大学物理复习题第14章相对论 复习题及答案详解

合集下载

大学物理第十四章波动光学课后习题答案及复习内容

大学物理第十四章波动光学课后习题答案及复习内容

第十四章波动光学一、基本要求1. 掌握光程的概念以及光程差和相位差的关系。

2. 理解获得相干光的方法,能分析确定杨氏双缝干涉条纹及薄膜等厚干涉条纹的位置,了解迈克尔逊干涉仪的工作原理。

3. 了解惠更斯-菲涅耳原理; 掌握用半波带法分析单缝夫琅和费衍射条纹的产生及其明暗纹位置的计算,会分析缝宽及波长对衍射条纹分布的影响。

4. 掌握光栅衍射公式。

会确定光栅衍射谱线的位置。

会分析光栅常数及波长对光栅衍射谱线分布的影响。

5. 了解自然光和线偏振光。

理解布儒斯特定律和马吕斯定律。

理解线偏振光的获得方法和检验方法。

6. 了解双折射现象。

二、基本内容1. 相干光及其获得方法只有两列光波的振动频率相同、振动方向相同、振动相位差恒定时才会发生干涉加强或减弱的现象,满足上述三个条件的两束光称为相干光。

相应的光源称为相干光源。

获得相干光的基本方法有两种:(1)分波振面法(如杨氏双缝干涉、洛埃镜、菲涅耳双面镜和菲涅耳双棱镜等);(2)分振幅法(如薄膜干涉、劈尖干涉、牛顿环干涉和迈克耳逊干涉仪等)。

2. 光程和光程差(1)光程把光在折射率为n的媒质中通过的几何路程r折合成光在真空x中传播的几何路程x,称x为光程。

nr(2)光程差在处处采用了光程概念以后就可以把由相位差决定的干涉加强,减弱等情况用光程差来表示,为计算带来方便。

即当两光源的振动相位相同时,两列光波在相遇点引起的振动的位相差πλδϕ2⨯=∆ (其中λ为真空中波长,δ为两列光波光程差) 3. 半波损失光由光疏媒质(即折射率相对小的媒质)射到光密媒质发生反射时,反射光的相位较之入射光的相位发生了π的突变,这一变化导致了反射光的光程在反射过程中附加了半个波长,通常称为“半波损失”。

4. 杨氏双缝干涉经杨氏双缝的两束相干光在某点产生干涉时有两种极端情况:(1)位相差为0或2π的整数倍,合成振动最强;(2)位相差π的奇数倍,合成振动最弱或为0。

其对应的光程差()⎪⎩⎪⎨⎧-±±=212λλδk k ()()最弱最强 ,2,1,2,1,0==k k 杨氏的双缝干涉明、暗条纹中心位置:dD k x λ±= ),2,1,0( =k 亮条纹 d D k x 2)12(λ-±= ),2,1( =k 暗条纹 相邻明纹或相邻暗纹间距:λd D x =∆ (D 是双缝到屏的距离,d 为双缝间距) 5. 薄膜干涉以21n n <为例,此时反射光要计“半波损失”, 透射光不计“半波损失”。

大学物理第十四章相对论习题解答

大学物理第十四章相对论习题解答

§14.1 ~14. 314.1 狭义相对论的两条基本原理为相对性原理;光速不变原理。

14.2 s ′系相对s 系以速率v=0.8c ( c 为真空中的光速)作匀速直线运动,在S 中观测一事件发生在m x s t 8103,1×==处,在s ′系中测得该事件的时空坐标分别为t =′x 1×108 m 。

分析:洛伦兹变换公式:)t x (x v −=′γ,)x ct (t 2v −=′γ其中γ=,v =β。

14.3 两个电子沿相反方向飞离一个放射性样品,每个电子相对于样品的速度大小为0.67c , 则两个电子的相对速度大小为:【C 】(A )0.67c (B )1.34c (C )0.92c (D )c分析:设两电子分别为a 、b ,如图所示:令样品为相对静止参考系S , 则电子a 相对于S 系的速度为v a = -0.67c (注意负号)。

令电子b 的参考系为动系S '(电子b 相对于参考系S '静止),则S '系相对于S 系的速度v =0.67c 。

求两个电子的相对速度即为求S '系中观察电子a 的速度v'a 的大小。

根据洛伦兹速度变换公式可以得到:a a a v cv v 21v v −−=′,代入已知量可求v'a ,取|v'a |得答案C 。

本题主要考察两个惯性系的选取,并注意速度的方向(正负)。

本题还可选择电子a 为相对静止参考系S ,令样品为动系S '(此时,电子b 相对于参考系S '的速度为v'b = 0.67c )。

那么S '系相对于S 系的速度v =0.67c ,求两个电子的相对速度即为求S 系中观察电子b 的速度v b 的大小。

14.4 两个惯性系存在接近光速的相对运动,相对速率为u (其中u 为正值),根据狭义相对论,在相对运动方向上的坐标满足洛仑兹变换,下列不可能的是:【D 】(A )221c u/)ut x (x −−=′; (B )221cu/)ut x (x −+=′ (C )221c u /)t u x (x −′+′=; (D )ut x x +=′ 分析:既然坐标满足洛仑兹变换(接近光速的运动),则公式中必然含有2211cv −=γ,很明显答案A 、B 、C 均为洛仑兹坐标变换的公式,答案D 为伽利略变换的公式。

大学物理相对论习题

大学物理相对论习题

等效原理的推导与验证
等效原理的推导
通过广义相对论的场方程和无自转的 物质分布假设推导等效原理。
等效原理的验证
通过实验验证等效原理,例如在地球 表面和太空中的重力测量实验。
等效原理的应用场景
宇宙学研究
等效原理用于研究宇宙的时空结构和演化,例如 黑洞和宇宙膨胀。
地球物理学
等效原理用于研究地球的引力场和地球内部结构, 例如地震预测和矿产资源勘探。
习题2答案与解析
地球上的观察者观察到的是光线从高 楼顶上发出后直接消失,没有发生任 何折射或反射现象。解析:根据相对 论原理,当光线从一个惯性参考系( 即没有加速度的参考系)传播到另一 个惯性参考系时,光线的方向和速度 都不会发生变化。因此,地球上的观 察者观察到的光线方向和速度与火车 上的观察者观察到的相同。
大小。
核能的利用价值
03
核能作为一种清洁、高效的能源,在能源领域具有重要地位,
为人类社会的可持续发展提供了有力支持。
05
相对论的引力与等效原理
引力场的相对论描述
广义相对论的基本假设
引力的本质是由物质引起的时空弯曲。
引力场的几何描述
利用黎曼几何描述引力场,将引力看作是时空曲率的表现。
等效原理
在小区域内,不能通过任何实验区分均匀引力场和加速参照系。
实验物理学
等效原理用于设计实验设备和方法,例如重力测 量和惯性导航系统。
06
相对论习题解析与解答
经典习题解析
经典习题1
一列火车以速度v相对于地面行驶,在车厢中央有一盏灯发出一个光子。当光子离开车厢时,火车上的人和地面上的 人分别看到了什么现象?
经典习题2
一个观察者相对于地球静止,他观察到一束光线从远处的高楼顶上发出,经过一段时间后消失。他测量到这段时间为 t。在地球上有一观察者也测量到这段时间为t。请问地球上的观察者观察到的是什么现象?

大学物理《近代篇·相对论》复习题及答案

大学物理《近代篇·相对论》复习题及答案

[
]
7.质子在加速器中被加速,当其动能为静 止能量的 4 倍时,其质量为静止质量的 ( A ) 5倍.
( C ) 4倍.
( B ) 6倍.
( D ) 8倍.
[ ]
• 相对论选择题答案: ABBCACCDCBDDA
8.在惯性系 K 中,有两个事件同时发生 在 x 轴上相距 1000m 的两点,而在另一惯 性系 K’ (沿轴方向相对于 K 系运动 ) 中测 得这两个事件发生的地点相距 2000m . 求在 K’ 系中测得这两个事件的时间间隔.
[
]
10.一个电子运动速 v=0.99c ,它的动能是: (电子的静止能量为0.51MeV) ( A ) 3.5MeV. ( B ) 4.0MeV. ( C ) 3.1MeV. ( D ) 2.5MeV.
[ ]
(5)某惯性系中观察者将发现,相对他 静止的时钟比相对他匀速运动的时钟走的 快。 正确的说法是: (A) (1).(3).(4).(5) (B) (1).(2).(3) (C) (2).(5) (D) (1).(3)
而且在一切物理现象中,所有惯性系都是 等价的。
ቤተ መጻሕፍቲ ባይዱ
12.在惯性系 S 中的某一地点发生了两事 件A、B,B 比 A 晚发生 Dt = 2.0 s , 在 惯性系 S’ 中测得 B 比 A 晚发生 Dt’ = 3.0s 。试问在 S 中观测发生 A、B 的两 地点之间的距离为多少?
解:设S' 相对S的速度为u
t vx / c t' , 2 1 (v / c )
2
x vt x' 2 1 (v / c )
(1)
t1 vx1 / c t1' 2 1 (v / c ) 2 t2 vx2 / c t2' 2 1 (v / c )

