线性代数经典试题4套及答案
《线性代数》习题集(含答案)
《线性代数》习题集(含答案)第一章【1】填空题(1) 二阶行列式2a abbb=___________。
(2) 二阶行列式cos sin sin cos αααα-=___________。
(3) 二阶行列式2a bi b aa bi+-=___________。
(4) 三阶行列式xy zzx y yzx =___________。
(5) 三阶行列式a bc c a b c a bbc a+++=___________。
答案:1.ab(a-b);2.1;3.()2a b -;4.3333x y z xyz ++-;5.4abc 。
【2】选择题(1)若行列式12513225x-=0,则x=()。
A -3;B -2;C 2;D 3。
(2)若行列式1111011x x x=,则x=()。
A -1,; B 0, C 1, D 2,(3)三阶行列式231503201298523-=()。
A -70;B -63;C 70;D 82。
(4)行列式00000000a ba b b a ba=()。
A 44a b -;B ()222a b-;C 44b a -;D 44a b 。
(5)n 阶行列式0100002000100n n -=()。
A 0;B n !;C (-1)·n !;D ()11!n n +-∙。
答案:1.D ;2.C ;3.A ;4.B ;5.D 。
【3】证明33()by az bz ax bx ay x y z bx ay by az bz ax a b zx y bz ax bx ay by azyzx++++++=++++ 答案:提示利用行列式性质将左边行列式“拆项”成八个三阶行列式之和,即得结果。
【4】计算下列9级排列的逆序数,从而确定他们的奇偶性: (1)134782695;(2)217986354;(3)987654321。
答案:(1)τ(134782695)=10,此排列为偶排列。
线代参考答案(完整版)
线性代数练习题 第一章 行 列 式系 专业 班 姓名 学号第一节 行列式的定义一.选择题1.若行列式x52231521- = 0,则=x [ C ] (A )2 (B )2- (C )3 (D )3- 2.线性方程组⎩⎨⎧=+=+473322121x x x x ,则方程组的解),(21x x = [ C ](A )(13,5) (B )(13-,5) (C )(13,5-) (D )(5,13--)3.方程093142112=x x根的个数是 [ C ] (A )0 (B )1 (C )2 (D )34.下列构成六阶行列式展开式的各项中,取“+”的有 [ A D ] (A )665144322315a a a a a a (B )655344322611a a a a a a (C )346542165321a a a a a a (D )266544133251a a a a a a 5.若55443211)541()1(a a a a a l k l k N -是五阶行列式ij a 的一项,则l k ,的值及该项的符号为[ B ](A )3,2==l k ,符号为正; (B )3,2==l k ,符号为负; (C )2,3==l k ,符号为正; (D )2,3==l k ,符号为负6.下列n (n >2)阶行列式的值必为零的是 [ B ] (A) 行列式主对角线上的元素全为零 (B) 三角形行列式主对角线上有一个元素为零 (C) 行列式零的元素的个数多于n 个 (D) 行列式非零元素的个数小于n 个 二、填空题 1.行列式1221--k k 0≠的充分必要条件是 3,1k k ≠≠-2.排列36715284的逆序数是 133.已知排列397461t s r 为奇排列,则r = 2,8,5 s = 5,2,8 ,t = 8,5,2 4.在六阶行列式ij a 中,623551461423a a a a a a 应取的符号为 负 。
(完整版)线性代数习题集(带答案)
第一部分 专项同步练习第一章 行列式一、单项选择题1.下列排列是5阶偶排列的是 ( ).(A) 24315 (B) 14325 (C) 41523 (D)24351 2.如果n 阶排列n j j j 21的逆序数是k , 则排列12j j j n 的逆序数是( ). (A )k (B)k n - (C)k n -2! (D)k n n --2)1(3. n 阶行列式的展开式中含1211a a 的项共有( )项.(A ) 0 (B )2-n (C) )!2(-n (D ) )!1(-n4.=0001001001001000( )。
(A) 0 (B )1- (C) 1 (D) 25。
=0001100000100100( ).(A) 0 (B)1- (C) 1 (D ) 26.在函数100323211112)(x x x x x f ----=中3x 项的系数是( ).(A) 0 (B)1- (C) 1 (D) 27. 若21333231232221131211==a a a a a a a a a D ,则=---=323133312221232112111311122222 2a a a a a a a a a a a a D ( ). (A) 4 (B ) 4- (C ) 2 (D ) 2-8.若a a a a a =22211211,则=21112212ka a ka a ( )。
(A )ka (B)ka - (C )a k 2 (D )a k 2-9. 已知4阶行列式中第1行元依次是3,1,0,4-, 第3行元的余子式依次为x ,1,5,2-, 则=x ( )。
(A) 0 (B)3- (C) 3 (D) 210。
若5734111113263478----=D ,则D 中第一行元的代数余子式的和为( )。
(A )1- (B)2- (C)3- (D)011. 若2235001011110403--=D ,则D 中第四行元的余子式的和为( ).(A)1- (B)2- (C)3- (D )012. k 等于下列选项中哪个值时,齐次线性方程组⎪⎩⎪⎨⎧=++=++=++000321321321x x kx x kx x kx x x 有非零解. ( )(A )1- (B )2- (C)3- (D)0二、填空题1。
线性代数练习题及答案10套
1 0 1 14.设矩阵 A= 0 2 0 ,矩阵 B A E ,则矩阵 B 的秩 r(B)= __2__. 0 0 1 0 0 1 B A E = 0 1 0 ,r(B)=2. 0 0 0
15.向量空间 V={x=(x1,x2,0)|x1,x2 为实数}的维数为__2__. 16.设向量 (1,2,3) , (3,2,1) ,则向量 , 的内积 ( , ) =__10__. 17.设 A 是 4×3 矩阵,若齐次线性方程组 Ax=0 只有零解,则矩阵 A 的秩 r(A)= __3__. 18 . 已 知 某 个 3 元 非 齐 次 线 性 方 程 组 Ax=b 的 增 广 矩 阵 A 经 初 等 行 变 换 化 为 :
三、计算题(本大题共 6 小题,每小题 9 分,共 54 分)
Ibugua
交大打造不挂女神的领跑者
123 23 3 21.计算 3 阶行列式 249 49 9 . 367 67 7 123 23 3 100 20 3 解: 249 49 9 200 40 9 0 . 367 67 7 300 60 7
线代练习题及答案(一)
一、单项选择题(本大题共 10 小题,每小题 2 分,共 20 分)
1.设 A 为 3 阶方阵,且 | A | 2 ,则 | 2 A 1 | ( D A.-4 B.-1 C. 1 ) D.4
| 2 A 1 | 2 3 | A | 1 8
1 4. 2
)
1 2 3 1 2 2. 设矩阵 A= (1, 2) , B= C= 则下列矩阵运算中有意义的是 ( B 4 5 6 , 3 4 ,
行成比例值为零.
a1b2 a 2 b2 a 3 b2
线性代数复习题部分参考答案
线性代数复习题部分参考答案线性代数试题(一) 一、填空题(每小题4分)1.行列式4100031000210001的值 242.设a b 为实数,则当a= 0 且b= 0 时,10100--a b b a =03.10111111)(-=x x f 中,x 的一次项系数是 -1 4.已知矩阵A 3×2 B 2×3 C 3×3,则B A ⋅为 3 × 3 矩阵 5.A 为n 阶方阵,且d A =,则A K ⋅=d K n ⋅ 二、选择题(4分/题) 1.下列各式中 ④ 的值为0①行列式D 中有两列对应元素之和为0 ②行列式D 中对角线上元素全为0 ③行列式D 中有两行含有相同的公因子 ④D 中有一行与另一行元素对应成比例 2.设23⨯A 32⨯B 33⨯C ,则下列 ② 运算有意义 ①AC ②BC ③A+B ④AB -BC3.用一初等矩阵左乘一矩阵B ,等于对B 施行相应的 ① 变换 ①行变换 ②列变换 ③既不是行变换也不是列变换4.⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡1101001100001100001000101的秩为 ①①5 ②4 ③3 ④25.向量组r ααα⋅⋅⋅21线性无关的充要条件是 ②①向量组中不含0向量 ②向量组的秩等于它所含向量的个数 ③向量组中任意r -1个向量无关 ④向量组中存在一个向量,它不能由其余向量表出 6.向量组t βββ⋅⋅⋅21可由s ααα⋅⋅⋅21线性表出,且t βββ⋅⋅⋅21线性无关,则s 与t 的关系为 ④①s=t ②s>t ③s<t ④s≥t7.如果一个线性方程组有解,则只有唯一解的充要条件是它的导出组 ③ ①有解 ②设解 ③只有0解 ④有非0解8.当K= ④ 时,(2. 1. 0. 3)与(1. -1. 1. K )的内积为2 ①-1 ②1 ③23 ④329.已知A 2=A ,则A 的特征值是 ③①λ=0 ②λ=1 ③λ=0或=λ1 ④λ=0和λ=110.1111111111111111b a a +-+的值为 ④ ①1 ②0 ③a ④-a 2b线性代数试题(二)一、填空题(4分/题)1.行列式21064153247308021的值为 0 2.二次型yz xy z y x yz x f 222)(2221-+-+=对应的实对称矩阵为⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---110121011 3.10110111)(--=x x f 中x 的一次项系数是 -14.已知A 为3×3矩阵,且A =3,则A 2= 24二、选择题(4分/题) 1.下列各式中 的值为0①行列式D 中有两列对应元素之和为0 ②行列式D 中对角线上元素全为0 ③行列式D 中有两行含有相同的公因子 ④D 中有一行与另一行元素对应成比例 2.设23⨯A 32⨯B 33⨯C ,则下列 ② 运算有意义 ①AC ②BC ③A+B ④AB -BC3. 向量组t βββ⋅⋅⋅21可由s ααα⋅⋅⋅21线性表出,且t βββ⋅⋅⋅21线性无关,则s 与t 的关系为 ④①s=t ②s>t ③s<t ④s≥t4.齐次线性方程组Ax=0是Ax=B 的导出组则①Ax=0只有零解,Ax=B 有唯一解 ②Ax=0有非零解,Ax=B 有无穷多解 ③U 是Ax=0的通解,X0是Ax=B 的一个解,则X0+U 是Ax=B 的通解 5.向量组)1.1.1(1=α )5.2.0(2=α )6.3.1(3=α是 ①①线性相关 ②线性无关 ③0321=++ααα ④02321=++ααα线性代数试题(三) 一、填空题(4分/题)1.向量)1.0.0.1(=α )0.1.1.0(-=β,则2βα+= (2. 1. -1. 2)2.设aER bER ,则当a= 0 ,b= 0 时10100b a a b -=03.10111111)(-=x x f 中,x 的一次项系数是 1 4.已知A 为3×3矩阵,且1=A ,则A 2= 85.已知A3×3 B3×2 C2×4,则矩阵A.B.C 为 3 × 4 矩阵6.用一初等矩阵右乘矩阵C ,等价于对C 施行 初等列变换7.向量组γααα⋅⋅⋅21.可由向量组s βββ⋅⋅⋅21线性表示且γααα⋅⋅⋅21.线性无关则 s ≤γ 8.如果线性方程组Ax=B 有解则必有)(A γ=)~(A γ9.行列式1111141111311112的值为 6 10.当K= 2 时(1. 0. 0. 1)与(a. 1. 5. 3)的内积为5 二、选择题(4分/题)1.已知矩阵满足A 2=3A ,则A 的特征值是 ③ ①λ=1 ②λ=0 ③λ=3或λ=0 ④λ=3和λ=02.如果一个线性方程组有解,则只有唯一解的充要条件是它的导出组 ③ ①有解 ②没解 ③只有零解 ④有非0解3.矩阵⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡1101001100001100001000101的秩为 ①①5 ②4 ③3 ④2 4.下列各式中 ④ 的值为0①行列式D 中有两列对应元素之和为0 ②D 中对角线上元素全为0 ③D 中有两行含有相同的公因子 ④D 中有一行元素与另一行元素对应成比例 5.向量组)1.1.1(1=α )5.2.0(2=α )6.3.1(3=α是 ①①线性相关 ②线性无关 ③0321=++ααα ④02321=++ααα三、复习题及参考答案1.若三阶行列式1231122331232226a a a b a b a b a c c c ---=,则 123123123a a ab b bc c c = 12 2.若方程组123123123000tx x x x tx x x x tx ++=⎧⎪++=⎨⎪++=⎩有非零解,则t=⎽⎽⎽⎽1⎽⎽⎽。
线性代数试题(完整试题与详细答案)
线性代数试题(完整试题与详细答案)一、单项选择题(本大题共10小题,每小题2分,共20分)1.行列式111101111011110------第二行第一列元素的代数余子式21A =( )A .-2B .-1C .1D .22.设A 为2阶矩阵,若A 3=3,则=A 2( ) A .21 B .1 C .34 D .23.设n 阶矩阵A 、B 、C 满足E ABC =,则=-1C ( ) A .AB B .BA C .11--B AD .11--A B4.已知2阶矩阵⎪⎪⎭⎫ ⎝⎛=d c b a A 的行列式1-=A ,则=-1*)(A ( ) A .⎪⎪⎭⎫⎝⎛----d c b aB .⎪⎪⎭⎫⎝⎛--a c b dC .⎪⎪⎭⎫ ⎝⎛--a cb d D .⎪⎪⎭⎫ ⎝⎛d c b a5.向量组)2(,,,21≥s s ααα 的秩不为零的充分必要条件是( ) A .s ααα,,,21 中没有线性相关的部分组 B .s ααα,,,21 中至少有一个非零向量 C .s ααα,,,21 全是非零向量D .s ααα,,,21 全是零向量6.设A 为n m ⨯矩阵,则n 元齐次线性方程组0=Ax 有非零解的充分必要条件是( )A .n r =)(AB .m r =)(AC .n r <)(AD .m r <)(A 7.已知3阶矩阵A 的特征值为-1,0,1,则下列矩阵中可逆的是( ) A .A B .AE - C .A E -- D .A E -2 8.下列矩阵中不是..初等矩阵的为( )A .⎪⎪⎪⎭⎫ ⎝⎛101010001B .⎪⎪⎪⎭⎫⎝⎛-101010001C .⎪⎪⎪⎭⎫⎝⎛100020001D .⎪⎪⎪⎭⎫⎝⎛1010110019.4元二次型4332412143212222),,,(x x x x x x x x x x x x f +++=的秩为( ) A .1B .2C .3D .410.设矩阵⎪⎪⎪⎭⎫ ⎝⎛=001010100A ,则二次型Ax x T 的规范形为( )A .232221z z z ++ B .232221z z z ---C .232221z z z --D .232221z z z -+二、填空题(本大题共10小题,每小题2分,共20分)请在每小题的空格中填上正确答案。
线性代数试题及答案
线性代数试题及答案线性代数(试卷⼀)1、填空题(本题总计20分,每⼩题2分)1. 排列7623451的逆序数是。
2. 若,则3. 已知阶矩阵、和满⾜,其中为阶单位矩阵,则。
4. 若为矩阵,则⾮齐次线性⽅程组有唯⼀解的充分要条件是_________5. 设为的矩阵,已知它的秩为4,则以为系数矩阵的齐次线性⽅程组的解空间维数为__2___________。
6. 设A为三阶可逆阵,,则7.若A为矩阵,则齐次线性⽅程组有⾮零解的充分必要条件是8.已知五阶⾏列式,则9. 向量的模(范数)。
10.若与正交,则⼆、选择题(本题总计10分,每⼩题2分)1. 向量组线性相关且秩为s,则(D)A.B.C.D.2. 若A为三阶⽅阵,且,则(A)A.B.C.D.3.设向量组A能由向量组B线性表⽰,则( d )A.B.C.D.4. 设阶矩阵的⾏列式等于,则等于。
c5. 设阶矩阵,和,则下列说法正确的是。
则 ,则或三、计算题(本题总计60分。
