伺服电机原理及选型规则

合集下载

伺服驱动器原理及选型

伺服驱动器原理及选型

伺服驱动器原理及选型
伺服驱动器是一种用于控制伺服电机的电子装置,它通过将电源电压转换为适合于驱动电机的有源电流,从而实现电机的精准控制和运动控制。

伺服驱动器通常由电源模块、控制模块和功率模块组成。

伺服驱动器的原理是根据控制信号的输入来调整输出电压和电流的大小,以保持电机转子位置与输入信号的要求一致。

它通过采集电机的反馈信号,例如位置、速度和转矩等,对这些信号进行处理,并与输入信号进行比较,以控制输出给电机的电流。

选型时,需考虑以下几个关键因素:
1. 适配电机类型与规格:不同类型的伺服驱动器适用于不同类型的伺服电机,如步进电机、直流伺服电机或交流伺服电机。

因此,需要选型符合所需电机类型和规格的驱动器。

2. 功率与电压:驱动器的功率和电压需与电机匹配,以确保能够提供足够的电力驱动电机正常运行。

3. 控制方式与精度要求:根据应用需求选择合适的控制方式,如位置控制、速度控制或转矩控制,以及所需的运动精度。

4. 通信接口与扩展性:根据应用需求选择适合的通信接口,如RS-232、RS-485、CAN或以太网等。

同时,也要考虑驱动器的扩展性,以便与其他设备进行更复杂的系统集成。

5. 保护功能与可靠性:驱动器应具备过流、过热和短路保护功能,以确保电机和设备的安全运行。

可靠性也是选型时要考虑的关键因素之一,选择具备高可靠性和稳定性的品牌和型号。

总之,合适的伺服驱动器选型能够确保电机的准确控制和高性能运行,同时也能提高系统的稳定性和可靠性。

需要综合考虑电机类型、功率要求、控制精度、通信接口等因素,选择适合自己应用需求的伺服驱动器。

伺服电机选型的原则和注意事项

伺服电机选型的原则和注意事项

伺服电机选型的原则和注意事项伺服电机是一种精密控制器件,广泛应用于各种自动化设备和机械领域。

在进行伺服电机选型时,需要考虑多个因素,包括负载特性、控制精度、环境条件、成本等,才能选择到最适合的产品。

下面将介绍一些伺服电机选型的原则和注意事项,希望能为大家在选择伺服电机时提供一些帮助。

一、负载特性在进行伺服电机选型时,首先要考虑的是负载特性。

需要根据负载的特点来选择合适的伺服电机。

负载的特性可以通过负载转矩和负载惯量来描述。

负载转矩是指负载所需的最大转矩,而负载惯量则是负载对于运动的惯性。

根据负载的特性,可以确定所需的伺服电机的转矩和速度范围,以便选择合适的型号。

二、控制精度在伺服系统中,控制精度是非常重要的指标。

控制精度取决于伺服电机的性能和控制器的精度。

需要根据实际需要确定所需的控制精度,然后选择合适的伺服电机和控制器。

控制系统的动态响应速度也是一个重要的指标,需要根据实际应用来确定。

三、环境条件在选择伺服电机时,还需要考虑环境条件。

包括温度、湿度、震动等因素。

一些特殊的工作环境可能需要选择耐高温、防尘防水等特殊的型号。

还需要考虑伺服电机的安装方式和外壳材质等因素,以确保伺服电机可以在恶劣的环境条件下正常运行。

四、成本在进行伺服电机选型时,成本是一个重要的考虑因素。

除了伺服电机本身的成本外,还需要考虑安装、维护和使用成本。

需要综合考虑各种因素,选择性价比最高的产品。

还需要考虑产品的品牌和售后服务等因素,确保选择到性能可靠、服务完善的产品。

五、其他注意事项1. 选型人员需要了解伺服电机的基本原理和性能指标,避免因为对产品不熟悉而选择错误的型号。

2. 需要对负载特性进行准确的测量和分析,以确保选型的准确性。

3. 在选择伺服电机时,还需要考虑到未来的发展需求,以避免产品在后期无法满足实际需求的情况。

伺服电机选型是一个复杂的过程,需要综合考虑多个因素才能选择到最合适的产品。

希望上述原则和注意事项能够帮助大家在伺服电机选型时有所帮助。

伺服电机选型

伺服电机选型

1)牙科贝思直线电机选型软件
考试题
已知:丝杠传动类型,负载重量W=10Kg, 负载垂直升降距离30mm,加(减)速时 间0.1s,匀速0.1s。设计最优结构,根据 所选丝杠,计算满足负载需求的最小功率 的伺服电机(三菱电机)。
已知:同步带传动类型,负载重量
W=3Kg,负载垂直升降距离300mm,加
负载重量:5kg 带轮选型:5M-18齿 电机选型:200W(三菱伺服电机)
核算:
3)伺服电机选型计算 (齿轮齿条传动类型)
齿轮齿条传动类型的伺服电机选型计算与同步带类似。 计算时需注意: 上述公式中同步带直径为带轮节径,具体数值可查标准《圆弧齿带
轮直径JB/T 7512.2》、《周节制带轮直径GB/T 11361》。 渐开线圆柱齿轮直径为齿轮的分度圆直径,直齿轮分度圆直径D=m
负载的惯量:JW=
M(D)2 / 2
R
2
JB
③负载转矩的计算
水平运动时负载转矩:TW=μMg
D 2
/
R
垂直运动时负载转矩:TW=μMg
D 2
/
R
Mg
D 2
/
R
加减速转矩的计算:TA= (JM J机)2tπ1 • N
最大转矩:T=TA+TW
3)伺服电机选型计算 (同步带传动类型)
示例:S4000(样机)-68部
2)三菱伺服电机HG-KN系列参数表
2)三菱伺服电机HG-KN系列参数表
3)伺服电机选型计算 (丝杆传动类型)
①根据总方案结构、节拍图、电池片工位图确定
负载质量M
丝杠的导程P
丝杠直径D
丝杆质量MB
导轨、丝杆运行摩擦系数μ(一般取值0.15)