大学物理相对论练习题及答案

大学物理相对论练习题及答案

大学物理相对论练习题及答案一、选择题1. 相对论的基本假设是:A. 电磁场是有质量的B. 速度光速不变C. 空间和时间是绝对的D. 物体的质量是不变的答案:B2. 相对论中,当物体的速度接近光速时,它的质量会:A. 减小B. 增大C. 不变D. 可能增大或减小答案:B3. 太阳半径为6.96×10^8米,光速为3×10^8米/秒。

如果一个人以0.99光速的速度环绕太阳一圈,他大约需要多长时间(取π≈3.14):A. 37分钟B. 1小时24分钟C. 8小时10分钟D. 24小时答案:B4. 相对论中的洛伦兹收缩效应指的是:A. 时间在运动方向上变慢B. 物体的长度在运动方向上缩短C. 质量增加D. 光速不变答案:B5. 相对论中的时间膨胀指的是:A. 时间在运动方向上变慢B. 物体的长度在运动方向上缩短C. 质量增加D. 光速不变答案:A二、填空题1. 物体的质量与运动速度之间的关系可以用___公式来表示。

答案:爱因斯坦的质能方程 E=mc^2.2. 相对论中,时间膨胀和洛伦兹收缩的效应与___有关。

答案:物体的运动速度.3. 光速在真空中的数值约为___,通常记作c。

答案:3×10^8米/秒.4. 相对论中,当物体的速度超过光速时,其相对质量会无限___。

答案:增大.5. 狭义相对论是由___发展起来的。

答案:爱因斯坦.三、简答题1. 请简要解释狭义相对论的基本原理及其对物理学的影响。

狭义相对论的基本原理是光速不变原理,即光速在任何参考系中都保持不变。

它推翻了经典牛顿力学中对于时间和空间的绝对性假设,提出了时间膨胀和洛伦兹收缩的效应。

狭义相对论在物理学中的影响非常深远,它解释了电磁现象、粒子物理现象等方面的问题,为后续的广义相对论和量子力学提供了理论基础。

2. 请解释相对论中的时间膨胀和洛伦兹收缩效应。

时间膨胀效应指的是当物体具有运动速度时,其所经历的时间相对于静止状态下的时间会变得更长。

大学物理 相对论量子论练习题答案

大学物理 相对论量子论练习题答案

相对论、量子理论练习题解一.选择题1.D .2.D .3.A .4.B .5.A 6.B 7.A 8.A 二.填空题1. 光速不变,真空中的速度是一个常量,与参考系和光源的运动无关。

狭义相对性,物理规律在所有惯性系中具有相同的形式。

2. 同时,不同时。

3. 与物体相对静止的参考系中所测量的物体,本征长度最长,绝对。

4. 同一地点,本征时间最短。

5. 等效,弱,引力场同参考系相当的加速度等效;广义相对性原理;物理学规律对任何以加速度抵消掉该处引力场的惯性系都具有相同的形式。

6. 引力红移;雷达回波延迟 ; 水星近日点的进动,或光线在引力场中偏折。

7. 1.33X10-23 .8. 德布罗意波是概率波,波函数不表示实在物理量在空间的波动,其振幅无实在物理意义。

9. 自发辐射,受激辐射,受激辐射。

10. 受激辐射,粒子数反转分布,谐振腔。

11. 相位 ,(频率, 传播方向, 偏振态。

12. 能量,能量,动量。

三.小计算题 1.cv c v c v x t cv x c v t t 6.0541451145450's 4'11)''(22222222=∴⎪⎭⎫ ⎝⎛=-=-====∆=∆-=∆+∆=∆γγγγγcv l l c v l l c v l l 8.0531531.222202=∴⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛==⎪⎭⎫ ⎝⎛-=-光年光年c v c v v c v c v c v c v c v c v t c t v c v x x tcx t S 171616171616)1(1611641'1'164''.322222222222=∴=-=⎪⎭⎫⎝⎛-=⎪⎭⎫⎝⎛-=⎪⎭⎫⎝⎛-∆=∆⎪⎭⎫⎝⎛-∆=∆∆==∆=∆光年原长年(原时)系32m 075.03.05.05.0m3.06.05.01=⨯⨯==⨯=⎪⎭⎫⎝⎛-=V c v l l 沿运动方向长度收缩5. MeV49.1eV 1049.11051.01000.2eV 1051.0J 102.81099.811091011.966620261415163120=⨯=⨯-⨯=-=⨯=⨯≈⨯=⨯⨯⨯=---c m mc E c m K6.c v c v c v c v c v c v c v c m c m mc E K 359413211123111211115.04111122222220202=∴=⎪⎭⎫⎝⎛-=⎪⎭⎫⎝⎛-⎪⎭⎫ ⎝⎛-=-⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎪⎪⎭⎫⎝⎛-⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎪⎪⎭⎫⎝⎛-⎪⎭⎫ ⎝⎛-=-=7.120201020102010202002201010011222)(221)4()3()4()()2()3()()1(ννννννννννννννννννννννν-=-=--=-=--=-+==-+=eU h h eU h eU h h eU h8.120201020102010202002201010011222)(221)4()3()4()()2()3()()1(ννννννννννννννννννννννν-=-=--=-=--=-+==-+=eU h h eU h eU h h eU h9.13)(44431212323212121020222022======v v nn v v n r r n r e r m e v r e r v m n n nn n n πεεππε10.aaa a a a aa 2122122145cos 16523cos12265=⋅-=⋅-==⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛ψππψ概率密度四、大计算题1. (1)对不同金属斜率相同。

相对论习题附答案

相对论习题附答案

1.狭义相对论的两个基本假设分别是——————————————和——————————————。

2.在S系中观察到两个事件同时发生在x轴上,其间距离是1m。

在S′系中观察这两个。

事件之间的距离是2m。

则在S′系中这两个事件的时间间隔是——————————————3.宇宙飞船相对于地面以速度v做匀速直线飞行,某一时刻飞船头部的宇航员向飞船尾部发出一个光讯号,经过Δt(飞船上的钟)时间后,被尾部的接受器收到,真空中光速用c表示,则飞船的固有长度为——————————————。

4.一宇航员要到离地球为5 光年的星球去旅行,如果宇航员希望把这路程缩短为3 光年,。

真空中光速用c表示,则他所乘的火箭相对地球的速度应是——————————————5.在某地发生两件事,静止位于该地的甲测得时间间隔为4s,若相对甲做匀速直线运动的乙测得时间间隔为5s,真空中光速用c表示,则乙相对于甲的运动速度是。

———————————6.一宇宙飞船相对地球以0.8c(c表示真空中光速)的速度飞行。

一光脉冲从船尾传到船头,飞船上的观察者测得飞船长为90m,地球上的观察者测得光脉冲从船尾发出和到达。

船头两个事件的空间间隔为——————————————7.两个惯性系中的观察者O 和O′以0.6c(c为真空中光速)的相对速度互相接近,如果O测得两者的初距离是20m , 则O′测得两者经过时间间隔Δt′=——————————————后相遇。

8.π+介子是不稳定的粒子,在它自己的参照系中测得平均寿命是 2.6×10-8s , 如果它相对实验室以0.8c(c为真空中光速)的速度运动,那么实验室坐标系中测得的π+介子的寿命是。

——————————————9.c表示真空中光速,电子的静能m o c2 = 0.5 MeV,则根据相对论动力学,动能为1/4 Mev。

的电子,其运动速度约等于——————————————10.α粒子在加速器中被加速,当其质量为静止质量的5倍时,其动能为静止能量的——————倍————————11. 在S系中观察到两个事件同时发生在x轴上,其间距是1000 m。

【良心出品】大学物理复习题第14章相对论 复习题及答案详解

【良心出品】大学物理复习题第14章相对论 复习题及答案详解

第十四章 相对论一.选择题1. 有下列几种说法:(1)真空中,光速与光的频率、光源的运动、观察者的运动无关.(2)在所有惯性系中,光在真空中沿任何方向的传播速率都相同.(3)所有惯性系对物理基本规律都是等价的.请在以下选择中选出正确的答案(A) 只有(1)、(2)是正确的.(B) 只有(1)、(3)是正确的.(C) 只有(2)、(3)是正确的.(D) 三种说法都是正确的. [ ]2. (1)对某观察者来说,发生在某惯性系中同一地点、同一时刻的两个事件,对于相对该惯性系作匀速直线运动的其它惯性系中的观察者来说,它们是否同时发生?(2)在某惯性系中发生于同一时刻、不同地点的两个事件,它们在其它惯性系中是否同时发生?(A )(1)同时,(2)不同时。

