。

①两个总体的距离判别问题设有协方差矩阵∑相等的两个总体G 1和G 2,其均值分别是1和 2,对于一个新的样品X ,要判断它来自哪个总体。

计算新样品X 到两个总体的马氏距离D 2(X ,G 1)和D 2(X ,G 2),则X ,D2(X ,G1)D 2(X ,G 2)X,D 2(X ,G 1)> D 2(X ,G 2, 具体分析,2212(,)(,)D G D G -X X111122111111111222*********()()()()2(2)2()-----------''=-----''''''=-+--+'''=-+-X μΣX μX μΣX μX ΣX X ΣμμΣμX ΣX X ΣμμΣμX ΣμμμΣμμΣμ11211212112122()()()2()22()2()---''=-++-'+⎛⎫=--- ⎪⎝⎭''=--=--X ΣμμμμΣμμμμX ΣμμX μααX μ 记()()W '=-X αX μ 则判别规则为X ,W(X)X ,W(X)<0②多个总体的判别问题。

多元统计习题答案(第4到7章)

多元统计习题答案(第4到7章)

第四章4-1 设⎪⎩⎪⎨⎧++=+-=+=,2,2,332211εεεb a y b a y a y ).,0(~323321I N σεεεε⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=(1)试求参数b a ,的最小二乘估计;(2)试导出检验b a H =:0的似然比统计量,并指出当假设成立时,这个统计量是分布是什么?解:(1)由题意可知.,,,211201321321⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎦⎤⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=εεεεβ b a y y y Y C 则⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-⎪⎪⎪⎪⎭⎫ ⎝⎛⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-==--321'1''1'211201************)(ˆy y y Y C C C β .ˆˆ)2(51)2(6132321⎥⎦⎤⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡+-++b ay y y y y (2)由题意知,检验b a H =:0的似然比统计量为23202ˆ⎪⎪⎭⎫⎝⎛=σσλ 其中,])ˆ2ˆ()ˆˆ2()ˆ[(31ˆ2322212b a y b a y a y --++-+-=σ。

当0H 成立时,设0a b a ==,则⎪⎩⎪⎨⎧+=+=+=,3,,303202101εεεa y a y a y ,311⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=C 可得,ˆ)3y (111311311311)(ˆ0321321'1''1'a y y y y y Y C C C =++=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎪⎪⎪⎪⎭⎫ ⎝⎛⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡==--β ],)ˆ3()ˆ()ˆ[(31ˆ20320220120a y a y ay -+-+-=σ 因此,当假设0H 成立时,与似然比统计量λ等价的F 统计量及其分布为).1,1(~ˆˆˆ2202F F σσσ-=第五章5-1 已知总体)1(=m G i 的分布为)2,1)(,(2)(=i N i i σμ,按距离判别准则为(不妨设21)2()1(,σσμμ<>)⎩⎨⎧≥≤∈<<∈,,,,**2**1μμμμx x G x x G x 或 若 若 其中 .,121221*211221*σσσμσμμσσσμσμμ--=++=)()()()( 试求错判概率)1|2(P 和)2|1(P 。

多元统计分析 第四章至第九章 课后题数据

多元统计分析 第四章至第九章 课后题数据

4.8 某超市经销十种品牌饮料,其中四种畅销,三种平销,三种滞销。

下表是这十种品牌饮料的销售价格(元)和顾客对各种饮料的口味评分、信任度评分的平均数。

销售情况 产品序号销售价格 口味评分 信任度评分畅销1 2.2 5 8 2 2.5 6 73 3 3 94 3.2 8 6 平销5 2.8 76 6 3.5 87 7 4.89 8 滞销8 1.7 3 4 9 2.2 4 2 102.7 4 3(1) 根据数据建立贝叶斯判别函数,并根据此判别函数对原样本进行回判。

(2) 现有一新品牌的饮料在该超市试销,其销售价格为3.0,顾客对其口味的评分平均为8,信任评分平均为5,试预测该饮料的销售情况。

4.9 银行的贷款部门需要判别每个客户的信用好坏(是否为履行还贷责任),以决定是否给予贷款。

可以根据贷款申请人的年龄(1X )、受教育程度(2X )、现在所从事工作的年数(3X )、未变更住址的年数(4X )、收入(5X )、负债收入比例(6X )、信用卡债务(7X )、其他债务(8X )等来判断其信用情况。

下表是从银行的客户资料中抽取的部分数据,(1)根据样本资料分别用距离判别法、贝叶斯判别法和费希尔判别法建立判别函数和判别规则。

(2)某客户的如上情况资料为(53,1,918,50,11.20,2.02,3.58),对其进行信用好坏的评。

目前信用好坏 客户序号X1 X2 X3 X4 X5 X6 X7 X8 已履行还贷责任1 23 1 72 31 6.6 0.34 1.71 2 34 1 173 59 8 1.81 2.91 3 42 2 7 23 41 4.6 0.94 0.94 4 39 1 195 48 13.1 1.93 4.36 5 35 1 9 1 34 5 0.4 1.3 未履行还贷责任6 37 1 1 3 24 15.1 1.8 1.82 7 29 1 13 1 42 7.4 1.46 1.65 8 32 2 11 6 75 23.3 7.76 9.72 9 28 2 2 3 23 6.4 0.19 1.29 1026 1 4 3 27 10.5 2.47 0.365.8 下表是15个上市公司2001年的一些主要财物指标,使用系统聚类法和K 均值法分别对这些公司进行聚类,并对结果进行比较分析。

多元统计分析课后练习答案

多元统计分析课后练习答案

第1章 多元正态分布1、在数据处理时,为什么通常要进行标准化处理?数据的标准化是将数据按比例缩放,使之落入一个小的特定区间。

在某些比较和评价的指标处理中经常会用到,去除数据的单位限制,将其转化为无量纲的纯数值,便于不同单位或量级的指标能够进行比较和加权。

其中最典型的就是0-1标准化和Z 标准化。

2、欧氏距离与马氏距离的优缺点是什么?欧氏距离也称欧几里得度量、欧几里得度量,是一个通常采用的距离定义,它是在m 维空间中两个点之间的真实距离。

在二维和三维空间中的欧氏距离的就是两点之间的距离。

缺点:就大部分统计问题而言,欧氏距离是不能令人满意的。

每个坐标对欧氏距离的贡献是同等的。

当坐标表示测量值时,它们往往带有大小不等的随机波动,在这种情况下,合理的方法是对坐标加权,使变化较大的坐标比变化较小的坐标有较小的权系数,这就产生了各种距离。

当各个分量为不同性质的量时,“距离”的大小与指标的单位有关。

它将样品的不同属性之间的差别等同看待,这一点有时不能满足实际要求。

没有考虑到总体变异对距离远近的影响。

马氏距离表示数据的协方差距离。

为两个服从同一分布并且其协方差矩阵为Σ的随机变量与的差异程度:如果协方差矩阵为单位矩阵,那么马氏距离就简化为欧氏距离,如果协方差矩阵为对角阵,则其也可称为正规化的欧氏距离。

优点:它不受量纲的影响,两点之间的马氏距离与原始数据的测量单位无关。

由标准化数据和中心化数据计算出的二点之间的马氏距离相同。

马氏距离还可以排除变量之间的相关性的干扰。

缺点:夸大了变化微小的变量的作用。

受协方差矩阵不稳定的影响,马氏距离并不总是能顺利计算出。

3、当变量X1和X2方向上的变差相等,且与互相独立时,采用欧氏距离与统计距离是否一致?统计距离区别于欧式距离,此距离要依赖样本的方差和协方差,能够体现各变量在变差大小上的不同,以及优势存在的相关性,还要求距离与各变量所用的单位无关。

如果各变量之间相互独立,即观测变量的协方差矩阵是对角矩阵, 则马氏距离就退化为用各个观测指标的标准差的倒数作为权数的加权欧氏距离。

应用多元统计分析课后习题答案高惠璇第四章部分习题解答市公开课获奖课件省名师示范课获奖课件

应用多元统计分析课后习题答案高惠璇第四章部分习题解答市公开课获奖课件省名师示范课获奖课件

0
2
)
3 2

2
)
3 2
ˆ 2 ˆ 0 2
3
2
V
3 2
下列来讨论与V等价旳统计量分布:
ˆ 2
1 3
( y1
aˆ)2
( y2
2aˆ
bˆ)2
( y3

2bˆ)2
1 3
( y1
yˆ1 ) 2
( y2
yˆ2 )2
( y3
yˆ3 )2
1 3
(Y
Xˆ )(Y
Xˆ )
1Y 3
(I3
X
(
X
X
)1
Q(β)=(Y-Cβ) '(Y-Cβ) . 试证明β^=(C'C)-1C'Y是在下列四种意义下达最小:
(1) trQ(β^)≤trQ(β) (2) Q(β^)≤Q(β) (3) |Q(β^)|≤|Q(β)|
(4) ch1(Q(β^))≤ch1(Q(β)),其中ch1(A)表达A
旳最大特征值. 以上β是(m+1)×p旳任意矩阵.
[(
y1
aˆ0
)2
]
0
可得
ˆ
2
1 3
( y1
aˆ0 )2
( y2
aˆ0 )2
( y3
3aˆ0 )2
drf
ˆ
2 0
似然比统计量旳分子为
L(aˆ0

2 0
)
(2
)
3 2
(ˆ 0 2
)
3 2
exp[
3 2
].
5
第四章 回归分析
似然比统计量为
L(aˆ0 ,ˆ02 ) L(aˆ,bˆ,ˆ 2 )