伺服电机选型的原则和注意事项

伺服电机选型的原则和注意事项

伺服电机选型的原则和注意事项伺服电机是一种能够输出力矩的机电传动装置,可以将输入的电信号转化成相应的运动规律。

因其具有速度高、精度高、响应快等特点,广泛应用于机械制造、自动化设备、机器人、航空航天等领域。

在选择伺服电机时,需要考虑多种因素,包括性能、规格、成本、环境等。

下面我们将详细介绍伺服电机选型的原则和注意事项。

一、伺服电机选型的原则1. 性能匹配原则:选择伺服电机时,需充分考虑其输出功率、转速范围、定位精度、响应速度等性能指标,确保能够满足实际应用的要求。

通常情况下,需根据具体的负载特性、作业环境以及工作要求等方面综合考虑。

2. 稳定性原则:伺服电机在工作中需要具有稳定的运行特性,因此在选型时需要注意其输出稳定性、温升特性、抗扰性等指标,以确保其在各种工况下都能够稳定运行。

3. 经济性原则:在选型时,需综合考虑伺服电机的成本、维护费用、能耗等因素,选择性价比较高的产品。

在确保性能和质量的前提下,尽量降低成本。

4. 可靠性原则:伺服电机作为机械传动的重要部件,其可靠性直接关系到设备的稳定运行。

因此在选型时需选择品质可靠、性能稳定的产品,尽量避免使用劣质产品。

5. 适用性原则:伺服电机的选型需考虑其适用范围和使用环境,例如是否需要防尘防水、是否需要防爆功能、工作温度范围等。

选型时需根据实际工况选择适合的产品。

6. 可维护性原则:选型时需考虑伺服电机的可维护性,例如易损件的更换和维护难易程度、厂家售后服务的支持等方面,以确保设备的长期稳定运行。

1. 了解负载特性:在选型前需要充分了解实际应用中的负载特性,包括负载的惯性、摩擦力、阻尼力等,以便合理选择伺服电机的输出功率和转矩。

2. 确定运动要求:需明确了解设备对于速度、加速度、定位精度等方面的要求,以便选择适合的伺服电机类型和规格。

3. 注意温升和过载能力:在选型时需考虑伺服电机的持续运行能力和过载能力,以确保其在长期工作和瞬时过载情况下都能够正常运行。

伺服电机选型原理

伺服电机选型原理

伺服电机选型原理伺服电机是一种特殊的电机,具有高精度、高动态响应和高控制性能等特点,广泛应用于数控机床、机器人、自动化设备等领域。

伺服电机的选型涉及到机械传动和控制系统的需求,需要考虑诸多因素。

伺服电机的选型原理主要涉及以下几个方面:1.功率需求:根据机械传动系统的负载特性、工作条件、加速度要求等,确定伺服电机的功率需求。

一般来说,功率需求越大,伺服电机的规格和成本会相应提高。

2.转矩需求:根据机械传动系统的负载转矩特性,确定伺服电机的转矩需求。

转矩需求越大,伺服电机的规格和成本也会相应提高。

3.精度要求:根据机械传动系统的工作精度要求,确定伺服电机的精度。

精度要求越高,伺服电机的规格和成本也会随之提高。

4.动态性能要求:根据机械传动系统的加速度、速度和位置控制要求,确定伺服电机的动态响应能力。

动态性能要求越高,伺服电机的规格和成本也会相应提高。

在选型时,需要对伺服电机的性能参数进行分析和比较:1.额定功率和额定转矩:伺服电机的额定功率是指电机长期连续工作时的输出功率,额定转矩是指电机在额定功率下可输出的转矩。

