制冷的基本原理课件
合集下载
制冷和低温技术原理第2章制冷方法ppt课件
一方面在吸收器中,吸 另一方面,发生后 收剂吸收来自蒸发器的 的溶液重新恢复到 低压制冷剂蒸气,形成 原来成分,经冷 富含制冷剂的溶液,再 却,节流后成为具 将该溶液用泵送到发生 有吸收能力的吸收 器,经加热使溶液中的 液,进入吸收器, 制冷剂重新以高压气态 吸收来自蒸发器的 发生出来,送入冷凝器。 低压制冷剂蒸气。
3 膨 胀 阀
4
冷却介质
冷凝器 蒸发器
2 压缩机
1 被冷却介质
蒸气压缩式制冷的基本系统图
冷凝器
膨胀阀
低温低压的 制冷剂液体 与被冷却对
象发生热交 换,吸收被 冷却对象的 热量并汽化
形成冷剂蒸 气。
低压蒸气被 压缩机吸入 ,经压缩后 形成高温高 压蒸气排 出。
压缩机排出 的高压制冷 剂气体进入 冷凝器,被 冷却水或空 气冷却、冷 凝,成高压 液体。
令直流电通过半导体热电堆,即可在 一端产生冷效应,另一端产生热效应。
高压气体经绝热膨胀即可达到较低 温度,令低压气体复热即可制取冷量。
高压气体经涡流管膨胀后即可分离冷, 热两股气流,用冷气流的复热过程即 可制冷。
3
2.1 物质相变制冷
2.1.1 相变制冷概述
液体蒸发制冷
固体相变制冷
以流体为制冷剂,通 过一定的机器设备构 成制冷循环,利用液 体汽化时的吸热效应 ,实现对被冷却对象 的连续制冷。
吸热(冷接点) 铜片
P
N
放热(热接点)
-
+
半导体制冷原理图
2. 单级热电堆式半导体制冷 的基本原理
单级热电堆:
单级热电堆式半导体制冷
将数十至数百个热电偶电堆串联,将冷端排在一起,
热端排在一起,组成热电堆,称为单级热电堆。
空调制冷制冷原理PPT课件
12
(3)离开蒸发器和进入压缩机的制冷剂蒸 气为蒸发压力下的饱和蒸气,离开冷凝器和进 入膨胀阀的液体为冷凝压力下的饱和液体
(4)制冷剂在管道内流动时,没有流动阻 力损失,忽略动能变化,除了蒸发器和冷凝器 内的管子外,制冷剂与管外介质之间没有热交 换
(5)制冷剂在流过节流装置时,流速变化 很小,可以忽略不计,且与外界环境没有热交 换
单位制冷量可按式(2-5)计算。单位制
冷量也可以表示成汽化潜热r0和节流后的干度 x5的关系:
q0 r0 (1 x5 )
(1-6)
由式(1-6)可知,制冷剂的汽化潜热越
大,或节流所形成的蒸气越少(x5越小)则单
位制冷量就越大。
17
(2)单位容积制冷量
qv
qv
q0 v1
h1 h4 v1
5
p0 1
q0
w
h
理论循环在p-h图上的表示
11
1.4 单级蒸气压缩式制冷理论循环的热力 计算
单级理论循环是建立在以下一些假设的基础上的:
(1)压缩过程为等熵过程,即在压缩过程 中不存在任何不可逆损失
(2)在冷凝器和蒸发器中,制冷剂的冷凝 温度等于冷却介质的温度,蒸发温度等于被 冷却介质的温度,且冷凝温度和蒸发温度都 是定值
采用液体过冷对提高制冷量和制冷系数 都是有利的
24
p
4’ 4
pk 3 2
5’ 5 p0 1
q0 q0
w
h
过冷循环在p-h图上的表示
25
(1)单位制冷量 q0 增加
q0 冷机的基本循环,也是最简单的循环。在 实用上,根据实际条件对循环往往要作一 些改进,以便提高循环的热力完善度。在 单级制冷机循环中,这一改进主要有液体 过冷、吸气过热及由此而产生的回热循环。
(3)离开蒸发器和进入压缩机的制冷剂蒸 气为蒸发压力下的饱和蒸气,离开冷凝器和进 入膨胀阀的液体为冷凝压力下的饱和液体