1-3每⼩题8分,4-7每⼩题9分)1. 计算阶⾏列式。
2.设A为三阶矩阵,为A的伴随矩阵,且,求.3.求矩阵的逆4. 讨论为何值时,⾮齐次线性⽅程组①有唯⼀解;②有⽆穷多解;③⽆解。
5. 求下⾮齐次线性⽅程组所对应的齐次线性⽅程组的基础解系和此⽅程6.已知向量组、、、、,求此向量组的⼀个最⼤⽆关组,并把其余向量⽤该最⼤⽆关组线性表⽰.7. 求矩阵的特征值和特征向量.四、证明题(本题总计10分)设为的⼀个解,为对应齐次线性⽅程组的基础解系,证明线性⽆关。
(答案⼀)、填空题(本题总计20分,每⼩题 2 分)15;2、3;3、;4、;5、2;6、;7、;8、0;9、3;10、1。
.⼆、选择题(本总计 10 分,每⼩题 2分 1、D;2、A;3、D;4、C;5、B、计算题(本题总计60分,1-3每⼩题8分,4-7他每⼩题9分)1、解: ------3分-------6分----------8分此题的⽅法不唯⼀,可以酌情给分。
线性代数试题及答案
线性代数习题和答案好东西第一部分选择题(共28分)一、单项选择题(本大题共14小题,每小题2分,共28分)在每小题列出的四个选项中只有一个是符合题目要求的,请将其代码填在题后的括号内。
错选或未选均无分。
1.设行列式a aa a11122122=m,a aa a13112321=n,则行列式a a aa a a111213212223++等于()A.m+nB.-(m+n)C.n-mD.m-n2.设矩阵A=100020003⎛⎝⎫⎭⎪⎪⎪,则A-1等于()A.130012001⎛⎝⎫⎭⎪⎪⎪⎪⎪⎪B.100120013⎛⎝⎫⎭⎪⎪⎪⎪⎪⎪C.13000100012⎛⎝⎫⎭⎪⎪⎪⎪⎪D.120013001⎛⎝⎫⎭⎪⎪⎪⎪⎪⎪3.设矩阵A=312101214---⎛⎝⎫⎭⎪⎪⎪,A*是A的伴随矩阵,则A*中位于(1,2)的元素是()A.–6B.6C.2D.–24.设A是方阵,如有矩阵关系式AB=AC,则必有()A.A=0B.B≠C时A=0C.A≠0时B=CD.|A|≠0时B=C5.已知3×4矩阵A的行向量组线性无关,则秩(A T)等于()A.1B.2C.3D.46.设两个向量组α1,α2,…,αs和β1,β2,…,βs均线性相关,则()A.有不全为0的数λ1,λ2,…,λs使λ1α1+λ2α2+…+λsαs=0和λ1β1+λ2β2+…λsβs=0B.有不全为0的数λ1,λ2,…,λs使λ1(α1+β1)+λ2(α2+β2)+…+λs(αs+βs)=0C.有不全为0的数λ1,λ2,…,λs使λ1(α1-β1)+λ2(α2-β2)+…+λs(αs-βs)=0D.有不全为0的数λ1,λ2,…,λs和不全为0的数μ1,μ2,…,μs使λ1α1+λ2α2+…+λsαs=0和μ1β1+μ2β2+…+μsβs=07.设矩阵A的秩为r,则A中()A.所有r-1阶子式都不为0B.所有r-1阶子式全为0C.至少有一个r阶子式不等于0D.所有r阶子式都不为08.设Ax=b是一非齐次线性方程组,η1,η2是其任意2个解,则下列结论错误的是()A.η1+η2是Ax=0的一个解B.12η1+12η2是Ax=b的一个解C.η1-η2是Ax=0的一个解D.2η1-η2是Ax=b的一个解9.设n阶方阵A不可逆,则必有()A.秩(A)<nB.秩(A)=n-1C.A=0D.方程组Ax=0只有零解10.设A是一个n(≥3)阶方阵,下列陈述中正确的是()A.如存在数λ和向量α使Aα=λα,则α是A的属于特征值λ的特征向量B.如存在数λ和非零向量α,使(λE-A)α=0,则λ是A的特征值C.A的2个不同的特征值可以有同一个特征向量D.如λ1,λ2,λ3是A的3个互不相同的特征值,α1,α2,α3依次是A的属于λ1,λ2,λ3的特征向量,则α1,α2,α3有可能线性相关11.设λ0是矩阵A的特征方程的3重根,A的属于λ0的线性无关的特征向量的个数为k,则必有()A.k≤3B.k<3C.k=3D.k>312.设A是正交矩阵,则下列结论错误的是()A.|A|2必为1B.|A|必为1C.A-1=A TD.A的行(列)向量组是正交单位向量组13.设A是实对称矩阵,C是实可逆矩阵,B=C T AC.则()A.A与B相似B.A与B不等价C.A与B有相同的特征值D.A与B合同14.下列矩阵中是正定矩阵的为()A.2334⎛⎝⎫⎭⎪ B.3426⎛⎝⎫⎭⎪C.100023035--⎛⎝⎫⎭⎪⎪⎪D.111120102⎛⎝⎫⎭⎪⎪⎪第二部分非选择题(共72分)二、填空题(本大题共10小题,每小题2分,共20分)不写解答过程,将正确的答案写在每小题的空格内。
线性代数考试题及答案
线性代数考试题及答案一、选择题(每题2分,共20分)1. 向量空间中,向量组的线性相关性指的是:A. 向量组中的向量可以相互表示B. 向量组中存在非零向量可以表示为其他向量的线性组合C. 向量组中的向量线性无关D. 向量组中的向量可以线性独立答案:B2. 矩阵A的秩是指:A. A的行向量组的极大线性无关组所含向量个数B. A的列向量组的极大线性无关组所含向量个数C. A的行数D. A的列数答案:B3. 对于矩阵A,若存在矩阵B,使得AB=BA=I,则B是A的:A. 逆矩阵B. 伴随矩阵C. 转置矩阵D. 正交矩阵答案:A4. 线性变换的特征值是指:A. 变换后向量的长度B. 变换后向量的方向C. 变换后向量与原向量的比值D. 变换后向量与原向量的夹角答案:C5. 一个矩阵的特征多项式是:A. 矩阵的行列式B. 矩阵的逆矩阵C. 矩阵的伴随矩阵D. 矩阵的迹答案:A6. 线性方程组有唯一解的条件是:A. 系数矩阵的秩等于增广矩阵的秩B. 系数矩阵的秩小于增广矩阵的秩C. 系数矩阵的秩大于增广矩阵的秩D. 系数矩阵的行列式不为零答案:D7. 矩阵的迹是:A. 矩阵的对角线元素之和B. 矩阵的行列式C. 矩阵的逆矩阵D. 矩阵的伴随矩阵答案:A8. 矩阵的伴随矩阵是:A. 矩阵的转置矩阵B. 矩阵的逆矩阵C. 矩阵的对角线元素的乘积D. 矩阵的行列式答案:B9. 向量空间的基是指:A. 向量空间中的一组向量B. 向量空间中线性无关的一组向量C. 向量空间中线性相关的一组向量D. 向量空间中任意一组向量答案:B10. 矩阵的转置是:A. 矩阵的行列互换B. 矩阵的行列互换C. 矩阵的行向量变成列向量D. 矩阵的列向量变成行向量答案:A二、填空题(每空2分,共20分)1. 一个向量空间的维数是指该空间的_________。
答案:基的向量个数2. 矩阵A的行列式表示为_________。
答案:det(A)3. 线性变换的矩阵表示是_________。
线性代数复习题带参考答案(四)
线性代数试题集与答案解析一、单项选择题(本大题共10小题,每小题2分,共20分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。
错选、多选或未选均无分。
第1题A. A的主子式全大于零B. A没有负的特征值C. 负惯性指数为零D. 正惯性指数为n【正确答案】 D【你的答案】本题分数2分第2题A. 1B. 12C. -24D. 24【正确答案】 D【你的答案】本题分数2分第3题【正确答案】 C【你的答案】本题分数2分第4题【正确答案】 C【你的答案】本题分数2分第5题A. k≠-1B. k≠3C. k≠-1且k≠3D. k≠-1或k≠3【正确答案】 C【你的答案】本题分数2分第6题实对称矩阵A正定的充分必要条件为()A. |A|>0B. A的所有顺序主子式非负C. A的正惯性指数为nD. A的负惯性指数为0【正确答案】 C第7题A. 0或1B. 1或2C. 0或2D. 2【正确答案】 C【你的答案】本题分数2分第8题初等矩阵()A. 都是可逆阵B. 所对应的行列式值为1C. 相乘仍是初等阵D. 相加仍是初等阵【正确答案】 A【你的答案】本题分数2分第9题【正确答案】 C第10题【正确答案】 C二、填空题(本大题共10小题,每小题2分,共20分)请在每小题的空格中填上正确答案。
错填、不填均无分。
第1题题中空白处答案应为:___【正确答案】 3【你的答案】本题分数2分你的得分修改分数第2题题中空白处答案应为:___【正确答案】【你的答案】本题分数2分你的得分修改分数第3题题中空白处答案应为:___【正确答案】 -5【你的答案】本题分数2分你的得分修改分数第4题题中空白处答案应为:___【正确答案】 3【你的答案】本题分数2分你的得分修改分数第5题题中空白处答案应为:___【正确答案】 a>1【你的答案】本题分数2分你的得分修改分数第6题图中空白处应填的答案为:________【正确答案】k≠-2且k≠1【你的答案】本题分数2分你的得分修改分数第7题 ___【正确答案】【你的答案】本题分数2分你的得分修改分数第8题 ___【正确答案】【你的答案】本题分数2分你的得分修改分数第9题 ___【正确答案】【你的答案】本题分数2分你的得分修改分数第10题 ___【正确答案】三、计算题(本大题共6小题,每小题9分,共54分)第1题【正确答案】【你的答案】本题分数9分你的得分修改分数第2题【正确答案】【你的答案】本题分数9分你的得分修改分数第3题【正确答案】【你的答案】本题分数9分你的得分修改分数第4题【正确答案】提示:k=5.【你的答案】本题分数9分你的得分修改分数第5题【正确答案】【你的答案】本题分数9分你的得分修改分数第6题【正确答案】【你的答案】四、证明题(本题6分) 第1题【正确答案】【你的答案】一、填空题(共6小题,每小题 3 分,满分18分)1. 设⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-=*8030010000100001A ,则A = .2. A 为n 阶方阵,T AA =E 且=+<E A A 则,0 .3.设方阵12243,311t -⎡⎤⎢⎥=⎢⎥⎢⎥-⎣⎦A B 为三阶非零矩阵,且AB=O ,则=t . 4. 设向量组m ααα,,,21 线性无关,向量β不能由它们线性表示,则向量组,,,,21m ααα β 的秩为 .5.设A 为实对称阵,且|A |≠0,则二次型f =x T A x 化为f =y T A -1 y 的线性变换是x = . 6.设3R 的两组基为()T11,1,1a =,()21,0,1a T=-,()31,0,1a T=;),1,2,1(1=βT,()()232,3,4,3,4,3ββ==TT,则由基123,,a a a 到基123,,βββ的过渡矩阵为 .二、单项选择题(共6小题,每小题3分,满分18分)1. 设D n 为n 阶行列式,则D n =0的必要条件是[ ].(A ) D n 中有两行元素对应成比例; (B ) D n 中各行元素之和为零;(C) D n 中有一行元素全为零;(D)以D n 为系数行列式的齐次线性方程组有非零解.2.若向量组α,β,γ 线性无关,α,β,σ 线性相关,则[ ]. (A) α必可由β,γ,σ 线性表示;(B) β必可由α,γ,σ 线性表示; (C) σ必可由β,γ,α 线性表示; (D) γ必可由β,α,σ 线性表示.3.设3阶方阵A 有特征值0,-1,1,其对应的特征向量为P 1,P 2,P 3,令P =(P 1,P 2,P 3),则P -1AP =[ ].(A)100010000⎡⎤⎢⎥-⎢⎥⎢⎥⎣⎦; (B) 000010001⎡⎤⎢⎥-⎢⎥⎢⎥⎣⎦; (C) 000010001⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦-; (D)100000001⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦-. 4.设α1,α2,α3线性无关,则下列向量组线性相关的是[ ].(A)α1,α2,α3 - α1; (B)α1,α1+α2,α1+α3; (C)α1+α2,α2+α3,α3+α1; (D)α1-α2,α2-α3,α3-α1. 5.若矩阵A 3×4有一个3阶子式不为0,则A 的秩R(A ) =[ ]. (A) 1; (B) 2; (C) 3; (D) 4.6.实二次型f =x T Ax 为正定的充分必要条件是 [ ].(A) A 的特征值全大于零; (B) A 的负惯性指数为零; (C) |A | > 0 ; (D) R (A ) = n .三、解答题(共5小题,每道题8分,满分40分)1.求112233100110011011b b b D b b b --=----的值.2. 求向量组)4,1,1,1(1=α,)5,3,1,2(2=α,)2,3,1,1(3--=α,)6,5,1,3(4=α的一个极大无关组,并把其余的向量用该极大无关组线性表出.3.设A 、P 均为3阶矩阵,且T 100010,000⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦P AP=若P =(α1,α2,α3), Q =(α1+α2,α2,α3),求Q T AQ .4.设A 是n 阶实对称矩阵,O A A =+22,若)0()(n k k R <<=A ,求E A 3+.5.设矩阵22082006a ⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦A=相似于对角矩阵Λ,求a . 四、(本题满分10分)对线性方程组23112131231222322313233323142434.x a x a x a x a x a x a x a x a x a x a x a x a ⎧++=⎪++=⎪⎨++=⎪⎪++=⎩,,,(1) 若4321,,,a a a a 两两不等,问方程组是否有解,为什么?(2)若b a a ==31, b a a -==42 (b ≠0),且已知方程的两个解T 1(1,1,1)=-ξ, T 2(1,1,1)=-ξ,试给出方程组的通解.五、(本题满分8分)设二次曲面方程122=++byz xz axy (0>a )经正交变换x y z ξηζ⎡⎤⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦Q ,化成12222=-+ζηξ,求a 、b 的值及正交矩阵Q .六、(本题满分6分)设A 为n 阶实矩阵,α为A 的对应于实特征值λ的特征向量,β为A T 的对应于实特征值μ的特征向量,且λ≠μ,证明α与β正交.卷参考答案一、填空题(共6小题,每小题 3 分,满分18分)1. 设⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-=*8030010000100001A ,则A = 2 .2. A 为n 阶方阵,T AA =E 且=+<E A A 则,0 0 .3.设方阵12243,311t -⎡⎤⎢⎥=⎢⎥⎢⎥-⎣⎦A B 为三阶非零矩阵,且AB=O ,则=t -3 . 4. 设向量组m ααα,,,21 线性无关,向量β不能由它们线性表示,则向量组,,,,21m ααα β 的秩为 m +1 .5.设A 为实对称阵,且|A |≠0,则二次型 f =x T A x 化为f =y T A -1 y 的线性变换是x =____y 1-A __ . 6.设3R 的两组基为()T11,1,1a =,()21,0,1a T=-,()31,0,1a T=;T 1(1,2,1,)=β,()()232,3,4,3,4,3ββ==TT,则由基123,,a a a 到基123,,βββ的过渡矩阵P =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---101010432.二、单项选择题(共6小题,每小题3分,满分18分)1. 设n D 为n 阶行列式,则n D =0的必要条件是[ D ].(A) n D 中有两行元素对应成比例; (B) n D 中各行元素之和为零;(C)n D 中有一行元素全为零;(D)以n D 为系数行列式的齐次线性方程组有非零解. 2.若向量组α,β,γ 线性无关,α,β,σ 线性相关,则[ C ].(A) α必可由β,γ,σ 线性表示. (B) β必可由α,γ,σ 线性表示.(C) σ必可由β,γ,α 线性表示. (D) γ必可由β,α,σ 线性表示.3.设3阶方阵A 有特征值0,-1,1,其对应的特征向量为P 1,P 2,P 3,令P =(P 1,P 2,P 3),则P -1AP =[ B ].(A)100010000⎡⎤⎢⎥-⎢⎥⎢⎥⎣⎦; (B) 000010001⎡⎤⎢⎥-⎢⎥⎢⎥⎣⎦; (C) 000010001⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦-;(D) 100000001⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦-. 4.设α1,α2,α3线性无关,则下列向量组线性相关的是[ D ].(A )α1,α2,α3 - α1; (B )α1,α1+α2,α1+α3; (C )α1+α2,α2+α3,α3+α1; (D )α1-α2,α2-α3,α3-α1. 5.