根据机械传动系统的功率和转矩需求,选择满足要求的伺服电机。

2.最大功率和最大转矩:伺服电机的最大功率是指电机短时间内可以承受的最大功率,最大转矩是指电机短时间内可以承受的最大转矩。

在一些需要短时间内输出较大功率或转矩的应用场景中,需要考虑伺服电机的最大功率和最大转矩。

3.转速范围:伺服电机的转速范围是指电机在额定功率下可以达到的最高转速和最低转速。

根据机械传动系统的工作转速需求,选择适合的伺服电机。

4.动态响应性能:包括加速度、速度和位置的响应能力。

加速度是指伺服电机在单位时间内能够改变的速度,速度是指伺服电机在单位时间内能够达到的转速,位置是指伺服电机在给定时间内能够到达的位置。

根据机械传动系统的动态性能要求,选择具备良好动态响应性能的伺服电机。

5.控制方式:伺服电机的控制方式通常包括位置控制、速度控制和转矩控制。

伺服电机选型的原则和注意事项

伺服电机选型的原则和注意事项

伺服电机选型的原则和注意事项一、伺服电机如何选型伺服电机的选型要注意很多方面,首先是根据交流伺服电机的特点挑选。

交流伺服电机的特点是运行范围广泛,没有自转现象,启动转矩较大。

对比传统的步进电机,伺服电机的优点是控制的精度有所提高,在低频运行时有较好的稳定性,不会出现异常震动。

伺服电机转矩大的特点也就决定了其具有很好的过载能力,承受过载的程度比步进电机高三倍。

伺服电机的可靠性更高,是因为其具有高效的控制系统,其采用闭环控制的特点,利用各个区域部件的反馈,很好的控制速度起到提高伺服电机运行精度的作用。

交流伺服电机因其超高的稳定性,以及良好的控制系统常被应用到一些高精度的机械设备。

这些高尖端设备往往对伺服电机的型号有不同要求,下面笔者来详细介绍如何选型。

(1)选择正确的负载电机惯量比所选伺服电机的惯量比关系着伺服电机能否发挥最大效能。

尤其对于那些高精度机械而言,只有选择好合适的惯量比,才能够保证机器平稳运行,以及关系到能否生产出合格产品。

惯量比为何能影响产品加工精度,以及为何对高精度机器影响巨大,这是由伺服电机运行特点所决定的。

1/ 5首先,如果惯量比要比实际所选用数值大就会导致发生异常震动,不利于操控机器。

导致生产不够精细,导致机器反应时间变慢影响整个系统的稳定性和运行精度。

不同机型伺服电机的允许负载电机惯量比不同,这就要相关技术人员在挑选时要多方面分析计算负载惯量,查选伺服电机参数手册,选择合适自己的机型。

(2)转速、转矩适合电机的转速、转矩决定输出功率以及机器运行时的稳定性。

首先在电机额定转速下运行,其输出的功率要与所用机器所需功率相近,避免不必要的浪费。

在进行机器的转速调节时,值得注意的是恒转矩调节,恒转矩调节是指在电机不论是高转速运行还是低转速运行它们所输出的转矩都是恒定不变的。

这种输出情况下是最稳定的。

伺服电机的转矩的要求是要接近所需的,余量不可以太大。

如短时间内增大电机的运转速率,各种电机的最大转矩也会有所不同。

伺服驱动器原理及选型

伺服驱动器原理及选型

伺服驱动器原理及选型
伺服驱动器的原理是通过不断与编码器进行反馈,使电机转动到预定
位置,然后根据控制器的信号对其进行调节,以保持稳定的位置或速度。

在控制过程中,伺服驱动器根据编码器的反馈信号来调整输出电流,使电
机按照预定的速度和位置运行。

1.功率要求:根据实际应用的需求确定所需的功率范围。

功率通常以
瓦特(W)或千瓦(KW)为单位表示。

2.控制方式:选择与控制器兼容的控制方式,如模拟控制、数字控制
或通信控制等。

不同的控制方式对应不同的接口标准和协议。

3.控制精度:根据实际应用的需求确定所需的控制精度。

通常以角度、速度或位置差异度量。

4.响应速度:根据实际应用需求确定伺服驱动器的响应速度。

高速应
用需要快速的响应速度,而低速应用则可以选择较慢的响应速度。

5.保护功能:考虑选择具有过载和过热保护功能的伺服驱动器,以保
护电机和驱动器免受损坏。

6.型号和规格:根据实际应用需求选择适当的产品型号和规格。

不同
的厂家和型号有不同的特点和规格,可以根据需求选择合适的产品。

7.成本:最后要考虑价格因素。

根据预算确定合理的价格范围,选择
性价比高的伺服驱动器。

总之,伺服驱动器是实现伺服电机运动控制的关键部件。

在选型时,
需要考虑功率要求、控制方式、控制精度、响应速度、保护功能、型号和
规格以及成本等因素。

根据应用需求选择合适的伺服驱动器可以确保系统的稳定性和性能。

伺服基本原理及伺服选型计算

伺服基本原理及伺服选型计算
克服摩擦力所需转矩Tf = M * g * µ * (D / 2) / R2 / R1 = 50 * 9.8 * 0.6 * 0.06 / 2 / 10
= 0.882 N.m
加速时所需转矩Ta = M * a * (D / 2) / R2 / R1 = 50 * (30 / 60 / 0.2) * 0.06 / 2 / 10
伺服选型计算
物理概念及公式
1
§ 力矩與轉動方程式
1. 力矩:
1) 力矩的意義:使物體轉動狀態產生變化的因素,即當物體 受到不為零的外力矩作用,原為靜止的將開始轉動,原來 已在轉動的,轉速將產生改變。 2) 力矩的定義:考慮開門的情況,如右 圖,欲讓門產生轉動,必須施一外力 F 。施力點離轉軸愈遠愈容易使門轉 動。而外力平形於門面的分力對門的 轉動並無效果,只有垂直於門面的分 力能讓門轉動。綜合以上因素,定義 力矩,以符號 τ表示。 F r θ
10
伺服选型原则
• • • • 连续工作扭矩 < 伺服电机额定扭矩 瞬时最大扭矩 < 伺服电机最大扭矩 (加速时) 负载惯量 < 3倍电机转子惯量 连续工作速度 < 电机额定转速
11
举例计算1
已知:圆盘质量M=50kg,圆盘直径 D=500mm,圆盘最高转速60rpm, 请选择伺服电机及减速机。

i
i
( mi ri )
2 i
m F
左邊的合力矩只需考慮外力所產生的力矩,由內力所產生 的力矩將會兩兩互相抵消,如右上圖所示。
括號中的量稱為剛體的轉動慣量,以符號 I 表示
I mi ri 2
i
則上面導出的轉動方程式可寫成
I
4
此方程式為繞固定軸轉動的剛體所必須遵守的基本力學方程 式,類似於移動力學中的牛頓第二運動定律。合外力對應到 合外力矩,質量對應到轉動慣量,加速度對應到角加速度。