多元统计分析课后练习答案

多元统计分析课后练习答案

第1章 多元正态分布1、在数据处理时,为什么通常要进行标准化处理?数据的标准化是将数据按比例缩放,使之落入一个小的特定区间。

在某些比较和评价的指标处理中经常会用到,去除数据的单位限制,将其转化为无量纲的纯数值,便于不同单位或量级的指标能够进行比较和加权。

其中最典型的就是0-1标准化和Z 标准化。

2、欧氏距离与马氏距离的优缺点是什么?欧氏距离也称欧几里得度量、欧几里得度量,是一个通常采用的距离定义,它是在m 维空间中两个点之间的真实距离。

在二维和三维空间中的欧氏距离的就是两点之间的距离。

缺点:就大部分统计问题而言,欧氏距离是不能令人满意的。

每个坐标对欧氏距离的贡献是同等的。

当坐标表示测量值时,它们往往带有大小不等的随机波动,在这种情况下,合理的方法是对坐标加权,使变化较大的坐标比变化较小的坐标有较小的权系数,这就产生了各种距离。

当各个分量为不同性质的量时,“距离”的大小与指标的单位有关。

它将样品的不同属性之间的差别等同看待,这一点有时不能满足实际要求。

没有考虑到总体变异对距离远近的影响。

马氏距离表示数据的协方差距离。

为两个服从同一分布并且其协方差矩阵为Σ的随机变量与的差异程度:如果协方差矩阵为单位矩阵,那么马氏距离就简化为欧氏距离,如果协方差矩阵为对角阵,则其也可称为正规化的欧氏距离。

优点:它不受量纲的影响,两点之间的马氏距离与原始数据的测量单位无关。

由标准化数据和中心化数据计算出的二点之间的马氏距离相同。

马氏距离还可以排除变量之间的相关性的干扰。

缺点:夸大了变化微小的变量的作用。

受协方差矩阵不稳定的影响,马氏距离并不总是能顺利计算出。

3、当变量X1和X2方向上的变差相等,且与互相独立时,采用欧氏距离与统计距离是否一致?统计距离区别于欧式距离,此距离要依赖样本的方差和协方差,能够体现各变量在变差大小上的不同,以及优势存在的相关性,还要求距离与各变量所用的单位无关。

如果各变量之间相互独立,即观测变量的协方差矩阵是对角矩阵, 则马氏距离就退化为用各个观测指标的标准差的倒数作为权数的加权欧氏距离。

多元统计分析课后习题解答第四章

多元统计分析课后习题解答第四章
• 题目:简述主成分分析的步骤。 答案:主成分分析是一种降维技术,其步骤包括标准化原始数据、计算样本相关系数矩阵、计算 特征值和特征向量、选择主成分并解释其意义等。通过主成分分析,可以将多个变量简化为少数几个综合变量,便于分析和解释。 • 答案:主成分分析是一种降维技术,其步骤包括标准化原始数据、计算样本相关系数矩阵、计算特征值和特征向量、选择主成分并解 释其意义等。通过主成分分析,可以将多个变量简化为少数几个综合变量,便于分析和解释。
习题解析
• 题目:简述多元统计分析的基本思想 答案:多元统计分析是通过对多个变量进行综合分析,揭示数据之间的内在关 系和规律,进而解决实际问题的方法。其基本思想包括多变量综合分析、多变量分类分析、多变量预测分析等。
• 答案:多元统计分析是通过对多个变量进行综合分析,揭示数据之间的内在关系和规律,进而解决实际问题的方法。其基本 思想包括多变量综合分析、多变量分类分析、多变量预测分析等。
汇报人:XX
多元统计分析的 方法和技术广泛 应用于各个领域, 如心理学、经济 学、医学等。
多元统计分析的 基本步骤包括数 据收集、数据探 索、模型选择、 模型拟合和模型 评估等。
多元统计分析的基本思想
综合多个变量进行全面分析,以揭示数据之间的内在联系和规律 强调变量之间的交互作用和协同效应,以实现更准确的预测和推断 通过对数据的降维处理,简化复杂数据集,提取关键信息
• 题目:解释因子分析的基本思想。 答案:因子分析是一种探索性统计分析方法,其基本思想是通过寻找隐藏在多个变量背后的共 同因子来解释变量之间的相互关系。通过因子分析,可以揭示数据的基本结构,简化数据的复杂性,并加深对数据内在规律的认识。 • 答案:因子分析是一种探索性统计分析方法,其基本思想是通过寻找隐藏在多个变量背后的共同因子来解释变量之间的相互关系。通 过因子分析,可以揭示数据的基本结构,简化数据的复杂性,并加深对数据内在规律的认识。