(4)制冷剂在管道内流动时,没有流动阻 力损失,忽略动能变化,除了蒸发器和冷凝器 内的管子外,制冷剂与管外介质之间没有热交 换
(5)制冷剂在流过节流装置时,流速变化 很小,可以忽略不计,且与外界环境没有热交 换
单位制冷量可按式(2-5)计算。单位制
冷量也可以表示成汽化潜热r0和节流后的干度 x5的关系:
q0 r0 (1 x5 )
(1-6)
由式(1-6)可知,制冷剂的汽化潜热越
大,或节流所形成的蒸气越少(x5越小)则单
位制冷量就越大。
17
(2)单位容积制冷量
qv
qv
q0 v1
h1 h4 v1
5
p0 1
q0
w
h
理论循环在p-h图上的表示
11
1.4 单级蒸气压缩式制冷理论循环的热力 计算
单级理论循环是建立在以下一些假设的基础上的:
(1)压缩过程为等熵过程,即在压缩过程 中不存在任何不可逆损失
(2)在冷凝器和蒸发器中,制冷剂的冷凝 温度等于冷却介质的温度,蒸发温度等于被 冷却介质的温度,且冷凝温度和蒸发温度都 是定值
采用液体过冷对提高制冷量和制冷系数 都是有利的
24
p
4’ 4
pk 3 2
5’ 5 p0 1
q0 q0
w
h
过冷循环在p-h图上的表示
25
(1)单位制冷量 q0 增加
q0 冷机的基本循环,也是最简单的循环。在 实用上,根据实际条件对循环往往要作一 些改进,以便提高循环的热力完善度。在 单级制冷机循环中,这一改进主要有液体 过冷、吸气过热及由此而产生的回热循环。
《制冷循环原理》课件
吸收式制冷循环
优点
对环境友好、能源消耗低、维护 方便。
缺点
效率较低、制冷量较小、调节困 难。
吸附式制冷循环
总结词
利用固体吸附剂吸附气体,产生低温,从而达到制冷效果。
详细描述
吸附式制冷循环是利用固体吸附剂吸附气体,产生低温,从而达到制冷效果的一种循环 方式。其原理是利用吸附剂在吸附过程中放出热量,然后通过冷凝器将热量传递给周围
实现制冷系统的快速响应和高效运行。
制冷技术在新能源领域的应用
新能源领域
随着新能源技术的不断发展,制冷技术在新能源领域 的应用也越来越广泛,如太阳能、风能等可再生能源 的利用,需要制冷技术作为支撑和保障。
技术融合
制冷技术与新能源技术的融合,可以实现能源的高效 利用和节能减排,推动能源结构的优化和可持续发展 。
掌握制冷循环原理是深入理解制冷技术、提高制冷设备性能和能效、解决实际 问题的关键。
01
制冷循环的基本原 理
制冷循环的组成
01
02
03
04
压缩机
用于压缩制冷剂,提高其压力 和温度。
冷凝器
用于将高温高压的制冷剂冷却 成液体。
膨胀阀
用于将高压液态制冷剂节流成 低温低压的湿蒸汽。
蒸发器
用于将低温低压的湿蒸汽吸热 ,使其蒸发成气体,从而降低
技术挑战
新型制冷技术的研发面临技术挑战,如材料 性能、系统稳定性、制造成本等问题,需要 科研人员不断探索和改进。
制冷技术的智能化与自动化
智能化
制冷技术的智能化是未来的发展趋势,通过 引入人工智能、物联网等技术,实现制冷系 统的自适应调节、远程监控和故障诊断等功 能,提高系统的稳定性和能效。
自动化
制冷原理课件
2.1.1 蒸气压缩式制冷循环
制 (一) 单级蒸气 冷 压缩式制冷循环 原
理
与
技 (二)多级蒸气 术 压缩式制冷循环
1.朗肯循环 2.劳伦茨循环 3.跨临界循环
双筒型煤油燃烧器 釜式燃烧器 蒸发燃烧器 燃油喷雾燃烧器
2.1.1 蒸气压缩式制冷循环