伺服电机选型的原则和注意事项

伺服电机选型的原则和注意事项

伺服电机选型的原则和注意事项
伺服电机是一种可以精密控制位置和速度的电机。

在使用伺服电机时,需要根据具体的应用场景选型。

下面介绍一下伺服电机选型的原则和注意事项。

一、选型原则
1. 电机输出功率选择:根据所需的输出扭矩和转速来选择选择电机输出功率。

2. 电机扭矩选择:根据应用中的负载特点选择适合的扭矩范围的电机。

4. 电机控制方式选择:根据应用场景选取适合的通信方式,是否支持多轴联动以及其它基本控制功能。

5. 电机的精度选择:选择符合精度要求的电机。

二、选型注意事项
1. 环境温度:环境温度是选型的一个非常重要的因素,因为电机在运行时会产生热量,如果工作环境温度过高,就会影响电机的使用寿命。

2. 额定电压:电机的额定电压需要符合工作环境的电源条件,不能超出电机的电压范围。

3. 性能要求:应根据具体的应用场景,如加速、减速、负载变化等进行选型。

4. 扭矩曲线:扭矩曲线可以显示电机的性能,如低速扭矩和最大扭矩,以及电机性能曲线的平滑程度等,因此,在选型时需要注重扭矩曲线的性能。

5. 成本选择:除了技术性能之外,成本也是考虑选型的重要因素之一,需要根据可承受的经济压力选择价格适宜的伺服电机。

在选型之前,应该要考虑设备所使用的情况,具体的应用场景,这样才能选对更适合的伺服电机,这样才能使整个系统更加稳定可靠。

伺服电机选型的原则和注意事项

伺服电机选型的原则和注意事项

伺服电机选型的原则和注意事项伺服电机是一种能够精确控制位置、速度和加速度的电机,通常被应用于需要高精度运动控制的领域,如机械加工、自动化设备、航空航天等。

在选择伺服电机时,需要考虑多种因素,包括额定转矩、响应速度、控制精度、功耗等特性。

以下将介绍一些伺服电机选型的原则和注意事项。

一、原则1. 根据应用需求确定技术指标在选择伺服电机时,首先需要明确应用需求,确定需要控制的位置、速度和加速度范围,以及所需的定位精度、动态响应性能等技术指标。

根据这些技术指标,可以选择适合的伺服电机。

2. 考虑负载特性负载特性是选择伺服电机的重要考量因素之一。

不同的应用需要承载不同的负载,包括惯性负载、摩擦负载、惯性摩擦负载等。

根据负载特性选择适合的伺服电机,可以提高系统的稳定性和性能。

3. 考虑环境条件在选择伺服电机时,需要考虑环境条件,包括温度、湿度、振动、腐蚀等因素。

根据实际环境条件选择耐高温、防尘防水等特性的伺服电机,可以延长设备的使用寿命。

4. 综合考虑成本和性能在选择伺服电机时,需要综合考虑成本和性能。

较低成本的伺服电机可能性能较差,无法满足应用需求;而较高成本的伺服电机可能性能过剩,增加了不必要的成本。

需要根据实际应用需求综合考虑成本和性能,选出性价比较高的伺服电机。

5. 考虑系统集成性在选择伺服电机时,需要考虑其与其他系统组件的集成性。

需要考虑伺服电机与控制器、编码器、减速器等其他设备的兼容性,以及其在系统中的整体性能表现。

二、注意事项1. 确定额定转矩与运行转矩在选择伺服电机时,需要明确其额定转矩和运行转矩。

额定转矩是指电机在额定转速下的输出转矩,而运行转矩是指电机在实际运行中所需的实际输出转矩。

根据运行转矩确定伺服电机的选择,可以确保其在实际应用中的性能。

2. 确定响应速度与控制精度在选择伺服电机时,需要考虑其响应速度和控制精度。

响应速度是指电机对控制信号的响应速度,控制精度是指电机对位置、速度、加速度等参数的控制精度。

伺服驱动器原理及选型

伺服驱动器原理及选型

伺服驱动器原理及选型伺服驱动器(Servo Drive)是一种用于控制伺服电机运动的电子设备,它可以控制电机的速度、位置和扭矩。

伺服驱动器通常由电源模块、控制模块和功率模块组成。

控制模块接收指令信号,通过功率模块将电源信号转换为适合电机控制的信号,从而控制电机的运动。

伺服驱动器的工作原理基本上可以分为三个步骤:采样、比较和输出。

首先,伺服驱动器会不断采样电机的位置、速度和扭矩信息,以反馈给控制模块。

然后,控制模块会将采样的信息与设定值进行比较,计算出与设定值的误差,并生成相应的控制信号。

最后,控制信号经过功率模块的放大和变换,输出到电机,控制电机的运动。

1.功率:伺服驱动器的功率应根据电机的额定功率来选择,通常应选择与电机额定功率相匹配的伺服驱动器,以确保驱动器能够正常控制电机的运动。

2.控制方式:伺服驱动器的控制方式可以分为位置控制、速度控制和扭矩控制。

根据具体应用的需求,选择合适的控制方式。

3.通讯接口:现代伺服驱动器通常提供多种通讯接口,如RS485、CAN总线、以太网等,以便与上位机或其他设备进行通讯。

根据具体的控制系统要求,选择适合的通讯接口。

4.控制精度:伺服驱动器的控制精度是指驱动器可以实现的最小位置或速度变化,通常以“脉冲当量”来表示,即每个脉冲对应的移动距离或速度增量。

根据应用的需求,选择具有足够控制精度的伺服驱动器。

5.功能扩展:一些高级伺服驱动器还具有一些功能扩展,如过载保护、编码器反馈、故障诊断等。

根据具体的应用需求,选择带有所需功能扩展的伺服驱动器。

6.可靠性和稳定性:伺服驱动器作为控制电机的核心设备,其可靠性和稳定性对于系统的运行至关重要。

选择具有高可靠性和稳定性的品牌和型号的伺服驱动器,以确保系统的正常运行。

总之,选择适合的伺服驱动器需要综合考虑电机的功率、控制方式、通讯接口、控制精度、功能扩展以及可靠性和稳定性等因素,以满足具体应用的需求。

伺服电机选型的原则和注意事项

伺服电机选型的原则和注意事项

伺服电机选型的原则和注意事项伺服电机是一种广泛应用于自动化控制领域的电机,具有高速、高精度、高灵敏度等特点。

在选择伺服电机时,需要考虑很多因素,包括性能、功率、尺寸、成本等。

下面将介绍一些选型原则和注意事项,帮助大家更好地选择适合自己应用场景的伺服电机。

一、选型原则1. 根据应用需求:在选型伺服电机时,首先需要明确应用需求,包括所需的工作负载、速度、精度等。

不同的应用场景需要不同的性能参数,比如一些需要高力矩输出的应用可能需要选择扭矩型伺服电机,而一些需要高速运动的应用可能需要选择高速型伺服电机。

2. 考虑稳定性和可靠性:伺服电机的稳定性和可靠性对于自动化设备的安全和正常运行至关重要。

在选型时,需要选择具有稳定性和可靠性的产品,可以考虑选择知名品牌的产品,或者通过参考其他用户的实际使用情况来进行选择。

3. 考虑成本和性能:在选择伺服电机时,需要兼顾成本和性能。

一方面,需要确保所选产品的性能能够满足实际需求,还需要考虑产品的价格是否在预算范围内。

可以通过对比各个品牌的产品性能和价格来进行选择,以达到性价比最优的目的。

4. 考虑后续维护和服务:在选择伺服电机时,还需要考虑后续维护和售后服务的情况。

一些知名品牌的产品通常有完善的售后服务体系,可以提供及时的技术支持和配件保障,可以考虑选择这些品牌的产品。

二、注意事项1. 熟悉技术参数:在选型前,需要对伺服电机的一些重要技术参数进行了解,包括额定扭矩、额定转速、分辨率、电压等。

这些参数对于伺服电机的性能与应用有着重要的影响,需要根据实际需求进行合理选择。

2. 选择合适的控制器:伺服电机通常需要配合控制器才能实现闭环控制,因此在选择伺服电机时,还需要考虑选择合适的控制器。

一般来说,厂家都会推荐适配的控制器型号,可以按照厂家的建议来进行选择。

3. 注意安装尺寸:在选择伺服电机时,需要注意其安装尺寸是否与现有设备的安装接口相匹配,如果尺寸不匹配,可能需要进行一些机械改动,增加成本和时间。

伺服电机驱动器的选型原则

伺服电机驱动器的选型原则

伺服电机驱动器的选型原则随着科学技术和工业制造的进步,伺服电机的应用越来越广泛,而伺服电机的驱动器作为伺服电机的重要组成部分,对于机器设备的精密控制和运行效率起着至关重要的作用。

