离子晶体和分子晶体1
晶体类型

晶体类型只有4种:离子晶体、原子晶体、分子晶体、金属晶体,
判断晶体类型方法:1、首先判断是否为金属晶体,像Mg、Al、Na等金属都是金属晶体,2、然后判断是否为原子晶体,原子晶体常见的只有金刚石、单质硅、SiO
、SiC,3、再判断是否为离子晶体,离子化合物固态时都是离子晶体。
高中2
阶段常见离子化合物中一般含有活泼的金属元素(如含Li、Na、K、Mg、Ca、Ba元素的强电解质)和铵盐,除此之外的单质和化合物一般为分子晶体。
晶体的熔点:原子晶体>离子晶体>分子晶体
、金刚石。
原子晶体的熔点的比较是以原高中阶段原子晶体有:Si、SiC 、SiO
2
子半径为依据的:金刚石> SiC > Si (因为原子半径:Si> C> O).
分子晶体的熔、沸点:组成和结构相似的物质,分子量越大熔、沸点越高。
晶体熔沸点比较

一般来说(就是在一般的情况下比较,没说 “一定 ”)原子晶体,分子晶体,离子 晶体,金属晶体,非金属晶体,的熔沸点高低比较一下排成队列应该是:原子晶 体>离子晶体 >分子晶体 .各种金属晶体之间熔点相差大 ,不容易比较 .你写的 "非金 属晶体",在化学的"晶体"中,没有这个分类 .化学中的晶体总共有 :原子晶体,离子晶 体,金属晶体 ,分子晶体 ,混合晶体 (如:石墨)① 离子晶体:离子所带的电荷数越高,离子半径越小,则其熔沸点就越高。
② 分子晶体:对于同类分子晶体,式量越大,则熔沸点越高。
等物质分子间存在氢键。
③ 原子晶体:键长越小、键能越大,则熔沸点越高。
(3)常温常压下状态① 熔点:固态物质 >液态物质② 沸点:液态物质 >气态物质 定义:把分子聚集在一起的作用力 分子间作用力(范德瓦尔斯力):影响因素:大小与相对分子质量有关。
作用:对物质的熔点、沸点等有影响。
① 、定义:分子之间的一种比较强的相互作用。
分子间相互作用② 、③ 、④ 、⑤ 、 稍强;是一种较强的分子间作用力。
定义:从整个分子看, 分子里电荷分布是对称的 (正负电荷中心能重合) 的分子。
非极性分子双原子分子:只含非极性键的双原子分子如: O2、 H2、 Cl2 等。
举例:只含非极性键的多原子分子如: O3、 P4 等 分子极性多原子分子: 含极性键的多原子分子若几何结构对称则为非极性分子 如: CO2、 CS2 (直线型)、 CH4、 CCl4 (正四面体型) 极性分子: 定义:从整个分子看,分子里电荷分布是不对称的(正负电荷中心 不能重合)的。
举例 双原子分子:含极性键的双原子分子如: HCl 、 NO 、 CO 等多原子分子: 含极性键的多原子分子若几何结构不对称则为极性分子 如:NH3三角锥型)、H20(折线型或V 型)、H2O2HF 、H2O 、NH3 形成条件:第二周期的吸引电子能力强的 N 、0、F 与H 之间(NH3、H20) 对物质性质的影响:使物质熔沸点升高。
离子晶体、分子晶体、原子晶体

2、物理特性:
(1)较低的熔点和沸点,易升华; (2)较小的硬度; (3)一般都是绝缘体,熔融状态也不导电。
原因:分子间作用力较弱
3、典型的分子晶体:
–非金属氢化物:H2O,H2S,NH3,CH4,HX –酸:H2SO4,HNO3,H3PO4 –部分非金属单质:X2,O2,H2, S8,P4, C60 –部分非金属氧化物: CO2, SO2, NO2, P4O6, P4O10 –大多数有机物:乙醇,冰醋酸,蔗糖
思考1 原子晶体的化学式是否可以代表其分子式?
不能。因为原子晶体是一个三维的网状结构,无 小分子存在。
思考2 以金刚石为例,说明原子晶体的微观结构与分 子晶体有哪些不同? (1)组成微粒不同,原子晶体中只存在原子,没有
分子。 (2)相互作用不同,原子晶体中存在的是共价键。
4、原子晶体熔、沸点比较规律
①二氧化硅中Si原子均以sp3杂化,分别 与4个O原子成键,每个O原子与2个Si原子 成键; ②晶体中的最小环为十二元环,其中有6 个Si原子和6个O原子,含有12个Si-O键; 每个Si原子被12个十二元环共有,每个O原 子被6个十二元环共有,每个Si-O键被6个 十二元环共有;每个十二元环所拥有的Si 原子数为6×1/12=1/2,拥有的O原子数为 6×1/6=1,拥有的Si-O键数为12×1/6=2, 则Si原子数与O原子数之比为1:2。
Na+
(1)NaCl的晶体结构
立方结构(基本结构单元是立方体)
晶胞:
讨论:
晶体中最小的重复单元
6 1、每个Na 离子周围有____个Cl-离子,每 个Cl- 离子周围有____个Na+ 离子。 6
+
2、每个Na+离子周围与Na+最近且等距离的 Na+有____个,每个Cl- 离子周围与Cl-最近且 12 12 等距离的Cl-有____个。
高中化学晶体类型的判断