(B )(1)不同时,(2)同时。

(C )(1)同时,(2)同时。

(D )(1)不同时,(2)不同时。

[ ]3. K 系中沿x 轴方向相距3m 远的两处同时发生两件事,在K ′系中上述两事件相距5m 远,则两惯性系间的相对速度为(c 为真空中光速)(A) (4/5) c (B) (3/5) c(C) (2/5) c (D) (1/5) c [ ]4. 两个惯性系K 和K ',沿x x '轴方向作相对运动,相对速度为v ,设在K '系中某点先后发生的两个事件,用固定于该系的钟测出两事件的时间间隔为0t ∆,而用固定在K 系的钟测出这两个事件的时间间隔为t ∆,又在K '系x '轴上放置一固有长度为0l 的细杆,从K 系测得此杆的长度为l ,则(A) .;00l l t t <∆<∆ (B) .;00l l t t >∆<∆(C) .;00l l t t >∆>∆ (D) .;00l l t t <∆>∆ [ ]5. 边长为a 的正方形薄板静止于惯性系K 的Oxy 平面内,且两边分别与x ,y 轴平行.今有惯性系K '以 0.6c (c 为真空中光速)的速度相对于K 系沿x 轴作匀速直线运动,则从K '系测得薄板的面积为(A) 0.6a2(B) 0.8 a2(C) 0.36a2(D) 0.64a2[]6. 一静止长度为100m的飞船相对地球以0.6 c(c表示真空中光速)的速度飞行,一光脉冲从船尾传到船头。

大学物理相对论习题及解答-精品文档

大学物理相对论习题及解答-精品文档
t vx/c t' , 2 1(v/c)
2
x vt x' 2 1(v/c)
t vx / c 1 1 (1 ) t1 ' 2 1(v/c) 2 t2 vx 2 /c t2 ' 2 1(v/c) 因两个事件在 K 系中同一点发生, t2 t 1 t ' t ' x x , 则 2 1 1 2 2 1 ( v/c )
解:根据洛仑兹力变换公式:
x vt x' , 2 1(v/c)
t vx/ c t' 2 1 (v / c)
2
x vt x vt 2 2 1 1 可得: x '2 , x ' 1 2 2 1 ( v / c ) 1( v/c )
在 K 系,两事件同时发生,t1=t2 则 x x 2 1 x '2 x ' , 1 2 1 ( v /c )
1.宇宙飞船相对于地面以速度 v 作匀速直 线飞行,某一时刻飞船头部的宇航员向飞 船尾部发出一个光讯号,经过 Dt (飞船 上的钟)时间后,被尾部的接收器收到, 则由此可知飞船的固有长度为 ( A )c D t ( B )v D t
( C ) c D t 1 v / c c D t (D ) 2 1 v/c
8.观察者甲、乙,分别静止在惯性系 S、 S’ 中, S’ 相对 S 以 u 运动, S’ 中一个固 定光源发出一束光与 u 同向 (1)乙测得光速为 c . (2)甲测得光速为 c+u; (3)甲测得光速为 cu ; (4)甲测得光相对于乙的速度为 cu。 正确的答案是: (A) (1),(2),(3); (B) (1),(4) (C) (2),(3); (D) (1),(3),(4) [ B ]

济南大学物理答案 相对论答案

济南大学物理答案 相对论答案

第十四章 相对论§14.1-2 狭义相对论的基本原理 洛仑兹变换式一.选择题和填空题1 D2 一切彼此相对作匀速直线运动的惯性系对于物理学定律都是等价的一切惯性系中,真空中的光速都是相等的 3 相对的运动§14.3 狭义相对论的时空观一.选择题和填空题1-6 ABBCA A7 c 23(2.60×108) 3分8 c380(8.89×10-8) 3分二.计算题1 解:(1) 观测站测得飞船船身的长度为=-=20)/(1c L L v 54 m则 ∆t 1 = L /v =2.25×10-7 s 3分 (2) 宇航员测得飞船船身的长度为L 0,则∆t 2 = L 0/v =3.75×10-7s 2分2 解:令S '系与S 系的相对速度为v ,有2)/(1c tt v -='∆∆, 22)/(1)/(c t t v -='∆∆则 2/12))/(1(t t c '-⋅=∆∆v ( = 2.24×108 m ·s -1 )c 354分那么,在S '系中测得两事件之间距离为: 2/122)(t t c t x ∆∆∆∆-'='⋅='v = 6.72×108 m c 5 4分§14.4 洛仑兹变换式一.选择题和填空题1 A3 c 3分4 c 2分c 2分二.计算题1 解:(1) 从列车上观察,隧道的长度缩短,其它尺寸均不变。

1分隧道长度为 221cL L v -=' 1分(2) 从列车上观察,隧道以速度v 经过列车,它经过列车全长所需时间为v v 0l L t +'=' v02)/(1l c v L +-= 3分 这也即列车全部通过隧道的时间.2 解:根据洛仑兹变换公式: 2)(1/c tx x v v --=' ,22)(1//c c x t t v v --='可得 2222)(1/c t x x v v --=' ,2111)(1/c t x x v v --=' 2分在K 系,两事件同时发生,t 1 = t 2,则21212)(1/c x x x x v --='-' ,∴ 21)/()()/(112122='-'-=-x x x x c v 2分 解得 2/3c =v . 2分 在K ′系上述两事件不同时发生,设分别发生于1t '和 2t '时刻, 则 22111)(1//c c x t t v v --=',22222)(1//c c x t t v v --=' 2分由此得 221221)(1/)(/c c x x t t v v --='-'=5.77×10-6 s 2分§14.5 相对论质点动力学一.选择题和填空题1-5 CACBD 6c 3213分 7 5.8×10-13 2分8.04×10-2 3分 8 20)/(1c m m v -=2分202c m mc E K -= 2分9 4 3分 10 (9×1016 J) c 2 2分(1.5×1017 J) 235c 3分11 )1(20-n c m3分二.计算题1 解:(1) 222)/(1/c c m mc E e v -== =5.8×10-13 J 2分(2) 20v 21e K m E == 4.01×10-14 J 22c m mc E e K -=22]1))/(1/1[(c m c e --=v = 4.99×10-13 J∴ =K K E E /08.04×10-2 3分2 解:设复合质点静止质量为M 0,运动时质量为M .由能量守恒定律可得2202mc c m Mc += 2分其中mc 2为相撞前质点B 的能量. 202020276c m c m c m mc =+=故 08m M = 2分设质点B 的动量为p B ,复合质点的动量为p .由动量守恒定律B p p = 2分利用动量与能量关系,对于质点B 可得42042420224c qm c m c m c p B ==+ 2分对于复合质点可得 420424202264c m c M c M c P ==+ 2分 由此可求得 2202020164864m m m M =-= 004m M = 2分。

相对论习题及答案解析

相对论习题及答案解析
2 2 ⎧ ⎪ ∆x = 1 − (u / c ) ∆x ′ = l 0 1 − (u / c ) cos θ ′ ⎨ ⎪ ⎩∆y = ∆y ′ = l0 sin θ ′
在 K 系中细杆的长度为
l = ∆x 2 + ∆y 2 = l0 1 − (u / c ) cos 2 θ ′ + si n 2 θ ′ = l0 1 − (u cos θ ′ / c )
(A) α > 45° ; (B) α < 45° ; (C) α = 45° ; (D) 若 u 沿 X ′ 轴正向,则 α > 45° ;若 u 沿 X ′ 轴反向,则 α < 45° 。 答案:A 4.电子的动能为 0.25MeV ,则它增加的质量约为静止质量的? (A) 0.1 倍 答案:D 5. E k 是粒子的动能, p 是它的动量,那么粒子的静能 m0 c 等于 (A) ( p c − E k ) / 2 Ek
13. 静止质量为 9.1 × 10 −31 kg 的电子具有 5 倍于它的静能的总能量,试求它的动量和速率。 [提示:电子的静能为 E0 = 0.511 MeV ] 解:由总能量公式
夹角 θ 。 解:光线的速度在 K ′ 系中两个速度坐标上的投影分别为
⎧V x′ = c cos θ ′ ⎨ ′ ⎩V y = c sin θ ′
由速度变换关系
Vx =
u + Vx′ , Vx′ ⋅ u 1+ 2 c
V y′ 1 − Vy =
1+
u2 c2
u V x′ c2
则在 K 系中速度的两个投影分别为
7.论证以下结论:在某个惯性系中有两个事件同时发生在不同的地点,在有相对运动的其他
惯性系中,这两个事件一定不同时发生 。 证明:令在某个惯性系中两事件满足