若矩阵43⨯A 有一个3阶子式不为0,则[ C ].(A )R(A )=1; (B ) R(A )=2; (C ) R(A )=3;(D ) R(A )=4 . 6.实二次型f =x 'Ax 为正定的充分必要条件是 [ A ]. (A) A 的特征值全大于零; (B) A 的负惯性指数为零; (C) |A | > 0 ; (D) R (A ) = n .三、解答题(共5小题,每道题8分,满分40分)1.求1122331001100110011b b b D b b b --=----的值 解:111222233333100100100010010010 1.01100100101101101b b b b b b D b b b b b b ====------2. 求向量组)4,1,1,1(1=α,)5,3,1,2(2=α,)2,3,1,1(3--=α,)6,5,1,3(4=α的一个极大无关组,并把其余的向量用该极大无关组线性表出.解:极大无关组12,αα, 12332ααα-=,1242ααα-=.3.设A 、P 均为3阶矩阵,且T 100010,000⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦P AP=若 P =(α1,α2,α3),Q =(α1+α2,α2,α3),求Q T AQ .解:由于Q =(α1+α2,α2,α3)= (α1,α2,α3) 100100110110,001001⎡⎤⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦P 于是Q T AQ =TT 100100110100110110010110001001001001⎛⎫⎛⎫⎡⎤⎡⎤⎡⎤⎡⎤⎪ ⎪⎢⎥⎢⎥⎢⎥⎢⎥= ⎪ ⎪⎢⎥⎢⎥⎢⎥⎢⎥ ⎪ ⎪⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎣⎦⎝⎭⎝⎭ P A P P AP 110100100210010010110110.001000001000⎡⎤⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥==⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎣⎦4.设A 是n 阶实对称矩阵,O A A =+22,若)0()(n k k R <<=A ,求E A 3+.解: 由O A A =+22知, A 的特征值-2或0,又)0()(n k k R <<=A ,且A 是n 阶实对称矩阵,则22~00-⎡⎤⎢⎥⎢⎥⎢⎥-⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦A (k 个-2),故E A 3+3n k-=. 5.设矩阵22082006a ⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦A=相似于对角矩阵Λ,求a . 解: 由|A -λE |=0,得A 的三个特征值λ1=λ2=6,λ3= -2.由于A 相似于对角矩阵,R (A -6E )=1,即42021084~00000000a a --⎡⎤⎡⎤⎢⎥⎢⎥-⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦, 显然,当a =0时,R (A-6E )=1,A 的二重特征值6对应两个线性无关的特征向量.四、(本题满分10分)对线性方程组23112131231222322313233323142434.x a x a x a x a x a x a x a x a x a x a x a x a ⎧++=⎪++=⎪⎨++=⎪⎪++=⎩,,,(1) 若4321,,,a a a a 两两不等,问方程组是否有解,为什么?(2)若b a a ==31, b a a -==42 (b ≠0),且已知方程的两个解T 1(1,1,1)=-ξ, T 2(1,1,1)=-ξ,试给出方程组的通解.解:(1)因为0))()()()()((111134241423131234244332333222231211≠------=a a a a a a a a a a a a a a a a a a a a a a a a ,故()()R R ≠A b A ,无解. (2)2)(=A R ,3=n ,故通解21121()01,()21k k k -⎡⎤⎡⎤⎢⎥⎢⎥=-+=+∈⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦x ξξξR .五、(本题满分8分)设二次曲面的方程122=++byz xz axy )0>a 经正交变换x y z ξηζ⎡⎤⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦Q ,化成12222=-+ζηξ,求a 、b 的值及正交矩阵Q .解:设0120210a ab b ⎡⎤⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦A ,由0,20-=+=A E A E 知1,2-==b a .当1λ=时,111111111~000111000---⎡⎤⎡⎤⎢⎥⎢⎥-=--⎢⎥⎢⎥⎢⎥⎢⎥--⎣⎦⎣⎦A E ,t )0,1,1(1=ξ,T )2,1,1(2-=ξ 当2λ=-时,1012~011000⎡⎤⎢⎥+-⎢⎥⎢⎥⎣⎦A E T 3(1,1,1).=-ξ故正交阵0=⎢⎢⎣Q .六、(本题满分6分)设A 为n 阶实矩阵,α为A 的对应于实特征值λ的特征向量,β为A T 的对应于实特征值μ的特征向量,且λ≠μ,证明α与β正交.证 :依题意得Aα=λα, A T β=μβ,将Aα=λα的两边转置得,αT A T =λαT ,在上式的两边右乘β得,αT A T β =λαT β,即μαT β=λαT β,亦即(μ-λ)αT β=0,由于λ≠μ,所以αT β=0,故α与β正交.线性代数考试练习题带答案说明:本卷中,A T表示方阵A 的转置钜阵,A *表示矩阵A 的伴随矩阵,E 表示单位矩阵,|A |表示方阵A 的行列式. 一、单项选择题(本大题共10小题,每小题2分,共20分)1.设101350041A -⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦,则TAA =( )A .-49B .-7C .7D .492.设A 为3阶方阵,且4A =,则2A -=( ) A .-32B .-8C .8D .323.设A ,B 为n 阶方阵,且A T=-A ,B T=B ,则下列命题正确的是( ) A .(A +B )T=A +B B .(AB )T=-AB C .A 2是对称矩阵D .B 2+A 是对称阵4.设A ,B ,X ,Y 都是n 阶方阵,则下面等式正确的是( ) A .若A 2=0,则A =0 B .(AB )2=A 2B 2C .若AX =AY ,则X =YD .若A +X =B ,则X =B -A5.设矩阵A =1131021400050000⎡⎤⎢⎥-⎢⎥⎢⎥⎢⎥⎣⎦,则秩(A )=( ) A .1 B .2 C .3D .46.若方程组02020kx z x ky z kx y z +=⎧⎪++=⎨⎪-+=⎩仅有零解,则k =( )A .-2B .-1C .0D .27.实数向量空间V={(x 1,x 2,x 3)|x 1 +x 3=0}的维数是( ) A .0 B .1 C .2D .38.若方程组12323232132(3)(4)(2)x x x x x x x λλλλλλ+-=-⎧⎪-=-⎨⎪-=--+-⎩有无穷多解,则λ=( )A .1B .2C .3D .49.设A =100010002⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦,则下列矩阵中与A 相似的是( ) A .100020001⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦ B .110010002⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦ C .100011002⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦D .101020001⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦10.设实二次型2212323(,,)f x x x x x =-,则f ( )A .正定B .不定C .负定D .半正定二、填空题(本大题共10小题,每小题2分,共20分)请在每小题的空格中填上正确答案。
线性代数模拟试卷及答案4套
线性代数模拟试卷(一)一、 填空题(每小题3分,共6小题,总分18分)1、四阶行列式44434241343332312423222114131211a a a a a a a a a a a a a a a a 展开式中,含有因子3214a a 且带正号的项为___________2、设A 为n 阶可逆方阵,将A 的第i 行和第j 行对换后得到的矩阵记为B ,则AB -1=_________3、已知向量组)2- 5, 4,- ,0( , )0 t,0, ,2( , )1 1,- 2, ,1(321'='='=ααα线性相关,则t =_________4、设三阶方阵) , ,(B ), , ,(2121γγβγγα==A ,其中 , ,,21γγβα都是三维列向量且2B 1, ==A ,则=- 2B A _________5、A 为n 阶正交矩阵, , ,,21n ααα 为A 的列向量组,当i ≠j 时,)21 ,31(j i αα=_________ 6、三阶方阵A 的特征值为1,-2,-3,则 A =_______; E+A -1的特征值为______ 二、 单项选择题(每小题2分,共6小题,总分12分) 1、 设齐次线性方程组AX=0有非零解,其中A=()nn ija ⨯,A ij 为a ij (i,j=1,2,…n) 的代数余子式,则( ) (A)0111=∑=ni i i A a(B)0111≠∑=ni i i A a(C)n A ani i i =∑=111(D)n A ani i i ≠∑=1112、若A -1+ E, E+A, A 均为可逆矩阵,E 为单位矩阵,则(A -1+ E)-1=( ) (A) A+E (B) (A+E)-1 (C) A -1+ E (D) A(A+E)-13、设A, B 为n 阶方阵 ,A*,B*分别为A, B 对应的伴随矩阵,分块矩阵⎪⎪⎭⎫ ⎝⎛=B 00 A C ,则C 的伴随矩阵C* =( )(A) ⎪⎪⎭⎫⎝⎛*A B 0 0 *B A (B) ⎪⎪⎭⎫⎝⎛*B A 0 0 *A B(C) ⎪⎪⎭⎫⎝⎛*B B 0 0 *A A (D) ⎪⎪⎭⎫⎝⎛*A A 0 0 *B B 4、若向量组 , ,,21m ααα 的秩为r ,则( )(A) 必有 r<m (B)向量组中任意小于 r 个向量的部分组线性无关 (C) 向量组中任意 r 个向量线性无关(D) 向量组中任意 r+1个向量必线性相关5、已知 ,,321ααα是四元非齐次线性方程组AX=B 的三个解,且r(A)=3, 已知)3 2, 1, ,0( , )4 3, 2, ,1(321'=+'=ααα,C 为任意常数,则AX=B 通解X=( )(A) ⎪⎪⎪⎪⎪⎭⎫⎝⎛+⎪⎪⎪⎪⎪⎭⎫ ⎝⎛11114321C (B)⎪⎪⎪⎪⎪⎭⎫⎝⎛+⎪⎪⎪⎪⎪⎭⎫ ⎝⎛32104321C(C) ⎪⎪⎪⎪⎪⎭⎫⎝⎛+⎪⎪⎪⎪⎪⎭⎫ ⎝⎛54324321C (D) ⎪⎪⎪⎪⎪⎭⎫⎝⎛+⎪⎪⎪⎪⎪⎭⎫ ⎝⎛65434321C6、设A 为三阶方阵,有特征值λ1=1,λ2= -1, λ3=2,其对应的特征向量分别为 ,,321ααα,记P=(132 ,ααα),则P -1AP=( )(A) ⎪⎪⎪⎭⎫⎝⎛1 2 1- (B)⎪⎪⎪⎭⎫⎝⎛1- 1 2(C) ⎪⎪⎪⎭⎫⎝⎛2 1- 1 (D) ⎪⎪⎪⎭⎫⎝⎛2 1 1-三、计算下列行列式 (12分)1、 D=1- 3 3- 131 1 41- 3 0 5-21- 1 3 2、D n = n1 1 1 1.....................1 1 3 1 111 12 111 1 1 1四、已知A 、B 同为3阶方阵,且满足AB=4A+2B (12分) (1)证明:矩阵A-2E 可逆(2)若B=⎪⎪⎪⎭⎫⎝⎛2 0 00 2 10 2- 1 ,求A五、求向量组 )1 1, 1,- ,1( , )3 2, 1, ,1(21'='=αα, , )6 5, 2,- ,4( , )1 3, 3, ,1( 43'='=αα)7- 4,- 1,- ,3(5'-=α的一个极大无关组,并将其余向量用该极大无关组线性表示(10分)六、已知线性方程组⎪⎪⎩⎪⎪⎨⎧=---=+++-=+-=+-+bx x x x x ax x x x x x x x x x 432143214314321 6 - 17231 4 032 ,讨论参数a 、b 为何值方程组有解,在有解时,求出通解 (12分)七、用正交变换化二次型323121232221321222333),,(x x x x x x x x x x x x f ---++=为标准形,并写出相应的正交变换 (16分)八、已知 ,,,4321αααα是AX = 0的一个基础解系,若322211,ααβααβt t +=+=,144433,ααβααβt t +=+=,讨论t 为何值, ,,,4321ββββ是AX = 0的一个基础解系 (8分)线性代数模拟试卷(二)三、 填空题(每小题3分,共5小题,总分15分)1、j i a a a a a 53544231是五阶行列式展开式中带正号的一项,则i=_____, j=_____2、设n 阶方阵A 满足A 2 =A ,则A+E 可逆且(A+E )-1=_______________(E 为n 阶单位阵)3、已知向量组)0 6, 1,- ,1( , )2k - k,- ,3 ,1( , )2- 2, 1, ,1(321'='='=ααα 若该向量组的秩为2,则k =_________4、已知四阶方阵A 相似于B ,A 的特征值为2,3,4,5,E 是单位阵,则=- E B _________5、 向量α=(4,0,5)′在基)1 ,1- ,1(,)0 ,1 ,1( ,)1 ,2 ,1(321'='='=ηηη下的坐标为_________四、 单项选择题(每小题2分,共5小题,总分10分)1、 设 A 是三阶方阵A 的行列式,A 的三个列向量以γβα ,,表示,则 A =( ) (A)αβγ (B) γβα---(C)αγγββα+++ (D) γβαβαα+++2、设A, B ,C 为n 阶方阵, 若 AB = BA, AC = CA, 则ABC=( ) (A) BCA (B) ACB (C) CBA (D) CAB3、 A, B 均为n 阶方阵, A*为A 的伴随矩阵, 3B 2, -==A ,则21-*B A = ( )(A) 32 12--n (B) 32 1--n (C) 23 12--n (D) 23 1--n4、已知向量组 , ,,4321αααα线性无关,则向量组( ) (A)14433221 , , ,αααααααα++++线性无关(B)14433221 , , ,αααααααα----线性无关(C)14433221 , , ,αααααααα-+++线性无关 (D)14433221 , , ,αααααααα--++线性无关5、若A ~ B ,则 有 ( )(A) A 、B 有相同的特征矩阵 (B) B =A(C) 对于相同的特征值λ,矩阵A 与B 有相同的特征向量 (D) A 、B 均与同一个对角矩阵相似三、计算下列行列式 (13分)2、 D=2- 3 0 112 1 - 121 0 331- 2 1 4、D n = 11 1 111 x 1 1 (1)1 1 1 x 1 1 1 1 x x ++++a)设B= ⎪⎪⎪⎪⎪⎭⎫ ⎝⎛1 0 0 01- 1 0 00 1- 1 00 0 1- 1 ,C=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛2 0 0 01 2 0 03 12 043 12 ,且矩阵A 满足 E C B C E A =''--)(1, 试将关系式化简并求A (12分)b)求向量组, )4 1,- 2, ,1(1'=α )2 3, 1, ,0( 2'=α, , )14 0, 7, 3,(3'=α , )10 1, 5, 2,( 4'=α)0 2,- 2, ,1(5'=α的一个极大无关组,并将其余向量用该极大无关组线性表示 (13分)六、k 为何值时,线性方程组⎪⎪⎩⎪⎪⎨⎧=+-=++---=+++=+++kx x x x x k x x x x x x x x x x x 9 10 5 - 3)5(2 31 6 3 13 2 4321432143214321 有无穷多个解并求出通解 (14分)七、用正交变换化二次型31232221321422),,(x x x x x x x x f +-+=为标准形,并写出相应的正交变换 (16分)八、若矩阵A=⎪⎪⎪⎭⎫ ⎝⎛0y 10 1- 01 x0 有三个线性无关的特征向量,证明:x – y = 0线性代数模拟试卷(三)一、填空题(每小题3分,共18分)1、A 是三阶方阵,且|A|=6,则 |(3A)-1|= 。