制
制冷循环就是通过一定的
冷 能量补偿,从低温热源吸热,
制
冷
原
理
与
技
术
图2-9 两级节流、具有中温蒸发器的中间完全冷却两级压缩制冷循环
( a ) 流程图
( b ) lgp-h图
制 冷 原 理 与 技 术
(四)复叠式蒸气压缩式制冷循环
制
定义
冷
由两个(或数个)不同制冷剂工作
原
的单级(也可以是多级)制冷系统组合
理
而成。
与
技
术
制 冷 原 理 与 技 术
最低蒸 发温度 -80℃
制 冷 原 理 与 技 术
制 冷 原 理 与 技 术
图2-7 两级节流、中间完全冷却的两级压缩制冷循环
( a ) 流程图
( b ) lgp-h图
制 冷 原 理 与 技 术
制
冷
原
理
与
技
术
图2-8 两级节流、中间不完全冷却的两级压缩制冷循环
( a ) 流程图
( b ) lgp-h图
制 冷 原 理 与 技 术
术 机 a2—高温部分低压级压缩机 a3—高温部分高压级压缩
机b—冷凝器 c1、c2、c3—节流阀 d—蒸发器 d12冷凝-
蒸发器e1—低温部分气-液热交换器 e2—高温部分气-液
热交换器 f—高温部分中间冷却器
《制冷的基本原理》课件
膨胀阀
调节制冷剂流量和压力。
常见的制冷设备
1 冷冻压缩机
通过蒸发压缩循环提供制冷效果。
3 蒸发器
将液态制冷剂转变为气态吸收热能。
2 蒸发冷凝器
将制冷剂从气态转变为液态。
4 膨胀阀
调节制冷剂的流量和压力。
实际应用与案例分析
冷库冷藏
将食物和药品等易变质物品保持在低温环境中。
空调舒适
提供室内舒适温度和湿度。
冷气循环过程
蒸发压缩循环
通过不断循环的蒸发和冷凝来制冷。
吸收循环
利用溶液中的吸收剂来制冷。
串联循环
通过多级制冷剂循环来实现极低温度。
制冷剂的选择
安全性和环保性
选择对人类和环境安全无害的制冷剂。
成本和可用性
综合考虑制冷剂的成本和市场可用性。
效能和可靠性
考虑制冷剂的制冷性能和系统的稳定性。
法规和标准
制冷物流
在运输和储存过程中保持产品的新鲜度。
工业制冷
满足各种制造过程中的冷却需求。
《制冷的基本原理》PPT 课件
欢迎来到《制冷的基本原理》PPT课件。在这个课程中,我们将深入探讨制 冷技术的基本原理,了解冷气循环过程、制冷剂的选择以及实际应用与案例 分析。
基本概念
1 热力学
学习如何通过传热和工作 以提供冷空气。
2 蒸发与冷凝
了解蒸发与冷凝是制冷过 程的核心。
3 压缩与膨胀
掌握压缩和膨胀过程对制 冷系统的影响。
遵循适用的法规和行业标准。
常见的制冷系统
1
家用冰箱
小型制冷系统,适用于家庭使用。
2
商用空调
中型制冷系统,用于商业建筑和办公场所。
3
第三章 制冷原理 ppt课件
2020/10/28
2
精品资料
(2)利用温差电效应的半导体制冷。
低温(吸热)
热电制冷(亦称温差电制冷、半导体制冷或电子制冷)是以温差电现
象为基础的制冷方法,它利用塞贝克效应的逆反应——珀尔帖效应的原
理达到制冷目的。
+
塞贝克效应就是在两种不同金属组成的闭合线路中,若保持两接触 铁 _
铜
点的温度不同,就会在两点间产生一个电势差——接触电动势。同时闭
2020/10/28
10
7、制冷系统各部件的主要用途
放热,使高压高温制冷剂蒸气冷却、 冷凝成高压高温的制冷剂液体
压缩制冷剂蒸气,提高压力和温度
得到低温低压制冷剂
制冷剂液体吸热、蒸发、制冷
2020/10/28
11
8、制冷剂的变化过程(flash)