一轮复习优化探究物理练习第十四章光的波动性电磁波和相对论含解析

一轮复习优化探究物理练习第十四章光的波动性电磁波和相对论含解析

[课时作业] 单独成册 方便使用一、选择题1.在狭义相对论中,下列说法正确的是( )A .所有惯性系中基本规律都是等价的B .在真空中,光的速度与光的频率、光源的运动状态无关C .在不同惯性系中,光在真空中沿不同方向传播速度不相同D .质量、长度、时间的测量结果不随物体与观察者的相对状态的改变而改变E .时间与物体的运动状态有关解析:根据相对论的观点:在不同的惯性系中,一切物理规律都是相同的;且在一切惯性系中,光在真空中的传播速度都相等;质量、长度、时间的测量结果会随物体与观察者的相对状态的改变而改变,故选项A 、B 正确,C 、D 错误.在狭义相对论中,时间与物体的运动状态有关,E 正确.答案:ABE2.如图所示,a 、b 两束光以不同的入射角由介质射向空气,结果折射角相同,下列说法正确的是( )A .b 在该介质中的折射率比a 小B .若用b 做单缝衍射实验,要比用a 做中央亮条纹更宽C .用a 更易观测到泊松亮斑D .做双缝干涉实验时,用a 光比用b 光两相邻亮条纹中心的距离更大E .b 光比a 光更容易发生明显的衍射现象解析:设折射角为θ1,入射角为θ2,由题设条件知,θ1a =θ1b ,θ2a <θ2b ,由n =sin θ1sin θ2,知n a >n b ,A 正确;因为n a >n b ,所以λa <λb ,又Δx =l d λ,故Δx a <Δx b ,B 正确,D错误;b 光比a 光更容易发生明显的衍射现象,更容易观测到泊松亮斑,C 错误,E 正确.答案:ABE3.(2018·河南百校联盟联考)下列说法正确的是( )A.在真空中传播的电磁波,频率越大,波长越短B.让蓝光和绿光通过同一双缝干涉装置,绿光形成的干涉条纹间距较大C.光纤通信、全息照相及医用纤维式内窥镜都是利用了光的全反射原理D.要确定雷达和目标的距离,需要直接测出电磁波从发射到被目标接收的时间E.拍摄玻璃橱窗内的物品时,往往在镜头前加装一个偏振片,以减弱玻璃反射光的影响解析:在真空中传播的不同频率的电磁波,传播速度均为c,由c=λf可知,频率越大,波长越短,选项A正确;让蓝光和绿光通过同一双缝干涉装置,因绿光的波长大,因此绿光形成的干涉条纹间距较大,选项B正确;全息照相不是利用光的全反射原理,用的是光的干涉原理,选项C错误;雷达利用了电磁波的反射原理,雷达和目标的距离s=12c·Δt,需直接测出的是电磁波从发射到接收到反射回来电磁波的时间间隔Δt,选项D错误;加偏振片的作用是减弱玻璃反射光的影响,选项E正确.答案:ABE4.我国成功研发的反隐身先进米波雷达堪称隐身飞机的克星,它标志着我国雷达研究又创新的里程碑.米波雷达发射无线电波的波长在1~10 m范围内,则对该无线电波的判断正确的是()A.米波的频率比厘米波频率高B.和机械波一样须靠介质传播C.同光波一样会发生反射现象D.不可能产生干涉和衍射现象解析:无线电波与光波均为电磁波,均能发生反射、干涉、衍射现象,故C对,D错.无线电波的传播不需要介质,故B错.由c=λf可知,频率与波长成反比,故A错.答案:C5.在以下各种说法中,正确的是()A.机械波和电磁波本质上不相同,但它们都能发生反射、折射、干涉和衍射现象B.横波在传播过程中,相邻的波峰相继通过同一质点所用的时间为一个周期C.变化的电场一定产生变化的磁场;变化的磁场一定产生变化的电场D.相对论认为:真空中的光速大小在不同惯性参考系中都是相同的E.如果测量到来自遥远星球上某些元素发出的光波波长比地球上这些元素静止时发光的波长长,这说明该星球正在远离我们而去解析:反射、折射、干涉和衍射现象是波的特性,A正确.波动周期等于质点的振动周期,B正确.均匀变化的电(磁)场产生恒定的磁(电)场,C错.由相对论可知,D正确.在强引力场中时间变慢,光的频率变小,波长变长,不能说明星球正远离我们,所以E错.答案:ABD二、非选择题6.在“用双缝干涉测光的波长”实验中,将测量头的分划板中心刻线与某亮纹中心对齐,将该亮纹定为第1条亮纹,此时手轮上的示数如图甲所示.然后同方向转动测量头,使分划板中心刻线与第6条亮纹中心对齐,记下此时图乙中手轮上的示数为________mm,求得相邻亮纹的间距Δx=________mm;已知双缝间距d=2.0×10-4m,测得双缝到屏的距离l=0.700 m,由计算公式λ=________,求得所测红光的波长为________mm.解析:题图甲中螺旋测微器的固定刻度读数为2 mm,可动刻度读数为0.01×32.0 mm=0.320 mm,所以最终读数为2.320 mm;图乙中螺旋测微器的固定刻度读数为13.5 mm,可动刻度读数为0.01×37.0 mm=0.370 mm,所以最终读数为13.870 mm,故Δx=13.870-2.3206-1mm=2.310 mm.由Δx=ldλ可得λ=dlΔx,解得λ=2.0×10-40.700×2.310×10-3 m =6.6×10-7 m =6.6×10-4 mm.答案:13.870 2.310 d l Δx 6.6×10-47.奶粉的碳水化合物(糖)的含量是一个重要指标,可以用“旋光法”来测量糖溶液的浓度,从而鉴定含糖量.偏振光通过糖的水溶液后,偏振方向会相对于传播方向向左或向右旋转一个角度α,这一角度α称为“旋光度”,α的值只与糖溶液的浓度有关,将α的测量值与标准值相比较,就能确定被测样品的含糖量了.如图所示,S 是自然光源,A 、B 是偏振片,转动B ,使到达O 处的光最强,然后将被测样品P 置于A 、B 之间.(1)偏振片A 的作用是_____________________________________.(2)偏振现象证明了光是一种________.(3)以下说法中正确的是________.A .到达O 处光的强度会明显减弱B .到达O 处光的强度不会明显减弱C .将偏振片B 转动一个角度,使得O 处光强度最强,偏振片B 转过的角度等于αD .将偏振片A 转动一个角度,使得O 处光强度最强,偏振片A 转过的角度等于α解析:(1)自然光源发出的光不是偏振光,但当自然光经过偏振片后就变成了偏振光,因此偏振片A 的作用是把自然光变成偏振光.(2)偏振现象证明了光是一种横波.(3)因为A 、B 的透振方向一致,故A 、B 间不放糖溶液时,自然光通过偏振片A 后变成偏振光,通过B 后到O .当在A 、B 间加上糖溶液时,由于糖溶液的旋光作用,使通过A 的偏振光的振动方向转动了一定角度,使通过B 到达O 的光的强度不是最大,但当B转过一个角度,恰好使透振方向与经过糖溶液后的偏振光的振动方向一致时,O处光强又为最强,故B的旋转角度即为糖溶液的旋光度.若偏振片B不动而将A旋转一个角度,再经糖溶液旋光后光的振动方向恰与B的透振方向一致,则A转过的角度也为α,故选项A、C、D正确.答案:(1)把自然光变成偏振光(2)横波(3)ACD。

《大学物理》期末复习 第十四章 相对论

《大学物理》期末复习 第十四章   相对论

第十四章相对论在第一册中讲过的牛顿力学,只适用于宏观物体低速运动,高速运动的物体则使用相对论力学。

相对论内的理论)般参照系包括引力场在广义相对论(推广到一性参照系的理论)狭义相对论(局限于惯本章只介绍狭义相对论§14-1伽利略变换式牛顿绝对时空观一、力学相对性原理力学定律在一切惯性系中数学形式不变理解:体现对称性思想——对于描述力学规律而言,一切惯性系彼此等价。

在一个惯性系中所做的任何力学实验,都不能判断该惯性系相对于其它惯性系的运动。

二、伽利略变换概念介绍:事件:是在空间某一点和时间某一时刻发生的某一现象(例如:两粒子相撞)。

事件描述:发生地点和发生时刻来描述,即一个事件用四个坐标来表示)(t,z,y,x如图所示,有两个惯性系S,'S,相应坐标轴平行,'S相对S以v沿'x正向匀速运动,0=='tt时,O与'O重合。

现在考虑p点发生的一个事件:⎩⎨⎧)时空坐标为(系观察者测出这一事件)时空坐标为(系观察者测出这一事件'''''t ,z ,y ,x S t ,z ,y ,x S按经典力学观点,可得到两组坐标关系为⎪⎪⎩⎪⎪⎨⎧===-=t t z z y y vt x x '''' 或 ⎪⎪⎩⎪⎪⎨⎧===+=''''t t z z y y vtx x (14-1)式(14-1)是伽利略变换及逆变换公式。