多元统计分析课后练习答案

多元统计分析课后练习答案

第1章 多元正态分布1、在数据处理时,为什么通常要进行标准化处理数据的标准化是将数据按比例缩放,使之落入一个小的特定区间;在某些比较和评价的指标处理中经常会用到,去除数据的单位限制,将其转化为无量纲的纯数值,便于不同单位或量级的指标能够进行比较和加权;其中最典型的就是0-1标准化和Z 标准化;2、欧氏距离与马氏距离的优缺点是什么欧氏距离也称欧几里得度量、欧几里得度量,是一个通常采用的距离定义,它是在m 维空间中两个点之间的真实距离;在二维和三维空间中的欧氏距离的就是两点之间的距离;缺点:就大部分统计问题而言,欧氏距离是不能令人满意的;每个坐标对欧氏距离的贡献是同等的;当坐标表示测量值时,它们往往带有大小不等的随机波动,在这种情况下,合理的方法是对坐标加权,使变化较大的坐标比变化较小的坐标有较小的权系数,这就产生了各种距离;当各个分量为不同性质的量时,“距离”的大小与指标的单位有关;它将样品的不同属性之间的差别等同看待,这一点有时不能满足实际要求;没有考虑到总体变异对距离远近的影响;马氏距离表示数据的协方差距离;为两个服从同一分布并且其协方差矩阵为Σ的随机变量与的差异程度:如果协方差矩阵为单位矩阵,那么马氏距离就简化为欧氏距离,如果协方差矩阵为对角阵,则其也可称为正规化的欧氏距离;优点:它不受量纲的影响,两点之间的马氏距离与原始数据的测量单位无关;由标准化数据和中心化数据计算出的二点之间的马氏距离相同;马氏距离还可以排除变量之间的相关性的干扰;缺点:夸大了变化微小的变量的作用;受协方差矩阵不稳定的影响,马氏距离并不总是能顺利计算出;3、当变量X1和X2方向上的变差相等,且与互相独立时,采用欧氏距离与统计距离是否一致统计距离区别于欧式距离,此距离要依赖样本的方差和协方差,能够体现各变量在变差大小上的不同,以及优势存在的相关性,还要求距离与各变量所用的单位无关;如果各变量之间相互独立,即观测变量的协方差矩阵是对角矩阵, 则马氏距离就退化为用各个观测指标的标准差的倒数作为权数的加权欧氏距离;4、如果正态随机向量12(,,)p X X X X '=的协方差阵为对角阵,证明X 的分量是相互独立的随机变量;解: 因为12(,,)p X X X X '=的密度函数为 又由于21222p σσσ⎛⎫ ⎪ ⎪= ⎪ ⎪ ⎪⎝⎭Σ 则1(,...,)p f x x则其分量是相互独立;5.1y 和2y 是相互独立的随机变量,且1y ~)1,0(N ,2y ~)4,3(N ;(a )求21y 的分布;(b )如果⎥⎦⎤⎢⎣⎡-=2/)3(21y y y ,写出y y '关于1y 与2y 的表达式,并写出y y '的分布; (c )如果⎥⎦⎤⎢⎣⎡=21y y y 且y ~∑),(μN ,写出∑-'1y y 关于1y 与2y 的表达式,并写出∑-'1y y 的分布;解:a 由于1y ~)1,0(N ,所以1y ~)1(2χ; b 由于1y ~)1,0(N ,2y ~)4,3(N ;所以232-y ~)1,0(N ;故2221)23(-+='y y y y ,且y y '~)2(2χ第2章 均值向量和协方差阵的检验1、略2、试谈Wilks 统计量在多元方差分析中的重要意义;3、题目此略多元均值检验,从题意知道,容量为9的样本 ,总体协方差未知假设H0:0μμ= , H1:0μμ≠ n=9 p=5检验统计量/n-1)()(0102μμ-'-=-X S X n T 服从P,n-1的2T 分布 统计量2T 实际上是样本均值与已知总体均值之间的马氏距离再乘以nn-1,这个值越大,相等的可能性越小,备择假设成立时,2T 有变大的趋势,所以拒绝域选择2T 值较大的右侧部分,也可以转变为F 统计量零假设的拒绝区域 {n-p/n-1p}2T >,()p n p F α-1/102T >F5,45μ0= 2972 ’样本均值 ’样本均值-μ0’=协方差矩阵降维——因子分析——抽取Inter-Item Covariance Matrix人均GDP元三产比重%人均消费元人口增长%文盲半文盲%人均GDP元三产比重%人均消费元人口增长%文盲半文盲%协方差的逆矩阵计算:2T=9s^-1 ’F统计量=> 拒绝零假设,边缘及少数民族聚居区的社会经济发展水平与全国平均水平有显着差异;4、略第3章聚类分析1.、聚类分析的基本思想和功能是什么聚类分析的基本思想是研究的样品或指标之间存着程度不同的相似性,于是根据一批样品的多个观测指标,具体找出一些能够度量样品或指标之间的相似程度的统计量,以这些统计量作为划分类型的依据,把一些相似程度较大的样品聚合为一类,把另外一些彼此之间相似程度较大的样品又聚合为另外一类,直到把所有的样品聚合完毕,形成一个有小到大的分类系统,最后再把整个分类系统画成一张分群图,用它把所有样品间的亲疏关系表示出来;功能是把相似的研究对象归类;2、试述系统聚类法的原理和具体步骤;系统聚类是将每个样品分成若干类的方法,其基本思想是先将各个样品各看成一类,然后规定类与类之间的距离,选择距离最小的一对合并成新的一类,计算新类与其他类之间的距离,再将距离最近的两类合并,这样每次减少一类,直至所有的样品合为一类为止; 具体步骤:1、对数据进行变换处理;不是必须的,当数量级相差很大或指标变量具有不同单位时是必要的2、构造n个类,每个类只包含一个样本;3、计算n个样本两两间的距离ijd;4、合并距离最近的两类为一新类;5、计算新类与当前各类的距离,若类的个数等于1,转到6;否则回4;6、画聚类图;7、决定类的个数,从而得出分类结果;3、试述K-均值聚类的方法原理;K-均值法是一种非谱系聚类法,把每个样品聚集到其最近形心均值类中,它是把样品聚集成K个类的集合,类的个数k可以预先给定或者在聚类过程中确定,该方法应用于比系统聚类法大得多的数据组;步骤是把样品分为K个初始类,进行修改,逐个分派样品到期最近均值的类中通常采用标准化数据或非标准化数据计算欧氏距离重新计算接受新样品的类和失去样品的类的形心;重复这一步直到各类无元素进出;4、试述模糊聚类的思想方法;模糊聚类分析是根据客观事物间的特征、亲疏程度、相似性,通过建立模糊相似关系对客观事物进行聚类的分析方法,实质是根据研究对象本身的属性构造模糊矩阵,在此基础上根据一定的隶属度来确定其分类关系;基本思想是要把需要识别的事物与模板进行模糊比较,从而得到所属的类别;简单地说,模糊聚类事先不知道具体的分类类别,而模糊识别是在已知分类的情况下进行的;模糊聚类分析广泛应用在气象预报、地质、农业、林业等方面;它有两种基本方法:系统聚类法和逐步聚类法;该方法多用于定性变量的分类;5、略第4章判别分析1、应用判别分析应该具备什么样的条件答:判别分析最基本的要求是,分组类型在两组以上,每组案例的规模必须至少在一个以上,解释变量必须是可测量的,才能够计算其平均值和方差;对于判别分析有三个假设:1每一个判别变量不能是其他判别变量的线性组合;有时一个判别变量与另外的判别变量高度相关,或与其的线性组合高度相关,也就是多重共线性;2各组变量的协方差矩阵相等;判别分析最简单和最常用的的形式是采用现行判别函数,他们是判别变量的简单线性组合,在各组协方差矩阵相等的假设条件下,可以使用很简单的公式来计算判别函数和进行显着性检验;3各判别变量之间具有多元正态分布,即每个变量对于所有其他变量的固定值有正态分布,在这种条件下可以精确计算显着性检验值和分组归属的概率;2、试述贝叶斯判别法的思路;答:贝叶斯判别法的思路是先假定对研究的对象已有一定的认识,常用先验概率分布来描述这种认识,然后我们取得一个样本,用样本来修正已有的认识先验概率分布,得到后验概率分布,各种统计推断都通过后验概率分布来进行;将贝叶斯判别方法用于判别分析,就得到贝叶斯判别;3、试述费歇判别法的基本思想;答:费歇判别法的基本思想是将高维数据点投影到低维空间上来,然而利用方差分析的思想选出一个最优的投影方向;因此,严格的说费歇判别分析本身不是一种判别方法,只是利用费歇统计量进行数据预处理的方法,以使更有利于用判别分析方法解决问题;为了有利于判别,我们选择投影方向a应使投影后的k个一元总体能尽量分开同一总体中的样品的投影值尽量靠近;k要做到这一点,只要投影后的k个一元总体均值有显着差异,即可利用方差分析的方法使组间平方和尽可能的大;则选取投影方向a使Δa达极大即可;4、什么是逐步判别分析答:具有筛选变量能力的判别方法称为逐步判别分析法;逐步判别分析法就是先从所有因子中挑选一个具有最显着判别能力的因子,然后再挑选第二个因子,这因子是在第一因子的基础上具有最显着判别能力的因子,即第一个和第二个因子联合起来有显着判别能力的因子;接着挑选第三个因子,这因子是在第一、第二因子的基础上具有最显着判别能力的因子;由于因子之间的相互关系,当引进了新的因子之后,会使原来已引入的因子失去显着判别能力;因此,在引入第三个因子之后就要先检验已经引入的因子是否还具有显着判别能力,如果有就要剔除这个不显着的因子;接着再继续引入,直到再没有显着能力的因子可剔除为止,最后利用已选中的变量建立判别函数;5、简要叙述判别分析的步骤及流程答:1研究问题:选择对象,评估一个多元问题各组的差异,将观测个体归类,确定组与组之间的判别函数;2设计要点:选择解释变量,样本量的考虑,建立分析样本的保留样本;3假定:解释变量的正态性,线性关系,解释变量间不存在多重共线性,协方差阵相等;4估计判别函数:联立估计或逐步估计,判别函数的显着性;5使用分类矩阵评估预测的精度:确定最优临界得分,确定准则来评估判对比率,预测精确的统计显着性;6判别函数的解释:需要多少个函数;评价单个函数主要从判别权重、判别载荷、偏F值几个方面;评价两个以上的判别函数,分为评价判别的函数和评价合并的函数;7判别结果的验证:分开样本或交叉验证,刻画组间的差异;6、略第5章主成分分析1、主成分的基本思想是什么在对某一事物进行实证研究时,为更全面、准确地反映事物的特征及其发展规律,往往考虑与其有关的多个指标,在多元统计中也称为变量;一方避免遗漏重要信息而考虑尽可能多的指标看,另一方面考虑指标的增多,又难以避免信息重叠;希望涉及的变量少,而得到的信息量有较多;主成分的基本思想是研究如何通过原来的少数几个线性组合来解释原来变量绝大多数信息的一种多元统计方法;研究某一问题涉及的众多变量之间有一定的相关性,必然存在着支配作用的公共因素;通过对原始变量相关矩阵或协方差矩阵内部结构关系的研究,利用原始变量的线性组合形成几个无关的综合指标主成分来代替原来的指标;通常数学上的处理就是将原来P个指标作线性组合,作为新的综合指标;最经典的做法就是用F1选取的第一个线性组合,即第一个综合指标的方差来表达,即VarF1越大,表示F1包含的信息越多;因此在所有的线性组合中选取的F1应该是方差最大的,故称F1为第一主成分,如果第一主成分不足以代表原来P个指标的信息,再考虑选取F2即选第二个线性组合,为了有效地反映原来信息,F1已有的信息就不需要再出现在F2中,用数学语言表达就是要求CovF1,F2=0则称F2为第二主成分,依此类推可以构造出第三、第四······,第P个主成分;2、主成分在应用中的主要作用是什么作用:利用原始变量的线性组合形成几个综合指标主成分,在保留原始变量主要信息的前提下起到降维与简化问题的作用,使得在研究复杂问题时更容易抓住主要矛盾;通过主成分分析,可以从事物之间错综复杂的关系中找出一些主要成分,从而能有效利用大量数据进行定量分析,解释变量之间的内在关系,得到对事物特征及其发展规律的一些深层次的启发,把研究工作引向深入;主成分分析能降低所研究的数据空间的维数,有时可通过因子载荷aij的结论,弄清X变量间的某些关系,多维数据的一种图形表示方法,用主成分分析筛选变量,可以用较少的计算量来选择,获得选择最佳变量子集合的效果;3.由协方差阵出发和由相关阵出发求主成分有什么不同1由协方差阵出发设随即向量X=X1,X2,X3,……Xp’的协方差矩阵为Σ,1≥2≥……≥p为Σ的特征值,γ1,γ2,……γp为矩阵A各特征值对应的标准正交特征向量,则第i个主成分为Yi=γ1iX1+γ2iX2+……+γpiXp,i=1,2,……,p此时VARYi=i,COVYi,Yj=0,i≠j我们把X1,X2,X3,……Xp的协方差矩阵Σ的非零特征根1≥2≥……≥p>0向量对应的标准化特征向量γ1,γ2,……γp分别作为系数向量,Y1=γ1’X, Y2=γ2’X,……, Yp=γp’X分别称为随即向量X的第一主成分,第二主成分……第p主成分;Y的分量Y1,Y2,……,Yp依次是X的第一主成分、第二主成分……第p主成分的充分必要条件是:1Y=P’X,即P为p阶正交阵,2Y的分量之间互不相关,即DY=diag1,2,……,p,3Y的p个分量是按方差由大到小排列,即1≥2≥……≥p;2由相关阵出发对原始变量X进行标准化,Z=Σ^1/2^-1X-μ covZ=R原始变量的相关矩阵实际上就是对原始变量标准化后的协方差矩阵,因此,有相关矩阵求主成分的过程与主成分个数的确定准则实际上是与由协方差矩阵出发求主成分的过程与主成分个数的确定准则相一致的;λi,γi 分别表示相关阵R的特征根值与对应的标准正交特征向量,此时,求得的主成分与原始变量的关系式为:Yi=γi’Z=γi’Σ^1/2^-1X-μ在实际研究中,有时单个指标的方差对研究目的起关键作用,为了达到研究目的,此时用协方差矩阵进行主成分分析恰到好处;有些数据涉及到指标的不同度量尺度使指标方差之间不具有可比性,对于这类数据用协方差矩阵进行主成分分析也有不妥;相关系数矩阵计算主成分其优势效应仅体现在相关性大、相关指标数多的一类指标上;避免单个指标方差对主成分分析产生的负面影响,自然会想到把单个指标的方差从协方差矩阵中剥离,而相关系数矩阵恰好能达到此目的;4、略第6章因子分析1、因子分析与主成分分析有什么本质不同答:1因子分析把诸多变量看成由对每一个变量都有作用的一些公共因子和一些仅对某一个变量有作用的特殊因子线性组合而成,因此,我们的目的就是要从数据中探查能对变量起解释作用的公共因子和特殊因子,以及公共因子和特殊因子的线性组合;主成分分析则简单一些,它只是从空间生成的角度寻找能解释诸多变量绝大部分变异的几组彼此不相关的新变量2因子分析中,把变量表示成各因子的线性组合,而主成分分析中,把主成分表示成各变量的线性组合3主成分分析中不需要有一些专门假设,因子分析则需要一些假设,因子分析的假设包括:各个因子之间不相关,特殊因子之间不相关,公共因子和特殊因子之间不相关;4在因子分析中,提取主因子的方法不仅有主成分法,还有极大似然法等,基于这些不同算法得到的结果一般也不同;而主成分分析只能用主成分法提取;5主成分分析中,当给定的协方差矩阵或者相关矩阵的特征根唯一时,主成分一般是固定;而因子分析中,因子不是固定的,可以旋转得到不同的因子;6在因子分析中,因子个数需要分析者指定,结果随指定的因子数不同而不同;在主成分分析中,主成分的数量是一定的,一般有几个变量就有几个主成分; 7与主成分分析相比,由于因子分析可以使用旋转技术帮助解释因子,在解释方面更加有优势;而如果想把现有的变量变成少数几个新的变量新的变量几乎带有原来所有变量的信息来进行后续的分析,则可以使用主成分分析;2、因子载荷ij a 的统计定义是什么它在实际问题的分析中的作用是什么答:1因子载荷ij a 的统计定义:是原始变量i X 与公共因子j F 的协方差,i X 与j F ),...,2,1;,...,2,1(m j p i ==都是均值为0,方差为1的变量,因此ij a 同时也是i X 与j F 的相关系数;(2)记),,...,2,1(...222212m j a a a g pjj j j =+++=则2j g 表示的是公共因子j F 对于X 的每一分量),...,2,1(p i X i =所提供的方差的总和,称为公共因子j F 对原始变量X 的方贡献,它是衡量公共因子相对重要性的指标;2j g 越大,表明公共因子j F 对i X 的贡献越大,或者说对X的影响作用就越大;如果因子载荷矩阵对A 的所有的),...,2,1(2m j g j =都计算出来,并按大小排序,就可以依此提炼出最有影响的公共因子;3、略第7章 对应分析1、试述对应分析的思想方法及特点;思想:对应分析又称为相应分析,也称R —Q 分析;是因子分子基础发展起来的一种多元统计分析方法;它主要通过分析定性变量构成的列联表来揭示变量之间的关系;当我们对同一观测数据施加R 和Q 型因子分析,并分别保留两个公共因子,则是对应分析的初步;对应分析的基本思想是将一个联列表的行和列中各元素的比例结构以点的形式在较低维的空间中表示出来;它最大特点是能把众多的样品和众多的变量同时作到同一张图解上,将样品的大类及其属性在图上直观而又明了地表示出来,具有直观性;另外,它还省去了因子选择和因子轴旋转等复杂的数学运算及中间过程,可以从因子载荷图上对样品进行直观的分类,而且能够指示分类的主要参数主因子以及分类的依据,是一种直观、简单、方便的多元统计方法;特点:对应分析的基本思想是将一个联列表的行和列中各元素的比例结构以点的形式在较低维的空间中表示出来;它最大特点是能把众多的样品和众多的变量同时作到同一张图解上,将样品的大类及其属性在图上直观而又明了地表示出来,具有直观性;另外,它还省去了因子选择和因子轴旋转等复杂的数学运算及中间过程,可以从因子载荷图上对样品进行直观的分类,而且能够指示分类的主要参数主因子以及分类的依据,是一种直观、简单、方便的多元统计方法;2、试述对应分析中总惯量的意义;总惯量不仅反映了行剖面集定义的各点与其重心加权距离的总和,同时与2x 统计量仅相差一个常数,而2x 统计量反映了列联表横联与纵联的相关关系,因此总惯量也反映了两个属性变量各状态之间的相关关系;对应分析就是在对总惯量信息损失最小的前提下,简化数据结构以反映两属性变量之间的相关关系;3、略 第8章 典型相关分析1、试述典型相关分析的统计思想及该方法在研究实际问题中的作用;答: 典型相关分析是研究两组变量之间相关关系的一种多元统计方法;用于揭示两组变 量之间的内在联系;典型相关分析的目的是识别并量化两组变量之间的联系;将两z |Uz |V 组变量相 关关系的分析转化为一组变量的线性组合与另一组变量线性组合之间的相关关系;基本思想:1在每组变量中找出变量的线性组合,使得两组的线性组合之间具有最大的相关系数;即:X X 1, X 2, , , X p 、XX 1, X 2, , , X q 是两组相互关联的随机变量,分别在两组变量中选取若干有代表性的综合变量 U i 、Vi,使是原变量的线性组合;U i a 1X 1 a 2 X 2..... a P X P ≡ a ‘XV i b 1Y 1 b 2 Y 2 .... b q Y q ≡ b‘Y 在 D aX D bX 1 的条件下,使得 aX , bX 达到最大;2选取和最初挑选的这对线性组合不相关的线性组合,使其配对,并选取相关系数最大的一对;(3)如此继续下去,直到两组变量之间的相关性被提取完毕为此;其作用为:进行两组变量之间的相关性分析,用典型相关系数衡量两组变量之间的相关性;2、简述典型相关分析中冗余分析的内容及作用;答:典型型冗余分析的作用即分析每组变量提取出的典型变量所能解释的该组样本总方差的比 例,从而定量测度典型变量所包含的原始信息量;第一组变量样本的总方差为 t r R 11 p ,第二组变量样本的总方差为 t r R 22 q ;*A ˆz和*B ˆz 是样本典型相关系数矩阵,典型系数向量是矩阵的行向量, Z z z **A ˆU ˆ=,Z z z **B ˆV ˆ=前 r 对典型变量对样本总方差的贡献为则第一组样本方差由前 r 个典型变量解释的比例为:第二组样本方差由前 r 个典型变量解释的比例为:3、典型变量的解释有什么具体方法实际意义是什么答:主要使用三种方法:1典型权重标准相关系数:传统的解释典型函数的方法包括观察每个原始变量在它的典型变量中的典型权重,即标准化相关系数StandardizedCanonical Coefficients 的符号和大小;有较大的典型权重,则说明原始变量对它的典型变量的贡献较大,反之则相反;原始变量的典型权重有相反的符号说明变量之间存在一种反面关系,反之则有正面关系;但是这种解释遭到了很多批评;这些问题说明在解释典型相关的时候应慎用典型权重;(2)典型载荷结构系数:由于典型载荷逐步成为解释典型相关分析结果的基础;典型载荷分析,即典型结构分析Canonical Structure Analyse,是原始变量自变量或者因变量与它的典型变量间的简单线性相关系数;典型载荷反映原始变量与典型变量的共同方差,它的解释类似于因子载荷,就是每个原始变量对典型函数的相对贡献;(3)典型交叉载荷交叉结构系数:它的提出时作为典型载荷的替代,也属于典型结构分析;计算典型交叉载荷包括每个原始因变量与自变量典型变量直接相关,反之亦然;交叉载荷提供了一个更直接地测量因变量组与自变量组之间的关系的指标;实际意义:即使典型相关系数在统计上是显着的,典型根和冗余系数大小也是可接受的,研究者仍需对结果做大量的解释;这些解释包括研究典型函数中原始变量的相对重要性;4.、略。