No Image
2020/10/28
12
二、蒸气压缩制冷的理论循环
2020/10/28
4
(3)基本热电偶
当今制冷方式中最常见的是蒸气压缩式制冷。 下面做重点介绍。
2020/10/28
5
第一节 蒸气压缩式制冷机的工作原理和理论循环
一、蒸气压缩式制冷(单级)
1、实质:利用制冷剂的相变实现热量交换。 (解释“相变”的含义)
2、回答前述问题B 关键句:“用一定的方法”。对于本制冷方
4、问题B肯定的。但必须用专门的制冷装置来完成。
2020/10/28
1
二、冷源(是实现制冷的媒介)
1、天然冷源:深井水、天然冰或空间的空气等。 2、人造冷源:冷板、半导体、蒸气压缩式等。
三、制冷方法
1、天然制冷:指用天然冷源进行的制冷。 2、人工制冷:指利用人工方法制造一个低温冷源。人工制冷的方法 从原理上分为两种: (1)利用制冷剂在相变过程中的吸热实现制冷。 如蒸气压缩式制冷、干冰制冷、冷板制冷、液化气体制冷等。
制冷与低温原理_图文
(1-13) (1-14)
(1-15)
闭口系完成一循环后,循环中与外界交换的 热量等于与外界交换的净功量
(1-16)
4.2 开口系统的能量平衡
图1-2 开口系统流动过程中的能量平衡
图示开口系统,dτ 时间内,质量
的微
元工质流入截面1-1,质量
的微元工质流出
2-2,系统从外界得到热量 ,对机器设备作功 。
热力完善度
(1-34) (1-35)
(1-36) (1-37)
(1-38)
(1-39)
温度 T
3.热源温度可变时的逆向可逆循环—洛伦兹循环
图1-10 洛伦兹循环的T-s图
洛伦兹循环工作 在二个变温热源 间。
与卡诺循环不同 之处主要是蒸发 吸热和冷却放热 均为变温过程
熵S
(假设制冷过程和冷却过程传热温差均为Δ T )
作为制冷剂应符合的要求
1.热力学性质方面
(1) 工作温度范围内有合适的压力和压力比。 蒸发压力≧大气压力 冷凝压力不要过高 冷凝压力与蒸发压力之比不宜过大
(2) 单位制冷量q0和单位容积制冷量qv较大。 (3) 比功w和单位容积压缩功wv小,循环效率高。 (4) 等熵压缩终了温度t2不能太高,以免润滑条件恶化
是系统为维持工质流动所需的功 , 称为流动功
3.焓
焓
用符号H表示,单位是焦耳 (J)
H= U+pV
(1-5)
比焓
用符号h表示,单位是焦耳/千克 (J/kg
)
(1-6)
焓是一个状态参数。
焓也可以表示成另外两个独立状态参数的函数 。 如:h=f(T,v) 或 h=f(p,T); h=f(p,v) (1-9)
借传热来传递能量无需物体的宏观移动。
制冷基本原理PPT课件
5.热力学第一定律
自然界中的一切物质都具有能量,能量不可能 被创造,也不可能被消灭;但能量可以从一种 形态转变为另种形态,且在能量的转化过程中 能量的总量保持不变。
6.热力学第二定律
热不能自发地、不付代价地从低温物体传 到高温物体;或者说:如果不消耗外功, 就不可能把热量从低温物体传到高温物体。 例如,制冷装置就是根据此定律,用消耗 一定的机械能、电能或热能作为补偿条件, 把热量由低温物体传向高温物体,而达到制 冷目的的。
1.什么是温度 温度是表明物体冷热程度的物理量.
2.什么是压力 单位面积所受到的垂直作用力就为压力.
3.什么是制冷
制冷就是使某一空间内物体温度低于周围 环境介质的温度,并维持这个低温的过程. 换一句话说,制冷技术就是制取,保持温度 的专有技术.