三、绝对时空观1、时间间隔的绝对性设有二事件1P ,2P ,在S 系中测得发生时刻分别为1t ,2t ;在'S 系中测得发生时刻分别为't 1,'t 2。

在S系中测得两事件发生时间间隔为12t t t -=∆,在'S 系测得两事件发生的时间间隔为'''tt t 12-=∆。

11t t '=,22t t '=,∴t t '∆∆=。

大学物理题库-第14章-相对论(含答案解析)

大学物理题库-第14章-相对论(含答案解析)

第十四章 相对论一 选择题(共10题)1.(180401101)狭义相对论反映了 [ ](A )微观粒子的运动规律 (B )电磁场的变化规律(C )引力场的时空结构 (D )高速运动物体的运动规律2.(180501202)在某地发生两事件,与该处相对静止的甲测得时间间隔为4s ,若相对甲作匀速直线运动的乙测得时间间隔为5s ,则乙相对于甲的运动速度是[ ](A )c 54 (B )c 53 (C )c 51 (D )c 52 3.(180601201)在狭义相对论中,下列说法哪些是正确的? [ ](1)一切运动物体相对于观察者的速度都不能大于真空中的光速;(2)质量、长度、时间的测量结果都是随物体与观察者的相对运动状态而改变的; (3)在一惯性系中发生于同一时刻,不同地点的两个事件在其他一切惯性系中也是同时发生的; (4)惯性系中的观察者观察一个相对他作匀速运动的时钟时,会看到这个时钟比与他相对静止的相同时钟走得慢些。

(A )(1),(3),(4) (B )(1),(2),(4) (C )(1),(2),(3) (D )(2),(3),(4)4.(180601202)关于同时性,有人得出以下一些结论,其中哪个是正确的? [ ] (A )在一惯性系同时发生的两个事件,在另一惯性系一定不同时发生;(B )在一惯性系不同地点同时发生的两个事件,在另一惯性系一定同时发生; (C )在一惯性系同一地点同时发生的两个事件,在另一惯性系一定同时发生;(D )在一惯性系不同地点不同时发生的两个事件,在另一惯性系一定不同时发生。

5.(180501103)边长为L 的正方形,沿着一棱边方向以高速v 运动,则地面观测者测得该运动正方形的面积为 [ ](A )2L (B )22)(1c v L- (C )221)c v (L - (D ))(221)cv (v L -6.(180501201)一根米尺静止在S '系中,与X O ''轴成 30角。

大学物理B2_第14章_2

大学物理B2_第14章_2

(3) 当v > c时,m 是虚数无意义。
(4) 若m0 =0,当v=c,m有限值;若m0 0,当v=c,m无意义。
2014年10月15日星期三
13
第十四章 相对论2
3.相对论动量
p mv
m0 1 v c
2 2
v m0 v
二、狭义相对论力学的基本方程 m0 dp d (mv) d dv dm ( v) m v F 2 2 dt 1 v c dt dt dt dt dv 当v << c时, F m dt dm a 0 当vc时, dt 相对论动量守恒定律
第十四章 相对论2
2
陈子栋
2014年10月15日星期三
1
第十四章 相对论2
第十四章 相对论
14-1 伽利略变换式 牛顿的绝对时空观
洛伦兹变换式 14-2 迈克耳孙-莫雷实验 14-3 狭义相对论的基本原理 14-4 狭义相对论的时空观 14-6 相对论性动量和能量
2014年10月15日星期三
2
第十四章 相对论2
x
2014年10月15日星期三
vt 1 ( v / c) 2
1.34 109 m
11
第十四章 相对论2
14-6 相对论性动量和能量 一、动量、质量与速度关系 1.质量与速度关系 两个全同粒子的完全非弹性碰撞过程。A、B两个全同粒子正 碰后结合成为一个复合粒子.从S和S 两个惯性系来讨论:
固有时间 :同一地点发生的两事件的时间间隔。
t t t0
2014年10月15日星期三
固有时间
10
时间延缓:运动的时钟走的慢。 是一种相对效应。
第十四章 相对论2

大学物理讲稿(第14章狭义相对论基础)

大学物理讲稿(第14章狭义相对论基础)