多元统计课后题精选全文完整版

多元统计课后题精选全文完整版

多元统计分析课后题第四章 回归分析1、设河流的一个断面的年径流量为y ,该断面的上游流域的年平均降水量为x1,年平均饱和差为x2,现共有14年的观测记录:时间x1x2y 时间x1x2y17201.8029085792.221512553 2.6713595152.411313575 1.75234105763.031064548 2.07182115471.832005572 2.49145125681.902246453 3.5969137201.982717540 1.88205147002.90130(1)试求y 关于x 1、x 2的二元线性回归方程;(2)对回归方程和每一个回归系数的显著性做检验;(3)求出每一个回归系数的置信水平为0.95的置信区间;(4)求出回归方程的复相关系数;(5)设某年x 1=600,x 2=2.50,求E(y)的点估计及置信水平为0.95的置信区间。

解:利用以上数据表拟合线性回归模型.22110εβββ+++=x x y 点选SPSS 视窗中的分析回归分析线性…,再将y 选入因变量的方框中,同时→→将x1和x2选入自变量的方框中,再在“统计”中选择估计、模型拟合、R 平方变化、描述、部分和偏相关、Durbin-Watson 选项,最后点击“OK ”按钮即可作线性回归分析,输出结果如下:Regression变量的样本均值和标准差:变量间的简单相关系数:这里给出了回归方程的样本决定系数和P值以及DW值:下面的框图是方差分析表,从中可以看出,y关于x1和x2的线性回归方程通过了显著性检验,均方残差为554.963,F统计量值为42.155,P值为0.000,回归方程在0.000的统计意义上是显著的。

上面的框图给出了非标准化和标准化的回归方程,以及回归系数的t 统计量检验结果。

从中我们可以看出,非标准化的回归方程为:(1)21x 647.87292.0875.209-+=x y(2)回归系数、均通过了显著性检验。

(完整版)多元统计分析课后练习答案

(完整版)多元统计分析课后练习答案

第1章 多元正态分布1、在数据处理时,为什么通常要进行标准化处理?数据的标准化是将数据按比例缩放,使之落入一个小的特定区间。

在某些比较和评价的指标处理中经常会用到,去除数据的单位限制,将其转化为无量纲的纯数值,便于不同单位或量级的指标能够进行比较和加权。

其中最典型的就是0-1标准化和Z 标准化。

2、欧氏距离与马氏距离的优缺点是什么?欧氏距离也称欧几里得度量、欧几里得度量,是一个通常采用的距离定义,它是在m 维空间中两个点之间的真实距离。

在二维和三维空间中的欧氏距离的就是两点之间的距离。

缺点:就大部分统计问题而言,欧氏距离是不能令人满意的。

每个坐标对欧氏距离的贡献是同等的。

当坐标表示测量值时,它们往往带有大小不等的随机波动,在这种情况下,合理的方法是对坐标加权,使变化较大的坐标比变化较小的坐标有较小的权系数,这就产生了各种距离。

当各个分量为不同性质的量时,“距离”的大小与指标的单位有关。

它将样品的不同属性之间的差别等同看待,这一点有时不能满足实际要求。

没有考虑到总体变异对距离远近的影响。

马氏距离表示数据的协方差距离。

为两个服从同一分布并且其协方差矩阵为Σ的随机变量与的差异程度:如果协方差矩阵为单位矩阵,那么马氏距离就简化为欧氏距离,如果协方差矩阵为对角阵,则其也可称为正规化的欧氏距离。

优点:它不受量纲的影响,两点之间的马氏距离与原始数据的测量单位无关。

由标准化数据和中心化数据计算出的二点之间的马氏距离相同。

马氏距离还可以排除变量之间的相关性的干扰。

缺点:夸大了变化微小的变量的作用。

受协方差矩阵不稳定的影响,马氏距离并不总是能顺利计算出。

3、当变量X1和X2方向上的变差相等,且与互相独立时,采用欧氏距离与统计距离是否一致?统计距离区别于欧式距离,此距离要依赖样本的方差和协方差,能够体现各变量在变差大小上的不同,以及优势存在的相关性,还要求距离与各变量所用的单位无关。