4.什么是热泵
逆向循环具有从低温热源吸热向高温热源放热的 特点,当使用目的是从低温热源吸收热量时,该装 置就是制冷机;当使用的目的是向高温热源释放热 量时,它就是热泵.
7.什么是制冷系数
就是制冷量与压缩机输入功率之比.
8.什么是导热
导热是物体各部分直接接触时所发生的热 量传递方式. 9.什么是对流换热
对流换热是指流体各部分或流体与固体壁面间 发生相对位移时引起的热量传递.在制冷换热 器中,制冷剂流过管内时的热量传递就是典型 的对流换热.
第二章 蒸气压缩式制冷装置 的基本原理
制冷基本原理
课程内容
第一章 制冷原理的名词解释 第二章 蒸气压缩式制冷装置的基本原理 第三章 制冷剂 第四章 制冷压缩机 第五章 制冷换热器 第六章 节流机构 第七章 制冷设备和管道的保温
第一章 制冷原理的名词解释
温度 压力 制冷 热泵 热力学第一、二定律 制冷系数 导热 对流换热
制冷基本原理PPT课件
三、其他换热器
作用:提高工作效率,或用于较低蒸 发温度的系统.
类型:回热器、中间冷却器、冷凝蒸发器和 板式换热器等.
1.回热器
进气
1 进液
出液
2
图4-13 盘管式回热器结构
1-壳体 2-盘管 3-进、出气接管及法兰
出气 3
2、板式换热
降压降温,保证压差:PK P0,TK T0
漏。
❖ 3.具有自动补偿功能。
第7章 辅助设备
辅助设备 作用:完善制冷系统的技术性能,保证可靠的
运行. 分类:制冷剂的贮存、分离、净化设备和润滑
一.目前有哪些主要的制冷方法
气体膨胀制冷 蒸气压缩制冷 固态物质升华制冷
二.蒸气压缩式制冷
1. 基本组成 压缩机、冷凝器、节流阀、蒸发器
第三章 制冷剂
一.什么叫制冷剂 制冷剂就是能从一个地方吸收热量,而 在另一个地方排出热量,以达到制冷目 的的工质。
二.常用的制冷剂概述
1.无机化合物 例如: NH3 H2O 2.氟里昂 例如: R12 R22 R134a 3.碳氢化合物 例如: CH4 C2H6
外平衡热力膨胀阀示意图
外平衡热力膨胀阀的安装位置
感温包的安装位置
三、毛细管 安装位置:冷凝器与蒸发器之间 作 用:作为制冷循环的流量控与 节流元件
工作原理:根据流体在管内流动产生 摩擦阻力,来改变其流 量.管短,压降小,流量大; 反之压降大流量小.
结构特点
❖ 1.结构简单,制造方便,价格低廉。 ❖ 2.没有运动部件,本身不容易产生故障和泄
制空气流动).
1 水出 水进
2 5
3
A4
7 8 9
10
11
A
B
《制冷技术》课件
新材料
新技术
随着物联网、人工智能等技术的发展,制冷设备正朝着智能化方向发展,能够实现远程监控、智能控制等功能。
智能化
自动化技术的应用有助于提高制冷设备的运行效率和稳定性,减少人工干预和故障率。
自动化
感谢您的观看
THANKS
总结词:制冷技术的发展历程经历了多个阶段,从最初的简单降温方法到现代的复杂制冷系统,其发展历程体现了人类对技术的不断探索和创新。
制冷原理与系统
制冷系统的基本组成
01
制冷系统通常由压缩机、冷凝器、节流阀和蒸发器等部件组成。
各部件的作用
02
压缩机是制冷循环的动力源,冷凝器负责将高温高压的气态制冷剂冷凝成液态,节流阀起到节流降压的作用,蒸发器则使液态制冷剂吸热蒸发,从而吸收热量。
冷藏运输和冷库是制冷技术在物流和仓储领域的应用,它们通过保持低温环境,确保食品、药品等物品的品质和安全。
总结词