线性代数试题及答案
1线性代数试题及答案一、单项选择题(本大题共10小题,每小题2分,共20分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。
错选、多选或未选均无分。
1.设行列式333231232221131211a a a a a a a a a =4,则行列式333231232221131211333222a a a a a a a a a =( ) A.12 B.24 C.36D.482.设矩阵A ,B ,C ,X 为同阶方阵,且A ,B 可逆,AXB =C ,则矩阵X =( ) A.A -1CB -1 B.CA -1B -1 C.B -1A -1CD.CB -1A -13.已知A 2+A -E =0,则矩阵A -1=( ) A.A -E B.-A -E C.A +ED.-A +E4.设54321,,,,ααααα是四维向量,则( )A.54321,,,,ααααα一定线性无关B.54321,,,,ααααα一定线性相关C.5α一定可以由4321,,,αααα线性表示D.1α一定可以由5432,,,αααα线性表出 5.设A 是n 阶方阵,若对任意的n 维向量x 均满足Ax =0,则( ) A.A =0 B.A =E C.r (A )=nD.0<r (A )<(n )6.设A 为n 阶方阵,r (A )<n ,下列关于齐次线性方程组Ax =0的叙述正确的是( ) A.Ax =0只有零解B.Ax =0的基础解系含r (A )个解向量C.Ax =0的基础解系含n -r (A )个解向量D.Ax =0没有解7.设21,ηη是非齐次线性方程组Ax =b 的两个不同的解,则( ) A.21ηη+是Ax =b 的解 B.21ηη-是Ax =b 的解 C.2123ηη-是Ax =b 的解D.2132ηη-是Ax =b 的解8.设1λ,2λ,3λ为矩阵A =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡200540093的三个特征值,则321λλλ=( )2A.20B.24C.28D.309.设P 为正交矩阵,向量βα,的内积为(βα,)=2,则(βαP P ,)=( ) A.21 B.1 C.23 D.210.二次型f (x 1,x 2,x 3)=323121232221222x x x x x x x x x +++++的秩为( )A.1B.2C.3D.4二、填空题(本大题共10小题,每小题2分,共20分)请在每小题的空格中填上正确答案。
《线性代数》练习题库参考答案
《线性代数》练习测试题库一.选择题1、=-0000000000121nn a a a a ( B )A. n n a a a 21)1(-B. n n a a a 211)1(+-C. n a a a 212、n 阶行列式0000000000a a a a= ( B )A.na B. (1)2(1)n n n a -- C. (1)n n a -3、n21= ( B )A. (1)!nn - B. (1)2(1)!n n n -- C. 1(1)!n n +-4、 A 是n 阶方阵,m, l 是非负整数,以下说法不正确的是 ( C ). A. ()m l mlA A = B. mlm lA A A+⋅= C. m m mB A AB =)(5、A 、B 分别为m n ⨯、s t ⨯矩阵, ACB 有意义的条件是 ( C ) A. C 为m t ⨯矩阵; B. C 为n t ⨯矩阵; C. C 为n s ⨯矩阵6、下面不一定为方阵的是 (C )A.对称矩阵.B.可逆矩阵.C. 线性方程组的系数矩阵.7、 ⎥⎦⎤⎢⎣⎡-1021 的伴随矩阵是 (A ) A. ⎥⎦⎤⎢⎣⎡1021 B. ⎥⎦⎤⎢⎣⎡-1201 C. ⎥⎦⎤⎢⎣⎡-1021 8、 分块矩阵 00A B ⎡⎤⎢⎥⎣⎦(其中A 、B 为可逆矩阵)的逆矩阵是 ( A )A. 1100A B --⎡⎤⎢⎥⎣⎦ B. 00BA ⎡⎤⎢⎥⎣⎦ C. 1100B A --⎡⎤⎢⎥⎣⎦9、线性方程组Ax b = 有唯一解的条件是 ( A )A.()()r A r A b A ==的列数B.()()r A r A b = .C.()()r A r A b A ==的行数10、线性方程组 ⎪⎩⎪⎨⎧=++=++=++23213213211a ax x x a x ax x x x ax 有唯一解的条件是 (A )A. 2,1-≠aB. 21-==a a 或.C. 1≠a11、 的是则下面向量组线性无关),,,=(),,,=()6,2,4(054312--=--γβα(B )A. 0,,βα B. γβ, C. γα, 12、设A 为正交矩阵,下面结论中错误的是 ( C )A. A T 也为正交矩阵.B. A -1也为正交矩阵.C. 总有 1A =-13、二次型()233221214321342,,,,x x x x x x x x x x f --+=的矩阵为 ( C )A 、⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---340402021B 、⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---320201011 C 、⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡---0000032002010011 14、设r 是实二次型),,,(21n x x x f 的秩,p 是二次型的正惯性指数,q 是二次型的负惯性指数,s 是二次型的符号差,那么 ( B )A. q p r -=;B. q p r +=;C. q p s +=; 15、下面二次型中正定的是 ( B )A. 21321),,(x x x x x f =B.2322213212),,(x x x x x x f ++= C.22213212),,(x x x x x f +=二、判断题1、若行列式主对角线上的元素全为0,则此行列式为0. ( ⨯ )2、A 与B 都是3×2矩阵,则A 与B 的乘积也是3×2矩阵。
线性代数试题及答案
线性代数试题及答案1. 题目:矩阵运算题目描述:给定两个矩阵A和B,计算它们的乘积AB。
答案解析:矩阵A的维度为m x n,矩阵B的维度为n x p,则矩阵AB的维度为m x p。
矩阵AB中的每个元素都可以通过矩阵A的第i行与矩阵B的第j列的内积来计算,即AB(i,j) =∑_{k=1}^{n}A(i,k)B(k,j)。
2. 题目:矩阵转置题目描述:给定一个矩阵A,求其转置矩阵AT。
答案解析:如果矩阵A的维度为m x n,则转置矩阵AT的维度为n x m。
转置矩阵AT中的每个元素都可以通过矩阵A的第i行第j列的元素来计算,即AT(j,i) = A(i,j)。
3. 题目:线性方程组求解题目描述:给定一个线性方程组Ax = b,其中A是一个m x n的矩阵,x和b是n维向量,求解x的取值。
答案解析:假设矩阵A的秩为r,则根据线性代数的理论,线性方程组有解的条件是r = rank(A) = rank([A | b])。
若方程组有解,则可以通过高斯消元法、LU分解等方法求解。
4. 题目:特征值与特征向量题目描述:给定一个矩阵A,求其特征值和对应的特征向量。
答案解析:设λ为矩阵A的特征值,若存在非零向量x,满足Ax = λx,则x为矩阵A对应于特征值λ的特征向量。
特征值可以通过解特征方程det(A - λI) = 0求得,其中I为单位矩阵。
5. 题目:行列式计算题目描述:给定一个方阵A,求其行列式det(A)的值。
答案解析:行列式是一个方阵的一个标量值。
行列式的计算可以通过Laplace展开、初等行变换等方法来进行。
其中,Laplace展开是将行列式按矩阵的某一行或某一列展开成若干个代数余子式的和。
6. 题目:向量空间与子空间题目描述:给定一个向量空间V和它的子集U,判断U是否为V的子空间。
答案解析:子空间U必须满足三个条件:(1)零向量属于U;(2)对于U中任意两个向量u和v,它们的线性组合u+v仍然属于U;(3)对于U中的任意向量u和标量c,它们的数乘cu仍然属于U。
线性代数试题及答案.doc
线性代数试题及答案.doc.(试卷一)一、填空题(本题总计20 分,每小题 2分)1.排列 7623451 的逆序数是_______。
a11 a12a11 3a12 01,则a212.若a21 a22 3a22 00 6 13.已知 n 阶矩阵A、B和C满足ABC E,其中E为 n 阶单位矩阵,则B1CA。
4.若 A 为m n矩阵,则非齐次线性方程组AX b 有唯一解的充分要条件是_________5.设A为8 6的矩阵,已知它的秩为4,则以A为系数矩阵的齐次线性方程组的解空间维数为 __2。
6.设 A 为三阶可逆阵, 1 0 0 ,则 A*A 1 2 1 03 2 1.7.若 A 为m n矩阵,则齐次线性方程组Ax0 有非零解的充分必要条件是1 2 3 4 53 04 1 28.已知五阶行列式D111 1 1,则1 1 02 35 4 3 2 1A41A42A43A44A459. 向量( 2,1,0,2)T的模(范数)______________。
10. 若 1 k 1 T与12 1 T正交,则k二、选择题(本题总计 10 分,每小题 2 分)1. 向量组1,2, ,r线性相关且秩为 s,则 (D)A. r sB.C. s rD.r s s r2. 若 A 为三阶方阵,且A 2E 0, 2A E 0,3A 4E 0,则A(A) .A.C.8B.8 4D. 43 33.设向量组 A 能由向量组 B 线性表示,则( d )A. R(B) R( A)B.R( B) R( A)C. R( B) R( A)D.R( B) R( A)4.设 n 阶矩阵A的行列式等于D,则kA等于_____。
c( A) kA( B) k n A(C )k n 1 A(D) A5.设 n 阶矩阵A,B和C,则下列说法正确的是 _____。
(A)AB AC则 B C(B)AB 0,则A 0或B 0(C) (AB)T A T B T(D) (A B)( A B) A2B2.三、计算题(本题总计60 分。
线性代数试题及答案
线性代数试题及答案线性代数(经管类)试题答案⼀、单项选择题(本⼤题共10⼩题,每⼩题2分,共20分)在每⼩题列出的四个备选项中只有⼀个是符合题⽬要求的,请将其代码填写在题后的括号内。
错选、多选或未选均⽆分。
1.设A为三阶⽅阵且则( D )A.-108B.-12C.12D.1082.如果⽅程组有⾮零解,则 k=( B )A.-2B.-1C.1D.23.设A、B为同阶⽅阵,下列等式中恒正确的是( D )A.AB=BAB.C. D.4.设A为四阶矩阵,且则( C )A.2B.4C.8D.125.设可由向量α1 =(1,0,0)α2 =(0,0,1)线性表⽰,则下列向量中只能是( B )A.(2,1,1)B.(-3,0,2)C.(1,1,0)D.(0,-1,0)6.向量组α1 ,α2 ,…,αs 的秩不为s(s)的充分必要条件是( C )A. α1 ,α2 ,…,αs 全是⾮零向量B. α1 ,α2,…,αs 全是零向量C. α1 ,α2,…,αs中⾄少有⼀个向量可由其它向量线性表出D. α1 ,α2,…,αs 中⾄少有⼀个零向量7.设A为m矩阵,⽅程AX=0仅有零解的充分必要条件是( C )A.A的⾏向量组线性⽆关B.A的⾏向量组线性相关C.A的列向量组线性⽆关D.A的列向量组线性相关8.设A与B是两个相似n阶矩阵,则下列说法错误的是( D )A. B.秩(A)=秩(B)C.存在可逆阵P,使P-1AP=BD.E-A=E-B9.与矩阵A=相似的是( A )A. B.C. D.10.设有⼆次型则( C )A.正定B.负定C.不定D.半正定⼆、填空题(本⼤题共10⼩题,每⼩题2分,共20分)请在每⼩题的空格中填上正确答案。
错填、不填均⽆分。
11.若则k=_______1/2____.12.设A=,B=则AB=___________.13.设A=, 则A-1=14.设A为3矩阵,且⽅程组A x=0的基础解系含有两个解向量,则秩(A)= _____1______.15.已知A有⼀个特征值-2,则B=A+2E必有⼀个特征值___6_________.16.⽅程组的通解是_____ __ c 1 _+__ c 2 __.17.向量组α1 =(1,0,0) α2 =(1,1,0), α3 =(-5,2,0)的秩是_______2____.18.矩阵A=的全部特征向量是.19.设三阶⽅阵A的特征值分别为-2,1,1,且B与A相似,则=__-16_________.20.矩阵A=所对应的⼆次型是.三、计算题(本⼤题共6⼩题,每⼩题9分,共54分)21.计算四阶⾏列式的值.=22.设A=,求A.A =23.设A=,B=,且A,B,X满⾜(E-B A)求X,X(E-B A)X= =X==24.求向量组α1 =(1,-1,2,4)α2 =(0,3,1,2), α3 =(3,0,7,14), α4 =(2,1,5,6), α5 =(1,-1,2,0)的⼀个极⼤线性⽆关组.α1 α2 α4 为极⼤⽆关组。
线性代数试题及答案
线性代数习题和答案好东西第一部分选择题共28分一、单项选择题本大题共14小题,每小题2分,共28分在每小题列出的四个选项中只有一个是符合题目要求的,请将其代码填在题后的括号内;错选或未选均无分;1.设行列式a aa a11122122=m,a aa a13112321=n,则行列式a a aa a a111213212223++等于A. m+nB. -m+nC. n-mD. m-n2.设矩阵A=100020003⎛⎝⎫⎭⎪⎪⎪,则A-1等于A.130012001⎛⎝⎫⎭⎪⎪⎪⎪⎪⎪B.100120013⎛⎝⎫⎭⎪⎪⎪⎪⎪⎪C.13000100012⎛⎝⎫⎭⎪⎪⎪⎪⎪D.120013001⎛⎝⎫⎭⎪⎪⎪⎪⎪⎪3.设矩阵A=312101214---⎛⎝⎫⎭⎪⎪⎪,A是A的伴随矩阵,则A中位于1,2的元素是A. –6B. 6C. 2D. –24.设A是方阵,如有矩阵关系式AB=AC,则必有A. A =0B. B≠C时A=0C. A≠0时B=CD. |A|≠0时B=C5.已知3×4矩阵A的行向量组线性无关,则秩A T等于A. 1B. 2C. 3D. 46.设两个向量组α1,α2,…,αs和β1,β2,…,βs均线性相关,则A.有不全为0的数λ1,λ2,…,λs使λ1α1+λ2α2+…+λsαs=0和λ1β1+λ2β2+…λsβs=0B.有不全为0的数λ1,λ2,…,λs使λ1α1+β1+λ2α2+β2+…+λsαs+βs=0C.有不全为0的数λ1,λ2,…,λs使λ1α1-β1+λ2α2-β2+…+λsαs-βs=0D.有不全为0的数λ1,λ2,…,λs和不全为0的数μ1,μ2,…,μs使λ1α1+λ2α2+…+λsαs=0和μ1β1+μ2β2+…+μsβs=07.设矩阵A的秩为r,则A中A.所有r-1阶子式都不为0B.所有r-1阶子式全为0C.至少有一个r阶子式不等于0D.所有r阶子式都不为08.设Ax=b是一非齐次线性方程组,η1,η2是其任意2个解,则下列结论错误的是A.η1+η2是Ax=0的一个解B.12η1+12η2是Ax=b的一个解C.η1-η2是Ax=0的一个解η1-η2是Ax=b的一个解9.设n阶方阵A不可逆,则必有A.秩A<nB.秩A=n-1=0 D.方程组Ax=0只有零解10.设A是一个n≥3阶方阵,下列陈述中正确的是A.如存在数λ和向量α使Aα=λα,则α是A的属于特征值λ的特征向量B.如存在数λ和非零向量α,使λE-Aα=0,则λ是A的特征值的2个不同的特征值可以有同一个特征向量D.如λ1,λ2,λ3是A的3个互不相同的特征值,α1,α2,α3依次是A的属于λ1,λ2,λ3的特征向量,则α1,α2,α3有可能线性相关11.设λ0是矩阵A的特征方程的3重根,A的属于λ0的线性无关的特征向量的个数为k,则必有A. k≤3B. k<3C. k=3D. k>312.设A是正交矩阵,则下列结论错误的是A.|A|2必为1B.|A|必为1=A T的行列向量组是正交单位向量组13.设A是实对称矩阵,C是实可逆矩阵,B=C T AC.则与B相似B. A与B不等价C. A与B有相同的特征值D. A与B合同14.