如果各变量之间相互独立,即观测变量的协方差矩阵是对角矩阵, 则马氏距离就退化为用各个观测指标的标准差的倒数作为权数的加权欧氏距离。

应用多元统计分析课后习题答案高惠璇

应用多元统计分析课后习题答案高惠璇
3 解三:两次配方法
2 1 2 2 2 (1)第一次配方: 2 x12 2 x1 x2 x2 ( x1 x2 ) 2 x12
2 1 x1 2 1 1 1 1 1 因2 x 2 x1 x2 x ( x1 , x2 ) , 而 BB, 1 1 x2 1 1 1 0 1 0 y1 1 1 x1 x1 x2 2 2 2 2 令y , 则 2 x 2 x x x y y 1 1 2 2 1 2 y x x 1 0 2 1 2
类似地有

1 2 2 ( 2 x1 22 x1 65 x1 14 x1 49 ) 2
f 2 ( x2 )
X 2 ~ N (3,2).

f (x , x )dx
1 2 1
1 2 2
e
1 ( x2 3) 2 4
10
第二章
多元正态分布及参数的估计
1 e 2
1 2 ( 2 x1 22 x1 65) 2

e
1 2 ( x2 2 x2 ( x1 7 ) ( x1 7 ) 2 ) 2
dx2 e
1 ( x1 7 ) 2 2
9
第二章
多元正态分布及参数的估计
1 ( x2 x1 7 ) 2 2
1 e e dx2 2 1 2 1 ( x 8 x 16 ) ( x2 x1 7 ) 2 1 1 1 1 2 e 2 e dx2 2 2 1 ( x1 4 ) 2 1 e 2 X1 ~ N (4,1). 2
u1 x1 4 令 u2 x2 3

《应用多元统计分析》各章作业题及部分参考答案

《应用多元统计分析》各章作业题及部分参考答案

60.6
16.5
2 76
58.1
12.5
3 92
63.2
14.5
4 81
59.0
14.0
5 81
60.8
15.5
6 84
59.5
14.0
解:作如下假设 H0 : μ = μ0 , H1 : μ ≠ μ0
经计算,求的样本均值向量 x = (82.0, 60.2,14.5) ' ,x − μ0 = (−8, 2.2, −1.5) ' ,样本协差阵
x2
+
1 2
x3
+
1 2
x4 。
(2)第一主成分的贡献率为
λ1
+
λ2
λ1 +
λ3
+ λ4
= 1+ 3ρ 4
≥ 95% ,得 ρ
≥ 0.933 。
第 7 章 因子分析
1、设 x = (x1, x2 , x3 )′ 的相关系数矩阵通过因子分析分解为
⎛ ⎜
1

R
=
⎜ ⎜
−1 3
⎜ ⎜⎜⎝
2 3
−1 3 1
54.58
11.67
产品净值率 10.7
6.2
21.41
11.67
7.90
2、 设 G1, G2 , G3 三个组,欲判别某样品 x0 属于何组,已知 p1 = 0.05, p2 = 0.65, p3 = 0.3,
应用多元统计分析
pofeel@
3
f1 (x0 ) = 0.10, f2 (x0 ) = 0.63, f3 (x0 ) = 2.4 ,假定误判代价矩阵为:
⎢⎣ 4.5 ⎥⎦

