钢筋混凝土偏心受压构件正截面受压性能实验

钢筋混凝土偏心受压构件正截面受压性能实验
钢筋混凝土偏心受压构件正截面受压性能实验

钢筋混凝土偏心受压构件正截面受压性能实验

3.1 实验目的

1.掌握制定结构构件试验方案的原则,偏心受压构件正截面受压性能试验的加荷方案和测试方案的设计方法。

2.通过偏心受压构件正截面受压性能试验,了解受压构件发生偏心受压破坏时承载力大小,侧向挠曲变化及裂缝出现和发展过程、破坏特征。

3.掌握偏心受压构件正截面承载力的测定方法,验证偏压构件正截面承载力计算方法。

4.了解偏压构件正位或卧位试验的试件安装、加载装置和加载方法,以及常用结构实验仪器的使用方法。

5.初步掌握结构实验测量数据的整理和分析,实验分析报告的撰写。

3.2 试件及测点布置

3.3 实验设备及材料

1.静力试验台座、反力架、支座及支墩

2.高压油泵全套设备或手动式液压千斤顶

3.荷重传感器

3.4 实验步骤

(一)试验准备

1. 试件的考察,记录相关数据。

2. 混凝土和钢筋力学性能试验。

3. 试件两侧用稀石灰刷白试件,用铅笔画50mm×50mm 的方格线(以便观测裂缝),粘贴应变片或百分表应变装置。

(二)试验加载

1. 由教师预先安装或在教师指导下由学生安装试验柱,布置安装试验仪表,要求试验柱垂直、稳定、荷载着力点位置正确、接触良好,并作好试验柱的安全保护工作。

2. 对试验柱进行预加载,利用力传感器进行控制,加荷值可取破坏荷载的10%,分三级加载,每级稳定时间为1 分钟,然后卸载,加载过程中检查试验仪表是否正常。

3. 调整仪表并记录仪表初读数。

4. 按估算极限荷载值的10%左右对试验柱分级加载(第一级应考虑自重),相邻两次加载的时间间隔为2~3 分钟。在每级加载后的间歇时间内,认真观察试验柱上是否出现裂缝,加载后持续2 分钟后记录电阻应变仪、百分表和手持式应变仪读数。

5. 当达到试验柱极限荷载的90%时,改为按估算极限荷载的5%进行加载,直至试验柱达到极限承载状态,记录试验柱承载力实测值。

6. 当试验柱出现明显较大的裂缝时,撤去百分表,加载到试验柱完全破坏,记录混凝土应变最大值和荷载最大值。

7. 卸载,记录试验柱破坏时裂缝的分布情况。

(三)承载力极限状态确定方法

对柱试件进行偏压承载力试验时,在加载或持载过程中出现下列标记即可认为该结构图 柱偏心受压试验示意图

构件已经达到或超过承载力极限状态,即可停止加载:

⑴受压区混凝土的压碎破坏;

⑵对有明显物理流限的热轧钢筋,其受拉主筋的受拉应变达到0.01;

⑶受拉主钢筋拉断;

⑷受拉主钢筋处最大垂直裂缝宽度达到1.5mm;

3.5 数据处理

1. 根据试验过程中记录的百分表读数,计算各级荷载作用下试验柱中部的实测挠度值,作出压力和跨中挠度关系P-f对比曲线。

2. 根据试验过程中记录的受压主筋的应变仪读数,作出压力和主筋应变关系P-εs对比曲线。

3. 根据试验过程中记录的手持式应变仪,计算量测标距范围内混凝土的平均应变值,作出试验柱平均应变沿侧向高度的分布图,并进行对比。

4. 根据试验中记录的数据,计算试验柱的开裂压力和破坏压力,并与相关理论计算结果进行对比。

5. 绘制试验柱裂缝分布图。

k7第七章 钢筋混凝土偏心受力构件承载力计算(课件)-13页word资料

7 钢筋混凝土偏心受力构件承载力计算 7.1 概述 偏心受力构件 ● 偏心受拉构件 ● 偏心受压构件 ● 单向偏心受压构件 ● 双向偏心受压构件 偏心受压构件 ● 矩形截面 ● 工字形截面 ● 箱形截面 ● 圆形截面 偏心受拉构件 ● 矩形截面 7.2 偏心受压构件正截面承载力计算 偏心距0M e N = 偏心受压构件可概括受弯构件和轴心受压构件 ● 当0N =时,为受弯构件,弯矩为M ● 当0M =、00e =时,为轴心受压构件,轴力为N 7.2.1 偏心受压构件的破坏特征 7.2.1.1 破坏类型 1、受拉破坏——大偏心受压情况。 偏心距0e 较大,纵筋配筋率不高。称为大偏心受压情况。 2、受压破坏——小偏心受压情况。 偏心距0e 小,或偏心距0e 较大,同时受拉钢筋的配筋率过高。称为小偏心受压破坏。 7.2.1.2 两类偏心受压破坏的界限

两类偏心受压破坏的本质区别在于,破坏时受拉钢筋是否达到屈服。 ● 若受拉钢筋先屈服,然后是受压区混凝土被压碎,即为受拉破坏; ● 若受拉钢筋或远离轴力一侧的钢筋,无论是受拉还是受压,均未屈服,则为受压破坏。 两类偏心受压破坏的界限应该是,当受拉钢筋达到屈服的同时,受压区混凝土达到极限压应变。即,界限破坏。此时,纵向钢筋配筋率为b ρ,相应的相对界限受压区高度为b b 0 x h ξ= 。显然, ● 若b ξξ≤,受拉钢筋首先屈服,然后混凝土被压碎,偏心受压 构件破坏类型为受拉破坏,即,大偏心受压破坏; ● 若b ξξ>,则为受拉钢筋未达到屈服的受压破坏,即,小偏心 受压破坏。 7.2.1.3 偏心受压构件截面强度的N M -相关曲线 N M -相关曲线: 钢筋混凝土偏心受压构件截面达到极限承载力,即,材料破坏时的轴力N 和弯矩M 的关系。图7-7 a 点表示轴力为零的偏心受压构件(纯受弯构件)破坏时所对 应的弯矩; c 点表示弯矩为零的偏心受压构件(轴心受压构件)破坏时所 对应的轴力; d 点为曲线上任意一点,其坐标代表截面承载力的轴力N 和弯矩 M 的组合,即,在这种组合条件下,偏心受压构件截面发生破坏时 所对应的轴力N 和弯矩M ; b 点为受拉钢筋与受压混凝土同时达到其强度值时,偏心受压 构件截面承载力(轴力N 和弯矩M 的组合)的界限状态。 显然,ab 段表示大偏心受压(受拉破坏)时的N M -相关曲线,在该区段内,随着轴力N 的增大,截面能承担的弯矩M 也相应提高。到达b 点时,偏心受压构件承受的弯矩M 最大。 bc 段表示小偏心受压(受压破坏)时的N M -相关曲线,在该区 段内,随着轴力N 的增大,截面能承担的弯矩M 逐渐降低。 若图上任意点e 点位于图中曲线的内侧,说明截面在该点坐标给出的内力组合下,未达到承载能力极限状态,是安全的; 若e 点位于图中曲线的外侧,则表明截面的承载能力不足。