高中化学晶体类型的判断
高中化学中,晶体是由原子、分子或离子以规则的方式排列而成的固体物质。
晶体的类型可以通过晶体的结构以及组成元素来判断。
晶体的结构类型可以分为离子晶体、共价晶体和分子晶体。
离子晶体是由正负离子通过离子键结合而成的晶体。
在离子晶体中,正负离子按照一定的比例排列在空间中形成晶格结构。
典型的离子晶体有氯化钠(NaCl)、氧化铁(Fe2O3)等。
判断一个固体是否为离子晶体可以通过分析其组成元素的离子性质以及晶体的导电性等特征。
共价晶体是由原子通过共价键结合而成的晶体。
在共价晶体中,原子之间共用电子形成化学键。
典型的共价晶体有金刚石(C)和石墨(C)。
判断一个固体是否为共价晶体可以通过分析其组成元素的原子性质
以及晶体的导电性等特征。
分子晶体是由分子通过范德华力或氢键等相互作用力结合而成的晶体。
在分子晶体中,分子之间以一定的方式排列形成晶格。
典型的分子晶体有冰(H2O)和葡萄糖(C6H12O6)等。
判断一个固体是否为分子晶体可以通过分析其组成元素的分子结构以及晶体的物理性质等
特征。
除了上述的结构类型判断,还有其他的方法可以用于判断晶体的类型。
例如,可以通过晶体的形态学特征,如晶面、晶胞大小等来判断晶体的类型。
此外,也可以通过X射线衍射等实验手段来确定晶体的结构类型。
总之,判断晶体的类型需要综合考虑晶体的结构、组成元素以及物理性质等特征。
通过对这些特征的分析,我们可以确定晶体的类型,并进一步了解其性质和应用。
金属晶体分子晶体原子晶体离子晶体

金属晶体、分子晶体、原子晶体和离子晶体金属晶体:由金属键形成的单质晶体。
金属单质及一些金属合金都属于金属晶体,例如镁、铝、铁和铜等。
金属晶体中存在金属离子(或金属原子)和自由电子,金属离子(或金属原子)总是紧密地堆积在一起,金属离子和自由电子之间存在较强烈的金属键,自由电子在整个晶体中自由运动,金属具有共同的特性,如金属有光泽、不透明,是热和电的良导体,有良好的延展性和机械强度。
大多数金属具有较高的熔点和硬度,金属晶体中,金属离子排列越紧密,金属离子的半径越小、离子电荷越高,金属键越强,金属的熔、沸点越高。
例如周期系IA族金属由上而下,随着金属离子半径的增大,熔、沸点递减。
第三周期金属按Na、Mg、Al顺序,熔沸点递增。
根据中学阶段所学的知识。
金属晶体都是金属单质,构成金属晶体的微粒是金属阳离子和自由电子(也就是金属的价电子)。
分子晶体:分子间以范德华力相互结合形成的晶体。
大多数非金属单质及其形成的化合物如干冰(CO2)、I2、大多数有机物,其固态均为分子晶体。
分子晶体是由分子组成,可以是极性分子,也可以是非极性分子。
分子间的作用力很弱,分子晶体具有较低的熔、沸点,硬度小、易挥发,许多物质在常温下呈气态或液态,例如O2、CO2是气体,乙醇、冰醋酸是液体。
同类型分子的晶体,其熔、沸点随分子量的增加而升高,例如卤素单质的熔、沸点按F2、Cl2、Br2、I2顺序递增;非金属元素的氢化物,按周期系同主族由上而下熔沸点升高;有机物的同系物随碳原子数的增加,熔沸点升高。
但HF、H2O、NH3、CH3CH2OH等分子间,除存在范德华力外,还有氢键的作用力,它们的熔沸点较高。
分子组成的物质,其溶解性遵守“相似相溶[1]”原理,极性分子易溶于极性溶剂,非极性分子易溶于非极性的有机溶剂,例如NH3、HCl极易溶于水,难溶于CCl4和苯;而Br2、I2难溶于水,易溶于CCl4、苯等有机溶剂。
根据此性质,可用CCl4、苯等溶剂将Br2和I2从它们的水溶液中萃取、分离出来。
晶体结构与晶体的物理性质

晶体结构与晶体的物理性质晶体是一种具有高度有序排列的固体,由于其独特的结构和组成,赋予了晶体许多特殊的物理性质。
本文将探讨晶体结构与晶体的物理性质之间的关系,介绍晶体结构的分类及其对晶体性质的影响。
一、晶体结构的分类晶体的结构可以按照其原子、离子或分子的排列方式进行分类。
常见的晶体结构包括离子晶体、共价晶体、金属晶体和分子晶体。
离子晶体是由正负离子按照一定的比例排列形成的,典型的例子是氯化钠晶体(NaCl)。
这种晶体结构具有高度的电荷平衡,通常具有良好的电导性和熔点较高的特点。
共价晶体是由共价键连接的原子网格组成,例如钻石。
这种晶体结构非常坚固,通常具有高硬度和高熔点的性质。
金属晶体是由金属元素的原子形成的,具有典型的金属键。
这种晶体结构常常是由“海洋模型”描述的,即正电荷的金属离子在电子“海洋”中自由移动,因此具有优良的导电性和热导性。
分子晶体是由分子间弱力作用力连接而成的,典型的例子是冰。
这种晶体结构通常具有较低的熔点和较低的硬度,分子之间的相互作用力较弱。
二、晶体结构与物理性质的关系晶体的物理性质直接取决于其结构特点,下面将重点介绍晶体结构对热学、光学和电学性质的影响。
热学性质:晶体的热导性和热膨胀系数与其结构有密切关系。
一般来说,具有金属晶体结构的物质通常具有较高的热导性和较低的热膨胀系数。
这是因为金属晶体中金属离子之间的电子能够在晶体内自由传递热能,而共价或离子晶体结构中的典型原子并不具备这种自由传导的能力。
光学性质:晶体的透明度和折射率与其晶格排列方式密切相关。
分子晶体通常具有较低的折射率,因为分子之间的间隙较大,光线能够较容易地通过。
而离子晶体由于正负离子的高度有序排列,通常具有较高的折射率。
电学性质:晶体中的离子、原子和分子的排列方式对电学性质具有重要影响。
离子晶体由于正负离子排列有序,具有良好的电导性。
而共价晶体由于电子的共用和共价键的形成,通常具有较高的电阻率。
此外,晶体的结构还会影响其磁学性质、机械性质等方面。
【华师一】《晶体的类型与性质》第一节《离子晶体分子晶体原子晶体》第一课时