第14章狭义相对论基础自从十七世纪,牛顿的经典理论形成以后,直到二十世纪前,它在物理学界一直处于统治地位.历史步入二十世纪时,物理学开始深入扩展到微观高速领域,这时发现牛顿力学在这些领域不再适用.物理学的发展要求对牛顿力学以及某些长期认为是不言自明的基本概念作出根本性的改革.从而出现了相对论和量子理论.本章介绍相对论的基本知识,在下章里将介绍量子理论的基本知识.§14.1 狭义相对论产生的历史背景一、力学相对性原理和经典时空观力学是研究物体运动的.物体的运动就是它的位置随时间的变化.为了定量研究这种变化,必须选择适当的参考系,而力学概念以及力学规律都是对一定的参考系才有意义的.在处理实际问题时,视问题的方便,我们可以选择不同的参考系.相对于任一参考系分析研究物体的运动时,都要应用基本的力学规律,这就要问对于不同的参考系,基本力学定律的形式是完全一样的吗?同时运动既然是物体位置随时间的变化,那么无论是运动的描述或是运动定律的说明,都离不开长度和时间的测量.因此与上述问题紧密联系而又更根本的问题是:相对于不同的参考系,长度和时间的测量结果是一样的吗?物理学对于这些根本性问题的解答,经历了从牛顿力学到相对论的发展.在牛顿的经典理论中,对第一个问题的回答,早在1632年伽利略曾在封闭的船舱里仔细的观察了力学现象,发现在船舱中觉察不到物体的运动规律和地面上有任何不同.他写到:“在这里(只要船的运动是等速的),你在一切现象中观察不出丝毫的改变,你也不能根据任何现象来判断船是在运动还是停止,当你在地板上跳跃的时候,你所通过的距离和你在一条静止的船上跳跃时通过的距离完全相同,”.据此现象伽利略得到如下结论:在彼此作匀速直线运动的所有惯性系中,物体运动所遵循的力学规律是完全相同的,应具有完全相同的数学表达式.也就是说,对于描述力学现象的规律而言,所有惯性系都是等价的,这称为力学相对性原理.对第二个问题的回答,牛顿理论认为,时间和空间都是绝对的,可以脱离物质运动而存在,并且时间和空间也没有任何联系.这就是经典的时空观,也称为绝对时空观.这种观点表现在对时间间隔和空间间隔的测量上,则认为对所有的参考系中的观察者,对于任意两个事件的时间间隔和空间距离的测量结果都应该相同.显然这种观点符合人们日常经验.依据绝对时空观,伽利略得到反映经典力学规律的伽利略变换.并在此基础上,得出不同惯性参考系中物体的加速度是相同的.在经典力学中,物体的质量m又被认为是不变的,据此,牛顿运动定律在这两个惯性系中的形式也就成为相同的了,这表明牛顿第二定律具有伽利略变换下的不变性.可以证明,经典力学的其他规律在伽利略变换下也是不变的.所以说,伽利略变换是力学相对性原理的数学表述,它是经典时空观念的集中体现.二、狭义相对论产生的历史背景和条件19世纪后期,随着电磁学的发展,电磁技术得到了越来越广泛的应用,同时对电磁规律的更加深入的探索成了物理学研究的中心,终于导致了麦克斯韦电磁理论的建立.麦克斯韦方程组是这一理论的概括和总结,它完整的反映了电磁运动的普遍规律,而且预言了电磁波的存在,揭示了光的电磁本质.这是继牛顿之后经典理论的又一伟大成就.光是电磁波,由麦克斯韦方程组可知,光在真空中传播的速率为m/s 1098821800⨯=εμ=.c 它是一个恒量,这说明光在真空中传播的速率与光传播的方向无关.按照伽利略变换关系,不同惯性参考系中的观察者测定同一光束的传播速度时,所得结果应各不相同.由此必将得到一个结论:只有在一个特殊的惯性系中,麦克斯韦方程组才严格成立,即在不同的惯性系中,宏观电磁现象所遵循的规律是不同的.这样以来,对于不可能通过力学实验找到的特殊参考系,现在似乎可以通过电磁学、光学实验找到,例如若能测出地球上各方向光速的差异,就可以确定地球相对于上述特殊惯性系的运动.为了说明不同惯性系中各方向上光速的差异,人们不仅重新研究了早期的一些实验和天文观察,还设计了许多新的实验.迈克耳孙——莫雷实验就是最早设计用来测量地球上各方向光速差异的著名实验.然而在各种不同条件下多次反复进行测量都表明:在所有惯性系中,真空中光沿各个方向上传播的速率都相同,即都等于c.这是个与伽利略变换乃至整个经典力学不相容的实验结果,它曾使当时的物理学界大为震动.为了在绝对时空观的基础上统一的说明这个实验和其他实验结果,一些物理学家,如洛伦兹等,曾提出各种各样的假设,但都未能成功.1905年,26岁的爱因斯坦另辟蹊径.他不固守绝对时空观和经典力学的观念,而是在对实验结果和前人工作进行仔细分析研究的基础上,从全新的角度来考虑所有问题.首先,他认为自然界是对称的,包括电磁现象在内的一切物理现象和力学现象一样,都应满足相对性原理,即在所有的惯性系中物理定律及其数学表达式都是相同的,因而用任何方法都不能确定特殊的参考系;此外,他还指出,许多实验都已表明,在所有的惯性系中测量,真空中的光速都是相同的.于是爱因斯坦提出了两个基本假设,并在此基础上建立了新的理论——狭义相对论.§14.2 狭义相对论的基本原理一、狭义相对论的两个基本假设爱因斯坦在对实验结果和前人工作进行仔细分析研究的基础上,提出了狭义相对论的如下两个基本假设1)相对性原理:基本物理定律在所有惯性系中都保持相同形式的数学表达式,即一切惯性系都是等价的.它是力学相对性原理的推广和发展.2)光速不变原理:在一切惯性系中,光在真空中沿各个方向传播的速率都等于同一个恒量c,且与光源的运动状态无关.狭义相对论的这两个基本假设虽然非常简单,但却与人们已经习以为常的经典时空观及经典力学体系不相容.确认两个基本假设,就必须彻底摒弃绝对时空观念,修改伽利略坐标变换关系和牛顿力学定律等,使之符合狭义相对论两个基本原理的要求.另一方面应注意到,伽利略变换关系和牛顿力学定律是在长期的实践中证明是正确的,因此它们应该是新的坐标变换式和新的力学定律在一定条件下的近似.即狭义相对论应包含牛顿力学理论在内,牛顿的经典力学理论是狭义相对论在一定条件(低速运动情况)下的近似.尽管狭义相对论的某些结论可能会使初学者感到难于理解,但是一百多年来大量实验事实表明,依据上述两个基本假设建立起来的狭义相对论,确实比经典理论更真实、更全面、更深刻地反映了客观世界的规律性.二、洛伦兹变换为简单起见,如图14.1所示,设惯性系S'(O' x'y' z' )以速度υ相对于惯性系S (O xy z )沿x (x') 轴正向作匀速直线运动,x'轴与 x 轴重合,y' 和 z' 轴分别与 y 和 z 轴平行,S 系原点O 与S '系原点O '重合时两惯性坐标系在原点处的时钟都指示零点.设P 为观察的某一事件,在S 系观察者看来,它是在t 时刻发生在(x,y, z )处的,而在S'系观察者看来,它却在t '时刻发生在(x',y', z')处.下面我们就来推导这同一事件在这两惯性系之间的时空坐标变换关系.在y (y')方向和z(z')方向上,S 系和S '系没有相对运动,则有:y' =y ,z'=z,下面仅考察(x 、t)和(x'、t')之间的变换.由于时间和空间的均匀性,变换应是线性的,在考虑 t=t'=0 时两个坐标系的原点重合,则x 和(x' +υt' )只能相)'(x x )',','(),,(z y x z y x P y 'y z 'z 'o o 图14.1 洛伦兹坐标变换差一个常数因子,即)''(t x x υ+γ= (14.1)由相对性原理知,所有惯性系都是等价的,对S'系来说,S 系是以速度υ沿x' 的负方向运动,因此,x' 和(x -υt)也只能相差一个常数因子,且应该是相同的常数,即有)('t x x υ-γ= (14.2)为确定常数γ,考虑在两惯性系原点重合时(t=t'=0),在共同的原点处有一点光源发出一光脉冲,在S 系和S'系都观察到光脉冲以速率c 向各个方向传播.所以有'',ct x ct x == (14.3)将式(14.3)代入式(14.1)和式(14.2)并消去 t 和 t' 后得2211c /υ-=γ (14.5)将上式中的γ代入式(14.2)得221c tx x /'υ-υ-= (14.6)另由式(14.1)和(14.2)求出t' 并代入γ的值得2222111cc x t t //)('υ-υ-=γυγ-+γ= 于是得到如下的坐标变换关系⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧υ-υ-===υ-υ-=2222211c cx t t zz y y c t x x //'''/' 逆变换−−−−−→−υ-→υ↔↔,','t t x x ϖ ⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧υ-υ+===υ-υ+=2222211c c x t t z z y y c t x x //''''/'' (14.7) 这种新的坐标变换关系称为洛伦兹(H.A.Lorentz,1853—1928)变换.显然,讨论:1)从洛伦兹变换中可以看出,不仅x' 是 x 、t 的函数,而且 t' 也是x 、t 的函数,并且还都与两个惯性系之间的相对运动速度有关,这样洛伦兹变换就集中的反映了相对论关于时间、空间和物体运动三者紧密联系的新观念.这是与牛顿理论的时间、空间与物体运动无关的绝对时空观截然不同的.2)在c <<υ的情况下,洛伦兹变换就过渡到伽利略变换.3)洛伦兹变换中,x'和t'都必须是实数,所以速率υ必须满足c ≤υ.于是我们就得到了一个十分重要的结论:一切物体的运动速度都不能超过真空中的光速c ,或者说真空中的光速c 是物体运动的极限速度.4)时钟和尺子。

大学物理第14章 近代物理学习题及答案

大学物理第14章 近代物理学习题及答案

第14章 近代物理学一、简答题1、简述狭义相对论的两个基本原理。

答:爱因斯坦相对性原理: 所有的惯性参考系对于运动的描述都是等效的。

光速不变原理: 光速的大小与光源以及观察者的运动无关,即光速的大小与参考系的选择无关。

2、简述近光速时粒子的能量大小以及各部分能量的意义。

答:总能量2E mc = 2,静能量20E c m =,动能为()20k -m E c m =表示的是质点运动时具有的总能量,包括两部分,质点的动能k E 及其静动能20c m 。

3、给出相对论性动量和能量的关系,说明在什么条件下,cp E =才成立? 答:相对论性动量和能量的关系为:22202c p E E +=,如果质点的能量0E E >> ,在这种情况下则有cp E =。

4、爱因斯坦相对论力学与经典力学最根本的区别是什么? 写出一维情况洛伦兹变换关系式。

答案:经典力学的绝对时空观与相对论力学的运动时空观。

相对论力学时空观认为:当物体运动速度接近光速时,时间和空间测量遵从洛伦兹变化关系:()vt x -='γx ⎪⎭⎫ ⎝⎛-='x cv t 2t γ 5、写出爱因斯坦的质能关系式,并说明其物理意义。

答:2E mc = 或2E mc ∆=∆物理意义:惯性质量的增加和能量的增加相联系,能量的改变必然导致质量的相应变化,相对论能量和质量遵从守恒定律。

6、什么是光的波粒二象性?答:光的波粒二象性指的是光即有粒子性又具有波动性,其中,粒子的特性有颗粒性和整体性,没有“轨道性”;波动的特性有叠加性,没有“分布性”。

一般来说,光在传播过程中波动性表现比较显著,当光与物质相互作用时,粒子性表现显著。

光的这种两重性,反映了光的本质。

二、选择题1、一观察者测得一沿米尺长度方向匀速运动着的米尺的长度为m 8.0。

则此米尺的速度为(真空中的光速为s m 8103⨯) ( B ):(A) s m 8102.1⨯ (B) s m 8108.1⨯ (C) s m 8104.2⨯ (D) s m 8103⨯ 2、一宇航员要到离地球5光年的星球去旅行,如果宇航员希望将路程缩短为3光年,则他所乘坐的火箭相当于地球的速度应为光速的几倍( C ): (A) 0.5(B) 0.6(C) 0.8(D) 0.93、一静止质量为0m 的物体被加速到02m ,此时物体的速度为光速的几倍( D ): (A) 1 (B) 0.5 (C) 0.707 (D) 0.8664、在惯性系S 中,有两个静止质量都是0m 的粒子A 和B ,分别以速度v 沿同一直线相向运动,碰后合在一起成为一个粒子,则合成粒子静质量0M 的值为(c 表示真空中光速) ( D ):(A)02m (B) ()2012c vm -(C)()212c vm - (D)()2012c vm -5、质子在加速器中被加速,当其动能为静止能量的4倍时,其质量为静止质量的几倍? ( B ): (A) 4(B) 5(C) 6(D) 86、k E 是粒子的动能,p 是它的动量,那么粒子的静能等于( A ):(A)()kk 2E E -c p 222 (B)()kk 2E E -cp 22(C) ()222E -c p k(D)()kk 2E E -pc 27、一个光子和一个电子具有同样的波长,则( C ): (A) 光子具有较大的动量; (B) 电子具有较大的动量; (C) 它们具有相同的动量; (D) 光子没有动量。