岩石地基矩形截面双向偏心受压及圆形截面偏心受压的应力

附录G岩石地基矩形截面双向偏心受压及圆形截面偏心受压的应力重分布计算 G.0.1矩形截面双向偏心受压截面的应力重分布,当缺少资料时,可按图G.0.1查取。 图G.0.1矩形截面双向偏心受压截面的应力重分布图示

图中 max N p A λ =;λ——按e y /d 及e x /b 自图查取;N ——截面轴向力;A ——基底面积;e x 、e y ——分别为N 在x 及y 方向的偏心距;b 、d ——分别为截面在x 及y 方向的宽度和高度。 G.0.2圆形截面偏心受压的应力重分布,当偏心率n>0.125时,可按下列公式计算: max N p A λ =(G.0.2-1)e n d = (G.0.2-2) 式中:N —截面轴向力(N ); A —基底面积(mm 2); e —偏心距(mm );d —圆截面直径(mm ); λ—系数,根据n 值可按表G.0.2查取。 表G.0.2 系数λ表 e n d = λ e n d = λ e n d = λ e n d = λ 0.1250 2.0000.1752 2.4570.2310 3.2080.2945 4.7290.1260 2.0120.1780 2.4870.2347 3.2710.2980 4.8280.1270 2.0150.1787 2.4990.2380 3.3210.3020 4.9490.1290 2.0340.1815 2.5240.2415 3.3820.3050 5.0740.1330 2.0640.1848 2.5710.2452 3.4650.3080 5.2300.1370 2.1020.1886 2.6080.2470 3.4970.3115 5.3340.1384 2.1090.1890 2.6200.2490 3.5400.3150 5.4840.1414 2.1340.1916 2.6450.2529 3.6100.3190 5.6340.1430 2.1510.1951 2.6900.2565 3.6920.3220 5.7930.1441 2.1600.1989 2.7360.2597 3.7680.3260 5.9570.1468 2.1810.2020 2.7770.2620 3.8030.3310 6.1300.1500 2.2130.2022 2.7730.2640 3.8590.3330 6.3110.1532 2.2420.2055 2.8230.2678 3.9490.3380 6.5120.1562 2.2680.2070 2.8510.2718 4.0460.3390 6.7000.1580 2.2880.2122 2.9200.2741 4.1610.3430 6.9110.1593 2.2960.2160 2.9670.2770 4.1930.34707.1410.1625 2.3270.2174 2.9960.2789 4.2450.35007.3680.1654 2.3580.2200 3.0360.2826 4.3560.35407.6200.1680 2.3780.2232 3.0800.2868 4.4710.35707.8810.1686 2.3910.2271 3.1430.2907 4.5930.36008.1570.1716 2.421 0.2300 3.193 0.2940 4.715 0.3690 8.467

最新整理大偏心受压柱学习资料

同济大学 混凝土结构基本原理 实验报告 (共9页) 姓名梁炜炼 学号1350240 专业建筑工程 学院土木工程学院 指导老师鲁亮 同济大学结构工程与防灾研究所2015年12月28日

1.实验目的和内容 1.1、试验目的 通过试验研究认识混凝土结构构件的破坏全过程,掌握测试混凝土大偏心受压构件基本性能的试验方法。 1.2、试验内容 对大偏心短柱施加轴向荷载直至破坏。观察加载过程中裂缝的开展情况,将得到的极限荷载与计算值相比较。 2.试件介绍 (1)试件设计的依据 为减少“二阶效应”的影响,将试件设计为短柱,即控制l0/h≤5。通过调整轴向力的作用位置,即偏心距e0=200mm,使试件的破坏状态为大偏心受压破坏。 (2)试件的主要参数 ①试件尺寸 截面尺寸:200×400mm2 (两端);200×200mm2 (中部); 试件长度:1300mm; ②混凝土强度等级:C25

③纵向钢筋:8B18(两端);4B18(中部)。 ④箍筋:8Φ8@50(两端);4Φ8@100(中部); ⑤纵向钢筋混凝土保护层厚度:25mm ⑥试件的配筋情况(如上图所示); ⑦取偏心距e0=200mm 3. 试件材料力学性能试验结果 钢筋力学性能试验结果 4. 试件验算 柱极限承载力 不妨令:2 1c 02 f bh A α= ,1c 00()B f bh e h α=-,y s 0s ()C f A h a '''=--, 从而有:ξ=

KN N mm e e h A f bh f e N bh f N cu s S y o c cu o c cu 5.261238 .0, 266a -h 5.0)()5.01(s 0'0''2 11==∴=+=-+-==ξαξξαξ α 5. 试验方法 5.1加载装置 柱偏心受压试验的加载装置如图所示。采用千斤顶加载,支座一端为固定铰支座,另一端为滚动铰支座。铰支座垫板应有足够的刚度,避免垫板处混凝土局压破坏。 图5.1 柱偏心受压试验加载装置 5.2 加载方式 (1)单调分级加载机制 实际的加载等级为0-20kN-40kN-60kN-80kN-100kN-120kN-破坏 5.3量测内容 (1)纵筋应变 由布置在柱内部纵筋表面的应变计量测,钢筋应变测点布置如下图。