第一单元晶体的类型与性质第一节离子晶体、分子晶体和原子晶体第一课时1、下列物质中含有极性键的离子化合物是()A、CaCl2B、Na2O2C、NaOHD、K2S2、下列性质中,可以证明某化合物内一定存在离子键的是A、可溶于水B、具有较高的熔点C、水溶液能导电D、熔融状态能导电3、碱金属与卤素所形成的化合物大都具有的性质是:①高沸点;②能溶于水;③水溶液能导电;④低熔点;⑤熔融状态不导电。
()A、①②③B、③④⑤C、①④⑤D、②③⑤4、下列有关离子晶体的描述中,不正确的是()A、离子晶体中离子间存在着较强的离子键B、一般来说,离子晶体有较低的熔点和沸点、较小的硬度C、离子晶体溶于水或熔融时都能导电D、由于构成离子晶体的粒子是离子,故离子晶体中都不存在单个的分子5、下列离子化合物中,阴、阳离子所含的电子数不相等的是()A、Na2O2B、NaNH2C、NaFD、Mg(OH)26、下列离子化合物中,阳离子和阴离子半径之比最大的是()A、KIB、CsFC、LiBrD、NaCl7、某离子晶体晶胞结构如图所示,X位于立方体的顶点,Y位于立方体的中心,晶体中距离最近的两个X与一个Y形成的夹角∠XYX的角度为()A、109°28′B、90° C 60 °D、120°8、氯化钠晶体结构中,Na+(●)和Cl-(○)都是等距离交错排列的(如下图所示)已知氯化钠晶体的摩尔质量为58.5g·mol-1,密度为2.2g·cm—3,阿佛加德罗常数为6.02×1023mol-1,在氯化钠晶体中两个距离最近的Na+中心间的距离接近于()A、3.0×10-8cmB、3.5×10-8cmC、4.0×10-8cmD、5.0×10-8cm9、在NaCl晶体中与每个Na+距离相等且最近的几个Na+共有()A、6个B、8个C、10个D、12个10、Cs是ⅠA族元素,F是ⅦA族元素,估计Cs和F形成的化合物可能是()A、离子化合物B、化学式为CsF2C、室温下为固体D、室温下为气体11、某离子晶体结构如图所示,X (●表示)位于立方体的顶点,Y (○表示)位于立方体的中心。
高二化学离子晶体

3 1 6 5 2 4 3 1 6 5 2 4
+ Na
旋 转 的 晶 体 模 型
每个Cl-周围与它最近且距离相等的Cl-共有几个?
12 个 每个Cl-周围与它最近且距离相等的Cl-共有____ 12 个 每个Na+周围与它最近且距离相等的Na+共有___
(2) CsCl 晶体
ห้องสมุดไป่ตู้
Cs+
Cl-
在CsCl晶体中
事实数据: 离子晶体 NaCl CsCl
熔点 801℃ 645℃
沸点 1413℃ 1290℃
问题: 根据上述离子晶体熔沸点,比较CsCl和 NaCl中离子键的强度.由此能得出怎样的结论?
对于离子晶体来说:离子键越强,熔沸点 越高,硬度越大。
6、影响离子晶体熔、沸点因素: 一般情况下,离子晶体中阴、阳离子半径越 小,电荷数越多,离子键越强,熔沸点越高, 硬度越大。
请思考:NaF,NaCl,NaBr,NaI晶体其熔沸点的高 低顺序? NaF>NaCl>NaBr>NaI
三种典型立方晶体结构
简单立方
体心立方
面心立方
7、NaCl 和 CsCl 晶体分析 (1)NaCl 晶体
比 例 模 型
Cl Cl + + Na+ ClNa Na Cl + Cl + Na Cl-
C
B A
A:B:C=1:1:3
练习1:根据离子晶体的晶胞结构,判断下列 离子晶体的化学式:(A表示阳离子)
A
B
化学式: AB
练习2:根据离子晶体的晶胞结构,判断下 列离子晶体的化学式:(A表示阳离子)
A B
化学式: A2B
练习4:根据离子晶体的晶胞结构,判断下 列离子晶体的化学式:(A表示阳离子)
分子和晶体的结构及性质