多元统计分析课后练习答案

多元统计分析课后练习答案

第1章 多元正态分布1、在数据处理时,为什么通常要进行标准化处理数据的标准化是将数据按比例缩放,使之落入一个小的特定区间;在某些比较和评价的指标处理中经常会用到,去除数据的单位限制,将其转化为无量纲的纯数值,便于不同单位或量级的指标能够进行比较和加权;其中最典型的就是0-1标准化和Z 标准化;2、欧氏距离与马氏距离的优缺点是什么欧氏距离也称欧几里得度量、欧几里得度量,是一个通常采用的距离定义,它是在m 维空间中两个点之间的真实距离;在二维和三维空间中的欧氏距离的就是两点之间的距离;缺点:就大部分统计问题而言,欧氏距离是不能令人满意的;每个坐标对欧氏距离的贡献是同等的;当坐标表示测量值时,它们往往带有大小不等的随机波动,在这种情况下,合理的方法是对坐标加权,使变化较大的坐标比变化较小的坐标有较小的权系数,这就产生了各种距离;当各个分量为不同性质的量时,“距离”的大小与指标的单位有关;它将样品的不同属性之间的差别等同看待,这一点有时不能满足实际要求;没有考虑到总体变异对距离远近的影响;马氏距离表示数据的协方差距离;为两个服从同一分布并且其协方差矩阵为Σ的随机变量与的差异程度:如果协方差矩阵为单位矩阵,那么马氏距离就简化为欧氏距离,如果协方差矩阵为对角阵,则其也可称为正规化的欧氏距离;优点:它不受量纲的影响,两点之间的马氏距离与原始数据的测量单位无关;由标准化数据和中心化数据计算出的二点之间的马氏距离相同;马氏距离还可以排除变量之间的相关性的干扰; 缺点:夸大了变化微小的变量的作用;受协方差矩阵不稳定的影响,马氏距离并不总是能顺利计算出;3、当变量X1和X2方向上的变差相等,且与互相独立时,采用欧氏距离与统计距离是否一致统计距离区别于欧式距离,此距离要依赖样本的方差和协方差,能够体现各变量在变差大小上的不同,以及优势存在的相关性,还要求距离与各变量所用的单位无关;如果各变量之间相互独立,即观测变量的协方差矩阵是对角矩阵, 则马氏距离就退化为用各个观测指标的标准差的倒数作为权数的加权欧氏距离;4、如果正态随机向量12(,,)p X X X X '=的协方差阵为对角阵,证明X 的分量是相互独立的随机变量;解: 因为12(,,)p X X X X '=的密度函数为 又由于21222p σσσ⎛⎫ ⎪ ⎪= ⎪ ⎪ ⎪⎝⎭Σ 则1(,...,)p f x x则其分量是相互独立;5.1y 和2y 是相互独立的随机变量,且1y ~)1,0(N ,2y ~)4,3(N ;(a )求21y 的分布;(b )如果⎥⎦⎤⎢⎣⎡-=2/)3(21y y y ,写出y y '关于1y 与2y 的表达式,并写出y y '的分布;(c )如果⎥⎦⎤⎢⎣⎡=21y y y 且y ~∑),(μN ,写出∑-'1y y 关于1y 与2y 的表达式,并写出∑-'1y y 的分布;解:a 由于1y ~)1,0(N ,所以1y ~)1(2χ;b 由于1y ~)1,0(N ,2y ~)4,3(N ;所以232-y ~)1,0(N ;故2221)23(-+='y y y y ,且y y '~)2(2χ 第2章 均值向量和协方差阵的检验1、略2、试谈Wilks 统计量在多元方差分析中的重要意义;3、题目此略多元均值检验,从题意知道,容量为9的样本 ,总体协方差未知假设H0:0μμ= , H1:0μμ≠ n=9 p=5检验统计量/n-1)()(0102μμ-'-=-X S X n T 服从P,n-1的2T 分布 统计量2T 实际上是样本均值与已知总体均值之间的马氏距离再乘以nn-1,这个值越大,相等的可能性越小,备择假设成立时,2T 有变大的趋势,所以拒绝域选择2T 值较大的右侧部分,也可以转变为F 统计量零假设的拒绝区域 {n-p/n-1p}2T >,()p n p F α-1/102T >F5,45μ0= 2972 ’样本均值 ’样本均值-μ0’= Inter-Item Covariance Matrix人均GDP 元 三产比重% 人均消费元 人口增长% 文盲半文盲% 人均GDP 元三产比重%人均消费元人口增长%文盲半文盲%协方差的逆矩阵计算:2T=9s^-1 ’F统计量=> 拒绝零假设,边缘及少数民族聚居区的社会经济发展水平与全国平均水平有显着差异;4、略第3章聚类分析1.、聚类分析的基本思想和功能是什么聚类分析的基本思想是研究的样品或指标之间存着程度不同的相似性,于是根据一批样品的多个观测指标,具体找出一些能够度量样品或指标之间的相似程度的统计量,以这些统计量作为划分类型的依据,把一些相似程度较大的样品聚合为一类,把另外一些彼此之间相似程度较大的样品又聚合为另外一类,直到把所有的样品聚合完毕,形成一个有小到大的分类系统,最后再把整个分类系统画成一张分群图,用它把所有样品间的亲疏关系表示出来;功能是把相似的研究对象归类;2、试述系统聚类法的原理和具体步骤;系统聚类是将每个样品分成若干类的方法,其基本思想是先将各个样品各看成一类,然后规定类与类之间的距离,选择距离最小的一对合并成新的一类,计算新类与其他类之间的距离,再将距离最近的两类合并,这样每次减少一类,直至所有的样品合为一类为止;具体步骤:1、对数据进行变换处理;不是必须的,当数量级相差很大或指标变量具有不同单位时是必要的2、构造n个类,每个类只包含一个样本;3、计算n个样本两两间的距离ijd;4、合并距离最近的两类为一新类;5、计算新类与当前各类的距离,若类的个数等于1,转到6;否则回4;6、画聚类图;7、决定类的个数,从而得出分类结果;3、试述K-均值聚类的方法原理;K-均值法是一种非谱系聚类法,把每个样品聚集到其最近形心均值类中,它是把样品聚集成K 个类的集合,类的个数k可以预先给定或者在聚类过程中确定,该方法应用于比系统聚类法大得多的数据组;步骤是把样品分为K个初始类,进行修改,逐个分派样品到期最近均值的类中通常采用标准化数据或非标准化数据计算欧氏距离重新计算接受新样品的类和失去样品的类的形心;重复这一步直到各类无元素进出;4、试述模糊聚类的思想方法;模糊聚类分析是根据客观事物间的特征、亲疏程度、相似性,通过建立模糊相似关系对客观事物进行聚类的分析方法,实质是根据研究对象本身的属性构造模糊矩阵,在此基础上根据一定的隶属度来确定其分类关系;基本思想是要把需要识别的事物与模板进行模糊比较,从而得到所属的类别;简单地说,模糊聚类事先不知道具体的分类类别,而模糊识别是在已知分类的情况下进行的;模糊聚类分析广泛应用在气象预报、地质、农业、林业等方面;它有两种基本方法:系统聚类法和逐步聚类法;该方法多用于定性变量的分类;5、略第4章判别分析1、应用判别分析应该具备什么样的条件答:判别分析最基本的要求是,分组类型在两组以上,每组案例的规模必须至少在一个以上,解释变量必须是可测量的,才能够计算其平均值和方差;对于判别分析有三个假设:1每一个判别变量不能是其他判别变量的线性组合;有时一个判别变量与另外的判别变量高度相关,或与其的线性组合高度相关,也就是多重共线性;2各组变量的协方差矩阵相等;判别分析最简单和最常用的的形式是采用现行判别函数,他们是判别变量的简单线性组合,在各组协方差矩阵相等的假设条件下,可以使用很简单的公式来计算判别函数和进行显着性检验;3各判别变量之间具有多元正态分布,即每个变量对于所有其他变量的固定值有正态分布,在这种条件下可以精确计算显着性检验值和分组归属的概率;2、试述贝叶斯判别法的思路;答:贝叶斯判别法的思路是先假定对研究的对象已有一定的认识,常用先验概率分布来描述这种认识,然后我们取得一个样本,用样本来修正已有的认识先验概率分布,得到后验概率分布,各种统计推断都通过后验概率分布来进行;将贝叶斯判别方法用于判别分析,就得到贝叶斯判别;3、试述费歇判别法的基本思想;答:费歇判别法的基本思想是将高维数据点投影到低维空间上来,然而利用方差分析的思想选出一个最优的投影方向;因此,严格的说费歇判别分析本身不是一种判别方法,只是利用费歇统计量进行数据预处理的方法,以使更有利于用判别分析方法解决问题;为了有利于判别,我们选择投影方向a 应使投影后的k个一元总体能尽量分开同一总体中的样品的投影值尽量靠近;k要做到这一点,只要投影后的k个一元总体均值有显着差异,即可利用方差分析的方法使组间平方和尽可能的大;则选取投影方向a使Δa达极大即可;4、什么是逐步判别分析答:具有筛选变量能力的判别方法称为逐步判别分析法;逐步判别分析法就是先从所有因子中挑选一个具有最显着判别能力的因子,然后再挑选第二个因子,这因子是在第一因子的基础上具有最显着判别能力的因子,即第一个和第二个因子联合起来有显着判别能力的因子;接着挑选第三个因子,这因子是在第一、第二因子的基础上具有最显着判别能力的因子;由于因子之间的相互关系,当引进了新的因子之后,会使原来已引入的因子失去显着判别能力;因此,在引入第三个因子之后就要先检验已经引入的因子是否还具有显着判别能力,如果有就要剔除这个不显着的因子;接着再继续引入,直到再没有显着能力的因子可剔除为止,最后利用已选中的变量建立判别函数;5、简要叙述判别分析的步骤及流程答:1研究问题:选择对象,评估一个多元问题各组的差异,将观测个体归类,确定组与组之间的判别函数;2设计要点:选择解释变量,样本量的考虑,建立分析样本的保留样本;3假定:解释变量的正态性,线性关系,解释变量间不存在多重共线性,协方差阵相等;4估计判别函数:联立估计或逐步估计,判别函数的显着性;5使用分类矩阵评估预测的精度:确定最优临界得分,确定准则来评估判对比率,预测精确的统计显着性;6判别函数的解释:需要多少个函数;评价单个函数主要从判别权重、判别载荷、偏F值几个方面;评价两个以上的判别函数,分为评价判别的函数和评价合并的函数;7判别结果的验证:分开样本或交叉验证,刻画组间的差异;6、略第5章主成分分析1、主成分的基本思想是什么在对某一事物进行实证研究时,为更全面、准确地反映事物的特征及其发展规律,往往考虑与其有关的多个指标,在多元统计中也称为变量;一方避免遗漏重要信息而考虑尽可能多的指标看,另一方面考虑指标的增多,又难以避免信息重叠;希望涉及的变量少,而得到的信息量有较多;主成分的基本思想是研究如何通过原来的少数几个线性组合来解释原来变量绝大多数信息的一种多元统计方法;研究某一问题涉及的众多变量之间有一定的相关性,必然存在着支配作用的公共因素;通过对原始变量相关矩阵或协方差矩阵内部结构关系的研究,利用原始变量的线性组合形成几个无关的综合指标主成分来代替原来的指标;通常数学上的处理就是将原来P个指标作线性组合,作为新的综合指标;最经典的做法就是用F1选取的第一个线性组合,即第一个综合指标的方差来表达,即VarF1越大,表示F1包含的信息越多;因此在所有的线性组合中选取的F1应该是方差最大的,故称F1为第一主成分,如果第一主成分不足以代表原来P个指标的信息,再考虑选取F2即选第二个线性组合,为了有效地反映原来信息,F1已有的信息就不需要再出现在F2中,用数学语言表达就是要求CovF1,F2=0则称F2为第二主成分,依此类推可以构造出第三、第四······,第P个主成分;2、主成分在应用中的主要作用是什么作用:利用原始变量的线性组合形成几个综合指标主成分,在保留原始变量主要信息的前提下起到降维与简化问题的作用,使得在研究复杂问题时更容易抓住主要矛盾;通过主成分分析,可以从事物之间错综复杂的关系中找出一些主要成分,从而能有效利用大量数据进行定量分析,解释变量之间的内在关系,得到对事物特征及其发展规律的一些深层次的启发,把研究工作引向深入;主成分分析能降低所研究的数据空间的维数,有时可通过因子载荷aij的结论,弄清X变量间的某些关系,多维数据的一种图形表示方法,用主成分分析筛选变量,可以用较少的计算量来选择,获得选择最佳变量子集合的效果;3.由协方差阵出发和由相关阵出发求主成分有什么不同1由协方差阵出发设随即向量X=X1,X2,X3,……Xp’的协方差矩阵为Σ,1≥2≥……≥p为Σ的特征值,γ1,γ2,……γp为矩阵A各特征值对应的标准正交特征向量,则第i个主成分为Yi=γ1iX1+γ2iX2+……+γpiXp,i=1,2,……,p此时VARYi=i,COVYi,Yj=0,i≠j我们把X1,X2,X3,……Xp的协方差矩阵Σ的非零特征根1≥2≥……≥p>0向量对应的标准化特征向量γ1,γ2,……γp分别作为系数向量,Y1=γ1’X, Y2=γ2’X,……, Yp=γp’X分别称为随即向量X的第一主成分,第二主成分……第p主成分;Y的分量Y1,Y2,……,Yp依次是X的第一主成分、第二主成分……第p主成分的充分必要条件是:1Y=P’X,即P为p阶正交阵,2Y的分量之间互不相关,即DY=diag1,2,……,p,3Y的p个分量是按方差由大到小排列,即1≥2≥……≥p;2由相关阵出发对原始变量X进行标准化,Z=Σ^1/2^-1X-μ covZ=R原始变量的相关矩阵实际上就是对原始变量标准化后的协方差矩阵,因此,有相关矩阵求主成分的过程与主成分个数的确定准则实际上是与由协方差矩阵出发求主成分的过程与主成分个数的确定准则相一致的;λi,γi 分别表示相关阵R的特征根值与对应的标准正交特征向量,此时,求得的主成分与原始变量的关系式为:Yi=γi’Z=γi’Σ^1/2^-1X-μ在实际研究中,有时单个指标的方差对研究目的起关键作用,为了达到研究目的,此时用协方差矩阵进行主成分分析恰到好处;有些数据涉及到指标的不同度量尺度使指标方差之间不具有可比性,对于这类数据用协方差矩阵进行主成分分析也有不妥;相关系数矩阵计算主成分其优势效应仅体现在相关性大、相关指标数多的一类指标上;避免单个指标方差对主成分分析产生的负面影响,自然会想到把单个指标的方差从协方差矩阵中剥离,而相关系数矩阵恰好能达到此目的;4、略第6章 因子分析1、因子分析与主成分分析有什么本质不同答:1因子分析把诸多变量看成由对每一个变量都有作用的一些公共因子和一些仅对某一个变量有作用的特殊因子线性组合而成,因此,我们的目的就是要从数据中探查能对变量起解释作用的公共因子和特殊因子,以及公共因子和特殊因子的线性组合;主成分分析则简单一些,它只是从空间生成的角度寻找能解释诸多变量绝大部分变异的几组彼此不相关的新变量2因子分析中,把变量表示成各因子的线性组合,而主成分分析中,把主成分表示成各变量的线性组合3主成分分析中不需要有一些专门假设,因子分析则需要一些假设,因子分析的假设包括:各个因子之间不相关,特殊因子之间不相关,公共因子和特殊因子之间不相关;4在因子分析中,提取主因子的方法不仅有主成分法,还有极大似然法等,基于这些不同算法得到的结果一般也不同;而主成分分析只能用主成分法提取;5主成分分析中,当给定的协方差矩阵或者相关矩阵的特征根唯一时,主成分一般是固定;而因子分析中,因子不是固定的,可以旋转得到不同的因子;6在因子分析中,因子个数需要分析者指定,结果随指定的因子数不同而不同;在主成分分析中,主成分的数量是一定的,一般有几个变量就有几个主成分; 7与主成分分析相比,由于因子分析可以使用旋转技术帮助解释因子,在解释方面更加有优势;而如果想把现有的变量变成少数几个新的变量新的变量几乎带有原来所有变量的信息来进行后续的分析,则可以使用主成分分析;2、因子载荷ij a 的统计定义是什么它在实际问题的分析中的作用是什么答:1因子载荷ij a 的统计定义:是原始变量i X 与公共因子j F 的协方差,i X 与j F ),...,2,1;,...,2,1(m j p i ==都是均值为0,方差为1的变量,因此ij a 同时也是i X 与j F 的相关系数;(2)记),,...,2,1(...222212m j a a a g pjj j j =+++=则2j g 表示的是公共因子j F 对于X 的每一分量),...,2,1(p i X i =所提供的方差的总和,称为公共因子j F 对原始变量X 的方贡献,它是衡量公共因子相对重要性的指标;2j g 越大,表明公共因子j F 对i X 的贡献越大,或者说对X 的影响作用就越大;如果因子载荷矩阵对A 的所有的),...,2,1(2m j g j =都计算出来,并按大小排序,就可以依此提炼出最有影响的公共因子;3、略第7章 对应分析1、试述对应分析的思想方法及特点;思想:对应分析又称为相应分析,也称R —Q 分析;是因子分子基础发展起来的一种多元统计分析方法;它主要通过分析定性变量构成的列联表来揭示变量之间的关系;当我们对同一观测数据施加R 和Q 型因子分析,并分别保留两个公共因子,则是对应分析的初步;对应分析的基本思想是将一个联列表的行和列中各元素的比例结构以点的形式在较低维的空间中表示出来;它最大特点是能把众多的样品和众多的变量同时作到同一张图解上,将样品的大类及其属性在图上直观而又明了地表示出来,具有直观性;另外,它还省去了因子选择和因子轴旋转等复杂的数学运算及中间过程,可以从因子载荷图上对样品进行直观的分类,而且能够指示分类的主要参数主因子以及分类的依据,是一种直观、简单、方便的多元统计方法;特点:对应分析的基本思想是将一个联列表的行和列中各元素的比例结构以点的形式在较低维的空间中表示出来;它最大特点是能把众多的样品和众多的变量同时作到同一张图解上,将样品的大类及其属性在图上直观而又明了地表示出来,具有直观性;另外,它还省去了因子选择和因子轴旋转等复杂的数学运算及中间过程,可以从因子载荷图上对样品进行直观的分类,而且能够指示分类的主z |Uz |V 要参数主因子以及分类的依据,是一种直观、简单、方便的多元统计方法;2、试述对应分析中总惯量的意义;总惯量不仅反映了行剖面集定义的各点与其重心加权距离的总和,同时与2x 统计量仅相差一个常数,而2x 统计量反映了列联表横联与纵联的相关关系,因此总惯量也反映了两个属性变量各状态之间的相关关系;对应分析就是在对总惯量信息损失最小的前提下,简化数据结构以反映两属性变量之间的相关关系;3、略第8章 典型相关分析1、试述典型相关分析的统计思想及该方法在研究实际问题中的作用;答: 典型相关分析是研究两组变量之间相关关系的一种多元统计方法;用于揭示两组变 量之间的内在联系;典型相关分析的目的是识别并量化两组变量之间的联系;将两组变量相 关关系的分析转化为一组变量的线性组合与另一组变量线性组合之间的相关关系;基本思想:1在每组变量中找出变量的线性组合,使得两组的线性组合之间具有最大的相关系数; 即:XX 1, X 2, , , X p 、XX 1, X 2, , , X q 是两组相互关联的随机变量,分别在两组变量中选取若干有代表性的综合变量 U i 、Vi,使是原变量的线性组合;U i a 1X 1 a 2 X 2..... a P X P ≡ a ‘XV i b 1Y 1 b 2 Y 2 .... b q Y q ≡ b‘Y 在 D aX D bX 1 的条件下,使得 aX , bX 达到最大;2选取和最初挑选的这对线性组合不相关的线性组合,使其配对,并选取相关系数最大的一对;(3)如此继续下去,直到两组变量之间的相关性被提取完毕为此;其作用为:进行两组变量之间的相关性分析,用典型相关系数衡量两组变量之间的相关性;2、简述典型相关分析中冗余分析的内容及作用;答:典型型冗余分析的作用即分析每组变量提取出的典型变量所能解释的该组样本总方差的比 例,从而定量测度典型变量所包含的原始信息量;第一组变量样本的总方差为 t r R 11 p ,第二组变量样本的总方差为 t r R 22 q ;*A ˆz和*B ˆz 是样本典型相关系数矩阵,典型系数向量是矩阵的行向量, Z z z **A ˆU ˆ=,Z z z **B ˆV ˆ= 前 r 对典型变量对样本总方差的贡献为则第一组样本方差由前 r 个典型变量解释的比例为:第二组样本方差由前 r 个典型变量解释的比例为:3、典型变量的解释有什么具体方法实际意义是什么答:主要使用三种方法:1典型权重标准相关系数:传统的解释典型函数的方法包括观察每个原始变量在它的典型变量中的典型权重,即标准化相关系数Standardized Canonical Coefficients 的符号和大小;有较大的典型权重,则说明原始变量对它的典型变量的贡献较大,反之则相反;原始变量的典型权重有相反的符号说明变量之间存在一种反面关系,反之则有正面关系;但是这种解释遭到了很多批评;这些问题说明在解释典型相关的时候应慎用典型权重;(2)典型载荷结构系数:由于典型载荷逐步成为解释典型相关分析结果的基础;典型载荷分析,即典型结构分析Canonical Structure Analyse,是原始变量自变量或者因变量与它的典型变量间的简单线性相关系数;典型载荷反映原始变量与典型变量的共同方差,它的解释类似于因子载荷,就是每个原始变量对典型函数的相对贡献;(3)典型交叉载荷交叉结构系数:它的提出时作为典型载荷的替代,也属于典型结构分析;计算典型交叉载荷包括每个原始因变量与自变量典型变量直接相关,反之亦然;交叉载荷提供了一个更直接地测量因变量组与自变量组之间的关系的指标;实际意义:即使典型相关系数在统计上是显着的,典型根和冗余系数大小也是可接受的,研究者仍需对结果做大量的解释;这些解释包括研究典型函数中原始变量的相对重要性;4.、略。