下列矩阵中是正定矩阵的为A.2334⎛⎝⎫⎭⎪ B.3426⎛⎝⎫⎭⎪C.100023035--⎛⎝⎫⎭⎪⎪⎪D.111120102⎛⎝⎫⎭⎪⎪⎪第二部分非选择题共72分二、填空题本大题共10小题,每小题2分,共20分不写解答过程,将正确的答案写在每小题的空格内;错填或不填均无分;15.11135692536= .16.设A=111111--⎛⎝⎫⎭⎪,B=112234--⎛⎝⎫⎭⎪.则A+2B= .17.设A=a ij3×3,|A|=2,A ij表示|A|中元素a ij的代数余子式i,j=1,2,3,则a11A21+a12A22+a13A232+a21A21+a22A22+a23A232+a31A21+a32A22+a33A232= .18.设向量2,-3,5与向量-4,6,a线性相关,则a= .19.设A是3×4矩阵,其秩为3,若η1,η2为非齐次线性方程组Ax=b的2个不同的解,则它的通解为 .20.设A是m×n矩阵,A的秩为r<n,则齐次线性方程组Ax=0的一个基础解系中含有解的个数为 .21.设向量α、β的长度依次为2和3,则向量α+β与α-β的内积α+β,α-β= .22.设3阶矩阵A的行列式|A|=8,已知A有2个特征值-1和4,则另一特征值为 .23.设矩阵A=01061332108---⎛⎝⎫⎭⎪⎪⎪,已知α=212-⎛⎝⎫⎭⎪⎪⎪是它的一个特征向量,则α所对应的特征值为 .24.设实二次型fx1,x2,x3,x4,x5的秩为4,正惯性指数为3,则其规范形为 .三、计算题本大题共7小题,每小题6分,共42分25.设A =120340121-⎛⎝ ⎫⎭⎪⎪⎪,B =223410--⎛⎝ ⎫⎭⎪.求1AB T;2|4A |.26.试计算行列式3112513420111533------.27.设矩阵A =423110123-⎛⎝ ⎫⎭⎪⎪⎪,求矩阵B 使其满足矩阵方程AB =A +2B .28.给定向量组α1=-⎛⎝ ⎫⎭⎪⎪⎪⎪2103,α2=1324-⎛⎝ ⎫⎭⎪⎪⎪⎪,α3=3021-⎛⎝ ⎫⎭⎪⎪⎪⎪,α4=0149-⎛⎝ ⎫⎭⎪⎪⎪⎪. 试判断α4是否为α1,α2,α3的线性组合;若是,则求出组合系数; 29.设矩阵A =1212242662102333334-----⎛⎝⎫⎭⎪⎪⎪⎪. 求:1秩A ;2A 的列向量组的一个最大线性无关组;30.设矩阵A=022234243----⎛⎝ ⎫⎭⎪⎪⎪的全部特征值为1,1和-8.求正交矩阵T 和对角矩阵D ,使T -1AT =D .31.试用配方法化下列二次型为标准形fx 1,x 2,x 3=x x x x x x x x x 12223212132323444+-+--,并写出所用的满秩线性变换;四、证明题本大题共2小题,每小题5分,共10分32.设方阵A 满足A 3=0,试证明E -A 可逆,且E -A -1=E +A +A 2.33.设η0是非齐次线性方程组Ax=b 的一个特解,ξ1,ξ2是其导出组Ax=0的一个基础解系.试证明 1η1=η0+ξ1,η2=η0+ξ2均是Ax=b 的解; 2η0,η1,η2线性无关;答案:一、单项选择题本大题共14小题,每小题2分,共28分二、填空题本大题共10空,每空2分,共20分 15. 6 16. 337137--⎛⎝⎫⎭⎪17. 4 18. –1019. η1+c η2-η1或η2+c η2-η1,c 为任意常数 20. n -r 21. –5 22. –2 23. 124. z z z z 12223242++-三、计算题本大题共7小题,每小题6分,共42分25.解1AB T=120340*********-⎛⎝ ⎫⎭⎪⎪⎪--⎛⎝ ⎫⎭⎪⎪⎪=861810310⎛⎝ ⎫⎭⎪⎪⎪. 2|4A |=43|A |=64|A |,而|A |=1203401212-=-. 所以|4A |=64·-2=-12826.解 311251342011153351111113100105530------=-----=5111111550---- =5116205506255301040---=---=+=.27.解 AB =A +2B 即A -2EB =A ,而A -2E -1=2231101211431531641--⎛⎝⎫⎭⎪⎪⎪=-----⎛⎝ ⎫⎭⎪⎪⎪-. 所以 B =A -2E -1A =143153164423110123-----⎛⎝ ⎫⎭⎪⎪⎪-⎛⎝ ⎫⎭⎪⎪⎪=3862962129-----⎛⎝ ⎫⎭⎪⎪⎪. 28.解一 ----⎛⎝⎫⎭⎪⎪⎪⎪−→−-----⎛⎝ ⎫⎭⎪⎪⎪⎪2130130102243419053213010112013112 所以α4=2α1+α2+α3,组合系数为2,1,1.解二 考虑α4=x 1α1+x 2α2+x 3α3,即 -++=-=-+=+-=⎧⎨⎪⎪⎩⎪⎪230312243491231223123x x x x x x x x x x .方程组有唯一解2,1,1T,组合系数为2,1,1.29.解 对矩阵A 施行初等行变换A−→−-----⎛⎝⎫⎭⎪⎪⎪⎪12102 00062 03282 09632−→−-----⎛⎝⎫⎭⎪⎪⎪⎪−→−----⎛⎝⎫⎭⎪⎪⎪⎪12102032830006200021712102032830003100000=B.1秩B=3,所以秩A=秩B=3.2由于A与B的列向量组有相同的线性关系,而B是阶梯形,B的第1、2、4列是B的列向量组的一个最大线性无关组,故A的第1、2、4列是A的列向量组的一个最大线性无关组;A的第1、2、5列或1、3、4列,或1、3、5列也是30.解A的属于特征值λ=1的2个线性无关的特征向量为ξ1=2,-1,0T, ξ2=2,0,1T.经正交标准化,得η1=25555//-⎛⎝⎫⎭⎪⎪⎪,η2=2515451553///⎛⎝⎫⎭⎪⎪⎪.λ=-8的一个特征向量为ξ3=122-⎛⎝⎫⎭⎪⎪⎪,经单位化得η3=132323///.-⎛⎝⎫⎭⎪⎪⎪所求正交矩阵为T=25521515135545152305323////////--⎛⎝⎫⎭⎪⎪⎪.对角矩阵D=100 010 008-⎛⎝⎫⎭⎪⎪⎪.也可取T=25521515130532355451523////////---⎛⎝⎫⎭⎪⎪⎪.31.解 fx1,x2,x3=x1+2x2-2x32-2x22+4x2x3-7x32=x1+2x2-2x32-2x2-x32-5x32.设y x x xy x xy x11232233322=+-=-=⎧⎨⎪⎪⎩⎪⎪, 即x y yx y yx y112223332=-=+=⎧⎨⎪⎩⎪,因其系数矩阵C=120011001-⎛⎝⎫⎭⎪⎪⎪可逆,故此线性变换满秩;经此变换即得fx1,x2,x3的标准形y12-2y22-5y32 .四、证明题本大题共2小题,每小题5分,共10分32.证由于E-AE+A+A2=E-A3=E,所以E-A可逆,且E-A-1= E+A+A2 .33.证由假设Aη0=b,Aξ1=0,Aξ2=0.1Aη1=Aη0+ξ1=Aη0+Aξ1=b,同理Aη2= b,所以η1,η2是Ax=b的2个解;2考虑l0η0+l1η1+l2η2=0,即l0+l1+l2η0+l1ξ1+l2ξ2=0.则l0+l1+l2=0,否则η0将是Ax=0的解,矛盾;所以l1ξ1+l2ξ2=0.又由假设,ξ1,ξ2线性无关,所以l1=0,l2=0,从而l0=0 .所以η0,η1,η2线性无关;。
线性代数考试题及答案
线性代数考试题及答案一、选择题(共10小题,每题2分,共20分)1. 在线性空间R^3中,向量的维数是()。
A. 1B. 2C. 3D. 无穷大2. 已知向量组{v1, v2, v3}线性无关,向量v4可以由向量组{v1, v2,v3}线性表示,那么向量组{v1, v2, v3, v4}()。
A. 线性无关B. 线性相关C. 只存在部分线性相关D. 无法确定3. 若A是一个n×n矩阵,且满足A^2 = -I,其中I为n阶单位矩阵,则矩阵A的特征值为()。
A. -1B. 1C. iD. -i4. 设A为n×n矩阵,若A^2=0,则()。
A. A非奇异B. A是零矩阵C. A的特征值全为0D. A的特征向量全为05. 设A为3×3矩阵,若A的秩为2且|A|=0,则()。
A. A的特征值必为0B. A的特征值至少有2个为0C. A的特征值可能全为非零数D. A的特征值全为非零数6. 设A为m×n矩阵,若齐次线性方程组Ax = 0有非零解,则()。
A. A的列向量组线性无关B. A的行向量组线性无关C. A的列向量组线性相关D. A的行向量组线性相关7. 设A、B为m×n矩阵,若AB=0,则()。
A. A=0或B=0B. A和B至少有一方为0C. AB为零矩阵D. AB不一定为零矩阵8. 若二次型f(x) = x^T Ax恒大于等于零,其中x为非零向量且A为n×n对称矩阵,则A()。
A. 不一定是正定矩阵B. 一定是正定矩阵C. 一定是半正定矩阵D. 不一定是半正定矩阵9. 若矩阵A=(a1,a2,a3,...,an)为方阵,并且满足AtA=In,其中In为n阶单位矩阵,则()。
A. A非奇异B. A为对角阵C. A为正交阵D. A为对称阵10. 对于线性方程组Ax = b,若方程组有解,则()。
A. A的行向量数等于b的个数B. A的列向量数等于b的个数C. A的秩等于b的个数D. A的秩小于等于b的个数二、简答题(共4题,每题15分,共60分)1. 请证明:若n×n矩阵A与B的秩相等,即rank(A)=rank(B),则AB与BA的秩也相等。
大学专业课程《线性代数》试题及答案(四)
大学专业课程《线性代数》试题及答案(四)1.填空题(1)若齐次方程组只有零解,则参数应满足.解:只有零解;有非零解;且.(2)若方程组有解,则常数满足.解:有解;则.(3)若方程组无解,则.解:则无解;,则当时,,此时无解.123123123000x x x x x x x x x λλλ++=⎧⎪++=⎨⎪++=⎩λ12λλ≠≠-且0n A x =()0A R A n ⇔≠⇔=0n A x =()0A R A n ⇔=⇔<()()21111120111A λλλλλλ==-+≠⇒≠2λ≠-121232343144x x a x x a x x a x x a +=-⎧⎪+=⎪⎨+=-⎪⎪+=⎩1234,,,a a a a 12340a a a a +++=m n A xb ⨯=()()()R A R A b R A ⇔==1112223331234414110011001100011001100110001100110011000010010101a a a a a a A a a a a a a a a a a ---⎛⎫⎛⎫⎛⎫⎪ ⎪⎪⎪⎪ ⎪= ⎪ ⎪⎪--- ⎪⎪⎪+++-+⎝⎭⎝⎭⎝⎭()()12340R A R A a a a a =⇔+++=12312112313120x a x a x ⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪+= ⎪ ⎪ ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭⎝⎭a =32±()()R A R A <Ax b=2121112111211231301110111120023100313A a a a a a a a a ⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪=+---- ⎪ ⎪⎪ ⎪ ⎪ ⎪-------⎝⎭⎝⎭⎝⎭2310a a a --=⇒=a =()()23R A R A =<=Ax b =(4)若方程组有无穷多解,则 -2 .解:,则有一解;有0,解;当时,,,故无解; 当时,, ,故有无穷解;综上所述:.(5)若方程组有惟一解,则满足.解:,对无要求,即.(6)若阶矩阵的每一行元素之和为零,且,则齐次线性方程组的基础解系为.解:,即为的非零解向量;记为的解空间,则,则的任何一个线性无关的解向量均是的基础解系,从而的基础解系是.123111111112x a a x a x ⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪= ⎪ ⎪ ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭⎝⎭a =n n A x b ⨯=0A Ax b ≠⇔=0A =⇔Ax b =∞()()()()0R A R A R A R A ⎧=∞⎪⎨<⎪⎩有解有解,,()()211111201211a A a a a a a==-+=⇒=-或1a =111111111111000011120003A ⎛⎫⎛⎫⎪⎪= ⎪⎪ ⎪ ⎪--⎝⎭⎝⎭()()12R A R A =<=2a =-3121322211111221122121112110333112221110000r r r r r r A +-+-----⎛⎫⎛⎫⎛⎫⎪⎪ ⎪=--- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪---⎝⎭⎝⎭⎝⎭()()23R A R A ==<2a =-1231202231334x x a b x ⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪= ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,a b 2, a b R≠∀∈202A a a =-+≠⇒-b 2, a b R ≠∀∈n A ()1R A n =-0Ax =(1,1,,1)T1111010n j j n nj j a A a ==⎛⎫ ⎪⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪== ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎪ ⎪⎝⎭∑∑11⎛⎫ ⎪ ⎪ ⎪⎝⎭0Ax ={}0A S x Ax ==0Ax =()()dim 11AS n R A n n =-=--=A S A S 0Ax =(1,1,,1)T(7)设为非齐次线性方程组的两个不同解,其中为矩阵,且,则的通解为.解:记为的解空间,则,则的任何一个线性无关的解向量均是的基础解系,为非齐次线性方程组的两个不同解,则是的一个非零解,从而线性无关,那么是的基础解系,则的通解为: 或者.(8)设为矩阵,则非齐次线性方程组有惟一解的充要条件是.解:有唯一解;无解; 有无穷解.(9)设为阶方阵,若齐次线性方程组的解都是齐次线性方程组的解,则.解:记为的解空间,为的解空间,由已知,则.(10)若,且三条不同直线相交于一点,则矩阵的秩满足.解:三条不同直线相交于一点有唯一解,,令则12,ααAx β=A m n ⨯()1R A n =-Ax β=112212() (),x k x k k R αααααα=+-=+-∈或者A S 0Ax =()()dim 11AS n R A n n =-=--=A S A S 12,ααAx β=12αα-0Ax =12αα-12αα-A S Ax β=112()x k ααα=+-212 (),x k k R ααα=+-∈A m n ⨯Ax β=()()R A R A nβ==m n A x β⨯=()()()R A R A R An β⇔===m n A x β⨯=()()()R A R A R A β⇔<=m n A x β⨯=()()()R A R A R A n β⇔==<,A B n 0Ax =0Bx =()R A ≥()R B {}0A S x Ax ==0Ax ={}0B S x Bx ==0Bx =A B S S ⊂()()()()dim dim AB S n R A S n R B R A R B =-≤=-⇒≥111112222233333,a b a b c A a b B a b c a b a b c ⎛⎫⎛⎫⎪ ⎪== ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭0 (1,2,3)i i i a x b y c i ++==,A B ()()2R A R B ==0 (1,2,3)i i i a x b y c i ++==111222333a x b y c a x b y c a x b y c+=-⎧⎪⇔+=-⎨⎪+=-⎩()()2R A R A n ⇔===()111222333a b c A a b c A a b c β-⎛⎫⎪=-= ⎪ ⎪-⎝⎭()123B ααα=,则与等价,从而,则 .2.选择题(1)齐次线性方程组仅有零解的充要条件是( A ) (A )矩阵的列向量组线性无关; (B )矩阵的列向量组线性相关; (C )矩阵的行向量组线性无关; (D )矩阵的行向量组线性相关.解:只有零解线性无关,故选(A ).(2)设是矩阵,是与非齐次线性方程组相对应的齐次线性方程组,则下列结论正确的是( D )(A )若仅有零解,则有惟一解; (B )若有非零解,则有无穷多解; (C )若有无穷多解,则仅有零解; (D )若有无穷多解,则有非零解.解:只有零解;有非零解;对,若,则有解,且有唯一解,有无穷解;对,有:有零解或唯一解(可能无解,当),有无穷解或零解(可能无解,当).