分子和晶体的结构及性质分子和晶体是物质的两种不同形态,它们在结构和性质上存在着显著的差异。
本文将分别讨论分子和晶体的结构以及它们的性质。
一、分子的结构及性质1. 分子的结构分子是由原子按照一定比例和方式组合而成的物质,在空间上呈现出三维的结构。
分子的结构由原子间的化学键连接所决定,可以是共价键、离子键或金属键。
此外,分子还可能存在分子间力,如范德华力和氢键。
2. 分子的性质分子性质主要受到分子内部化学键和分子间力的影响。
不同的分子由于其化学键和分子间力的差异,呈现出不同的性质。
例如,具有共价键的分子通常具有较低的沸点和熔点,而具有离子键的分子则在熔点上具有较高的特征。
二、晶体的结构及性质1. 晶体的结构晶体是由大量离子、原子或分子有规律地堆积而成的固体结构。
晶体的结构可以分为离子晶体、原子晶体和分子晶体三种类型。
离子晶体由正、负离子通过离子键相互结合而成;原子晶体由相同元素的原子通过共价键相互连接而成;分子晶体则是由分子通过范德华力和氢键相互结合而成。
2. 晶体的性质晶体的性质受到晶体结构的影响。
晶体的有序排列使得它们具有明确定义的外部形状和特征;晶体在物理性质上表现出一些特殊的性质,如各向同性、光学性质、电导性、热导性等。
三、分子和晶体的比较1. 结构比较分子的结构是由分子内部化学键构成的,分子间的连接相对较弱;晶体的结构则是由大量的原子或离子堆积形成的,分子间的连接比分子内部的连接更强。
2. 性质比较分子通常在相对较低的温度或压力下就可以发生相变,比如液化、固化等;而晶体具有更高的熔点和熔化热,需要更高的温度才能发生相变。
3. 应用比较分子和晶体根据其不同的结构和性质,具有不同的应用领域。
分子常用于化学反应媒介、溶剂、药物和有机材料等领域;晶体则广泛应用于电子器件、光学器件、半导体材料等领域。
结论分子和晶体是物质的两种不同形态,它们在结构和性质上存在着明显的差异。
分子通过分子内部的化学键相连而成,具有较低的熔点和熔化热;晶体由原子或离子有序堆积而成,具有更高的熔点和熔化热。
不同晶体导电的原因

不同晶体导电的原因
不同晶体导电的原因与其内部的电子状态和晶体结构密切相关。
以下是针对几种不同类型晶体的解释:
1.金属晶体:金属内部存在大量可以自由移动的自由电子,这些自由电子在电场力的作用
下定向移动而形成电流,使金属能够导电。
典型的金属导体有铜、银和金。
2.半导体:半导体中的价带和导带之间有一个较小的禁带,使得一定数量的电子能在适当
的条件下(如温度或光照)跃迁到导带中,从而产生导电性。
此外,当电子从价带跃迁到导带时,价带会留下一个空位,称为“空穴”,空穴也可以作为一种载流子,对导电性有贡献。
典型的半导体有硅和锗。
3.离子晶体:离子晶体在固态时离子不能自由移动,因此不导电。
但是,当离子晶体熔融
或溶于水时,离子能够自由移动,从而在外界电场作用下导电。
4.分子晶体和原子晶体:这些晶体类型的导电性取决于它们是否能够电离出自由移动的离
子。
如果它们能够在水溶液中电离出离子,那么它们就可以导电。
然而,在固态下,分子晶体和原子晶体通常不导电。
此外,对于单晶体和多晶体而言,单晶体的导电性通常优于多晶体。
这是因为单晶体中的载流子遭受散射的几率较小,迁移率较高,因此导电性较好。
而多晶体中的晶粒间界会严重散射载流子,导致迁移率降低,导电性相对较差。
总之,不同类型晶体的导电性取决于其内部的电子状态和晶体结构以及外部条件(如温度、光照等)。
3.1四种晶体

2、常见离子晶体
强碱、金属氧化物、部分盐类 ①NaCl 晶体
阴离子配位数 6
阳离子配位数 6
NaCl 晶体
每个晶胞中 Cl—有 4 个 Na +有 4 个 每个Cl— 周围最近且等距离的Cl—有 12 个 每个Na+周围最近且等距离的Na+有 12 个
__2_:_3___.
小结1:分子晶体与原子晶体的比较
相邻原子间以共价键相结 分子间以分子间 合而形成空间网状结构 作用力结合
原子 共价键 很大 很大 不溶于任何溶剂
不导电,个别为半导体
分子 分子间作用力
较小
较小 部分溶于水 固体和熔化状态 都不导电,部分 溶于水导电
第三章 晶体的结构与性质
第三节 金属晶体
简单立方堆积的空间占有率 =52%
球半径为r 正方体边长为a =2r
②体心立方堆积(钾型)K、Na、Fe
体心立方堆积的配位数 =8
体心立方堆积的空间占有率 =68%
体对角线长为c 面对角线长为b 棱线长为a 球半径为r
c2=b2+a2 b2=a2+a2 c=4r (4r)2=3a2
③六方最密堆积(镁型)Mg、Zn、Ti
12
6
3
A
54
B
A
B A
六方最密堆积的配位数 =12
六方最密堆积的晶胞
六方最密 堆积的晶胞
六方最密堆积的空间占有率 =74% 上下面为菱形 边长为半径的2倍 2r
高为2倍 正四面体的高
2 6 2r 3
温馨提示:为更好地满足您的学习和使用需求,课件在下载后可以自由编辑,请您根据实际情况进行调整!Thank you for
四种晶体比较