矩形截面偏心受压构件正截面的承载力计算

矩形截面偏心受压构件正截面的承载力计算 一、矩形截面大偏心受压构件正截面的受压承载力计算公式 (一)大偏心受压构件正截面受压承载力计算 (1)计算公式 由力的平衡条件及各力对受拉钢筋合力点取矩的力矩平衡条件,可以得到下面两个基本计算公式: s y s y c A f A f bx f N -+=' ' 1α (7-23) ()' 0''012a h A f x h bx f Ne s y c -+??? ? ?-=α (7-24) 式中: N —轴向力设计值; α1 —混凝土强度调整系数; e —轴向力作用点至受拉钢筋A S 合力点之间的距离; a h e e i -+ =2 η (7-25) a i e e e +=0 (7-26) η—考虑二阶弯矩影响的轴向力偏心距增大系数,按式(7-22)计算; e i —初始偏心距; e 0 —轴向力对截面重心的偏心距,e 0 =M/N ; e a —附加偏心距,其值取偏心方向截面尺寸的1/30和20㎜中的较大者; x —受压区计算高度。 (2)适用条件 1) 为了保证构件破坏时受拉区钢筋应力先达到屈服强度,要求 b x x ≤ (7-27) 式中 x b — 界限破坏时,受压区计算高度,o b b h x ξ= ,ξb 的计算见与受弯构件相同。 2) 为了保证构件破坏时,受压钢筋应力能达到屈服强度,和双筋受弯构件相同,要求满足:

'2a x ≥ (7-28) 式中 a ′ — 纵向受压钢筋合力点至受压区边缘的距离。 (二)小偏心受压构件正截面受压承载力计算 (1)计算公式 根据力的平衡条件及力矩平衡条件可得 s s s y c A A f bx f N σα-+=' ' 1 (7-29) ??? ?? '-+?? ? ? ?- =s s y c a h A f x h bx f Ne 0''012α (7-30) () ' 0''1'2s s s s c a h A a x bx f Ne -+?? ? ??-=σα (7-31) 式中 x — 受压区计算高度,当x >h ,在计算时,取x =h ; σs — 钢筋As 的应力值,可根据截面应变保持平面的假定计算,亦可近似取:

钢筋混凝土偏心受压构件正截面受压性能实验

钢筋混凝土偏心受压构件正截面受压性能实验 3.1 实验目的 1.掌握制定结构构件试验方案的原则,偏心受压构件正截面受压性能试验的加荷方案和测试方案的设计方法。 2.通过偏心受压构件正截面受压性能试验,了解受压构件发生偏心受压破坏时承载力大小,侧向挠曲变化及裂缝出现和发展过程、破坏特征。 3.掌握偏心受压构件正截面承载力的测定方法,验证偏压构件正截面承载力计算方法。 4.了解偏压构件正位或卧位试验的试件安装、加载装置和加载方法,以及常用结构实验仪器的使用方法。 5.初步掌握结构实验测量数据的整理和分析,实验分析报告的撰写。 3.2 试件及测点布置 3.3 实验设备及材料 1.静力试验台座、反力架、支座及支墩 2.高压油泵全套设备或手动式液压千斤顶 3.荷重传感器

3.4 实验步骤 (一)试验准备 1. 试件的考察,记录相关数据。 2. 混凝土和钢筋力学性能试验。 3. 试件两侧用稀石灰刷白试件,用铅笔画50mm×50mm 的方格线(以便观测裂缝),粘贴应变片或百分表应变装置。 (二)试验加载 1. 由教师预先安装或在教师指导下由学生安装试验柱,布置安装试验仪表,要求试验柱垂直、稳定、荷载着力点位置正确、接触良好,并作好试验柱的安全保护工作。 2. 对试验柱进行预加载,利用力传感器进行控制,加荷值可取破坏荷载的10%,分三级加载,每级稳定时间为1 分钟,然后卸载,加载过程中检查试验仪表是否正常。 3. 调整仪表并记录仪表初读数。 4. 按估算极限荷载值的10%左右对试验柱分级加载(第一级应考虑自重),相邻两次加载的时间间隔为2~3 分钟。在每级加载后的间歇时间内,认真观察试验柱上是否出现裂缝,加载后持续2 分钟后记录电阻应变仪、百分表和手持式应变仪读数。 5. 当达到试验柱极限荷载的90%时,改为按估算极限荷载的5%进行加载,直至试验柱达到极限承载状态,记录试验柱承载力实测值。 6. 当试验柱出现明显较大的裂缝时,撤去百分表,加载到试验柱完全破坏,记录混凝土应变最大值和荷载最大值。 7. 卸载,记录试验柱破坏时裂缝的分布情况。 (三)承载力极限状态确定方法 对柱试件进行偏压承载力试验时,在加载或持载过程中出现下列标记即可认为该结构图 柱偏心受压试验示意图