物理学《相对论》考试题及答案

物理学《相对论》考试题及答案

物理学《相对论》考试题及答案14 -1 下列说法中(1) 两个相互作用的粒子系统对某一惯性系满足动量守恒,对另一个惯性系来说,其动量不一定守恒;(2) 在真空中,光的速度与光的频率、光源的运动状态无关;(3) 在任何惯性系中,光在真空中沿任何方向的传播速率都相同.其中哪些说法是正确的? ( )(A) 只有(1)、(2)是正确的 (B) 只有(1)、(3)是正确的(C) 只有(2)、(3)是正确的 (D) 三种说法都是正确的分析与解 物理相对性原理和光速不变原理是相对论的基础.前者是理论基础,后者是实验基础.按照这两个原理,任何物理规律(含题述动量守恒定律)对某一惯性系成立,对另一惯性系也同样成立.而光在真空中的速度与光源频率和运动状态无关,从任何惯性系(相对光源静止还是运动)测得光速均为3×108 m·s -1 .迄今为止,还没有实验能推翻这一事实.由此可见,(2)(3)说法是正确的,故选(C).14 -2 按照相对论的时空观,判断下列叙述中正确的是( )(A) 在一个惯性系中两个同时的事件,在另一惯性系中一定是同时事件(B) 在一个惯性系中两个同时的事件,在另一惯性系中一定是不同时事件(C) 在一个惯性系中两个同时又同地的事件,在另一惯性系中一定是同时同地事件(D) 在一个惯性系中两个同时不同地的事件,在另一惯性系中只可能同时不同地 (E) 在一个惯性系中两个同时不同地事件,在另一惯性系中只可能同地不同时分析与解 设在惯性系S中发生两个事件,其时间和空间间隔分别为Δt 和Δx ,按照洛伦兹坐标变换,在S′系中测得两事件时间和空间间隔分别为221ΔΔΔβx c t t --='v 和 21ΔΔΔβt x x --='v 讨论上述两式,可对题述几种说法的正确性予以判断:说法(A)(B)是不正确的,这是因为在一个惯性系(如S系)发生的同时(Δt =0)事件,在另一个惯性系(如S′系)中是否同时有两种可能,这取决于那两个事件在S 系中发生的地点是同地(Δx =0)还是不同地(Δx≠0).说法(D)(E)也是不正确的,由上述两式可知:在S系发生两个同时(Δt =0)不同地(Δx ≠0)事件,在S′系中一定是既不同时(Δt ′≠0)也不同地(Δx ′≠0),但是在S 系中的两个同时同地事件,在S′系中一定是同时同地的,故只有说法(C)正确.有兴趣的读者,可对上述两式详加讨论,以增加对相对论时空观的深入理解.14 -3 有一细棒固定在S′系中,它与Ox ′轴的夹角θ′=60°,如果S′系以速度u 沿Ox 方向相对于S系运动,S 系中观察者测得细棒与Ox 轴的夹角( )(A) 等于60° (B) 大于60° (C) 小于60°(D) 当S′系沿Ox 正方向运动时大于60°,而当S′系沿Ox 负方向运动时小于60°分析与解 按照相对论的长度收缩效应,静止于S′系的细棒在运动方向的分量(即Ox 轴方向)相对S系观察者来说将会缩短,而在垂直于运动方向上的分量不变,因此S系中观察者测得细棒与Ox 轴夹角将会大于60°,此结论与S′系相对S系沿Ox 轴正向还是负向运动无关.由此可见应选(C).14 -4 一飞船的固有长度为L ,相对于地面以速度v 1 作匀速直线运动,从飞船中的后端向飞船中的前端的一个靶子发射一颗相对于飞船的速度为v 2 的子弹.在飞船上测得子弹从射出到击中靶的时间间隔是( ) (c 表示真空中光速) (A) 21v v +L (B) 12v -v L (C) 2v L (D) ()211/1c L v v - 分析与解 固有长度是指相对测量对象静止的观察者所测,则题中L 、v 2 以及所求时间间隔均为同一参考系(此处指飞船)中的三个相关物理量,求解时与相对论的时空观无关.故选(C). 讨论 从地面测得的上述时间间隔为多少? 建议读者自己求解.注意此处要用到相对论时空观方面的规律了.14 -5 设S′系以速率v =0.60c 相对于S系沿xx′轴运动,且在t =t ′=0时,x =x ′=0.(1)若有一事件,在S系中发生于t =2.0×10-7s,x =50m 处,该事件在S′系中发生于何时刻?(2)如有另一事件发生于S系中t =3.0×10-7 s,x =10m 处,在S′系中测得这两个事件的时间间隔为多少?分析 在相对论中,可用一组时空坐标(x ,y ,z ,t )表示一个事件.因此,本题可直接利用洛伦兹变换把两事件从S系变换到S′系中.解 (1) 由洛伦兹变换可得S′系的观察者测得第一事件发生的时刻为s 1025.1/1721211-⨯=--='c x c t t 2v v (2) 同理,第二个事件发生的时刻为s 105.3/1722222-⨯=--='c x c t t 2v v 所以,在S′系中两事件的时间间隔为s 1025.2Δ712-⨯='-'='t t t 14 -6 设有两个参考系S 和S′,它们的原点在t =0和t ′=0时重合在一起.有一事件,在S′系中发生在t ′=8.0×10-8 s ,x ′=60m ,y ′=0,z ′=0处若S′系相对于S 系以速率v =0.6c 沿xx′轴运动,问该事件在S系中的时空坐标各为多少?分析 本题可直接由洛伦兹逆变换将该事件从S′系转换到S系.解 由洛伦兹逆变换得该事件在S 系的时空坐标分别为 m 93/12=-'+'=c t x x 2v vy =y′=0z =z′=0s 105.2/1722-⨯=-'+'=c x c t t 2v v 14 -7 一列火车长0.30km(火车上观察者测得),以100km·h -1 的速度行驶,地面上观察者发现有两个闪电同时击中火车的前后两端.问火车上的观察者测得两闪电击中火车前后两端的时间间隔为多少?分析 首先应确定参考系,如设地面为S系,火车为S′系,把两闪电击中火车前后端视为两个事件(即两组不同的时空坐标).地面观察者看到两闪电同时击中,即两闪电在S系中的时间间隔Δt =t 2-t 1=0.火车的长度是相对火车静止的观察者测得的长度(注:物体长度在不指明观察者的情况下,均指相对其静止参考系测得的长度),即两事件在S′系中的空间间隔Δx ′=x ′2 -x ′1=0.30×103m.S′系相对S系的速度即为火车速度(对初学者来说,完成上述基本分析是十分必要的).由洛伦兹变换可得两事件时间间隔之间的关系式为。

大学物理简明教程陈执平参考解答(完整版)14.相对论习题

大学物理简明教程陈执平参考解答(完整版)14.相对论习题

14-1 一运动员在地球上跑完m 100耗时10s ,问在相对地面以c 98.0同向飞行的飞船中观测,这名运动员跑了多少时间?解: 这是不同地点(起点、终点)发生的两个事件,不能套用时间延长公式。

s25.5098.01c/)0100(c 98.0)010(cu 1c/)x x (u )t t (t t 22222121212=----=----='-'14-2 飞船A 及B 沿x 轴作相对运动,A 测得两个事件的空间坐标为m 1012x ,m 106x 4241⨯=⨯=,相应的时间坐标为s 101t ,s 102t 4241--⨯=⨯=,如果B 测得这两个事件是同时发生的,问(1)B 对A 的运动速度是多少?(2)B 测得的这两个事件的空间间隔是多少?解: (1) 设B 对A 的运动速度为u ,B 所测得的两个事件同时发生于t ',则222cu 1xcu t t --='B 测得的这两事件的时间间隔是222121212cu 1c/)x x (u )t t (t t ----='-',将0t t 12='-'用已知条件代入得 2224444cu 1c/)1061012(u )102101(0-⨯-⨯-⨯-⨯=--解得 2c u =(2) m1020.5cu 1)t t (u )x x (x x 422121212⨯=----='-'14-3 在飞船中测得本飞船长度为0l ,又在飞船中测得船内一小球以速率u 从飞船尾部滚到头部,当飞船以速率v 相对地面作匀速直线运动时,地面的人测得小球滚动的时间是多少?解:宇航员测得小球离开尾部的时空坐标为)t ,x (11'',到达头部的时空坐标为)t ,x (22''。

在地面上测,有222121212cv 1c /)x x (v )t t (t t t -'-'+'-'=-=∆因为 012l x x ='-',ul t t 012='-',故2220cv 1u c /uv 1(l t -+=∆14-4 一飞船静止放在地面时测得其长度为m 90。

大学物理习题及解答(相对论)

大学物理习题及解答(相对论)

1.在惯性系S 中观察到有两个事件发生在同一地点,其时间间隔为4.0 s ,从另一惯性系S '中观察到这两个事件的时间间隔为6.0 s ,试问从S ′系测量到这两个事件的空间间隔是多少?设S ′系以恒定速率相对S 系沿x x '轴运动。