多元统计分析应用 第四章课后习题

多元统计分析应用 第四章课后习题

第四章判别分析习题4.8(1)根据数据建立贝叶斯判别函数,并根据此判别函数对原样本进行回判。

(2)现有一新品牌的饮料在该超市试销,其销售价格为3.0,顾客对其口味评分为8,信任度评分平均为5,试预测该饮料的销售情况。

将数据导入SPSS,分析得到以下结果:1.典型判别函数的特征函数的特征值表表1-1 特征值表表1-1所示是典型判别函数的特征值表,只有两个判别函数,所以特征值只有2个。

函数1的特征值为17.791,函数2的特征值为0.720,判别函数的特征值越大,说明函数越具有区别判断力。

函数1方差的累积贡献率高达96.1%,且典型相关系数为0.973,而函数2方差的贡献率仅为3.9%,典型相关系数为0.647。

由此,说明函数1的区别判断力比函数2的强,函数1更具有区别判断力。

2.Wilks检验结果表1-2 Wilks 的Lambda上表中判别函数1和判别函数2的Wilks’Lambda值为0.031,判别函数2的Wilks’Lambda值为0.581。

“1到2”表示两个判别函数的平均数在三个类间的差异情况,P值=0.002<0.05表示差异达到显著水平“2”表示在排除了第一个判别函数后,第二个判别函数在三个组别间的差异情况,P值=0.197>0.05表示判别函数2未达到显著水平。

3.建立贝叶斯判别函数表1-3 贝叶斯判别法函数系数上表为贝叶斯判别函数的系数矩阵,用数学表达式表示各类的贝叶斯判别函数为:第一组:F1=-81.843-11.689X1+12.97X2+16.761X3第二组:F2=-94.536-10.707X1+13.361X2+17.086X3第三组:F3=-17.499-2.194X1+4.960X2+6.447X3将新品牌饮料样品的自变量值分别代入上述三个贝叶斯判别函数,得到三个函数值为:F1=65.271,F2=65.661,F3=47.884比较三个值,可以看出F2=65.661最大,据此得出新品牌饮料样品应该属于第二组,即该饮料的销售情况为平销。

多元统计分析课后习题解答_第四章

多元统计分析课后习题解答_第四章

第四章 判别分析4、1 简述欧几里得距离与马氏距离得区别与联系。

答: 设p 维欧几里得空间中得两点X =与Y =。

则欧几里得距离为。

欧几里得距离得局限有①在多元数据分析中,其度量不合理。

②会受到实际问题中量纲得影响。

设X,Y 就是来自均值向量为,协方差为得总体G 中得p 维样本。

则马氏距离为D(X,Y)=。

当即单位阵时,D(X,Y)==即欧几里得距离。

因此,在一定程度上,欧几里得距离就是马氏距离得特殊情况,马氏距离就是欧几里得距离得推广。

4、2 试述判别分析得实质。

答:判别分析就就是希望利用已经测得得变量数据,找出一种判别函数,使得这一函数具有某种最优性质,能把属于不同类别得样本点尽可能地区别开来。

设R1,R2,…,Rk 就是p 维空间R p 得k 个子集,如果它们互不相交,且它们得与集为,则称为得一个划分。

判别分析问题实质上就就是在某种意义上,以最优得性质对p 维空间构造一个“划分”,这个“划分”就构成了一个判别规则。

4、3 简述距离判别法得基本思想与方法。

答:距离判别问题分为①两个总体得距离判别问题与②多个总体得判别问题。

其基本思想都就是分别计算样本与各个总体得距离(马氏距离),将距离近得判别为一类。

①两个总体得距离判别问题设有协方差矩阵∑相等得两个总体G 1与G 2,其均值分别就是μ1与μ 2,对于一个新得样品X ,要判断它来自哪个总体。

计算新样品X 到两个总体得马氏距离D 2(X,G 1)与D 2(X,G 2),则X ,D 2(X ,G 1)D 2(X ,G 2)X ,D 2(X ,G 1)> D 2(X ,G 2, 具体分析,111122111111111222111211122()()()()2(2)2()-----------''=-----''''''=-+--+'''=-+-X μΣX μX μΣX μX ΣX X ΣμμΣμX ΣX X ΣμμΣμX ΣμμμΣμμΣμ记 则判别规则为X ,W(X) X ,W(X)<0②多个总体得判别问题。

应用回归分析,第4章课后习题参考答案讲解

应用回归分析,第4章课后习题参考答案讲解

第4章违背基本假设的情况思考与练习参考答案4.1 试举例说明产生异方差的原因。

答:例4.1:截面资料下研究居民家庭的储蓄行为Y i=β0+β1X i+εi其中:Y i表示第i个家庭的储蓄额,X i表示第i个家庭的可支配收入。

由于高收入家庭储蓄额的差异较大,低收入家庭的储蓄额则更有规律性,差异较小,所以εi的方差呈现单调递增型变化。

例4.2:以某一行业的企业为样本建立企业生产函数模型Y i=A iβ1K iβ2L iβ3eεi被解释变量:产出量Y,解释变量:资本K、劳动L、技术A,那么每个企业所处的外部环境对产出量的影响被包含在随机误差项中。