4.3-偏心受压构件承载力计算

4.2 轴心受压构件承载力计算 一、偏心受压构件破坏特征 偏心受压构件在承受轴向力N和弯矩M的共同作用时,等效于承受一个偏心距为e =M/N的偏心力N的作用,当弯矩M相对较小时,e0就很小,构件接近于轴心受压,0 相反当N相对较小时,e0就很大,构件接近于受弯,因此,随着e0的改变,偏心受压 构件的受力性能和破坏形态介于轴心受压和受弯之间。按照轴向力的偏心距和配筋情 况的不同,偏心受压构件的破坏可分为受拉破坏和受压破坏两种情况。 1.受拉破坏 当轴向压力偏心距e0较大,且受拉钢筋配置不太多时,构件发生受拉破坏。在这 种情况下,构件受轴向压力N后,离N较远一侧的截面受拉,另一侧截面受压。当N 增加到一定程度,首先在受拉区出现横向裂缝,随着荷载的增加,裂缝不断发展和加 宽,裂缝截面处的拉力全部由钢筋承担。荷载继续加大,受拉钢筋首先达到屈服,并 形成一条明显的主裂缝,随后主裂缝明显加宽并向受压一侧延伸,受压区高度迅速减 小。最后,受压区边缘出现纵向裂缝,受压区混凝土被压碎而导致构件破坏(图 4.3.1)。此时,受压钢筋一般也能屈服。由于受拉破坏通常在轴向压力偏心距e0较 大发生,故习惯上也称为大偏心受压破坏。受拉破坏有明显预兆,属于延性破坏。 2.受压破坏 当构件的轴向压力的偏心距e0较小,或偏心距e0虽然较大但配置的受拉钢筋过 多时,就发生这种类型的破坏。加荷后整个截面全部受压或大部份受压,靠近轴向压力一侧的混凝土压应力较高,远离轴向压力一侧压应力较小甚至受拉。随着荷载 逐渐增加,靠近轴一侧混凝土出现纵向裂缝,进而混凝土达到极限应变εcu被压碎,受压钢筋的应力也达到f y′,远离一侧的钢筋可能受压,也可能受拉,但因本身截面应力太小,或因配筋过多,都达不到屈服强度(图4.3.2)。由于受压破坏通常在轴向压力偏心距e0较小时发生,故习惯上也称为小偏心受压破坏。受压破坏无明显预兆,属脆性破坏。

钢筋混凝土结构设计原理第六章偏心受压构件承载力

第六章 偏心受压构件承载力 计 算 题 1.(矩形截面大偏压) 已知荷载设计值作用下的纵向压力KN N 600=,弯矩KN M 180=·m,柱截面尺寸mm mm h b 600300?=?,mm a a s s 40'==,混凝土强度等级为C30,f c =14.3N/mm 2,钢筋用HRB335级,f y =f ’y =300N/mm 2,550.0=b ξ,柱的计算长度m l 0.30=,已知受压钢筋2'402mm A s =(),求:受拉钢筋截面面积A s 。 2.(矩形不对称配筋大偏压) 已知一偏心受压柱的轴向力设计值N = 400KN,弯矩M = 180KN·m,截面尺寸m mm h b 500300?=?,mm a a s s 40'==,计算长度l 0 = 6.5m, 混凝土等级为C30,f c =14.3N/mm 2,钢筋为HRB335,, 2'/300mm N f f y y ==,采用不对称配筋,求钢筋截面面积。 3. (矩形不对称配筋大偏压) 已知偏心受压柱的截面尺寸为mm mm h b 400300?=?,混凝土为C25级,f c =11.9N/mm 2 , 纵筋为HRB335级钢,2'/300mm N f f y y ==,轴向力N ,在截面长边方向的偏心距mm e o 200=。距轴向力较近的一侧配置4 16纵向钢筋2804'mm A S =,另一侧配置220纵向钢筋2628mm A S =,,35'mm a a s s ==柱的计算长度l 0 = 5m 。求柱的承载力N 。 4.(矩形不对称小偏心受压的情况) 某一矩形截面偏心受压柱的截面尺寸,500300mm mm h b ?=?计算长度,40,6'0mm a a m l s s ===混凝土强度等级为C30,f c =14.3N/mm 2,0.11=α,用HRB335级钢筋,f y =f y ’=300N/mm 2,轴心压力设计值N = 1512KN,弯矩设计值M = 121.4KN ·m,试求所需钢筋截面面积。 5.(矩形对称配筋大偏压) 已知一矩形截面偏心受压柱的截面尺寸,400300mm mm h b ?=?柱的计算长度mm a a m l s s 35,0.3'0=== ,混凝土强度等级为C35,f c = 16.7N/mm 2,用HRB400级钢筋

混凝土偏心受压构件相关知识点总结

偏心受压构件 一、偏心受压构件包括大偏心受压和小偏心受压两种情况,无论是大偏心受压还是小偏心受压均要考虑偏心距增大系数 η 。 2 012 .11400 i l e h h ξξη?? =+ ??? 10.5.c f A N ξ= 02 1.150.01 l h ξ=- 此公式中要注意如下几点: ①h ——截面高度。环形截面取外直径;圆形截面取直径。 ②0h ——截面有效高度。对环形截面取02s h r r =+;对圆形截面取0s h r r =+。r 、2r 、 s r 按《混凝土结构设计规范》第7.3.7条和7.3.8条取用。 ③A ——构件的截面面积。对T 形截面和工形截面,均取 ()' ' .2.f f A b h b b h =+- ④1ξ——偏心受压构件的截面曲率修正系数,当1 1.0ξ>取1 1.0ξ=; 2ξ——构件长细比对截面曲率的影响系数,当015l h <时,取2 1.0ξ=; ⑤当偏心受压构件的长细比017.5l i ≤(或 05l h ≤)时,可直接取 1.0η=。 注意: 017.5l i ≤与 05l h ≤基本上是等价的。准确地说是 0 5.05l h ≤ 二、两种破坏形态的含义 截面进入破坏阶段时,离轴向力较远一侧的纵向钢筋受拉屈服,截面产生较大的转动,当截面 受压区边缘的混凝土压应变达到其极值后,混凝土被压碎,截面破坏。

截面进入破坏阶段后,离轴向力较远一侧的纵向钢筋或者受拉或者受压但始终不屈服,截面转 动较小,当截面受压区边缘的混凝土压应变达到其极限值后,混凝土被压碎,截面破坏 。 两种破坏形态的相同点:截面最终破坏都是由于受压区边缘混凝土被压碎而产生的,并且离轴向力较 近一侧的钢筋(或曰受压钢筋' s A )都受压屈服。 两种破坏形态的不同点:起因不同。大偏心受压破坏的起因是离轴向力较远一侧的钢筋(或曰受拉钢 筋s A )受拉屈服;而小偏心受压破坏则是由于截面受压区边缘混凝土压应变接近其极值。 所以大偏心受压破坏也被称为“受拉破坏”——延性破坏; 小偏心受压破坏也被称为“受压破坏”——脆性破坏。 三、两种破坏形态的判别 1.准确地判别条件 当b ξξ≥(或曰 0.b b x x h ξ≥=)时,为小偏心受压破坏; 当 b ξξ<(或曰0 .b b x x h ξ<=)时,为大偏心受压破坏。 2.初步判别条件 s A 、' s A 还都不知道,求不出 x ,怎么办呢? 当 .0.3i e h η>时,可先按大偏心受压进行计算,如果计算得到的 0.b b x x h ξ≤=,说明的确是大偏心受压,否则应按小偏心受压 重新计算; 当 0.0.3i e h η≤时,可初步判别为小偏心受压破坏形态。 当然在选配完s A 、' s A 后还应算出 x 值,再用准确判别式来判定,如果初步判别是错的, 则要重新计算。 四、矩形截面偏心受压构件正截面承载力计算