(A )仅有零解有零解或唯一解,故(A )错误; (B )有非零解有无穷解或零解,故(B )错误; (D )有无穷解有非零解,故(D )正确. (3) 设是矩阵,且,则( A ) (A) 时,非齐次线性方程组有解; (B) 时,非齐次线性方程组有惟一解;()123A ααα=-123,,ααα123,,ααα-()()R B R A =()()2R B R A ==0Ax =A A A A 0Ax =()()11,,,,n n R A n R n αααα⇔=⇔=⇔A m n ⨯0Ax =Ax β=0Ax =Ax β=0Ax =Ax β=Ax β=0Ax =Ax β=0Ax =0m n A x ⨯=()R A n ⇔=0m n A x ⨯=()R A n ⇔<m n A x β⨯=()()R A R A =m n A x β⨯=()R A n Ax β=⇔=()R A n Ax β<⇔=m n A x β⨯=()R A n Ax β=⇔=()()R A R A ≠()R A n Ax β<⇔=()()R A R A ≠0Ax =()R A n Ax β⇔=⇔=0Ax =()R A n Ax β⇔<⇔=Ax β=()()0R A R A n Ax ⇔==⇒=A m n ⨯()R A r =r m =Ax β=r n =Ax β=(C) 时,非齐次线性方程组有解; (D) 时,非齐次线性方程组有无穷解.解:(A )且有解,故(A )正确;(B )有零解或唯一解; (C )当时,无解; (D )有无穷解或零解.(4) 设为非齐次线性方程组的两个不同解,则( B )是的解. (A); (B) ; (C) ; (D) .解:,(A ); (B ),故选(B ); (C );(D ).(5) 当矩阵等于( A )时,都是齐次线性方程组的解.(A) ; (B) ; (C); (D) . 解:显然,线性无关,记为的解空间,则,故(A )正确.m n =Ax β=r n <Ax β=()()R A R A r m ≥==()()()R A m R A R A m Ax β≤⇒==⇒=()R A n Ax β=⇔=()()R A R A ≠Ax β=()R A n Ax β<⇔=12,ααAx β=Ax β=12αα+122133αα+12αα-1122, , 1,2i k k k R i αα+∈=1A αβ=2A αβ=()122A ααβββ+=+=2121212121333333A A A ααααβββ⎛⎫+=+=+= ⎪⎝⎭()120A ααββ-=-=()()112211*********A k k k A k A k k k k k k ααααββββ+=+=+=+=⇔+=A 12100,121ξξ⎛⎫⎛⎫⎪ ⎪== ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭0Ax =(2,1,1)-201011-⎛⎫⎪⎝⎭102011-⎛⎫⎪-⎝⎭011422011-⎛⎫⎪-- ⎪ ⎪⎝⎭1102ξ⎛⎫ ⎪= ⎪ ⎪⎝⎭2011ξ⎛⎫⎪= ⎪ ⎪-⎝⎭{}0A S x Ax ==0Ax =()()dim 21A S n R A R A =-≥⇒≤可简单验证:,.(6) 设矩阵的秩为,为阶单位矩阵,则下列结论正确的是( C ) (A) 矩阵的任意个列向量必线性无关;(B) 矩阵的任意阶子式必不等于0; (C) 若矩阵满足,则必有;(D) 矩阵通过初等行变换,必可化成的形式.解:,,则线性无关,线性相关.(A )(B )存在阶子式不等于0,设此子式对应矩阵为,,则线性无关;(D )行最简形标准形;(C )方法一:由,不妨设,且可逆,;方法二:,则线性无关;方法三:由书16题知,记,则,即可逆,(两边右乘)(两边右乘).()1211002⎛⎫⎪-= ⎪ ⎪⎝⎭()0211101⎛⎫ ⎪-= ⎪ ⎪-⎝⎭m n ⨯A ()R A m n =<m E m A m A m B 0BA =0B =A (,0)m E ()m n R A m n ⨯=<()11n m A αββα⎛⎫ ⎪== ⎪ ⎪⎝⎭()11,,mm R R A m αααα⎛⎫⎪==⇒ ⎪ ⎪⎝⎭()()11,,n n R R A n ββββ=<⇒()R A m =⇒m 1A ()11,,i im A ββ=110,,i im A ββ≠⇒()m AE C 初等行变换()mE O 初等列变换()R A m n =<()12mn mA A A -=1A ()()11211m n mk m m n k n k m k m B A B A A O O O BA O B OA O --⨯⨯⨯⨯⨯===⇒=⇒==k m m nk n B A O ⨯⨯⨯=111111111100mj j j m n mk km m n kj j j b b b O b b O b αααα=⨯⨯=⎧=⎪⎛⎫⎛⎫⎛⎫⎪⎪⎪⎪ ⎪=⇒⎨⎪⎪ ⎪⎪ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭⎪=⎪⎩∑∑()1,,m R A m αα=⇒10,,0,1,,j kj k m b b j m B O ⨯⇒===⇒=()()TR A A R A m ==TB A =TA B =()()()()()()()()T T T T T n n m m R A A R B B R B R A R A R A R A A R AA ⨯⨯⎡⎤⎡⎤====⇒==⎣⎦⎣⎦0,0,T T m n A A AA =<⇒=≠T AA T T BA O BAA OA O =⇒==T A ()1T B O AA O -⇒==()1T AA -综上:(C )正确.(7) 设为阶方阵,且,而为非齐次线性方程组的两个不同解,为任意实数,则齐次线性方程组的通解为( C ) (A) ; (B) ; (C) ; (D) .解:,则的任何一个非零解向量均为的基础解系,由是的两个不同解是的非零解,则是的基础解系,的通解为:,选(C ).(8) 设为非齐次线性方程组的两个不同解,而为对应的齐次线性方程组的基础解系,为任意实数,则的通解为( AB ) (A) ; (B) ;(C) ; (D) .解:非齐次方程组通解=非齐次方程组特解+齐次方程组通解 非齐次方程组特解可选:() 齐次方程组通解可选择: 注意:不一定是的通解,因为可能与相关综上:选(A )(B ).(9) 设为矩阵,为矩阵,对于齐次线性方程组,以下结论正确的是( D )(A) 当时仅有零解; (B) 当时必有非零解; (C) 当时仅有零解; (D) 当时必有非零解.解:(A )(B ),则有非零解,只有零解,故有非零解或者只有零解均有可能,故(A )(B )错误;(C )(D )有非零解,故(D )正确. 3.求解以下方程组A n ()1R A n =-12,ααAx β=k 0Ax =1k α2k α12()k αα-12()k αα+()()dim 11A S n R A n n =-=--=0Ax =0Ax =12,ααAx β=12αα⇒-0Ax =12αα-0Ax =0Ax =()12,k k R αα-∈12,ββAx β=12,αα0Ax =12,k k Ax β=1211212()2k k ββααα++++1211212()2k k ββααα++-+1211212()2k k ββαββ-+++1211212()2k k ββαββ++-+1212,,2ββββ+()1212122AA A βββββ+=+=()()11221121211212,,k k k k k k αααααααα++++-()11212k k αββ+-0Ax =12ββ-1αA m n ⨯B n m ⨯()0AB x =n m >n m >m n >m n >()()m n m m R AB R A m n ⨯⨯⎡⎤≤≤<⎣⎦()0AB x =()R AB m ⇔<()0AB x =()R AB m ⇔=()0AB x =()()m n m m R AB R A n m ⨯⨯⎡⎤≤≤<⎣⎦()0AB x ⇒=(1) (2)(3) (4)(5) (6)(7) (8)(9) (10)解:(1) ,方程组有无穷多解同解方程组为,即得通解;(2) ,方程组无解;1234123412342121255x x x x x x x x x x x x -++=⎧⎪-+-=-⎨⎪-++=⎩123123123123312213231x x x x x x x x x x x x +-=-⎧⎪+-=⎪⎨++=⎪⎪+-=⎩12312312312322355723314x x x x x x x x x x x x ++=⎧⎪++=⎪⎨++=-⎪⎪+-=⎩123412341234123412323132123122215522x x x x x x x x x x x x x x x x x x x ++-=⎧⎪++-=⎪⎪+++=⎨⎪++-=⎪⎪++=⎩12341234123420202220x x x x x x x x x x x x ++-=⎧⎪++-=⎨⎪+++=⎩12341234123420363051050x x x x x x x x x x x x ++-=⎧⎪+--=⎨⎪++-=⎩1231231242232101138x x x x x x x x +-=⎧⎪-+=⎨⎪+=⎩2344538213496x y z x y z x y z x y z ++=⎧⎪-+=-⎪⎨+-=⎪⎪-+=-⎩31222221x y z w x y z w x y z w +-+=⎧⎪+-+=⎨⎪+--=⎩1234123412342132344352x x x x x x x x x x x x +-+=⎧⎪-+-=⎨⎪+-+=-⎩2131121111211112100121110002200011121550004400000r rr r -----⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪----- ⎪ ⎪ ⎪⎪ ⎪ ⎪-⎝⎭⎝⎭⎝⎭()()24R A R A ==<∴1232233421x x x x x x x x =-⎧⎪=⎪⎨=⎪⎪=⎩12121234021010, ,001100x x x k k k k R x x -⎛⎫⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪==++∈ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭11311131212101431113004412310102----⎛⎫⎛⎫ ⎪⎪--⎪ ⎪ ⎪⎪ ⎪⎪-⎝⎭⎝⎭()()34R A R A =≠=∴(3) ,方程组有唯一解;(4),同解方程组为即得通解; (5) 同解方程组为,通解为;23411311211111121122002112222131502412010201261157190012001122082223314000000002412r r r r r r r ---⎛⎫⎛⎫⎪⎛⎫⎛⎫⎪⎪ ⎪⎪⎪- ⎪⎪ ⎪- ⎪ ⎪ ⎪⎪-- ⎪-- ⎪ ⎪⎪ ⎪-⎪ ⎪⎝⎭⎝⎭⎪⎝⎭-⎝⎭()()3R A R A ==∴123122x x x x ⎛⎫⎛⎫ ⎪ ⎪== ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭123111231112311321110482201531231110153100651222110241100121025520205135300000---⎛⎫⎛⎫⎛⎫ ⎪⎪ ⎪----- ⎪ ⎪ ⎪ ⎪⎪ ⎪---- ⎪⎪ ⎪----- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪---⎝⎭⎝⎭⎝⎭311202201531006510000000000⎛⎫ ⎪ ⎪- ⎪ ⎪- ⎪⎪⎪⎝⎭1422433444312223515166x x x x x x x x x x⎧=-+⎪⎪=-+⎪⎨⎪=+⎪⎪=⎩123415171, 15606x x x k k R x x ⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪- ⎪ ⎪ ⎪==+∈ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭54110100112111213321110131010301032212003400340034⎛⎫⎛⎫- ⎪ ⎪--⎛⎫⎛⎫⎪ ⎪ ⎪ ⎪------- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪---⎝⎭⎝⎭⎪ ⎪⎝⎭⎝⎭1424344443343x x x x x x x x⎧=⎪⎪=-⎪⎨⎪=⎪⎪=⎩123449,43x x x k k R x x ⎛⎫⎛⎫ ⎪ ⎪- ⎪ ⎪==∈ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭(6)同解方程组为,通解为; (7),方程组无解;(8),方程组有唯一解;(9),同解方程组为,通解为; (10) 1211121112013613004000105101500400000---⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪--- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪--⎝⎭⎝⎭⎝⎭1422234420x x x x x x x x =-⎧⎪=⎪⎨=⎪⎪=⎩121212342110,,0001x x x k k k k R x x -⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪==+∈ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭1111111124224242125111751117312100024224211308511500060242⎛⎫⎛⎫-- ⎪ ⎪-⎛⎫⎪⎪⎪ ⎪ ⎪---⎪ ⎪ ⎪⎪⎪⎪⎝⎭- ⎪ ⎪-⎪⎪⎝⎭⎝⎭()()23R A R A =≠=∴231405714114510031145114505714010038213011142801000012419601371402000000---⎛⎫⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪----- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪--- ⎪ ⎪ ⎪ ⎪-----⎝⎭⎝⎭⎝⎭⎝⎭()()3R A R A ==∴302x y z ⎛⎫⎛⎫⎪ ⎪= ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭322123311113111131111441412221200111333342111170112100004r r r r --⎛⎫⎪--⎛⎫-⎛⎫ ⎪⎪ ⎪ ⎪ ⎪--- ⎪ ⎪⎪ ⎪-- ⎪ ⎪⎝⎭---⎝⎭⎪-⎝⎭100000110100010⎛⎫ ⎪- ⎪ ⎪-⎝⎭010x y z z z w =⎧⎪=+⎪⎨=⎪⎪=⎩0011,0100x y k k R z w ⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪ ⎪ ⎪ ⎪=+∈ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭1323232111107595321340141018101435214352r rr r -----⎛⎫⎛⎫⎪ ⎪---- ⎪ ⎪ ⎪ ⎪----⎝⎭⎝⎭同解方程组为,通解为.4.求参数取何值时,下列方程组有惟一解、无解或有无穷多个解. 当有无穷多个解时,求其一般解.(1) (2)(3) (4)(5) (6)解:(1)116107771435259507595017770000000000⎛⎫--⎪--⎛⎫⎪ ⎪ ⎪---- ⎪ ⎪ ⎪⎪⎝⎭⎪ ⎪⎝⎭1342343344611777559777x x x x x x x x x x ⎧=++⎪⎪⎪=-+-⎨⎪=⎪⎪=⎩121212346115591,,0707007x x x k k k k R x x ⎛⎫⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪-- ⎪ ⎪ ⎪ ⎪==++∈ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,,a b λ1231231234324ax x x x bx x x bx x ++=⎧⎪++=⎨⎪++=⎩12312321232222x x x x x x x x x λλ⎧-++=-⎪-+=⎨⎪+-=⎩123412341234212427411x x x x x x x x x x x x λ-++=⎧⎪+-+=⎨⎪+-+=⎩123123123(2)2212(5)4224(5)1x x x x x x x x x λλλλ-+-=⎧⎪+--=⎨⎪--+-=--⎩1234512345234512345132322635433x x x x x x x x x x a x x x x x x x x x b++++=⎧⎪+++-=⎪⎨+++=⎪⎪+++-=⎩123123123(21)(1)1(2)(1)(2)(21)(1)(21)x x x x x x x x x λλλλλλλλλλλλ+-++=-⎧⎪-+-+-=⎨⎪-+-+-=⎩()11111121aA bb a b ==--当且时,,由克莱姆法则知方程组有唯一解:; 当时,,,无解; 当时, 若,即时,,无解;若时,,有无穷多解,此时,通解为:.