四种晶体比较表注:离子晶体熔化时需克服离子键,原子晶体熔化时破坏了共价键,分子晶体熔化时只克服分子间作用力,而不破坏化学键。
晶体熔沸点的比较一、看常态:1、常态:固>液>气。
2、一般情况下,原子晶体>离子晶体(金属晶体)>分子晶体。
3、原子晶体:共价键(取决于原子半径)。
4、离子晶体:离子键(取决于离子半径和离子电荷)5、金属晶体:金属键(取决于金属原子半径和价电子数)6、分子晶体:①结构相似,分子量越大,熔沸点越高。
②分子量相等,正>异>新。
③氢键反常二、看类型三、分类比较18.请完成下列各题:(1)前四周期元素中,基态原子中未成对电子与其所在周期数相同的元素有种。
(2)第ⅢA、ⅤA原元素组成的化合物GaN、GaP、GaAs等是人工合成的新型半导体材料,其晶体结构与单晶硅相似。
Ga原子的电子排布式为。
在GaN晶体中,每个Ga 原子与个N原子相连,与同一个Ga原子相连的N原子构成的空间构型为。
在四大晶体类型中,GaN属于晶体。
(3)在极性分子NCl3中,N原子的化合物为―3,Cl原子的化合价为+1,请推测NCl3水解的主要产物是(填化学式)。
19.生物质能是一种洁净、可再生的能源。
生物质气(主要成分为CO、CO、H2等)与H22混合,催化合成甲醇是生物质能利用的方法之一。
(1)上述反应的催化剂含有Cu、Zn、Al等元素。
写出基态Zn原子的核外电子排布式。
(2)根据等电子原理,写出CO分子结构式。
(3)甲醇催化氧化可得到甲醛,甲醛与新制Cu(OH)2的碱性溶液反应生成Cu2O沉淀。
①甲醇的沸点比甲醛的高,其主要原因是;甲醛分子中碳原子轨道的杂化类型为。
②甲醛分子的空间构型是;1mol甲醛分子中σ键的数目为。
O晶胞中(结构如图所示),所包含的Cu原子数目为。
③在1个Cu2。
原子晶体、分子晶体、离子晶体的比较 PPT

3.物理性质:①熔沸点低[破坏分子间的作用力],硬度小。
②一般不导电,在固态和熔融状态下也不导电
③溶解性一般符合“相似相溶规律”
二、常见的晶体结构分析:
(一)干冰: 1.分子堆积方式: 分子密堆积(只含范德华力) 2.均摊法计算CO2分子数:
顶角—— 8个 面心—— 6个 1个晶胞中CO2分子数= 8×18+6×12= 4 3.每个CO2分子周围离该分子距离最近且相等的 CO2分子有:12个 [同层+上层+下层]×4=12 (二)冰:
配位数: 8 配位空间构型:正六面体
离其最近的Cs+的个数为: 6
[上、下、左、右、前、后]
2.Cl-为中心:离其最近的Cs+的个数为: 8
配位数:8 配位空间构型:正六面体
离其最近的Cl-的个数为:6
3.均摊法计算1个晶胞中:
Cs+个数:8×18= 1
Cl-个数:1
二、三种常见的离子晶体的结构:
2.晶胞的结构:——均摊法 结合《课本》P64/图3-8
体心粒子—— 完全属于该晶胞
面心粒子—— 有12属于该晶胞
棱心粒子—— 有14该晶胞
顶角粒子—— 有18属于该晶胞
二、晶胞:
3.晶胞中微粒个数的计算:
1个金属铜晶胞
的原子数
=8×18+6×12= 4
X2Y
ACB3
DE
4.晶胞的基本类型:
简单立方
③熔点: ④能使X-
有固定的熔 射线产生衍
沸点
射
最科学的
鉴别依据
⑤均一性:组成和密度一致 ⑥对称性: ⑦稳定性: 晶格能
一、晶体:
5.形成途径: ①熔融状态物质凝固(注意凝固的速率适当)
离子晶体、分子晶体和原子晶体

离子晶体、分子晶体和原子晶体(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如工作总结、工作计划、演讲致辞、策划方案、合同协议、规章制度、条据文书、诗词鉴赏、教学资料、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays for everyone, such as work summaries, work plans, speeches, planning plans, contract agreements, rules and regulations, doctrinal documents, poetry appreciation, teaching materials, other sample essays, etc. If you want to learn about different sample formats and writing methods, please stay tuned!离子晶体、分子晶体和原子晶体离子晶体、分子晶体和原子晶体(精选4篇)离子晶体、分子晶体和原子晶体篇1一、学习目标1.掌握相邻原子间通过共价键结合而成空间网状结构的晶体属于原子晶体。
分子晶体和离子晶体判断

分子晶体和离子晶体判断1. 引言1.1 什么是分子晶体和离子晶体分子晶体和离子晶体是固体材料中的两种重要类型,它们在材料科学和化学领域具有重要的研究和应用价值。
分子晶体是由分子在空间中有序排列而形成的晶体结构。
分子晶体的结构是由分子间的非共价作用力所维持的,比如范德华力、氢键等。
分子晶体通常具有良好的穿透性和溶解性,常见的如葡萄糖、苯等有机物。
离子晶体是由阳离子和阴离子通过离子键相互作用形成的晶体结构。
离子晶体的结构非常稳定,通常具有高熔点和硬度。
常见的离子晶体包括氯化钠、氯化钾等。
分子晶体和离子晶体在结构和性质上有所不同,但都具有各自的特点和应用领域。
在今天的材料科学和化学研究中,对分子晶体和离子晶体的深入理解和利用是非常重要的。
通过研究分子晶体和离子晶体的形成机制和结构特点,可以更好地探索其在材料科学和化学领域的潜在应用。
1.2 分子晶体和离子晶体的性质特点分子晶体的性质特点包括:1. 分子结构稳定,通常以共价键连接;2. 常常呈现透明或半透明的外观;3. 具有较低的熔点和沸点;4. 常常呈现柔软和易形变的性质;5. 在溶剂中溶解度较高;6. 可以通过物理或化学方法进行分解。
这些性质特点使得分子晶体和离子晶体在材料科学领域有着不同的应用和研究方向,也为它们在化学反应、能源存储和传感器等方面发挥重要作用提供了基础。
2. 正文2.1 分子晶体的形成与结构分子晶体是由分子之间的弱键相互作用形成的晶体结构。
分子晶体的形成过程通常包括蒸发、冷却或溶液结晶等方式。
在分子晶体中,分子通过共用电子对或离子间键连接在一起,形成稳定的结构。
分子晶体的结构具有一定的规则性,但也存在一定的自由度,使得分子之间可以在一定范围内运动。
分子晶体的结构取决于分子内部的构型和相互之间的相互作用。
一般来说,分子晶体的结构可以分为非极性和极性两种类型。
非极性分子晶体中,分子之间通过范德华力相互作用连接在一起,而极性分子晶体中,分子之间可能存在氢键或偶极-偶极相互作用。
鲁科版物质结构与性质3.2离子晶体共价晶体分子晶体