由于每个企业所处的外部环境对产出量的影响程度不同,造成了随机误差项的异方差性。

这时,随机误差项ε的方差并不随某一个解释变量观测值的变化而呈规律性变化,呈现复杂型。

4.2 异方差带来的后果有哪些?答:回归模型一旦出现异方差性,如果仍采用OLS估计模型参数,会产生下列不良后果:1、参数估计量非有效2、变量的显著性检验失去意义3、回归方程的应用效果极不理想总的来说,当模型出现异方差性时,参数OLS估计值的变异程度增大,从而造成对Y的预测误差变大,降低预测精度,预测功能失效。

4.3 简述用加权最小二乘法消除一元线性回归中异方差性的思想与方法。

答:普通最小二乘估计就是寻找参数的估计值使离差平方和达极小。

其中每个平方项的权数相同,是普通最小二乘回归参数估计方法。

在误差项等方差不相关的条件下,普通最小二乘估计是回归参数的最小方差线性无偏估计。

然而在异方差的条件下,平方和中的每一项的地位是不相同的,误差项的方差大的项,在残差平方和中的取值就偏大,作用就大,因而普通最小二乘估计的回归线就被拉向方差大的项,方差大的项的拟合程度就好,而方差小的项的拟合程度就差。

由OLS 求出的仍然是的无偏估计,但不再是最小方差线性无偏估计。

所以就是:对较大的残差平方赋予较小的权数,对较小的残差平方赋予较大的权数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第四章判别分析
习题4.8
(1)根据数据建立贝叶斯判别函数,并根据此判别函数对原样本进行回判。

(2)现有一新品牌的饮料在该超市试销,其销售价格为3.0,顾客对其口味评分为8,信任度评分平均为5,试预测该饮料的销售情况。

将数据导入SPSS,分析得到以下结果:
1.典型判别函数的特征函数的特征值表
表1-1 特征值表
表1-1所示是典型判别函数的特征值表,只有两个判别函数,所以特征值只有2个。

函数1的特征值为17.791,函数2的特征值为0.720,判别函数的特征值越大,说明函数越具有区别判断力。

函数1方差的累积贡献率高达96.1%,且典型相关系数为0.973,而函数2方差的贡献率仅为3.9%,典型相关系数为0.647。

由此,说明函数1的区别判断力比函数2的强,函数1更具有区别判断力。

2.Wilks检验结果
表1-2 Wilks 的Lambda
上表中判别函数1和判别函数2的Wilks’Lambda值为0.031,判别函数2的Wilks’Lambda值为0.581。

“1到2”表示两个判别函数的平均数在三个类间的差异情况,P值=0.002<0.05表示差异达到显著水平“2”表示在排除了第一个判别函数后,第二个判别函数在三个组别间的差异情况,P值=0.197>0.05表示判别函数2未达到显著水平。

3.建立贝叶斯判别函数
表1-3 贝叶斯判别法函数系数
上表为贝叶斯判别函数的系数矩阵,用数学表达式表示各类的贝叶斯判别函数为:
第一组:
F1=-81.843-11.689X1+12.97X2+16.761X3
第二组:
F2=-94.536-10.707X1+13.361X2+17.086X3
第三组:
F3=-17.499-2.194X1+4.960X2+6.447X3
将新品牌饮料样品的自变量值分别代入上述三个贝叶斯判别函数,得到三个函数值为:
F1=65.271,F2=65.661,F3=47.884
比较三个值,可以看出F2=65.661最大,据此得出新品牌饮料样品应该属于第二组,即该饮料的销售情况为平销。

4.个案观察结果表
表1-4 个案观察结果表
3 1 1 0.531 2 0.97
4 1.268 1.153 -1.528
4 1 2**0.734 2 0.714 0.619 1.948 0.791
5 2 1**0.535 2 0.633 1.249 1.394 0.176
6 2 2 0.951 2 0.822 0.1 2.954 0.721
7 2 2 0.342 2 0.985 2.148 3.816 1.911
8 3 3 0.26 2 1 2.695 -4.112 -0.961
9 3 3 0.538 2 1 1.239 -6.386 0.548
10 3 3 0.811 2 1 0.418 -5.613 0.693
11 未分
组的
2 0.165 2 0.597 3.598 0.825 0.969
表1-4所示为原始数据逐一回代的判别结果和预测分类的结果显示,其中畅销组有1个样品被判错(标注**者,产品序号为4),平销组有1个样品被判错(标注**者,产品序号为5)。

通过预测得知新品牌饮料的销售情况为平销。

习题4.9
(1)根据样本资料分别用距离判别法、贝叶斯判别法和费希尔判别法建立判别函数和判别规则。

(2)某客户的如上情况资料为,(53,1,9,18,50,11,20,2.02,3.58)对其进行信用好坏的判别。

将数据导入SPSS,分析得到以下结果:
1.典型判别函数的特征函数的特征值表
表2-1 特征值表
表2-1所示是典型判别函数的特征值表,只有1个判别函数,所以特征值只有1个。

函数1的特征值为8.145。

函数1方差的累积贡献率为100%,典型相关系数为0.944。

由此,说明对于两类总体的判别只需一个判别函数就可以对样品进行分类。

2.Wilks检验结果
表1-2 Wilks 的Lambda
上表中判别函数1的Wilks’Lambda值为0.109,P值=0.355>0.05表示判别函数1未达到显著水平。

3.建立费希尔判别函数
表2-3(a)未标准化的典型判别函数系数
由表2-3(a)可知,费希尔判别函数为:
y=-11.337-0.047X1+7.083X2+0.195X3-0.367X4+0.028X5
+0.783X6+0.833X7-2.613X8
将待判样品的自变量值代入上述判别函数,得y=-9.059
表2-3(b)组重心处的费希尔判别函数值
如表2-3(b)所示,实际上为两类别重心在空间中的坐标位置,因为由费希尔判别函数计算得,待判样品的费希尔判别函数值为y=-9.059,所以待判样品属于第一组,即该客户的信用判定为已履行还贷责任,信用较好。

4.建立贝叶斯判别函数
表2-4 贝叶斯判别法函数系数
上表为贝叶斯判别函数的系数矩阵,用数学表达式表示各类的贝叶斯判别函数为:
第一组:
F1=-117.963+0.239X1+99.051X2+1.472X3-5.159X4
+2.794X5+14.067X6-7.916X7-40.212X8
第二组:
F2=-175.844+0.001X1+135.212X2+2.47X3-7.033X4
+2.938X5+18.064X6-3.665X7-53.55X8
将待判样品的自变量值分别代入上述两个贝叶斯判别函数,得到两个函数值为:
F1=51.442,F2=5.1615
比较两个值,可以看出51.442>5.1615,据此得出待判样品应该属于第一组,即该客户的信用判定为已履行还贷责任,信用较好。

5. 个案观察结果表
表2-5 个案观察结果表
表2-5所示为个案观察结果表,表中实际组和预测组的判别结果相同,说明个样品没有判错的,判别的准确率较高。

用马氏距离对待判样品进行判别,可得,到质心的平方Mahalanobis 距离为42.336,待判样品属于第一组,从而,说明该客户的信用判定为已履行还贷责任,信用较好。

习题4.10
试用距离判别法建立判别函数,并根据此判别函数对原样本进行回判。

将数据导入SPSS,分析得到以下结果:
1.典型判别函数的特征函数的特征值表
表3-1 特征值表
表3-5所示是典型判别函数的特征值表,只有两个判别函数,所以特征值只有2个。

函数1的特征值为3.044,函数2的特征值为0.207,判别函数的特征值越大,说明函数越具有区别判断力。

函数1方差的累积贡献率高达93.6%,且典型相关系数为0.868,而函数2方差的贡献率仅为6.4%,典型相关系数为0.414。

由此,说明函数1的区别判断力比函数2的强,函数1更具有区别判断力。

2.Wilks检验结果
表1-2 Wilks 的Lambda
上表中判别函数1和判别函数2的Wilks’Lambda值为0.205,判别函数2的Wilks’Lambda值为0.828。

“1到2”表示两个判别函数的平均数在三个类间的差异情况,P值=0.034<0.05表示差异达到显著水平,“2”表示在排除了第一个判别函数后,第二个判别函数在三个组别间的差异情况,P值=0.577>0.05表示判别函数2未达到显著水平。

3.建立费希尔判别函数
表3-3(a)为未标准化的典型判别函数系数
由表2-3(a)可知,费希尔判别函数为:
y1=-8.784+0.01X1+0.04X2+0.176X3-0.031X4
y2=5.448-0.004X1-0.055X2+0.16X3+0.062X4
表3-3(b)组重心处的费希尔判别函数值
如表3-3(b)所示,实际上为各类别重心在空间中的坐标位置。

根据计算出各观测值的具体位置和它们分别离各重心的距离,判别它们所属的类别。

4.建立贝叶斯判别函数
表2-4 贝叶斯判别法函数系数
上表为贝叶斯判别函数的系数矩阵,用数学表达式表示各类的贝叶斯判别函数为:
第一组:
F1=-79.212+0.164X1+0.753X2+0.778X3+0.073X4
第二组:
F2=-46.721+0.13X1+0.595X2+0.317X3+0.012X4
第三组:
F3=-49.598+0.13X1+0.637X2+0.1X3-0.059X4
将个样品自变量的值代入上述三个贝叶斯判别函数,得到三个函数值。

比较这三个函数值,哪个函数值比较大就可以判断该样品判入哪一类。

5. 个案观察结果表
表3-5 个案观察结果表
表3-5所示为原始数据逐一回代的判别结果和预测分类的结果显示,其中胃
癌患者组有1个病人被判错(标注**者,病人序号为4),实际为胃癌患者,预测分类时被判为非胃炎患者;萎缩性胃炎患者组有1个病人被判错(标注**者,病人序号为8),实际为萎缩性胃炎患者,预测分类时被判为非胃炎患者;非胃炎患者组也有1个病人被判错(标注**者,病人序号为11),实际为非胃炎患者,预测分类时被判为萎缩性胃炎患者。

相关文档
最新文档