冷藏运输主要利用冷藏车或冷藏集装箱,通过制冷系统保持运输物品所需的低温环境,确保食品、药品等新鲜度和品质。而冷库则通过大型制冷机组和保温库房,为食品、药品等物品提供稳定的低温储存环境,延长其保质期并确保其品质。
总结词
制冷技术在多个领域都有广泛的应用,如食品工业、医药、农业、能源、航天等。
详细描述
制冷技术在多个领域都有广泛的应用。在食品工业中,制冷技术用于保存食品、制作冰激凌、冷藏肉类等;在医药领域,制冷技术用于药物冷藏、手术室温度控制等;在农业领域,制冷技术用于温室温度控制、农产品保鲜等;在能源领域,制冷技术用于核能、太阳能等新能源的转换和存储;在航天领域,制冷技术用于卫星温度控制和航天器热管理。此外,制冷技术还应用于科学研究、制造业、建筑业等多个领域。
《制冷技术》PPT课件
新技术
随着物联网、人工智能等技术的发展,制冷设备正朝着智能化方向发展,能够实现远程监控、智能控制等功能。
智能化
自动化技术的应用有助于提高制冷设备的运行效率和稳定性,减少人工干预和故障率。
自动化
感谢您的观看
THANKS
总结词:制冷技术的发展历程经历了多个阶段,从最初的简单降温方法到现代的复杂制冷系统,其发展历程体现了人类对技术的不断探索和创新。
制冷原理与系统
制冷系统的基本组成
01
制冷系统通常由压缩机、冷凝器、节流阀和蒸发器等部件组成。
各部件的作用
02
压缩机是制冷循环的动力源,冷凝器负责将高温高压的气态制冷剂冷凝成液态,节流阀起到节流降压的作用,蒸发器则使液态制冷剂吸热蒸发,从而吸收热量。
冷藏运输和冷库是制冷技术在物流和仓储领域的应用,它们通过保持低温环境,确保食品、药品等物品的品质和安全。
总结词
冷藏运输主要利用冷藏车或冷藏集装箱,通过制冷系统保持运输物品所需的低温环境,确保食品、药品等新鲜度和品质。而冷库则通过大型制冷机组和保温库房,为食品、药品等物品提供稳定的低温储存环境,延长其保质期并确保其品质。
总结词
制冷技术在多个领域都有广泛的应用,如食品工业、医药、农业、能源、航天等。
详细描述
制冷技术在多个领域都有广泛的应用。在食品工业中,制冷技术用于保存食品、制作冰激凌、冷藏肉类等;在医药领域,制冷技术用于药物冷藏、手术室温度控制等;在农业领域,制冷技术用于温室温度控制、农产品保鲜等;在能源领域,制冷技术用于核能、太阳能等新能源的转换和存储;在航天领域,制冷技术用于卫星温度控制和航天器热管理。此外,制冷技术还应用于科学研究、制造业、建筑业等多个领域。
《制冷技术》PPT课件
制冷系统基本工作原理PPT课件
进冷凝器,冷凝器以风冷水冷等形式对制冷剂气
体进行冷凝,冷凝后的高温高压液体储存在冷凝
器底部及储液器中,冷凝时放出的热量通过风机、
水泵等设备带出并散到环境中,当高温高压的液
体流经膨胀阀后,以低温低压的液体状态再进入
蒸发器吸收汽化潜热而制冷,如此完成制冷循环。
.
34
制冷系统 -蒸汽压缩式制冷
蒸气压缩式制冷系统的构成
体,并使之冷凝成液体,从而完成整个制冷循环。
工作介质:吸附剂和制冷剂;
常见的吸附工质对有:
沸石——水;
硅胶——水,
氯化钙——氨等
活性碳-甲醇;
金属氢化物-氢
.
42
制冷系统 -吸附式制冷
间歇式吸附式制冷. 系统(太阳能制冷机) 43
制冷系统 -吸附式制冷
以沸石——水工质对为例说明其工作过程:
白天,吸附床受日光照射温度升高产生解析作用,从
物质发生从质密态到质稀态的相变时,将吸收潜 热;反之,当它发生由质稀态向质密态的相变时,放 出潜热。
.