混凝土结构设计原理复习题4

6受压构件的承载力计算 一、选择题 1.在钢筋混凝土轴心受压构件中,在长期不变的荷载作用下,由于混凝土的徐变其结果是构件中的() A.钢筋应力减小,混凝土应力增加 B.钢筋应力增加,混凝土应力减小 C.钢筋和混凝土应力都增加 D.钢筋和混凝土应力都减小 2.钢筋混凝土大偏心受压构件的破坏特征是() A.远离轴向一侧的钢筋先受拉屈服,随后另一侧钢筋压屈,混凝土压碎 B.远离轴向一则的钢筋应力不变,而另一侧钢筋压屈,混凝土压碎 C.靠近轴向力一侧的钢筋和混凝土应力不定,而另一侧钢筋受压屈服,混凝土压碎 D.靠近轴向力一侧和钢筋和混凝土先屈服和压碎,而远离纵向力一侧的钢筋随后受拉屈服 3.钢筋混凝土偏心受压构件,其大小偏心受压的根本区别是() A.截面破坏时,受拉钢筋是否屈服 B.截面破坏时,受压钢筋是否屈服 C.偏心距的大小 D.受压一侧混凝土是否达到极限压应变值 4.在钢筋混凝土双筋梁,大偏心受压构件的正截面承载力计算中,要求压区高度x≥2' a,是为了( ) s A.混凝土双盘在构件破坏时达到其抗压强度设计值' f y B.受压钢筋屈服

C.保护层剥落 D.受压钢筋在构件破坏时能达到极限抗压强度 5.受压构件中受压钢筋设计强度取值的控制条件是( ) A.混凝土的极限压应变 B.钢筋的极限拉应变 C.钢筋的极限压应变 D.混凝土的极限拉应变 6.形截面偏心受压构件,当截面混凝土受压区高度x >0h b ξ时,构件的破坏类 型应是( ) A.偏心受压破坏 B.偏心受压破坏 C.压破坏 D.筋破坏 7.在荷载作用下,偏心受压构件将产生纵向弯曲,对于长柱,《规范》采用一个偏心距增大系数η来考虑纵向弯曲的影响,其η值应是( ) A.≤1 B.≥1 C.≥3 D. ≤3 8.螺旋箍筋较普通箍筋柱承载力提高的原因是( ) A.螺旋筋的弹簧作用 B.螺旋筋使纵筋难以被屈服 C.螺旋筋的存在增加了总的配筋率 D.螺旋筋约束了混凝土的横向变形 9.对称配筋小偏心受压构件在达到承载能力极限状态时,纵向受压钢筋的应力状态是( ) A.s A 和's A 均屈服 B.s A 屈服而's A 不屈服 C.'s A 屈服而s A 不屈服 D.'s A 屈服而s A 不一定屈服 10.与界限受压区高度系数b ξ有关的因素为( ) A.钢筋等级及混凝土等级 B.钢筋等级

大偏心受压总结

不对称配筋('s s A A ≠)大偏心受压计算总结 计算简图 解决的两类问题:截面设计和截面复核 (一) 截面设计(配筋计算): 1、已知轴力设计值N 和弯矩设计值M ,材料强度和截面尺寸,求s A 和's A 解题思路:未知数有s A 、's A 和x (隐藏未知数)三个,方程无唯一解,按照总钢量' s s A A +最小,即b ξ ξ=时计算。 计算步骤: (1) 判断大小偏心: i a M e e N = +,2m M C M η=(M 2为 M 2 和M 1的较 大值), 12 0.70.3 m M C M =+,00.3i e h >时就先按大偏心受压进行计算。 当/6c l h <时就不考虑弯矩增大系数η影响,即η=1; 当/6c l h >时,2 01 1( )1300/c c i l e h h η?=+ , 0.5c c f bh N ?= (2) 确定e 值:2i h e e a =+- 1' 10()() 2 c y s y s c y s o N f bx f A f A x N e f bx h f A h a αα''=+-''=- + -

(3) 把b ξξ=代入方程组可得: 先由公式2求出2 100(10.5) () c b b s y N e f bh A f h a αξξ--'= ''-。 (4) 由公式1求出1c b o y s s y f b h f A N A f αξ''+-= 并配筋 (5) 检验2'x a >(0b x h ξ=) m in s s A A bh ρρ'+= 总>(查书242表17)且不大于5%; As m ax(0.45 ,0.2%)s t y A f bh f ρ= ≥ A s''0.2% s A bh ρ= ≥(一侧受压钢筋配筋率不小于0.2%) (6) 验算垂直于弯矩作用平面轴心受压承载力: 0.9()u c y s s N f A f A A N ?''??=++≥??,即满足要求。 2、已知N 、M 和's A ,求s A :(未知数是x 和s A ) (1) 判断大小偏心: i a M e e N = +,2m M C M η= (2) 先由公式2求得x 值,要解一个二次方程,引入两个系数s α和ξ 求解,并判断b ξ ξ≤且2'x a >都成立。 (3) 由公式1求得1c y s s y f bx f A N A f α''+-= (注意:当b ξξ>,表示's A 不足,则需要按照's A 未知重新计算;当2'x a < 则按照=2'x a 计算,即砼压力合力作用力和's A 合力重合,对此求矩, 102' 10(10.5)() c b y s y s c b b y s o N f b h f A f A N e f bh f A h a αξαξξ''=+-''=-+ -1' 10(() 2 c y s y s c y s o N f bx f A f A x N e f bx h f A h a αα''=+-''=- + -