SiO2晶胞
④最小的环为___个Si 和____个O组成的____元 环。含有 个Si-O键; 每个Si-O键被 6 个十二元 环共有。
④每个O原子被
个十二元环共有,
每个Si原子被 个十二元环共有。
⑤1mol SiO2中含________mol Si—O 键。
1、下列物质中属于共价晶体的化合物是( )
若碳原子半径为r,试计算金刚石的密度?
? 2r 3 a a 8 3 r
4
3
812 812
NA a3
(8
NA 3 r)3
9 16N
3 Ar
3
3
❹ 求金刚石中碳原子的空间利用率
8×4/3πr3 a3
(其中 a = 8r)
❺ 写出金刚石中碳原子的原子坐标
(0,0,0) (0,1/2,1/2) (1/2,1/2,0) (1/2,0,1/2) (1/4,3/4,1/4)(3/4,1/4,1/4) (1/4,1/4,3/4)(3/4,3/4,3/4)
CsCl晶胞
①Cs+或Cl-配位数是几?
②Cs+周围紧邻的Cl-有几个?构成 什么图形?
③Cs+周围距离最近的Cs+有几个? (Cl-呢?)
④一个晶胞含______个Cs+,______ 个Cl-。
(3)ZnS晶胞(BeO BeS)
顶点面心:S2-(什么堆 积?) 体内:Zn2+(填8个立方体 的4个,相当于1/8晶胞的 体心) 小结:面心立方+半数填隙
①Zn2+或S2-配位数是几?
②Zn2+周围紧邻的S2-有几个?构成什么图形?
③一个晶胞含______个Zn2+,______个S2-
离子晶体、分子晶体和原子晶体(一)