12
热工基础知识 - 显 热
大气压
水
显热:不改变物质状态 只引起物质温度变化的 热量。
加热
.
13
热工基础知识 - 潜热、蒸发和沸腾
大气压
潜热:不改变物质 温度只改变物质状 态的热量。
水沸腾 水变成水蒸汽
过热:在饱和压力的条件下,继续对饱和蒸汽加热, 使其温度高于饱和温度,这种状态称为过热,这种 蒸气称为过热蒸汽。升高后的温度称为过热温度, 过热温度与饱和温度之差称为过热度。
.
16
热工基础知识 - 升高饱和点
压力锅防止蒸汽 逃逸。
液体表面压力升 高使液体的沸点 升高
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Lnp 3
4
Lnp
ht
k
2' 2 1
S
=0
P
=1
h
h
压焓图
图中临界点k左边的粗实线为饱和液体线,线上的任何一点代表一 个饱和液体状态,干度x=0;
Lnp
ht
k S
右边的粗实线为干饱和蒸汽线,线上任何一点代表一个饱和蒸 汽状态,干度x=1。
=0
P
=1
h
这两条曲线将图形分为三个区域:饱和液体线的左边是过冷液体区,该区域的液体称为过冷液体,过冷液体的 温度低于同一压力下饱和液体的温度;干饱和线的右边是过热蒸汽区,该区域内的蒸汽称为过热蒸汽,过热蒸 汽的温度高于同一压力下饱和蒸汽的温度;两条线之间的区域为两相区,制冷剂在该区域处于汽、液混合状态 (湿蒸汽状态)。
成饱和液体(点3)。压力为pk的等压线与干度x=0的饱S和液体线的交点 即为点3
3
=0 =1
P 4
h
2' 2 1
h
点4表示制冷剂出节流阀、进蒸发器的状态。过程线3-4表示制冷剂通过节流阀的节流过程。在这一过程中பைடு நூலகம்制 冷剂的压力由冷凝压力pk降低到蒸发压力p0,温度由冷凝温度tk降低到蒸发温度t0,并进入两相区。由于节流 前后制冷剂的焓值不变,过程3-4为等焓过程。
制冷系统的构成
制冷系统的构成
压缩机 热交换设备 节流机构 管道 各种控制阀 辅助部件
工作原理
制冷时,制冷压缩机将水热交换器内的低压低温制冷气体(R22)吸入气缸,经过压缩机做功,使之变成压 力和温度都较高的气体,进入冷凝器内,高温高压的制冷剂气体通过冷凝器冷凝变成中温高压的液体(把热量传给 空气),中温高压的液体再经过节流部件节流降压后变为低温低压的液体进入蒸发器。在蒸发器内,低压液体制冷 剂汽化,吸收周围介质(水)的热量,从而使水降温冷却,成为所需要的低温用水。而在热交换器中汽化后的低温 制冷剂气体又被压缩机吸入重新进行压缩,这样周而复始不断循环,连续制取冷冻水。
P
=1
h
➢ 对于理论循环,离开蒸发器、进入压缩机的制冷剂蒸汽是处于蒸发压力下的饱和蒸汽;离开冷凝器和进入 膨胀阀的液体是冷凝压力下的饱和液体;
➢ 等熵过程:制冷剂在压缩机中压缩是等熵过程; ➢ 等压过程:制冷剂在冷却及冷凝过程为等压过程 ➢ 等焓过程:制冷剂通过膨胀阀节流时,节流前后焓值相等:
➢
➢点1表示制冷剂出蒸发器、进入压缩机时的状态。对应于蒸发温度t0的饱和蒸汽。根据压力和饱和温度的关 系,该点应处于与蒸发压力p0相对应的等压线与饱和蒸汽线(x=0
4
2'
2
1 h
点3表示制冷剂出冷凝器、进膨胀阀的状态,位于与冷凝温度tk相对应的饱和液体线上。
过程2-2′-3表示制冷剂蒸汽在冷凝器中冷却(2-2′)和冷凝(2′-3)的过
程。由于这个过程是在冷凝压力pk不变的情况下进行的,为等压过程。进