解:由题意知在 S 系中的时间间隔为固有时,即Δt = 4.0 s ,而Δt ′ = 6.0 s 。

根据时间延缓效应的关系式22/1'c v tt -∆=∆可得S′系相对S 系的速度为c c t t v 35'1212=⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛∆∆-= 两事件在S′系中的空间间隔为m 1034.1''9⨯=∆=∆t v x2.若从一惯性系中测得宇宙飞船的长度为其固有长度的一半,试问宇宙飞船相对此惯性系的速度为多少?(以光速c 表示)解:设宇宙飞船的固有长度为0l ,它相对于惯性系的速率为v ,而从此惯性系测得宇宙飞船的长度为20l ,根据洛伦兹长度收缩公式,有200121⎪⎭⎫ ⎝⎛-=c v l l可解得c c v 866.023==3.半人马星座α星是离太阳系最近的恒星,它距地球为4.3×1016 m 。

设有一宇宙飞船自地球往返于半人马星座α星之间。

(1)若宇宙飞船的速率为0.999C ,按地球上时钟计算,飞船往返一次需多少时间?(2)如以飞船上时钟计算,往返一次的时间又为多少?解:(1)以地球上的时钟计算,飞船往返一次的时间间隔为a 0.91087.228≈⨯==∆s v s t(2)以飞船上的时钟计算,飞船往返一次的时间间隔为a 0.40s 1028.11'722≈⨯=-∆=∆c v t t4.若一电子的总能量为5.0 MeV ,求该电子的静能、动能、动量和速率。

解:电子静能为)kg 101.9(,MeV 512.0310200-⨯===m c m E 电子动能为MeV488.40K =-=E E E由20222E c p E +=,得电子动量为 12121202s m kg 1066.2)(1--⋅⋅⨯=-=E E c p由 21220)-(1-=c v E E 得电子速率为cE E E c v 995.0212202=⎪⎪⎭⎫ ⎝⎛-=5.如果将电子由静止加速到速率为0.10c ,需对它作多少功?如将电子由速率为0.80 c 加速到0.90c ,又需对它作多少功?解:由相对论性的动能表达式和质速关系可得当电子速率从 v 1增加到v 2时,电子动能的增量为⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧⎥⎦⎤⎢⎣⎡--⎥⎦⎤⎢⎣⎡-==-=--2121212220202120221211)-(-)-()c v ()c v (c m c m c m c m c m E E E Δk k k根据动能定理,当v 1 = 0, v 2 = 0.10c 时,外力所作的功为eV 1058.23k ⨯=∆=E W当v 1 = 0.80c ,v 2 = 0.90c 时,外力所作的功为eV 1021.35k ⨯='∆='E W由计算结果可知,虽然同样将速率提高0.1c ,但后者所作的功比前者要大得多,这是因为随着速率的增大,电子的质量也增大。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第十四章 相对论
一.选择题
1. 有下列几种说法:
(1)真空中,光速与光的频率、光源的运动、观察者的运动无关.
(2)在所有惯性系中,光在真空中沿任何方向的传播速率都相同.
(3)所有惯性系对物理基本规律都是等价的.
请在以下选择中选出正确的答案
(A) 只有(1)、(2)是正确的.
(B) 只有(1)、(3)是正确的.
(C) 只有(2)、(3)是正确的.
(D) 三种说法都是正确的. [ ]
2. (1)对某观察者来说,发生在某惯性系中同一地点、同一时刻的两个事件,对于相对该
惯性系作匀速直线运动的其它惯性系中的观察者来说,它们是否同时发生?(2)在某惯性
系中发生于同一时刻、不同地点的两个事件,它们在其它惯性系中是否同时发生?
(A )(1)同时,(2)不同时。

(B )(1)不同时,(2)同时。

(C )(1)同时,(2)同时。

(D )(1)不同时,(2)不同时。

[ ]
3. K 系中沿x 轴方向相距3m 远的两处同时发生两件事,在K ′系中上述两事件相距5m 远,
则两惯性系间的相对速度为(c 为真空中光速)
(A) (4/5) c (B) (3/5) c
(C) (2/5) c (D) (1/5) c [ ]
4. 两个惯性系K 和K ',沿x x '轴方向作相对运动,相对速度为v ,设在K '系中某点先后
发生的两个事件,用固定于该系的钟测出两事件的时间间隔为0t ∆,而用固定在K 系的钟测
出这两个事件的时间间隔为t ∆,又在K '系x '轴上放置一固有长度为0l 的细杆,从K 系测
得此杆的长度为l ,则
(A) .;00l l t t <∆<∆ (B) .;00l l t t >∆<∆
(C) .;00l l t t >∆>∆ (D) .;00l l t t <∆>∆ [ ]
5. 边长为a 的正方形薄板静止于惯性系K 的Oxy 平面内,且两边分别与x ,y 轴平行.今有
惯性系K '以 0.6c (c 为真空中光速)的速度相对于K 系沿x 轴作匀速直线运动,则从K '
系测得薄板的面积为
(A) 0.6a2(B) 0.8 a2
(C) 0.36a2(D) 0.64a2[]
6. 一静止长度为100m的飞船相对地球以0.6 c(c表示真空中光速)的速度飞行,一光脉冲从船尾传到船头。

求地球上的观察者测得光脉冲从船尾发出和到达船头两个事件的空间间隔为
(A)100m (B)80m
(C)200m (D)148m
7. 某核电站年发电量为1000亿度,它等于36×1016 J的能量,如果这是由核材料的全部静止能转化产生的,则需要消耗的核材料的质量为
(A) 4.0 kg (B) 8.0kg
(C) (1/12)×108 kg (D) 12×108 kg []
8. 根据相对论力学,动能为0.255 MeV的电子,其运动速度约等于(c表示真空中光速,电子的静能m0c2 = 0.51 MeV)
(A) 0.1c(B) 0.5 c(C) 0.75 c(D) 0.85 c
[]
9. 一个电子运动速度v= 0.99c,它的动能是(c表示真空中光速,电子的静能m0c2 = 0.51 MeV)
(A) 4.0MeV (B) 3.5 MeV
(C) 3.1 MeV(D) 2.5 MeV []
10.有两只对准的钟,一只留在地面上,另一只带到以速率v飞行着的飞船上,则
(A)、飞船上的人看到自已的钟比地面上的钟慢;
(B)、地面上的人看到自己的钟中比飞船上的钟慢;
(C)、飞船上的人觉得自己的钟比原来走慢了;
(D)、地面上的人看到自己的钟比飞船上的钟快。

[]
二.填空题
1.狭义相对论的两条基本原理中,相对性原理表述为______________________________
___________________________________________________________ ;光速不变原理表述_______________________________________________________________________ 。

2.以速度v相对于地球作匀速直线运动的恒星所发射的光子,其相对于地球的速度大小为_____________________。

3. 宇宙飞船相对于地面以速度v 作匀速直线飞行,某一时刻飞船头部的宇航员向飞船尾部
发出一个光脉冲,经过∆t (飞船上的钟)时间后,被尾部的接收器收到,则由此可知飞船的
固有长度为 。

(用真空中光速c 表示)
4.一观察者测得一沿长度方向匀速运动的米尺长度为 0.8 m ,则此米尺以v =____
m ·s -
1的速度接近观察者。

5. 一门宽为l .今有一固有长度为l 0 (l 0 > l )的水平细杆,在门外贴近门的平面内沿其长度
方向匀速运动.若门外的观察者认为此杆的两端可同时被拉进门,则该杆相对于门的运动速
率v 至少为_______________________________。

6. 一宇航员要到离地球为5光年的星球去旅行.如果宇航员希望把这路程缩短为3光年,
他所乘的火箭相对于地球的速度应是 。

(用真空中光速c 表示)
7. 某惯性系同时、同地发生的两事件,在其他有相对运动的惯性系考察,上述两事件一定
;某惯性系同时、 发生的两事件,在其他有相对运动的惯性系考察,
上述两事件一定不同时。

8. 狭义相对论中,一静止质量为m 0的质点,其质量m 与速度v 的关系式为______________;
其动能的表达式为______________。

9. 把一个静止质量为m e 的电子,从静止加速到0.6 c ,需对它作功 。

(用真
空中光速c 表示)
答案
一.选择题
1.D
2.A
3.A
4.D
5.B
6.C
7.A
8.C
9.C 10.D
二.填空题
1. 所有惯性系对于物理学定律都是等价的 所有惯性系中,真空中的光速都是相等的
2.c 3.t c ∆ 4.c 6.0 5. 20)/(1l l c - 6.c 8.0 7. 同时;不同地
8. 220
)/(1c v m m -= ;220K E mc m c =- 9.225.0c m e。

相关文档
最新文档