因此,在选择伺服电机驱动器时需要根据不同的应用,合理选型,以达到最佳的性能和稳定性。

本文将为您介绍伺服电机驱动器的选型原则。

一、控制方式伺服电机驱动器的主要控制方式有开环控制和闭环控制。

开环控制的特点是控制简单、成本较低,但控制精度较低;而闭环控制的特点是控制精度高、稳定性好,但成本相对较高。

因此,在选型时需根据实际需求选择最为适合的控制方式。

二、控制算法伺服电机驱动器的控制算法有PI控制、PD控制、PID控制和模糊控制等,其中PID控制算法被广泛应用。

不同的控制算法对不同的应用具有不同的优势,需根据实际应用场景来选择。

三、额定功率根据伺服电机的额定功率来选择合适的驱动器,主要考虑电机的最大扭矩和额定转速。

在实际应用中,应根据负载特性等情况,合理选择驱动器的额定功率,以确保系统的稳定性和长期可靠性。

四、控制频率控制频率是指伺服电机控制器输出的电信号频率。

选择适当的控制频率能够提高控制精度和响应速度。

不同的伺服电机驱动器的控制频率范围不同,应根据实际需求进行选择。

五、反馈设备伺服电机驱动器的反馈设备主要有编码器、霍尔元件和电位器等。

编码器是应用最为广泛的反馈设备之一,而霍尔元件和电位器则主要用于低成本和低精度的应用中。

不同的反馈设备能够提供不同的精度和分辨率,需要根据实际需求进行选择。

六、环境适应性伺服电机驱动器的工作环境也是选择的重要因素之一。

需要根据实际应用场景选择具有防护等级的驱动器,并且要根据工作环境的温度、湿度等条件来选择合适的型号,以确保驱动器在不同的环境下都能正常工作。

以上就是伺服电机驱动器的选型原则的介绍。

在实际应用时应根据具体情况进行选择,科学合理的选型能够增强设备的稳定性、可靠性和运行效率,为生产和制造业的发展做出贡献。

伺服基本原理与伺服选型计算

伺服基本原理与伺服选型计算

伺服基本原理与伺服选型计算伺服系统基本原理是通过控制系统来驱动伺服电机,实现对输出位置、速度和加速度的精确控制。

伺服系统由伺服电机、编码器、控制器和电源等组成。

伺服电机作为伺服系统的执行器,根据控制信号来产生力矩,驱动负载实现精确的位置和速度控制。

编码器用于反馈负载的实际位置和速度信号给控制器,控制器通过与设定值进行比较,计算输出信号,驱动伺服电机实现位置、速度和加速度的闭环控制。

电源为伺服系统提供稳定的电压和电流,保证伺服电机正常工作。

伺服选型计算是为了确定适合应用场景的伺服系统参数,包括伺服电机的额定速度、额定扭矩、惯量(转动惯量和负载惯量)、伺服电机的功率和电流等。

选型计算的目的是根据实际需求,选择合适的伺服系统,以确保系统能够满足精确控制的要求,并具有较高的响应速度和负载能力。

伺服选型计算的步骤主要包括以下几个方面:1.确定应用场景的要求:包括所需的位置控制精度、速度控制范围、加速度要求以及负载情况等。

2.计算负载的转动惯量:负载的转动惯量是伺服选型计算中的重要参数,可以通过计算或测量得到。

转动惯量的大小直接影响伺服电机的加速度和响应速度。

3.计算负载的额定扭矩:额定扭矩是指伺服电机能够提供的最大扭矩,通过分析负载的工作条件和受力情况,可以计算得到需要的额定扭矩。

4.选择合适的伺服电机型号:根据负载的转动惯量和额定扭矩计算结果,选择适合的伺服电机型号。

可以考虑力矩、转速、功率和转矩惯量等参数指标。

5.计算伺服系统的电流和功率:根据所选定的伺服电机型号和工作条件,计算伺服电机的额定电流和功率。

这样可以选择合适的电源和配套的驱动器。

通过以上的选型计算步骤,可以选择适合应用的伺服系统,满足精确控制的要求。

选型计算需要综合考虑实际应用的需求,包括位置精度、速度要求、负载情况等,同时还需要考虑电机型号的可靠性、稳定性和能效性能。

因此,在进行伺服选型计算时,建议使用专业的伺服选型软件,能够更准确和高效地完成选型计算。

伺服电机如何进行选型

伺服电机如何进行选型

伺服电机选型技术指南1、机电领域中伺服电机的选择原则现代机电行业中经常会碰到一些复杂的运动,这对电机的动力荷载有很大影响。

伺服驱 动装置是许多机电系统的核心,因此,伺服电机的选择就变得尤为重要。

首先要选出满足给 定负载要求的电动机,然后再从中按价格、重量、体积等技术经济指标选择最适合的电机。

述度自廿比 ioa% 各种电机的T-3曲线 (1)传统的选择方法这里只考虑电机的动力问题,对于直线运动用速度v(t),加速度a(t)和所需外力F(t)表 示,对于旋转运动用角速度3 (t),角加速度a (t)和所需扭矩T(t)表示,它们均可以表示为时 间的函数,与其他因素无关。

很显然。

电机的最大功被电机最大应大于工作负载所需的峰值 功率P 峰值,但仅仅如此是不够的,物理意义上的功率包含扭矩和速度两部分,但在实际的 传动机构中它们是受限制的。

用3峰值,T 峰值表示最大值或者峰值。

电机的最大速度决定了 减速器减速比的上限,n 上限二3峰值最大/3峰值,同样,电机的最大扭矩决定了减速比的下限, n 下P 「T 峰值/T 电机,最大,如果n 下限大于n 上限,选择的电机是不合适的。

反之,则可以通过对每 种电机的广泛类比来确定上下限之间可行的传动比范围。

只用峰值功率作为选择电机的原则 是不充分的,而且传动比的准确计算非常繁琐。

(2)新的选择方法一种新的选择原则是将电机特性与负载特性分离开,并用图解的形式表示,这种表示方 法使得驱动装置的可行性检查和不同系统间的比较更方便,另外,还提供了传动比的一个可 能范围。

这种方法的优点:适用于各种负载情况;将负载和电机的特性分离开;有关动力的 各个参数均可用图解的形式表示并且适用于各种电机。

因此,不再需要用大量的类比来检查 电机是否能够驱动某个特定的负载。

在电机和负载之间的传动比会改变电机提供的动力荷载参数。

比如,一个大的传动比会 减小外部扭矩对电机运转的影响,而且,为输出同样的运动,电机就得以较高的速度旋转, 产生较大的加速度,因此电机需要较大的惯量扭矩。

伺服电机选型的原则和注意事项

伺服电机选型的原则和注意事项

伺服电机选型的原则和注意事项为了满足机械设备对高精度、快速响应的要求,伺服电机应有较小的转动惯量和大的堵转转矩,并具有尽可能小的时间常数和启动电压,还应具有较长时间的过载能力,以满足低速大转矩的要求,能够承受频繁启动、制动和正、反转,如果盲目地选择大规格的电机,不仅增加成本,也会使得设计设备的体积增大,结构不紧凑,因此选择电机时应充分考虑各方面的要求,以便充分发挥伺服电机的工作性能;下面介绍伺服电机的选型原则和注意事项。