离子晶体、分子晶体和原子晶体(一)一、学习目的1.使学生了解离子晶体、分子晶体和原子晶体的晶体构造模型及其性质的一般特点。
2.使学生理解离子晶体、分子晶体和原子晶体的晶体类型与性质的关系3.使学生了解分子间作用力对物质物理性质的影响4.常识性介绍氢键及其物质物理性质的影响。
二、重点难点重点:离子晶体、分子晶体和原子晶体的构造模型;晶体类型与性质的关系难点:离子晶体、分子晶体和原子晶体的构造模型;氢键三、学习过程(一)引入新课[复习发问]1.写出NaCl 、CO2 、H2O的电子式。
2.NaCl晶体是由Na+和Cl—通过形成的晶体。
[课习题板书] 第一节离子晶体、分子晶体和分子晶体(有课件)一、离子晶体1、概念:离子间通过离子键形成的晶体2、空间构造以NaCl 、CsCl为例来,以媒体为手段,攻克离子晶体空间构造这一难点[针对性练习][例1]如图为NaCl晶体构造图,图中直线交点处为NaCl晶体中Na+与Cl-所处的位置(不考虑体积的大小)。
(1)请将其代表Na+的用笔涂黑圆点,以完成NaCl晶体构造示意图。
并确定晶体的晶胞,分析其构成。
(2)从晶胞中分Na+四周与它最近时且距离相等的Na+共有多少个? [解析]下图中心圆甲涂黑为Na+,与之相隔均要涂黑(1)分析图为8个小立方体构成,为晶体的晶胞,(2)计算在该晶胞中含有Na+的数目。
在晶胞中心有1个Na+外,在棱上共有4个Na+,一个晶胞有6个面,与这6个面相接的其他晶胞还有6个面,共12个面。
又因棱上每个Na+又为四周4个晶胞所共有,所以该晶胞独占的是12×1/4=3个.该晶胞共有的Na+为4个。
晶胞中含有的Cl-数:Cl-位于顶点及面心处,每.个平面上有4个顶点与1个面心,而每个顶点上的氯离于又为8个晶胞(本层4个,上层4个)所共有。
该晶胞独占8×1/8=1个。
一个晶胞有6个面,每面有一个面心氯离子,又为两个晶胞共有,所以该晶胞中独占的Cl-数为6×1/2=3。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
中学化学竞赛试题资源库——离子晶体和分子晶体A组1.不仅与金属的晶体结构有关,而且与金属原子本身的性质有关的是A 导电性B 电热性C 延展性D 密度2.下列何种物质的导电性是由自由电子的运动所决定的A 熔融的食盐B 饱和食盐水C 石墨D 铜3.金属晶体的特征是A 熔点都很高B 熔点都很低C 都很硬D 都有导电、导热、延展性4.下列物质中,熔点最高的是熔点最低的是A 干冰B 晶体硅C 硝酸钾D 金属钠5.下列各项中是以共价键结合而成的晶体是A 分子晶体B 原子晶体C 离子晶体D 金属晶体6.含有阳离子而不含有阴离子的晶体是A 原子晶体B 分子晶体C 离子晶体D 金属晶体7.金属晶体的形成是通过A 金属原子与自由电子之间的相互作用B 金属离子之间的相互作用C 自由电子之间的相互作用D 金属离子与自由电子之间的较强的相互作用8.下列各组中的两种固态物质熔化(或升华)时,克服的微粒间相互作用力属于同种类型的是A 碘和碘化钠B 金刚石和重晶石C 冰醋酸和硬脂酸甘油酯D 干冰和二氧化硅9.氮化铝(AlN)是一种熔点很高、硬度大、不导电、难溶于水和其他溶剂的晶体,将下列各组物质加热熔化或气化,所克服微粒间作用力与AlN克服微粒间的作用都相同的是A 水晶,金刚石B 食盐,硫酸钾C 碘,硫D 石墨,硅10.在下列有关晶体的叙述中错误的是A 离子晶体中,一定存在离子键B 原子晶体中,只存在共价键C 金属晶体的熔沸点均很高D 稀有气体的原子能形成分子晶体11.下列说法正确的是A离子晶体中可能含有共价键,但一定含有金属元素B分子晶体中一定含有共价键C离子晶体中一定不存在非极性键D石英与晶体硅都是原子晶体12.X是核外电子数最少的元素,Y是地壳中含量最丰富的元素,Z在地壳中的含量仅次于Y,W可以形成自然界最硬的原子晶体。
下列叙述错误的是A WX4是沼气的主要成分B 固态X2Y是分子晶体C ZW是原子晶体D ZY2的水溶液俗称“水玻璃”13.有关晶体的下列说法中正确的是A 晶体中分子间作用力越大,分子越稳定B 原子晶体中共价键越强,熔点越高C 冰熔化时水分子中共价键发生断裂D 氯化钠熔化时离子键未被破坏14.某物质的晶体内部一截面上原子的排布情况如右图所示,则该晶体的化学式可表示为A A2B B ABC AB2D A3B15.某固体仅有一种元素组成,其密度为5g/cm3,用X射线研究该固体的结果表明,在边长为1×10-7cm的立方体中仅有20个原子,则此元素的原子量接近A 32B 65C 120D 15016.某晶体中,存在着A(位于八个顶点)、B(位于体心)、C(位于正六面体中的六个面上)三种元素的原子,其晶体结构中具有代表性的最小重复单位(晶胞)的排列方式如图所示:则该晶体中A、B、C三种原子的个数比是A 8︰6︰1B 1︰1︰1C 1︰3︰1D 2︰3︰117.某物质的晶体中含A、B、C三种元素,其排列方式如图所示,晶体中A、B、C的原子个数之比依次为A 2︰1︰1B 2︰3︰1C 2︰2︰1D 1︰3︰318.某物质由A、B、C三种元素组成,其晶体中微粒的排列方式如图所示:该晶体的化学式是AAB3C3BAB3CCA2B3CDA2B2C19.如图所示晶体中每个阳离子A或阴离子B均可被另一种离子以四面体形式包围着,则该晶体对应的化学式为A AB B A2BC ABD A2B320.石墨是层状晶体,每一层内,碳原子排成正六边形,许多个正六边形排列成平面状结构,如果将每对相邻原子间的化学键看成一个化学键,则石墨晶体每一层内碳原子数与C-C化学键数的比是A 2︰3B 1︰3C 1︰1D 1︰221.下列各物质的晶体中,与其中任意一个质点(原子或离子)存在直接强烈相互作用的质点数目表示正确的是A 氯化铯~8B 水晶~4C 晶体硅~6D 碘晶体~222.石墨晶体结构如右图所示:每一层由无数个正六边形构成,则平均每一个正六边形所占有的碳原子数是A 6个B 4个C 3个D 2个23.据报道国外有科学家用一束激光将置于铁室中石墨靶上的碳原子炸松,与此同时用一个射频电火花喷射氮气,此时碳、氮原子结合成碳氮化合物的薄膜。