入饱冷和凝蒸器汽的(过点热2′)蒸,汽然首L后先n p再将在一等部压分h 、热t等量温放下给继外续界k放冷出却热介量质,,直在至等最压后下冷变凝成 L n p
蒸汽压缩式制冷系统根据热力学第二定律,压缩机消耗的功起了补偿作用,使制冷剂不断从低温热源吸取热 量,并不断向高温热源放出热量,从而完成整个制冷循环。
图中共有六种等参数线簇: 等压线p— 等焓线h—
Lnp
等温线t—液态区几乎为铅垂线。两相区内由于制冷剂的状态变化 是在等压等温下进行,与等压线重合,为水平线。过热蒸汽区为
ht
k S
等熵线s—向右上方倾斜的实线;
等容线v—
等干度线x—只存在于湿蒸汽区域内,其方向大致与饱和液体线或
=0
饱和蒸汽线相近,视干度大小而定。
Lnp
ht
k
Lnp
由点3作等焓线与等压线p0的交点即为点4的状态S,由于节流过程
3
是不可逆的,所以用一虚线表示。
P 4
=0 =1
h
2' 2 1
h
1.压缩机
主机
压缩式制冷系统的心脏
有用能的输入 制冷剂在系统中的循环流动
整机性能 可靠性 寿命 噪声
与冷凝压力相对应的温度tk称为冷凝温度,tk一定要高于冷却介质的温度;冷凝后的高压液体通过膨胀阀 或节流元件使其压力从冷凝压力pk降低到蒸发压力p0,使部分液体汽化,剩余液体温度降至t0;离开膨胀 阀的制冷剂变为温度为t0的汽液混合物。混合物中的液体在蒸发器中从被冷却对象中吸收他所需要的蒸发 热,使被冷却对象冷却;混合物中的蒸汽通常称为闪发蒸汽,不起吸热作用。在整个循环过程中,压缩机 起着压缩和输送制冷剂蒸汽和造成蒸发器中低压的作用,推动系统循环,是整个系统的心脏;节流阀对制 冷剂起着节流降压的作用,并用作调节进入蒸发器的制冷剂流量;蒸发器是输出冷量的设备,制冷剂在蒸 发器中吸收被冷却对象的热量,达到制冷的目的;冷凝器是输出热量的设备,制冷剂从蒸发器中吸收的热 量连同压缩机消耗的功所转化的热量在冷凝器中一起被冷却介质带走。
➢ 点2表示表示制冷剂出压缩机、进入冷凝器时的状态。过程线1-2表示 制冷剂蒸汽在压缩机中的等熵压缩过程(s1=s2),压力由蒸发压力 p0压缩到冷凝压力pk。等熵线与于压力为冷凝压力pk等压线的交点 为2点。压缩过程中外界对制冷剂作功,使制冷剂温度增加,2点处于
Lnp
ht
=0 =1
k S P
h
Lnp 3
制冷的基本原理课件
概念
制冷原理与设备是为了适应人们希望能人工改变局部环境温度的需要而产生和发展的。日常生活中常 说的“冷”或“热”是人体对温度高低感觉的反应,因此冷和热是一个相对的概念,制冷中所说的冷 和热,是相对于环境温度而言的 。
概念
所谓制冷,就是把某一物体或空间(包括空间内的物体)的温度,降低到低于环境介质的温度,并保持这一 低温状态的过程。为了达到这一目的,就应采用人工的方法不断地将该物体或空问的热量及由外界传入的热 量,转移到外界环境中去。这是一个非自发的过程,需要消耗外界能量进行补偿。为实现这一过程所需要的 设备称为制冷机。制冷机中使用的工作介质通常称为制冷剂。
制冷&冷却
制冷与冷却是两个不同的概念 冷却是指热量从高温物体传递到低温物体中,由于冷、热物体间存在温度差,所以冷却可
以自发地进行,但高温物体的温度不可能降到低于环境介质(空气或水)的温度。
制冷原理图解
实际制冷循环分析
压焓图为一热力状态图。图中纵坐标表示绝对压力的对数lgp,横坐标表示焓值h