(2)当,即且时,无解.当,即或时,有无穷多解,且:时,,通解为:; 1a ≠0b ≠0A ≠12312(1)1421(1)b b a x x b x b ab b a -⎛⎫ ⎪-⎪⎛⎫⎪ ⎪= ⎪ ⎪ ⎪⎪⎝⎭-- ⎪⎪-⎝⎭0b =1141141013101310140001a a ⎛⎫⎛⎫⎪⎪ ⎪⎪ ⎪ ⎪⎝⎭⎝⎭()()R A R A ≠1a =322111141114111411301010101121400100011r r r r b b b b b b b --⎛⎫⎪⎛⎫⎛⎫ ⎪⎪ ⎪---- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭+ ⎪-⎝⎭101b b +≠-12b ≠()()R A R A ≠12b =()()2R A R A ==1114101210010102200000000⎛⎫⎛⎫⎪ ⎪⎪-- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭1232120,01x x k k R x -⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪=+∈ ⎪ ⎪ ⎪ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭23132222222211221121121210330113112033220002r r r r λλλλλλλλλλλ-+⎛⎫-⎛⎫---⎛⎫⎪- ⎪ ⎪ ⎪---- ⎪ ⎪⎪ ⎪ ⎪ ⎪---⎝⎭⎝⎭⎪+-⎝⎭220λλ+-≠1λ≠2λ≠-220λλ+-=1λ=2λ=-1λ=112110110110011000000000--⎛⎫⎛⎫ ⎪ ⎪-- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭1231101,01x x k k R x ⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪=+∈ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭时,,通解为:; (3) 当时,,无解;当时,有无穷多解,同解方程组为, 通解为:; (4)当时,,无解;当时,方程组有无穷多解,此时,通解为:;当且时,有唯一解,此时:2λ=-112410120112011200000000--⎛⎫⎛⎫ ⎪ ⎪-- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭1232121,01x x k k R x ⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪=+∈ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭211110537312142121421214205373174110537200005λλλ-----⎛⎫⎛⎫⎛⎫ ⎪ ⎪⎪----- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪----⎝⎭⎝⎭⎝⎭5λ≠()()R A R A ≠5λ=123443224273355x x x x x x x =-+-+⎧⎪-⎨=+⎪-⎩12124163371, ,0505005x k k k k R --⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪- ⎪⎪ ⎪=++∈ ⎪⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭()3212222760211222122542254224510111r r r r λλλλλλλλλλλλλ+--⎛⎫-+--- ⎪--⎛⎫⎪⎪---- ⎪ ⎪ ⎪⎪--------⎝⎭ ⎪⎪⎝⎭()()()()()()()()254225420111011101641210010141λλλλλλλλλλλλλλλλ----⎛⎫⎛⎫ ⎪⎪------ ⎪ ⎪ ⎪ ⎪--------⎝⎭⎝⎭10λ=()()R A R A ≠1λ=244212210000000000000000--⎛⎫⎛⎫ ⎪ ⎪⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭1212123122010,,001x x k k k k R x -⎛⎫⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪ ⎪=++∈ ⎪ ⎪ ⎪ ⎪ ⎪⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭1λ≠10λ≠()()()()2542254201110111001014100104λλλλλλλλλλλ----⎛⎫⎛⎫⎪ ⎪--- ⎪⎪ ⎪ ⎪------⎝⎭⎝⎭方程组解为:; (5) 当或时,,无解;当且时,有无穷多解,, 通解为:;(6)当且时,有唯一解;当时,,无解;当时,,,无解;123316104x x x λλλ-⎛⎫⎛⎫⎪ ⎪=- ⎪ ⎪- ⎪⎪-⎝⎭⎝⎭1111111111113211301226301226301226354331012265a a b b ⎛⎫⎛⎫ ⎪⎪------ ⎪ ⎪ ⎪⎪ ⎪⎪------⎝⎭⎝⎭23432311111101226300000000002r r r r r r a b ++↔⎛⎫ ⎪---- ⎪ ⎪ ⎪-⎝⎭0a ≠2b ≠()()R A R A ≠0a =2b =101152012263000000000000----⎛⎫⎪----⎪ ⎪ ⎪⎝⎭123123211532260100, ,,00100001x k k k k k k R -⎛⎫⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪ ⎪--- ⎪ ⎪ ⎪ ⎪⎪ ⎪ ⎪ ⎪=+++∈ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭()2211212122101211212110A λλλλλλλλλλλλλλλλλλ+-++--=---=--=------0λ≠1λ≠±0λ=101110111011212001020102111001010001---⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪----- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪-----⎝⎭⎝⎭⎝⎭()()R A R A ≠1λ=312031201011101110110002--⎛⎫⎛⎫ ⎪ ⎪---- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭()()R A R A ≠当时, 有无穷多解,通解为:.5.对于向量组;试讨论参数满足什么条件时,(1) 可由线性表出,且表示方式惟一; (2) 可由线性表出,但表示方式不惟一; (3) 不能由线性表出.且(1)可由线性表出,且表达式唯一且;(2)当时,,,此时 有无穷解,可由线性表出,且表达式不唯一;1λ=-3101110211025323105350535323100000000⎛⎫⎪---⎛⎫⎛⎫ ⎪ ⎪ ⎪------- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪----⎝⎭⎝⎭⎪⎝⎭12335131,501x x k k R x ⎛⎫- ⎪⎛⎫⎛⎫ ⎪⎪ ⎪⎪=-+-∈ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭ ⎪ ⎪⎝⎭123211101,1,1,111λααλαβλλλ⎛⎫+⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪ ⎪==+== ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪+⎝⎭⎝⎭⎝⎭⎝⎭λβ123,,αααβ123,,αααβ123,,ααα()2111111300111A λλλλλλ+=+=+≠⇔≠+3λ≠-β123,,ααα0λ⇔≠3λ≠-0λ=111011101110000011100000A ⎛⎫⎛⎫⎪⎪= ⎪⎪ ⎪ ⎪⎝⎭⎝⎭()()13R A R A ==<Ax β=β∴123,,ααα(3)当时,,此时无解,不能由线性表出.6.设四元非齐次线性方程组的系数矩阵的秩是2,并已知该方程组的三个解向量是求该方程组的通解.解:,则的任何两个线性无关的解向量均是它的一组基础解系;由为非齐次方程组的三个解向量知:, 为的两个线性无关的解向量,故为的一组基础解系;故的通解为. 7.设三元非齐次线性方程组系数矩阵的秩为1,且已知它的三个解满足:求该方程组的通解.解:,故的任何两个线性无关的解向量均是它的一组基础解系;,,,3λ=-211011291129121303312033121129033180006A ---⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪=------ ⎪ ⎪⎪ ⎪ ⎪ ⎪--⎝⎭⎝⎭⎝⎭()()23R A R A =<=Ax β=β∴123,,ααα123123234,,344455ηηη⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪ ⎪ ⎪ ⎪=== ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭()dim 422A S n R A =-=-=0Ax =123,,ηηηAx β=1312211ξηη⎛⎫ ⎪ ⎪=-= ⎪ ⎪⎝⎭2211111ξηη⎛⎫⎪ ⎪=-= ⎪ ⎪⎝⎭0Ax =0Ax =Ax β=12121234121221,,311411x x k k k k R x x ⎛⎫⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪=++∈ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭123,,ηηη1223131012,1,0311ηηηηηη⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪+=+=-+= ⎪ ⎪ ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭⎝⎭()dim 312A S n R A =-=-=0Ax =121123ηηα⎛⎫ ⎪+== ⎪ ⎪⎝⎭232011ηηα⎛⎫ ⎪+=-= ⎪ ⎪⎝⎭133101ηηα⎛⎫⎪+== ⎪ ⎪-⎝⎭则,又,为非齐次方程组特解;, 为的两个线性无关的解向量,故为的一组基础解系;故为的通解.注意:此题中非齐次方程组的特解、齐次方程组的基础解系找法不唯一.8.设矩阵,矩阵为3阶非零矩阵,且,求的值. 解:,由P110例9知:,又是非零矩阵,,,则;.9.设矩阵,为三阶非零矩阵,且满足,求及.解:,由P110例9知:,又是非零矩阵,,,即不满秩,则;或;当时,,与不能同时为0,,此时,;()12312312ηηηααα++=++133ηηα+=()21230112252ηααα⎛⎫⎪∴=+-= ⎪ ⎪⎝⎭11213132ξααηη⎛⎫ ⎪=-=-= ⎪ ⎪⎝⎭21323024ξααηη⎛⎫⎪=-=-= ⎪ ⎪⎝⎭0Ax =0Ax =2112212,,x k k k k R ηξξ=++∈Ax β=12243311A t-⎛⎫⎪= ⎪ ⎪-⎝⎭B 0AB =t 0AB =()()3R A R B +≤B ()1R B ∴≥()2R A ∴≤0A =122437210311A tt -==+=-3t ∴=-1111131a A b b ⎛⎫ ⎪= ⎪ ⎪⎝⎭B 0AB =, a b ()R B 0AB =()()3R A R B +≤B ()1R B ∴≥()2R A ∴≤A 0A =()11111111210131020a a A bbb a b b ===-=1a ∴=0b =1a =111111110101310310A b b b b ⎛⎫⎛⎫ ⎪ ⎪=- ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭1b -31b -()2R A ∴=()11R B ≤≤()1R B ∴=当时, ,此时,.10.设是非齐次线性方程组的个解,为实数,满足,证明也是方程组的解.证明:由已知:故也是方程组的解.11.试证方程组 有解的充要条件是,并在有解的情况下,求出它的全部解.证明:有解;当时, 同解方程组为,通解为.0b =12121111101101101011101000000r rr ar a a A a ↔-⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪=- ⎪ ⎪ ⎪⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭()2R A ∴=()11R B ≤≤()1R B ∴=12,,,s ηηηAx b =s 1s k k ,,121=+++s k k k 1122s s x k k k ηηη=+++Ax b =,1,2,,,i A b i s η==()()1111111s s s s s s Ax A k k k A k A k b k b k k b b b ηξηη=++=++=++=++=⋅=1122s s x k k k ηηη=+++Ax b =121232343454515x x a x x a x x a x x ax x a -=⎧⎪-=⎪⎪-=⎨⎪-=⎪⎪-=⎩054321=++++a a a a a 5123411223314451511111111111111111100r r r r r a a a a A a a A a a a a a ++++--⎛⎫⎛⎫⎪ ⎪--⎪ ⎪ ⎪ ⎪=--=⎪ ⎪--⎪ ⎪⎪ ⎪-++⎝⎭⎝⎭Ax b =()()()1123450R A R A R A a a a a a ⇔==⇔++++=123450a a a a a ++++=3423121234234134411111111000r r r r r r a a a a a a a A a a a +++-+++⎛⎫⎪-++ ⎪ ⎪-+ ⎪- ⎪⎪⎝⎭15123425234353445455x x a a a a x x a a a x x a a x x a x x =++++⎧⎪=+++⎪⎪=++⎨⎪=+⎪=⎪⎩123423434411,1101a a a a a a a x k k R a a a +++⎛⎫⎛⎫ ⎪ ⎪++ ⎪ ⎪ ⎪ ⎪=+∈+ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭12.设为元非齐次线性方程组的一个解,是对应的齐次线性方程组的一个基础解系,证明: (1) 向量组线性无关;(2) 向量组线性无关.证明:(1)设,则,,为的基础解系,有,,是非齐次方程组,即,,代入有,线性无关,,即,线性无关;(2)设,则,由(1)知:线性无关,,,线性无关.13.设元非齐次线性方程组的系数矩阵的秩为,且是它的个解,证明: (1)是齐次方程组的一个基础解系;(2) 的通解为,其中.证明:(1)首先我们证明是的解.,,为解;其次我们证明线性无关.