同济大学混凝土试验大偏心受压柱试验报告

《混凝土结构基本原理》试验课程作业 L ENGINEERING 试验报告 试验课教师林峰 姓名 学号 手机号 任课教师顾祥林

《混凝土结构基本原理》试验课程作业 L ENGINEERING 大偏心受压柱试验报告 试验名称大偏心受压柱试验 试验课教师林峰 姓名 学号 手机号 任课教师

日期2014年11月18日

1. 试验目的 通过试验了解大偏心受压柱破坏的全过程,掌握测试混凝土受压构件基本性能的试验方法。同时巩固大偏心受压柱承载力的计算方法,并通过对理论值和试验值的比较加深对混凝土基本原理的理解。 2. 试件设计 2.1 材料和试件尺寸 混凝土:C20 钢筋:使用I级钢筋作为箍筋,II级钢筋作为纵筋 试件尺寸(矩形截面):b×h×l=120×120×870mm 详细尺寸见图1大偏心受压柱配筋图 2.2 试件设计 (1)试件设计的依据 为减少“二阶效应”的影响,将试件设计为短柱,即控制l0/h≤5。通过调整轴向力的作用位置,即偏心距e0,使试件的破坏状态为大偏心受压破坏。 (2)试件参数如表1 表1 试件参数表 试件尺寸(矩形截面)b×h×l=120×120×870mm 纵向钢筋(对称配筋)4 12 箍筋Φ6@100(2) 纵向钢筋混凝土保护层厚度15mm 配筋图图1 偏心距e0100mm

120200 80135135 5050 500 870 200 200 22 1 1 3 8@50 4 6@100 150200 50 120 6φ124φ12 3 8@50 4φ12 120 120 1-12-2 柱试件立面图3 8@50 3 8@50 4双向钢丝网2片 尺寸170x90 4双向钢丝网2片 尺寸170x90 8@50 8@50 6@100 图1 大偏心受压柱配筋图 (3)试件承载力估算 N c =α1f c bh 0ζ N c e=α1f c bh 02 ζ(1-0.5ζ) + f y ’ A s ’(h 0-a s ’) e=e 0+0.5h-a s 不妨令:A= 2 f 2 0c 1bh α, B=) (00c 1-e f h bh α, C=)(f -0y ' -''s s h A α 从而有:A AC 24B B -2-+=ξ 得出本次试验试件的极限承载力的预估值为:Ncu=87.71kN 详细计算过程见附录1 2.3 试件的制作 根据《普通混凝土力学性能试验方法标准》GB/T 50081-2002规定, 成型前,试模内表面应涂一薄层矿物油或其他不与混凝土发生反应的脱模剂。 取样或拌制好的混凝土拌合物,至少用铁锨再来回拌合三次。 将混凝土拌合物一次装入试模,装料时应用抹刀沿各试模壁插捣,并使混凝土拌合物高出试模口。 采用标准养护的试件,应在温度为20±5℃的环境中静置一昼夜至二昼夜,然后编号、拆模。拆模后应立即放入温度为20±2℃,相对湿度为95%以上的标准养护室中养护,或在温度为20±2℃的不流动的氢氧化钙饱和溶液中养护。标准养护龄期为28d (从搅拌加水开始计时)。 3.材性试验

混凝土结构设计原理偏压构件作业标准答案

8. 钢筋混凝土偏心受压柱,截面尺寸b=400mm ,h=500mm ,计算长度l 0=8.4m ,截面承受轴压力设计值N=324kN ,弯矩设计值M 1=M 2=95kN ﹒m ,选用C30混凝土,HRB400级纵向钢筋,钢筋混凝土保护层c=20mm ,取'40;40s s a mm a mm ==截面的受压区已配置受压钢筋 ,。求受拉钢筋截面积A s 。 【解】 1. 确定基本数据 由《混凝土规范》表4.2.3-1查得,纵筋'y y f f ==3602/N mm ; 由《混凝土规范》表4.1.4-1查得,c f =14.32/N mm ; 由《混凝土规范》第6.2.6条查得,111.0,0.8αβ==; 按《混凝土规范》第6.2.7条计算,0.518b ξ=; 由《混凝土规范》表8.5.1查得,截面一侧纵向钢筋' min ρ=0.002,截面全部纵向钢筋'min ρ=0.0055 由《混凝土规范》附录A 查得,'s A =7632mm 取'40;40s s a mm a mm ==,050040460s h h a mm =-=-= 2.求框架柱设计弯矩M(根据规范6.2.3;6.2.4) 1295 1.0,144.3495 M i mm M ==== 12 8400 58.2341222144.34c l M i M ==>-= 需要考虑附加弯矩的影响 {}{}20,/3020,500/3016.720a e Max mm h Max mm mm ==== 3 0.50.514.3500400 4.41 1.0 =1.032410c c c f A N ζζ???= ==>?取 1 2 0.70.3 0.70.311m M C M =+=+?= 2202 63 1 1()1300(/)/184001() 1.0 1.3191300(9510/3241020)/460500 c ns c a l M N e h h ηζ=+ +=+?=??+