据称,这种化合物比金刚石更坚硬,其原因可能是A 碳、氮原子构成网状晶体结构B 碳氮键比金刚石中的碳碳键更短C 碳、氮都是非金属元素,且位于同一期D 碳、氮的单质的化学性质均不活泼24.1999年美国《科学》杂志报道:在40GPa高压下,用激光器加热到1800K,人们成功制得了原子晶体干冰,下列推断正确的是A 原子晶体干冰有很高的熔点、沸点,有很大的硬度B 原子晶体干冰易气化,可用作制冷材料C 原子晶体干冰硬度大,可用作耐磨材料D 每摩尔原子晶体干冰中含2mol C—O键25.最近,美国Lawrece Lirermore国家实验室(LINL)的V·Lota·C·S·Yoo和H·cyrnn 成功地在高压下将CO2转化具有类似SiO2结构的原子晶体,下列关于CO2的原子晶体说法,正确的是A 在一定条件下,CO2原子晶体转化为分子晶体是物理变化B CO2的原子晶体和CO2分子晶体具有相同的物理性质和化学性质C 在CO2的原子晶体中,每一个C原子周围结合4个O原子,每一个O原于跟两个C原子相结合D CO2的原子晶体和分子晶体互为同分异构体26.下面关于晶体的叙述中,错误的是A 金刚石为网状结构,由共价键形成的碳原子环中,最小环上有6个碳原子B 氯化钠晶体中,每个Na+周围距离相等的Na+共有6个C 氯化铯晶体中,每个Cs+周围紧邻8个Cl-D 干冰晶体中,每个CO2分子周围紧邻12个CO2分子27.铁原子半径为1.26×10-8cm,质量为55.8μ(μ=1.67×10-24g),则铁原子的体积(用cm3表示)为,铁原子的密度为(用g/cm3表示)。
铁原子密度比一块铁试样的密度大的原因是。
28.如图:晶体硼的基本结构单元都是由硼原子组成的正二十面体的原子晶体,其中含有20个等边三角形和一定数目的顶角,每个顶角上各有一个原子,试观察右边图形,回答:这个基本结构单元由个硼原子组成,键角是,共含有个B-B键。
B组29.下列各项所述的数字不是6的是A在NaCl晶体中,与一个Na+最近的且距离相等的Cl-的个数B在金刚石晶体中,最小的环上的碳原子个数C在二氧化硅晶体中,最小的环上的原子个数D在石墨晶体的片层结构中,最小的环上碳原子个数30.已知C3N4晶体具有比金刚石还大的硬度,且构成该晶体的微粒间只以单键结合。
下列关于C3N4晶体的说法错误的是A 该晶体属于原子晶体,其化学键比金刚石更牢固B 该晶体中每个碳原子连接4个氮原子、每个氮原子连接3个碳原子C 该晶体中碳原子和氮原子的最外层都满足8电子结构D 该晶体与金刚石相似,都是原子间以非极性键形成空间网状结构31.2001年曾报道,硼镁化合物刷新了金属化合物超导温度的最高记录。
该化合晶体结构中的晶胞如右图所示。
镁原子间形成正六棱柱,六个硼原子位于棱柱内。
则该化合物的化学式可表示为A Mg14B6B Mg2BC MgB2D Mg3B232.纳米材料的表面微粒数占微粒总数的比例极大,这是它有许多特殊性质的原因,假设某硼镁化合物的结构如图所示,则这种纳米颗粒的表面微粒数占总微粒数的百分数为A 22%B 70%C 66.7%D 33.3%33.纳米材料的特殊性质的原因之一是由于它具有很大的比表面积(S/V)即相同体积的纳米材料比一般材料的表面积大很多。
假定某种原子直径为0.2nm,则可推算在边长1nm的小立方体中,共有个原子,其表面有个原子,内部有______个原子。
由于处于表面的原子数目较多,其化学性质应(填“很活泼”或“较活泼”或“不活泼”)。
利用某些纳米材料与特殊气体的反应可以制造气敏元件,用以测定在某些环境中指定气体的含量,这种气敏元件是利用了纳米材料具有的作用。
34.氮化硅是一种高温陶瓷材料,它的硬度大、熔点高、化学性质稳定。
工业上曾普遍采用高纯硅与纯氮在1300℃反应获得。
(1)氨化硅晶体属于晶体;(填晶体类型)(2)已知氮化硅的晶体结构中,原子间都以单键相连,且N原子和N原子、Si原子和Si原子不直接相连,同时每个原子都满足8电子稳定结构。
请写出氮化硅的化学式;(3)现用四氯化硅和氮气在氢气气氛保护下,加强热发生反应,可得到较高纯度的氮化硅。
反应的化学方程式为。
35.晶体的最小重复单位是晶胞,晶胞一般为平行六面体(立方晶格为立方体)。
NaCl 属立方面心晶格,在NaCl晶胞中8个顶点各有一个Na+(顶点处的微粒为8个晶胞共有),6个面心处各有一个Na+(面心处的微粒为两个晶胞共有),故我们说Na+形成立方面心晶格,而在该晶胞的12条棱的中点处各有一个Cl-(棱心处的微粒为4个晶胞共有),在该立方晶胞的体心处还有一个Cl-(立方体内的微粒为一个晶胞独有),故Cl-也形成立方面心晶格。
(1)按上述微粒数的计算规则,则一个NaCl晶胞中有_____个Na+,______个Cl-。
(2)KCl和NaCl的晶格型式相同。
已知Na+离子的半径是Cl-离子的0.5倍,而又是K+离子的0.7倍,计算:KCl晶胞和NaCl晶胞的边长之比;KCl和NaCl晶体的密度之比。
(3)将NaCl晶胞中的所有Cl-去掉,并将Na+全部换成C原子,再在每两个不共面的“小立方体”中心处各放置一个C原子便构成了金刚石的一个晶胞,则一个金刚石的晶胞中有________个C原子。
(4)计算金刚石的密度。
(已知C原子的半径为7.7×10-11m)(5)白硅石SiO2属AB2型共价键晶体。
若将金刚石晶胞中的所有C原子换成Si原子,同时在每两个相邻的Si原子(距离最近的两个Si原子)中心联线的中点处增添一个O 原子,则构成SiO2晶胞,故SiO2晶胞中有_______个Si原子,______个O原子,离O原子最近的Si原子有_______个,离Si原子最近的O原子有______个。
(6)干冰(固态CO2)属于分子晶体。
若把每个CO2分子抽象为一个质点(微粒),则其晶胞也属于立方面心晶格,故一个干冰晶胞中有_____个CO2,在干冰分子中,原子之间靠_____________结合,CO2分子之间靠__________结合。
36.右图中的氯化钠晶胞和金刚石晶胞是分别指实线的小立方体还是虚线的大立方体?37.在晶体学中人们经常用平行四边形作为二维的晶胞来描述晶体中的二维平面结构。
试问:石墨的二维碳平面的晶胞应如何取?这个晶胞的晶胞参数如何?38.石墨的片层与层状结构如右图:其中C—C键长为142pm,层间距离为340pm(1pm=10-12米)。