选用伺服电机型号的步骤1、明确负载机构的运动条件要求,即加/减速的快慢、运动速度、机构的重量、机构的运动方式等。

2、依据运行条件要求选用合适的负载惯最计算公式,计算出机构的负载惯量。

3、依据负载惯量与电机惯量选出适当的假选定电机规格。

4、结合初选的电机惯量与负载惯量,计算出加速转矩及减速转矩。

5、依据负载重量、配置方式、摩擦系数、运行效率计算出负载转矩。

6、初选电机的最大输出转矩必须大于加速转矩加负载转矩;如果不符合条件,必须选用其他型号计算验证直至符合要求。

7、依据负载转矩、加速转矩、减速转矩及保持转矩,计算出连续瞬时转矩。

8、初选电机的额定转矩必须大于连续瞬时转矩,如果不符合条件,必须选用其他型号计算验证直至符合要求。

9、完成选定。

伺服电机的选型计算方法1、转速和编码器分辨率的确认。

2、电机轴上负载力矩的折算和加减速力矩的计算。

3、计算负载惯量,惯量的匹配,安川伺服电机为例,部分产品惯量匹配可达50倍,但实际越小越好,这样对精度和响应速度好。

4、再生电阻的计算和选择,对于伺服,一般2kw以上,要外配置。

5、电缆选择,编码器电缆双绞屏蔽的,对于安川伺服等日系产品绝对值编码器是6芯,增量式是4芯。

以上的选择方法只考虑到电机的动力问题,对于直线运动用速度,加速度和所需外力表示,对于旋转运动用角速度,角加速度和所需扭矩表示,它们均可以表示为时间的函数,与其他因素无关。

很显然。

电机的最大功率P电机,最大应大于工作负载所需的峰值功率P峰值,但仅仅如此是不够的,物理意义上的功率包含扭矩和速度两部分,但在实际的传动机构中它们是受限制的。

伺服电机选型的原则和注意事项

伺服电机选型的原则和注意事项

伺服电机选型的原则和注意事项1. 引言1.1 概述伺服电机在现代工业中起着至关重要的作用,能够提供高精度、高效率的运动控制。

正确选型的伺服电机可以有效提升设备的性能,降低能耗和维护成本。

在选择伺服电机时,需要遵循一些原则和注意事项,以确保选型的准确性和合理性。

本文将依次介绍伺服电机选型的原则和注意事项,帮助读者更好地理解和应用伺服电机选型知识。

通过本文的学习,读者将能够更加准确地选择适合自己需求的伺服电机,并为工业生产提供更加稳定、高效的动力支持。

【概述】2. 正文2.1 伺服电机选型原则在选择伺服电机时,需要遵循一些基本的选型原则,以确保最终选择的电机能够满足需求并发挥最佳性能。

以下是一些伺服电机选型的原则:1. 负载要求:首先需要明确应用场景下的负载要求,包括负载大小、负载类型等。

根据负载要求来选择合适的电机型号和规格。

2. 运动控制要求:根据应用需求确定电机的运动控制要求,如速度范围、精度要求、加速度要求等。

选择合适的电机控制器以实现精准的运动控制。

3. 环境条件:考虑应用场景的环境条件,如温度、湿度等因素。

选择具有良好防护等级的电机以适应恶劣的环境条件。

4. 安装空间:根据安装空间的限制选择合适尺寸的伺服电机,确保电机能够有效安装和运行。

5. 预算限制:考虑预算限制,选择性价比较高的电机型号,确保在满足性能要求的同时不超出预算范围。

6. 供应商信誉:选择有良好口碑和业绩的供应商购买电机,确保产品质量和售后服务的可靠性。

遵循这些选型原则,可以帮助选择出适合应用需求的伺服电机,提高系统的稳定性和性能表现。

2.2 注意事项伺服电机选型的注意事项主要包括以下几点:1. 确定需求:在选型之前,首先要明确自己的需求,包括所需的输出功率、转速、扭矩等参数。

只有明确需求,才能选到合适的伺服电机。

2. 考虑环境因素:在选择伺服电机时,要考虑工作环境的特点,如温度、湿度、震动等因素,选择适合环境的伺服电机以确保其正常工作。

伺服电机的选型与应用指南

伺服电机的选型与应用指南

伺服电机的选型与应用指南伺服电机是一种常用的电动机类型,广泛应用于自动化设备、机器人、CNC机床等领域。

正确选择和应用伺服电机对于保证设备的性能和系统稳定运行至关重要。

本文将为您介绍伺服电机的选型与应用指南,帮助您更好地理解和使用伺服电机。

一、伺服电机的基本原理伺服电机是一种通过控制信号来精确控制位置、速度和加速度的电动机。

其基本原理是通过反馈信号持续与设定值进行比较,通过调整控制信号来控制电机输出的转矩和速度,使得电机能够精确控制运动。

二、伺服电机的选型要点1. 功率和转矩:根据实际应用需求确定所需伺服电机的功率和转矩。

一般来说,功率和转矩越大,电机的承载能力越高。

根据实际负载情况选择合适的电机。

2. 控制方式:伺服电机的控制方式包括位置控制、速度控制和力控制等。

根据实际应用需求选择合适的控制方式。

例如,对于需要精确控制位置的应用,选择位置控制方式更合适。

3. 分辨率:伺服电机的分辨率决定了其控制精度。

分辨率越高,电机的运动精度越高。

根据实际应用的精度需求选择合适的分辨率。

4. 响应速度:伺服电机的响应速度影响了系统的动态性能。

响应速度越快,系统的动态性能越好。

根据实际应用需求选择合适的响应速度。

5. 环境适应性:考虑伺服电机的使用环境,包括温度、湿度、震动等因素。

选择具有良好环境适应性的电机,以确保其稳定运行和长寿命。

三、伺服电机的应用指南1. 安装调试:按照电机厂商提供的安装手册进行电机的安装和调试。

确保电机安装稳固,与传动装置连接良好。

2. 参数调整:根据实际应用要求,调整伺服电机的参数,如位置环、速度环和加速度等参数。

合理调整参数可以提高控制的精度和稳定性。

3. 负载匹配:根据实际负载特性和要求,调整电机的负载匹配。

合理匹配负载可以确保电机在工作过程中的高效率和稳定性。

4. 防护措施:根据实际工作环境,采取合适的防护措施,如防尘、防湿、防震等。

保护电机免受外界环境的影响,延长其使用寿命。

伺服电机及选型

伺服电机及选型

伺服电机伺服电机(servomotor)是指在伺服系统中控制机械元件运转的发动机。

伺服电机可以控制速度,位置精度非常准确,可以将电压信号转化为转矩和转速以驱动控制对象。

伺服电机转子转速受输入信号控制,并能快速反应,在自动控制系统中,用作执行元件,可把所收到的电信号转换成电动机轴上的角位移或角速度输出。

“伺服”一词源于希腊语“奴隶”的意思,“伺服电机”可以理解为绝对服从控制信号指挥的电机:在控制信号发出之前,转子静止不动,当控制信号发出时,转子立即转动;当控制信号消失时,转子能即时停转。