偏心受压构件承载力计算

轴心受压构件承载力计算 一、偏心受压构件破坏特征 偏心受压构件在承受轴向力N和弯矩M的共同作用时,等效于承受一个偏心距为e0=M/N的偏心力N的作用,当弯矩M相对较小时,e0就很小,构件接近于轴心受压,相反当N相对较小时,e0就很大,构件接近于受弯,因此,随着e0的改变,偏心受压构件的受力性能和破坏形态介于轴心受压和受弯之间。按照轴向力的偏心距和配筋情况的不同,偏心受压构件的破坏可分为受拉破坏和受压破坏两种情况。 1.受拉破坏 当轴向压力偏心距e0较大,且受拉钢筋配置不太多时,构件发生受拉破坏。在这种情况下,构件受轴向压力N后,离N较远一侧的截面受拉,另一侧截面受压。当N增加到一定程度,首先在受拉区出现横向裂缝,随着荷载的增加,裂缝不断发展和加宽,裂缝截面处的拉力全部由钢筋承担。荷载继续加大,受拉钢筋首先达到屈服,并形成一条明显的主裂缝,随后主裂缝明显加宽并向受压一侧延伸,受压区高度迅速减小。最后,受压区边缘出现纵向裂缝,受压区混凝土被压碎而导致构件破坏(图4.3.1)。此时,受压钢筋一般也能屈服。由于受拉破坏通常在轴向压力偏心距e0较大发生,故习惯上也称为大偏心受压破坏。受拉破坏有明显预兆,属于延性破坏。 2.受压破坏 当构件的轴向压力的偏心距e0较小,或偏心距e0虽然较大但配置的受拉钢筋过多时,就发生这种类型的破坏。加荷后整个截面全部受压或大部份受压,靠近轴向压力一侧的混凝土压应力较高,远离轴向压力一侧压应力较小甚至受拉。随着荷载 逐渐增加,靠近轴一侧混凝土出现纵向裂缝,进而混凝土达到极限应变εcu被压碎,受压钢筋的应力也达到f y′,远离一侧的钢筋可能受压,也可能受拉,但因本身截面应力太小,或因配筋过多,都达不到屈服强度(图4.3.2)。由于受压破坏通常在轴向压力偏心距e0较小时发生,故习惯上也称为小偏心受压破坏。受压破坏无明显预兆,属脆性破坏。

建筑结构习题

一.填空题 1. 偏心受压构件正截面破坏有——和——破坏两种形态。当纵向压力N 的相对偏心距e 0/h 0较 大,且A s 不过多时发生——破坏,也称——。其特征为——。 2. 小偏心受压破坏特征是受压区混凝土——,压应力较大一侧钢筋——,而另一侧钢筋受拉 ——或者受压——。 3. 界限破坏指——,此时受压区混凝土相对高度为——。 4. 偏心受压长柱计算中,由于侧向挠曲而引起的附加弯矩是通过_____来加以考虑的。 5. 钢筋混凝土偏心受压构件正截面承载力计算时,其大小偏压破坏的判断条件是:当____为大 偏压破坏;当——为小偏压破坏。 6. 钢筋混凝土偏心受压构件在纵向弯曲的影响下,其破坏特征有两种类型:①——;②——。对于长柱、短柱和细长柱来说,短柱和长柱属于——;细长柱属于——。 7. 柱截面尺寸bxh (b 小于h),计算长度为l 0 。当按偏心受压计算时,其长细比为——;当按轴心受压计算时,其长细比为——。 8. 由于工程中实际存在着荷载作用位置的不定性、——及施工的偏差等因素,在偏心受压构件 的正截面承载力计算中,应计入轴向压力在偏心方向的附加偏心距e a ,其值取为——和——两者中的较大值。 9. 钢筋混凝土大小偏心受拉构件的判断条件是:当轴向拉力作用在A s 合力点及A s ’合力点—— 时为大偏心受拉构件;当轴向拉力作用在A s 合力点及A s ’合力点——时为小偏心受拉构件。 10. 沿截面两侧均匀配置有纵筋的偏心受压构件其计算特点是要考虑——作用,其他与一般配 筋的偏心受压构件相同。 11. 偏心距增大系数20120 1 1()1400i l e h h ηξξ=+ 式中:e i 为______;l 0/h 为_____;ξ1为 ______。 12. 受压构件的配筋率并未在公式的适用条件中作出限制,但其用钢量A s +A s ′最小为______,从经济角度而言一般不超过_____。 13. 根据偏心力作用的位置,将偏心受拉构件分为两类。当e 0______时为小偏心受拉, 当e 0______时为大偏心受拉。 14. 偏心受拉构件的斜截面承载力由于轴向拉力的存在而_____。 二.选择题 1. 钢筋混凝土大偏压构件的破坏特征是[ ]。 a .远离纵向力作用一侧的钢筋拉屈,随后另一侧钢筋压屈,混凝土亦压碎; b .靠近纵向力作用一侧的钢筋拉屈,随后另一侧钢筋压屈,混凝土亦压碎; c .靠近纵向力作用一侧的钢筋和混凝土应力不定,而另一侧受拉钢筋拉屈; d .远离纵向力作用一侧的钢筋和混凝土应力不定,而另一侧受拉钢筋拉屈。 2. 对于对称配筋的钢筋混凝土受压柱,大小偏心受压构件的判断条件是[ ]。 a .η e i 〈0.3h 0时,为大偏心受压构件; b.ξ>ξb 时,为大偏心受压构件; c .ξ≤ξb 时,为大偏心受压构件; d .ηe i >0.3h 0时,为大偏心受压构件。 3. 一对称配筋的大偏心受压柱,承受的四组内力中,最不利的一组内力为[ ]。 a . M=500kN ·m N=200KN ; b . M=491KN ·m N=304KN ; c . M=503KN ·m N=398KN ; d . M=-512KN ·m N=506KN 。 4. 一小偏心受压柱,可能承受以下四组内力设计值,试确定按哪一组内力计算所得配筋量最 大?[ ] a . M=525KN ·m N=2050KN ; b . M=525KN ·m N=3060KN ; c . M=525KN ·m N=3050KN ; d . M=525KN ·m N=3070KN 。