*ηn Ax β=12,,,n r ξξξ-0Ax =*12, , ,, n r ηξξξ-****12, , ,, n r ηηξηξηξ-+++0110n r n r k k k ηξξ*--+++=()0110n r n r A k k k ηξξ*--+++=0110n r n r k A k A k A ηξξ*--∴+++=1,,n r ξξ-0Ax =0,1,,i A i n r ξ==-000k A k ηβ*∴==Ax β=0β≠00k ∴=110n r n r k k ξξ--++=1,,n r ξξ-10n r k k -∴===010n r k k k -====1,,,n r ηξξ*-∴()()0110n r n r k k k ηηξηξ***--+++++=()01110n r n r n r k k k k k ηξξ*---++++++=1,,,n r ηξξ*-0110n r n r k k k k k --∴+++====00k ∴=∴****12, , ,, n rηηξηξηξ-+++n Ax β=r 121,,,,n r n r ηηηη--+1n +11211, ,, n r n r n r n r ηηηηηη-+-+--+---0Ax =Ax β=112211n r n r n r n r x k k k k ηηηη---+-+=++++111n r ii k-+==∑11211, ,, n r n r n r n r ηηηηηη-+-+--+---0Ax =121n r A A A ηηηβ-+====()()()112110n r n r n r n r A A A ηηηηηηββ-+-+--+∴-=-==-=-=11211,,,n r n r n r n r ηηηηηη-+-+--+∴---11211,,,n r n r n r n r ηηηηηη-+-+--+---设,则,线性无关,,线性无关,为的一个基础解系;(2)由(1)知:的解为:,取,则. 证毕.14.设A 为n 阶矩阵(),证明.证明: ①若,则,,;②若,不可逆,则,有一个阶子式不为0,于是有一个代数余子式不为0,. 因为,所以【见书P110:例9】,,故;③若,则的所有阶子式全为0,于是所有代数余子式全为0,,. 证毕.15.设为阶矩阵,且,证明.证明:,可逆,设,则,,()()()11122110n r n r n r n r n r k k k ηηηηηη-+-+---+-+-++-=()11110n r n r n r n r k k k k ηηη----+++-++=121,,,n r ηηη-+110n r n r k k k k --∴===++=11211,,,n r n r n r n r ηηηηηη-+-+--+∴---11211,,,n r n r n r n r ηηηηηη-+-+--+∴---0Ax =Ax β=()()()11122111n r n r n r n r n r n r x k k k ηηηηηηη-+-+---+-+=-+-++-+()11111n r n r n r n r x k k k k ηηη----+∴=+++---111n r n r k k k -+-=---111n r ii k-+==∑2≥n *,()()1,()10,()1n R A n R A R A n R A n =⎧⎪==-⎨⎪<-⎩当 当 当()R A n =0A ≠10n A A-*=≠()R A n *∴=()1R A n =-A 0A =A ()1n -A ()1R A *≥0AA A E *==()()R A R A n *+≤()1R A *∴≤()1R A *=()2R A n ≤-A ()1n -A n n A O *⨯=()0R A *=A n 2A E =()()R A E R A E n ++-=()()()()20A E A E A E R A E R A E n =⇒+-=⇒++-≤2210A A E A A ===⇒≠⇒()()1,,n R A R n αα⇒==()1,,n E e e =()11,,n n A E e e αα+=++()11,,n n A E e e αα-=--设,, 易知可由线性表示,故,综上:.16.设为矩阵,证明.证明:由方程解与秩的关系知:只须证明与同解即可.事实上,,若,则,的解必为的解; 反之,,若,则,即 ,为列向量,,的解必为的解;与同解,,证毕.17.设为维列向量,证明齐次线性方程组与有公共非零解的充要条件是:.证明:与有公共非零解,使,使,即有非零解. 18.若阶方阵,其中为矩阵,为矩阵,且,证明齐次线性方程组只有零解.证明:只有零解., ()R A E r +=()R A E s -=1,,n αα1111,,,,,n n n n e e e e αααα++--()()11111,,,,,,,n n n n n n R R e e e e αααααα=≤++--()()()()1111,,,,n n n n R e e R e e R A E R A E αααα≤+++--=++-()()R A E R A E n ++-=A m n ⨯()()TR A A R A =0Ax =0TA Ax =x R ∀∈0Ax =0TA Ax =0Ax ∴=0TA Ax =x R ∀∈0TA Ax =0TT x A Ax =()0TAx Ax =m Ax R ∈0Ax ∴=0TA Ax ∴=0Ax =∴0Ax =0T A Ax =()()T R A R A A ∴=x n 0Ax =0Bx =A R n B ⎛⎫< ⎪⎝⎭0Ax =0Bx =00x ⇔∃≠000000Ax x Bx =⎧⇔∃≠⎨=⎩000000Ax A x Bx B ⎛⎫⎛⎫⎛⎫=== ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭0A x B ⎛⎫= ⎪⎝⎭A R n B ⎛⎫⇔< ⎪⎝⎭n A BC =B n k ⨯C k n ⨯||0A ≠0TB x =0TB x =()()TR B R B n ⇔==n n n k k n A B C ⨯⨯⨯=()()111111111,,,,,,n kkn k j j jn j j j k kn c c c c c c ααββββ==⎛⎫⎛⎫⎪== ⎪⎪⎝⎭⎪⎝⎭∑∑故能由线性表示,则,得,,又,. 证毕.1,,n αα1,,k ββ()()()()11,,,,n k R A R R R B ααββ=≤=0A ≠()R A n =()R B n ∴≥()R B n ≤()R B n ∴=。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
线性代数经典试题4套及答案试卷1一、单项选择题(本大题共14小题,每小题2分,共28分)在每小题列出的四个选项中只有一个是符合题目要求的,请将其代码填在题后的括号内。
错选或未选均无分。
1.设行列式a aa a11122122=m,a aa a13112321=n,则行列式a a aa a a111213212223++等于()A. m+nB. -(m+n)C. n-mD. m-n2.设矩阵A=100020003⎛⎝⎫⎭⎪⎪⎪,则A-1等于()A.130012001⎛⎝⎫⎭⎪⎪⎪⎪⎪⎪B.100120013⎛⎝⎫⎭⎪⎪⎪⎪⎪⎪C.13000100012⎛⎝⎫⎭⎪⎪⎪⎪⎪D.120013001⎛⎝⎫⎭⎪⎪⎪⎪⎪⎪3.设矩阵A=312101214---⎛⎝⎫⎭⎪⎪⎪,A*是A的伴随矩阵,则A *中位于(1,2)的元素是()A. –6B. 6C. 2D. –24.设A是方阵,如有矩阵关系式AB=AC,则必有()A. A =0B. B≠C时A=0C. A≠0时B=CD. |A|≠0时B=C5.已知3×4矩阵A的行向量组线性无关,则秩(A T)等于()A. 1B. 2C. 3D. 46.设两个向量组α1,α2,…,αs和β1,β2,…,βs均线性相关,则()A.有不全为0的数λ1,λ2,…,λs使λ1α1+λ2α2+…+λsαs=0和λ1β1+λ2β2+…λs βs=0B.有不全为0的数λ1,λ2,…,λs使λ1(α1+β1)+λ2(α2+β2)+…+λs(αs+βs)=0C.有不全为0的数λ1,λ2,…,λs使λ1(α1-β1)+λ2(α2-β2)+…+λs(αs-βs)=0D.有不全为0的数λ1,λ2,…,λs和不全为0的数μ1,μ2,…,μs使λ1α1+λ2α2+…+λsαs=0和μ1β1+μ2β2+…+μsβs=07.设矩阵A的秩为r,则A中()A.所有r-1阶子式都不为0B.所有r-1阶子式全为0C.至少有一个r阶子式不等于0D.所有r阶子式都不为08.设Ax=b是一非齐次线性方程组,η1,η2是其任意2个解,则下列结论错误的是()A.η1+η2是Ax=0的一个解B.12η1+12η2是Ax=b的一个解C.η1-η2是Ax=0的一个解D.2η1-η2是Ax=b的一个解9.设n阶方阵A不可逆,则必有()A.秩(A)<nB.秩(A)=n-1C.A=0D.方程组Ax=0只有零解10.设A是一个n(≥3)阶方阵,下列陈述中正确的是()A.如存在数λ和向量α使Aα=λα,则α是A的属于特征值λ的特征向量B.如存在数λ和非零向量α,使(λE-A)α=0,则λ是A的特征值C.A的2个不同的特征值可以有同一个特征向量D.如λ1,λ2,λ3是A的3个互不相同的特征值,α1,α2,α3依次是A的属于λ1,λ2,λ3的特征向量,则α1,α2,α3有可能线性相关11.设λ0是矩阵A的特征方程的3重根,A的属于λ0的线性无关的特征向量的个数为k,则必有()A. k≤3B. k<3C. k=3D. k>312.设A是正交矩阵,则下列结论错误的是()A.|A|2必为1B.|A|必为1C.A-1=A TD.A的行(列)向量组是正交单位向量组13.设A是实对称矩阵,C是实可逆矩阵,B=C T AC.则()A.A与B相似B. A与B不等价C. A与B有相同的特征值D. A与B合同14.下列矩阵中是正定矩阵的为()A.2334⎛⎝⎫⎭⎪ B.3426⎛⎝⎫⎭⎪C.100023035--⎛⎝⎫⎭⎪⎪⎪D.111120102⎛⎝⎫⎭⎪⎪⎪第二部分非选择题(共72分)二、填空题(本大题共10小题,每小题2分,共20分)不写解答过程,将正确的答案写在每小题的空格内。
错填或不填均无分。
15.11135692536=.16.设A =111111--⎛⎝⎫⎭⎪,B =112234--⎛⎝ ⎫⎭⎪.则A +2B = .17.设A =(a ij )3×3,|A |=2,A ij 表示|A |中元素a ij 的代数余子式(i,j=1,2,3),则(a 11A 21+a 12A 22+a 13A 23)2+(a 21A 21+a 22A 22+a 23A 23)2+(a 31A 21+a 32A 22+a 33A 23)2= . 18.设向量(2,-3,5)与向量(-4,6,a )线性相关,则a= .19.设A 是3×4矩阵,其秩为3,若η1,η2为非齐次线性方程组Ax=b 的2个不同的解,则它的通解为 .20.设A 是m ×n 矩阵,A 的秩为r(<n),则齐次线性方程组Ax=0的一个基础解系中含有解的个数为 . 21.设向量α、β的长度依次为2和3,则向量α+β与α-β的内积(α+β,α-β)= . 22.设3阶矩阵A 的行列式|A |=8,已知A 有2个特征值-1和4,则另一特征值为 .23.设矩阵A =010********---⎛⎝ ⎫⎭⎪⎪⎪,已知α=212-⎛⎝ ⎫⎭⎪⎪⎪是它的一个特征向量,则α所对应的特征值为 .24.设实二次型f(x 1,x 2,x 3,x 4,x 5)的秩为4,正惯性指数为3,则其规范形为 . 三、计算题(本大题共7小题,每小题6分,共42分)25.设A =120340121-⎛⎝ ⎫⎭⎪⎪⎪,B =223410--⎛⎝ ⎫⎭⎪.求(1)AB T ;(2)|4A |. 26.试计算行列式3112513420111533------.27.设矩阵A =423110123-⎛⎝ ⎫⎭⎪⎪⎪,求矩阵B 使其满足矩阵方程AB =A +2B .28.给定向量组α1=-⎛⎝ ⎫⎭⎪⎪⎪⎪2103,α2=1324-⎛⎝ ⎫⎭⎪⎪⎪⎪,α3=3021-⎛⎝ ⎫⎭⎪⎪⎪⎪,α4=0149-⎛⎝ ⎫⎭⎪⎪⎪⎪. 试判断α4是否为α1,α2,α3的线性组合;若是,则求出组合系数。
29.设矩阵A =12102242662102333334-----⎛⎝⎫⎭⎪⎪⎪⎪. 求:(1)秩(A );(2)A 的列向量组的一个最大线性无关组。
30.设矩阵A=022234243----⎛⎝ ⎫⎭⎪⎪⎪的全部特征值为1,1和-8.求正交矩阵T 和对角矩阵D ,使T -1AT =D .31.试用配方法化下列二次型为标准形f(x 1,x 2,x 3)=x x x x x x x x x 12223212132323444+-+--,并写出所用的满秩线性变换。
四、证明题(本大题共2小题,每小题5分,共10分)32.设方阵A 满足A 3=0,试证明E -A 可逆,且(E -A )-1=E +A +A 2.33.设η0是非齐次线性方程组Ax=b 的一个特解,ξ1,ξ2是其导出组Ax=0的一个基础解系.试证明(1)η1=η0+ξ1,η2=η0+ξ2均是Ax=b 的解; (2)η0,η1,η2线性无关。
答案1、单项选择题(本大题共14小题,每小题2分,共28分) 1.D 2.B 3.B 4.D 5.C 6.D 7.C 8.A 9.A 10.B 11.A 12.B 13.D 14.C二、填空题(本大题共10空,每空2分,共20分) 15. 6 16. 337137--⎛⎝⎫⎭⎪17. 4 18. –1019. η1+c(η2-η1)(或η2+c(η2-η1)),c 为任意常数 20. n -r 21. –5 22. –2 23. 124. z z z z 12223242++-三、计算题(本大题共7小题,每小题6分,共42分)25.解(1)AB T =120340*********-⎛⎝ ⎫⎭⎪⎪⎪--⎛⎝ ⎫⎭⎪⎪⎪=86 1810 310⎛⎝⎫⎭⎪⎪⎪.(2)|4A|=43|A|=64|A|,而|A|=1203401212 -=-.所以|4A|=64·(-2)=-12826.解311251342011153351111113100105530------=-----=5111111550----=5116205506255301040 ---=---=+=.27.解AB=A+2B即(A-2E)B=A,而(A-2E)-1=2231101211431531641--⎛⎝⎫⎭⎪⎪⎪=-----⎛⎝⎫⎭⎪⎪⎪-.所以B=(A-2E)-1A=143153164423110123-----⎛⎝⎫⎭⎪⎪⎪-⎛⎝⎫⎭⎪⎪⎪=386 296 2129-----⎛⎝⎫⎭⎪⎪⎪.28.解一----⎛⎝⎫⎭⎪⎪⎪⎪−→−-----⎛⎝⎫⎭⎪⎪⎪⎪2130130102243419053213010112013112−→−--⎛⎝⎫⎭⎪⎪⎪⎪−→−⎛⎝⎫⎭⎪⎪⎪⎪1035011200880014141035011200110000−→−⎛⎝⎫⎭⎪⎪⎪⎪1002010100110000,所以α4=2α1+α2+α3,组合系数为(2,1,1). 解二 考虑α4=x 1α1+x 2α2+x 3α3,即 -++=-=-+=+-=⎧⎨⎪⎪⎩⎪⎪230312243491231223123x x x x x x x x x x .方程组有唯一解(2,1,1)T ,组合系数为(2,1,1).29.解 对矩阵A 施行初等行变换A −→−-----⎛⎝⎫⎭⎪⎪⎪⎪12102000620328209632−→−-----⎛⎝ ⎫⎭⎪⎪⎪⎪−→−----⎛⎝ ⎫⎭⎪⎪⎪⎪12102032830006200021712102032830003100000=B . (1)秩(B )=3,所以秩(A )=秩(B )=3.(2)由于A 与B 的列向量组有相同的线性关系,而B 是阶梯形,B 的第1、2、4列是B 的列向量组的一个最大线性无关组,故A 的第1、2、4列是A 的列向量组的一个最大线性无关组。
(A 的第1、2、5列或1、3、4列,或1、3、5列也是)30.解 A 的属于特征值λ=1的2个线性无关的特征向量为ξ1=(2,-1,0)T , ξ2=(2,0,1)T .经正交标准化,得η1=255550//-⎛⎝ ⎫⎭⎪⎪⎪,η2=2515451553///⎛⎝ ⎫⎭⎪⎪⎪.λ=-8的一个特征向量为ξ3=122-⎛⎝ ⎫⎭⎪⎪⎪,经单位化得η3=132323///.-⎛⎝ ⎫⎭⎪⎪⎪所求正交矩阵为 T =25521515135545152305323////////--⎛⎝ ⎫⎭⎪⎪⎪.对角矩阵 D =100010008-⎛⎝ ⎫⎭⎪⎪⎪.(也可取T=25521515130532355451523////////---⎛⎝⎫⎭⎪⎪⎪.)31.解f(x1,x2,x3)=(x1+2x2-2x3)2-2x22+4x2x3-7x32=(x1+2x2-2x3)2-2(x2-x3)2-5x32.设y x x xy x xy x11232233322=+-=-=⎧⎨⎪⎪⎩⎪⎪,即x y yx y yx y112223332=-=+=⎧⎨⎪⎩⎪,因其系数矩阵C=120011001-⎛⎝⎫⎭⎪⎪⎪可逆,故此线性变换满秩。