因此伺服电机指的是随时跟随命令进行动作的一种电机,是以其工作性质命名的。

伺服主要靠脉冲来定位,伺服电机接收到一个脉冲就会旋转一个脉冲对应的角度,从而实现位移。

伺服本身带有编码器,具备发出脉冲的功能,所以伺服电机每旋转一个角度,就会发出对应数量的脉冲。

等于是把电机旋转的详细信息反馈回去,形成闭环。

这样的话,系统就会知道发了多少脉冲给电机,同时又收了多少脉冲回来,这样就能很精准的控制电机的转动,实现非常精准的定位。

一、伺服电机分类1、直流伺服结构简单控制容易。

但从实际运行考虑,直流伺服电动机引入了机械换向装置,成本高,故障多,维护困难,经常因碳刷产生的火花影响生产,会产生电磁干扰。

而且碳刷需要维护更换。

机械换向器的换向能力,也限制了电动机的容量和速度。

2、交流伺服分为永磁同步伺服电机和异步伺服电机。

目前运动控制基本都用同步电机。

永磁同步伺服电机内部的转子是永磁铁,驱动器控制的U/V/W 三相电形成电磁场,转子在此磁场的作用下转动,同时电机自带的编码器反馈信号给驱动器,驱动器根据反馈值与目标值进行比较,调整转子转动的角度。

伺服电机的精度决定于编码器的精度(线数)。

特点如下:1、控制速度非常快,从启动到额定转速只需几毫秒;而相同情况下异步电机却需要几秒钟。

2、启动扭矩大,可以带动大惯量的物体进行运动。

3、功率密度大,相同功率范围下相比异步电机可以把体积做得更小、重量做得更轻。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

伺服电机原理及选型规则2011-8-4 8:00:00 来源:[摘要]:是在伺服系统中控制机械元件运转的发动机,是一种补助马达间接变速装 置。

伺服电机是可以连续旋转的电-机械转换器。

作为液压阀控制器的伺服电机,属 于功率很小的微特电机,以永磁式直流伺服电机和并激式直流伺服电机最为常用。

[关键词]:伺服系统 发动机 马达 变速装置 伺服电机 什么是伺服电机? 伺服电机:是在伺服系统中控制机械元件运转的发动机,是一种补助马达间接变速装 置。

伺服电机是可以连续旋转的电-机械转换器。

作为液压阀控制器的伺服电机,属 于功率很小的微特电机,以永磁式直流伺服电机和并激式直流伺服电机最为常用。

伺服电机的作用:伺服电机可使控制速度,位置精度非常准确。

伺服电机的分类:直流伺服电机和交流伺服电机。

直流伺服电机的输出转速与输入电压成正比,并能实现正反向速度控制。

具有起动转 矩大,调速范围宽,机械特性和调节特性的线性度好,控制方便等优点,但换向电刷 的磨损和易产生火花会影响其使用寿命。

近年来出现的无刷直流伺服电机避免了电刷 摩擦和换向干扰, 因此灵敏度高, 死区小, 噪声低, 寿命长, 对周围电子设备干扰小。

直流伺服电机的输出转速/输入电压的传递函数可近似视为一阶迟后环节,其机 电时间常数一般大约在十几毫秒到几十毫秒之间。

而某些低惯量直流伺服电机(如空 心杯转子型、印刷绕组型、无槽型)的时间常数仅为几毫秒到二十毫秒。

小功率规格的直流伺服电机的额定转速在 3000r/min 以上,甚至大于 10000r/min。

因此作为液压阀的控制器需配用高速比的减速器。

而直流力矩伺服电机 (即低速直流伺服电机)可在几十转/分的低速下,甚至在长期堵转的条件下工作, 故可直接驱动被控件而不需减速。

直流伺服电机分为有刷和无刷电机。

有刷电机成本低,结构简单,启动转矩大,调速范围宽,控制容易,需要维护, 但维护方便(换碳刷),产生电磁干扰,对环境有要求。

因此它可以用于对成本敏感 的普通工业和民用场合。

无刷电机体积小,重量轻,出力大,响应快,速度高,惯量小,转动平滑,力矩 稳定。

控制复杂,容易实现智能化,其电子换相方式灵活,可以方波换相或正弦波换 相。

电机免维护, 效率很高, 运行温度低, 电磁辐射很小, 长寿命, 可用于各种环境。

交流伺服电机也是无刷电机,分为同步和异步电机,目前运动控制中一般都用同 步电机,它的功率范围大,可以做到很大的功率。

大惯量,最高转动速度低,且随着 功率增大而快速降低。

因而适合做低速平稳运行的应用。

交流伺服电机的工作原理 伺服电机内部的转子是永磁铁,驱动器控制的 U/V/W 三相电形成电磁场,转子 在此磁场的作用下转动,同时电机自带的编码器反馈信号给驱动器,驱动器根据反馈 值与目标值进行比较, 调整转子转动的角度。

伺服电机的精度决定于编码器的精度 (线数)。

交流伺服电机和无刷直流伺服电机在功能上有什么区别? 交流伺服要好一些,因为是正弦波控制,转矩脉动小。

直流伺服是梯形波。

但直 流伺服比较简单,便宜。

永磁交流伺服电动机 20 世纪 80 年代以来,随着集成电路、电力电子技术和交流可变速驱动技术的发 展,永磁交流伺服驱动技术有了突出的发展,各国著名电气厂商相继推出各自的交流 伺服电动机和伺服驱动器系列产品并不断完善和更新。

交流伺服系统已成为当代高性 能伺服系统的主要发展方向,使原来的直流伺服面临被淘汰的危机。

90 年代以后, 世界各国已经商品化了的交流伺服系统是采用全数字控制的正弦波电动机伺服驱动。

交流伺服驱动装置在传动领域的发展日新月异。

永磁交流伺服电动机同直流伺服电动 机比较,主要优点有: ⑴无电刷和换向器,因此工作可靠,对维护和保养要求低。

⑵定子绕组散热比较方便。

⑶惯量小,易于提高系统的快速性。

⑷适应于高速大力矩工作状态。

⑸同功率下有较小的体积和重量。

步进电机和交流伺服电机性能比较 步进电机是一种离散运动的装置,它和现代数字控制技术有着本质的联系。

在目前国 内的数字控制系统中, 步进电机的应用十分广泛。

随着全数字式交流伺服系统的出现, 交流伺服电机也越来越多地应用于数字控制系统中。

为了适应数字控制的发展趋势, 运动控制系统中大多采用步进电机或全数字式交流伺服电机作为执行电动机。

虽然两 者在控制方式上相似(脉冲串和方向信号),但在使用性能和应用场合上存在着较大 的差异。

现就二者的使用性能作一比较。

一、控制精度不同 两相混合式步进电机步距角一般为 3.6°、 1.8°,五相混合式步进电机步距角一般 为 0.72 °、0.36°。

也有一些高性能的步进电机步距角更小。

如四通公司生产的一 种用于慢走丝机床的步进电机,其步距角为 0.09°;德国百格拉公司(BERGER LAHR)生产的三相混合式步进电机其步距角可通过拨码开关设置为 1.8°、0.9°、 0.72°、0.36°、0.18°、0.09°、0.072°、 0.036°,兼容了两相和五相混合式 步进电机的步距角。