混凝土偏心受压构件计算方法

偏心受压构件 本章节注意:偏心受压构件受压类型的判别 1),界限破坏时的界限相对受压区高度ξb ,当时ξ<ξb 为大偏压,当时ξ>ξb 为小偏压。 2), 界限破坏时的偏心矩及相对界限偏心距 s y s b c b A f A f h b f N y -+=''01ξα ) 2 ()2()(5.0'''001s s y s s b b c b a h A f a h A f h h h b f M y -+-+-=ξξα 000h N M h e b b b = 当min ,0b i e e ≤时,按小偏心受压构件计算 当min ,0b i e e >时,按大偏心受压构件计算 3),特别地,对于对称配筋的矩形截面构件,则: s y s b c b A f A f h b f N y -+=''01ξα 当min ,0b i e e ≤或min ,0b i e e >且b N N >0γ时,为小偏心受压构件 当min ,0b i e e >且b N N ≤0γ时,为大偏心受压构件 最小相对界限偏心距min 0)/(h e ob 的值,见下表: 最小相对界限偏心距)/(h e 表3.4.1 s s s a a h a h h ===00 075.0/075.1/,, 1,矩形截面对称配筋计算 1),矩形截面对称配筋计算(针对HRB400、HPB300级钢筋) 计算步骤如下: 第一步:确定初始偏心距i e ,由《混规》式(6.2.17-4)求得 a a i e N M e e e +=+=0 )}(30,20max{mm h e a =[《混规》6.2.5条] 第二步:确定轴向力到纵向普通受拉钢筋合力的距离e ,由《混规》式(6.2.17-3)求得; s i a h e e -+=2 第三步:判别偏心受压类型,由y y f f =',则:01h b f N b c b ξα=,查表3.4.1得min ,0b e ①当min ,0b i e e >且b N N ≤0γ时,为大偏心受压构件,则按《混规》式(6.2.17-1)求得x ; 01h b f N x b c ξα<= ②当min ,0b i e e ≤或min ,0b i e e >且b N N >0γ时,为小偏心受压构件,则按《混规》式(6.2.17-8)

6章大偏心受压总结总结

大对称配筋('s s A A ≠)大偏心受压计算总结 计算简图 解决的两类问题:截面设计和截面复核 (一) 截面设计(配筋计算): 1、已知轴力设计值N 和弯矩设计值M ,材料强度和截面尺寸,求s A 和's A 解题思路:未知数有s A 、's A 和x (隐藏未知数)三个,方程无唯一解,按照总钢量's s A A +最小,即b ξξ=时计算。 计算步骤: (1) 判断大小偏心: i a M e e N = +,2m M C M η=(M 2为M 2 和M 1的较大值),1 2 0.70.3 m M C M =+,00.3i e h >时就为大偏心受压。 当/6c l h <时就不考虑弯矩增大系数η影响,即η=1; 当/6c l h >时,2011()1300/c c i l e h h η?=+ , 0.5c c f bh N ?= (2) 确定e 值: 2 i h e e a =+- 1'10()() 2 c y s y s c y s o N f bx f A f A x Ne f bx h f A h a αα''=+-''=-+ -

(3) 把b ξξ=代入方程组可得: 先由公式2求出2 100(10.5) () c b b s y Ne f bh A f h a αξξ--'=''-。 (4) 由公式1求出1c b o y s s y f b h f A N A f αξ''+-=并配筋 (5) 检验2'x a >(0b x h ξ=) min s s A A bh ρρ' += 总>(查书242表17)且不大于5%; As max(0.45,0.2%)s t y A f bh f ρ= ≥ As'' 0.2%s A bh ρ= ≥(一侧受压钢筋配筋率不小于0.2%) (6) 验算垂直于弯矩作用平面轴心受压承载力: 0.9()u c y s s N f A f A A N ?''??=++≥??,即满足要求。 2、已知N 、M 和's A ,求s A :(未知数是x 和s A ) (1) 判断大小偏心: i a M e e N = +,2m M C M η= (2) 先由公式2求得x 值,要解一个二次方程,引入两个系数s α和ξ 求解,并判断b ξξ≤且2'x a >都成立。 (3) 由公式1求得1c y s s y f bx f A N A f α''+-= (注意:当b ξξ>,表示's A 不足,则需要按照's A 未知重新计算;当2'x a < 102'10(10.5)() c b y s y s c b b y s o N f b h f A f A Ne f bh f A h a αξαξξ''=+-''=-+ -1'10()() 2 c y s y s c y s o N f bx f A f A x Ne f bx h f A h a αα''=+-''=-+ -

钢筋混凝土偏心受力构件承载力计算

第七章钢筋混凝土偏心受力构件承载力计算 本章的基本要求: 1、了解偏心受压构件的受力特性;掌握两类偏心受压构件的判别方法; 2、熟悉偏心受压构件的二阶效应及计算方法; 3、掌握两类偏心受压构件正截面承载力的计算方法; 4、了解双向偏心受压构件正截面承能力计算; 5、掌握偏心受拉构件的受力特性及正截面承载力计算; 6、掌握偏心受力构件斜截面受剪承载力计算。 §7-1 概述 偏心受力构件:偏心受力构件是指纵向力N作用线偏离构件轴线或同时作用轴力及弯矩的构件,包括偏心受压构件见图7-1(a)、(b)和偏心受拉构件见图7-1(c)、(d)。 图7-1 偏心受力构件受力形态 工程中大多数竖向构件(如单层工业厂房的排架柱,多层及高层房屋的钢筋混凝土墙、柱等)都是偏心受压构件;而承受节间荷载的桁架拉杆、矩形截面水池的池壁等,则属于偏心受拉构件。 钢筋混凝土偏心受压构件多采用矩形截面,截面尺寸较大的预制柱可采用工字形截面和箱形截面,公共建筑中的柱多采用圆形截面。偏心受拉构件多采用矩形截面。

图7-2 偏心受力构件的截面形式 §7-2 偏心受压构件正截面承载力计算 一、偏心受压构件正截面的破坏特征 (一)破坏类型 大量试验表明:构件截面中的符合平截面假定,偏压构件的最终破坏是由于混凝土压碎而造成的。其影响因素主要与偏心距的大小和所配钢筋数量有关。通常,钢筋混凝土偏心受压构件破坏分为2种情况 1、受拉破坏:当偏心距较大,且受拉钢筋配置得不太多时,发生的破坏属大偏压破坏。这种破坏特点是受拉区、受压区的钢筋都能达到屈服,受压区的混凝土也能达到极限压应变,如图7—2a 所示。 2、受压破坏:当偏心距较小或很小时,或者虽然相对偏心距较大,但此时配置了很多的受拉钢筋时,发生的破坏属小偏压破坏。这种破坏特点是,靠近纵向力那一端的钢筋能达到屈服,混凝土被压碎,而远离纵向力那一端的钢筋不管是受拉还是受压,一般情况下达不到屈服。如图7—2b 、c 所 图7-3 受拉破坏和受压破坏时的截面应力

相关文档
最新文档