交流伺服电机的控制精度由电机轴后端的旋转编码器保证。

以松下全数字式交流伺服 电机为例,对于带标准 2500 线编码器的电机而言,由于驱动器内部采用了四倍频技 术,其脉冲当量为 360°/10000=0.036°。

对于带 17 位编码器的电机而言,驱动器 每接收 217=131072 个脉冲电机转一圈,即其脉冲当量为 360°/131072=9.89 秒。

是步距角为 1.8°的步进电机的脉冲当量的 1/655。

二、低频特性不同 步进电机在低速时易出现低频振动现象。

振动频率与负载情况和驱动器性能有关,一 般认为振动频率为电机空载起跳频率的一半。

这种由步进电机的工作原理所决定的低 频振动现象对于机器的正常运转非常不利。

当步进电机工作在低速时,一般应采用阻 尼技术来克服低频振动现象,比如在电机上加阻尼器,或驱动器上采用细分技术等。

交流伺服电机运转非常平稳,即使在低速时也不会出现振动现象。

交流伺服系统具有 共振抑制功能,可涵盖机械的刚性不足,并且系统内部具有频率解析机能(FFT), 可检测出机械的共振点,便于系统调整。

三、矩频特性不同 步进电机的输出力矩随转速升高而下降,且在较高转速时会急剧下降,所以其最高工 作转速一般在 300~600RPM。

交流伺服电机为恒力矩输出,即在其额定转速(一般 为 2000RPM 或 3000RPM)以内,都能输出额定转矩,在额定转速以上为恒功率输 出。

四、过载能力不同 步进电机一般不具有过载能力。

交流伺服电机具有较强的过载能力。

以松下交流伺服 系统为例,它具有速度过载和转矩过载能力。

其最大转矩为额定转矩的三倍,可用于 克服惯性负载在启动瞬间的惯性力矩。

步进电机因为没有这种过载能力,在选型时为 了克服这种惯性力矩,往往需要选取较大转矩的电机,而机器在正常工作期间又不需 要那么大的转矩,便出现了力矩浪费的现象。

五、运行性能不同 步进电机的控制为开环控制,启动频率过高或负载过大易出现丢步或堵转的现象,停 止时转速过高易出现过冲的现象,所以为保证其控制精度,应处理好升、降速问题。

交流伺服驱动系统为闭环控制,驱动器可直接对电机编码器反馈信号进行采样,内部 构成位置环和速度环,一般不会出现步进电机的丢步或过冲的现象,控制性能更为可 靠。

六、速度响应性能不同 步进电机从静止加速到工作转速(一般为每分钟几百转)需要 200~400 毫秒。

交流 伺服系统的加速性能较好,以松下 MSMA 400W 交流伺服电机为例,从静止加速到其额定转速 3000RPM 仅需几毫秒,可用于要求快速启停的控制场合。

综上所述,交流伺服系统在许多性能方面都优于步进电机。

但在一些要求不高的场合 也经常用步进电机来做执行电动机。

所以,在控制系统的设计过程中要综合考虑控制 要求、成本等多方面的因素,选用适当的控制电机。

交流伺服电机原理。

交流伺服电动机定子的构造基本上与电容分相式单相异步电动机相似, 其定子上装有 两个位置互差 90°的绕组,一个是励磁绕组 Rf,它始终接在交流电压 Uf 上;另一个 是控制绕组 L,联接控制信号电压 Uc。

所以交流伺服电动机又称两个伺服电动机。

交流伺服电动机的转子通常做成鼠笼式, 但为了使伺服电动机具有较宽的调速范 围、线性的机械特性,无“自转”现象和快速响应的性能,它与普通电动机相比,应 具有转子电阻大和转动惯量小这两个特点。

目前应用较多的转子结构有两种形式:一 种是采用高电阻率的导电材料做成的高电阻率导条的鼠笼转子, 为了减小转子的转动 惯量,转子做得细长;另一种是采用铝合金制成的空心杯形转子,杯壁很薄,仅 0.2-0.3mm,为了减小磁路的磁阻,要在空心杯形转子内放置固定的内定子,空心杯 形转子的转动惯量很小,反应迅速,而且运转平稳,因此被广泛采用。

交流伺服电动机在没有控制电压时,定子内只有励磁绕组产生的脉动磁场,转子 静止不动。

当有控制电压时,定子内便产生一个旋转磁场,转子沿旋转磁场的方向旋 转,在负载恒定的情况下,电动机的转速随控制电压的大小而变化,当控制电压的相 位相反时,伺服电动机将反转。

电动机选型参考: 在购置电动机时怎样选型,如何来选则! 下面我就这方面涉及的问题作出以下的介绍,希望对您有所帮助! 首先,就是电机结构形式的选择: 我们主要是根据使用环境来选择电动机结构形式: 1.在正常环境条件下,一般采用防护式电动机;在粉尘较多的工作场所,采用封闭式电动 机; 2.在湿热带地区或比较潮湿的场所,尽量采用湿热带型电动机; 3.在露天场所使用,采用户外型电动机,若有防护措施,也可采用封闭式或防护式电动 机; 4.在高温工作场所,应根据环境温度,选用相应绝缘等级的电动机,并加强通风改善电动 机工作条件; 5.在有爆炸危险场所,必须选用防爆型电动机; 6.在有腐蚀气体的场所,应选用防腐式电动机. 其次,是对电动机类型的选择: 不需要调速的机械装置应优先选用笼型异步电动机; 对于负载周期性波动的长期工作机械,宜用绕线型异步电动机; 需要补偿电网功率因数及获得稳定的工作速度时,优先选用同步电动机; 只需要几种速度,但不要求调速时,选用多速异步电动机,采用转换开关等来切换你所 需要的工作速度;需要大的起动转矩和恒功率调速的机械,宜选用直流电动机; 起制动和调速要求较高的机械,可选用直流电动机或带调速装置的交流电动机; 需要自动伺服控制的情况下,需要选择伺服电机。

相关文档
最新文档