整式的运算法则

合集下载

整式运算去括号法则

整式运算去括号法则

整式运算去括号法则1.单项式展开法则:对于一个括号中是单项式之和或差的整式,可以使用单项式展开法则,将括号内每个单项式与外面的系数相乘,并将结果进行合并。

例如,对于一个整式$(3x+2y)(4x-5y)$,我们可以先将括号内的两个单项式相乘,得到$12x^2-15xy+8xy-10y^2$,然后将相同的项合并得到最终结果$12x^2-7xy-10y^2$。

2.双括号展开法则:如果整式中有双括号,可以将括号内的整式运用去括号法则进行展开。

例如,对于一个整式$(2x-3y)(5x+4y)(3x-2y)$,可以先将两个括号内的整式展开得到$10x^2-8xy+15xy-12y^2$和$15x^2-10xy-12xy+8y^2$,然后将三个整式相乘得到最终结果$150x^4-140x^3y-226x^2y^2+200xy^3+96y^4$。

3.混合括号展开法则:如果整式中既有单括号又有双括号,可以先运用单括号展开法则,然后再运用双括号展开法则。

例如,对于一个整式$(2x+3y)(4x^2+5x+6y)$,可以先将单括号内的整式展开得到$8x^3+10x^2+12xy+12yx+15y^2+18y^2$,然后将双括号内的整式展开得到$8x^3+10x^2+12xy+15y^2+18y^2$,最后将两个整式相加得到最终结果$8x^3+10x^2+12xy+33y^2+18y^2$。

除了以上基本的整式运算去括号法则,还有一些特殊情况需要注意:1.如果括号前有负号,需要将括号内每一项的符号取反。

例如,对于一个整式$-(3x-2y)$,需要先将括号内的每一项取反得到$-3x+2y$。

2.如果括号前有一个整数系数,需要将括号内每一项与整数系数相乘。

例如,对于一个整式$2(3x-2y)$,需要先将括号内的每一项乘以2得到$6x-4y$。

综上所述,整式运算去括号法则是对整式中的括号进行展开和化简的运算法则。

通过运用单项式展开法则、双括号展开法则、混合括号展开法则以及对特殊情况的处理,可以对整式进行简化和合并,从而得到最终结果。

整式的加减运算法则

整式的加减运算法则

整式的加减运算法则整式是由数字和字母及它们的积的和构成的式子,整式的加减运算是代数运算中的基础,掌握好整式的加减运算法则对于学习代数运算非常重要。

下面我们来详细介绍整式的加减运算法则。

一、同类项的加减法则同类项是指含有相同字母的项,它们的指数可以不同,但字母要相同。

对于同类项的加减法则,我们可以分为以下几点来介绍:1. 相同字母的同类项相加减时,保持字母不变,将它们的系数相加减即可。

例如:3a^2b-2a^2b=(3-2)a^2b=a^2b。

2. 当同类项相加减时,如果有数字和字母的系数,可以分别对数字和字母进行加减运算。

例如:2ab+3ab=5ab。

3. 当同类项相加减时,如果有括号,可以先将括号展开,然后再进行同类项的加减运算。

例如:(3a+2b)-(a+4b)=3a+2b-a-4b=2a-2b。

二、整式的加减法则在掌握了同类项的加减法则之后,我们来看整式的加减法则。

1. 整式的加法:将整式中的各项按同类项相加的法则进行加法运算。

例如:(3a^2b+2ab^2)+(4a^2b-5ab^2)=3a^2b+4a^2b+2ab^2-5ab^2=(3+4)a^2b+(2-5)ab^2=7a^2b-3ab^2。

2. 整式的减法:将整式中的各项按同类项相减的法则进行减法运算。

例如:(3a^2b+2ab^2)-(4a^2b-5ab^2)=3a^2b-4a^2b+2ab^2+5ab^2=(3-4)a^2b+(2+5)ab^2=-a^2b+7ab^2。

通过上面的例子,我们可以看到整式的加减法则实际上就是对同类项的加减法则的运用,只不过在整式中有多个同类项需要进行加减运算。

三、整式的加减混合运算在实际的代数运算中,我们经常会遇到整式的加减混合运算,这时我们需要按照整式的加减法则进行运算。

例如:(3a^2b+2ab^2)+(4a^2b-5ab^2)-(2a^2b-3ab^2)=3a^2b+4a^2b-2a^2b+2ab^2-5ab^2+3ab^2=5a^2b+5ab^2。

初中数学知识归纳整式的概念与运算法则

初中数学知识归纳整式的概念与运算法则

初中数学知识归纳整式的概念与运算法则在初中数学中,整式是一个重要的概念,我们经常会遇到它,并且需要了解整式的运算法则。

本文将对整式的概念及其运算法则进行归纳总结,以帮助初中生更好地理解和应用相关知识。

一、整式的概念整式是由常数和变量相乘并加减得到的表达式,其中常数可以是整数、零或有理数,变量表示未知数,通常用字母表示。

整式的例子包括:5x、3x²+2xy、-4a³+7ab-1等。

整式的含义可以通过具体的例子来说明,比如一个多项式P(x)=3x²+2xy-7表示了一个以x为变量的整式,其中3x²表示x的平方项,2xy表示x与y的乘积项,-7表示常数项。

整式可以用来描述各种数学问题,并且在代数、方程解等领域有广泛的应用。

二、整式的运算法则1. 加减运算法则对于整式的加减运算,我们主要使用以下两个法则:- 同类项相加减法则:将同类项(具有相同的变量和相同的指数)的系数相加减,保持变量和指数不变。

例如:对于整式3x²+2xy-7和4x²-3xy+5,可以将同类项相加得到7x²-y-2。

- 去括号法则:对于整式中的括号,可以通过分配律去括号,将整式化简成一个更简单的形式。

例如:对于整式3(x+2)-2(2x-1),可以应用分配律将其化简为3x+6-4x+2,再进行合并同类项。

2. 乘法运算法则对于整式的乘法运算,我们需要掌握以下两个法则:- 基本乘法法则:将每个项前面的系数相乘,变量相乘的时候,将其指数相加。

例如:对于整式2x²(3x-1),可以将每一项都乘以2x²,得到6x³-2x²。

- 同类项乘法法则:将同类项的系数相乘,将变量相乘时,保持变量和指数不变。

例如:对于整式(3x-1)(2x+5),可以将每个项都乘以3x-1,得到6x²+13x-5。

3. 除法运算法则除法运算是整式最复杂的一种运算,通常需要应用因式分解等技巧来进行求解。

整式的所有概念

整式的所有概念

整式的所有概念整式是指由多个字母和常数通过有限次的加减乘除运算得到的多项式,也叫多项式函数。

在整式中,字母称为变量,常数称为系数。

整式是代数学中重要的概念,被广泛应用于各个数学领域,如代数、几何、概率等。

一、整式的基本概念1. 变量:整式中的字母通常用来表示未知量,可代表各种数值。

2. 系数:整式中字母的系数称为系数,系数可以是实数、有理数、整数或自然数等。

3. 单项式:只含有一个变量的整式,如3x、-4y^2等。

4. 多项式:由若干个单项式相加减得到的整式,如2x^2+3xy-5y^2等。

5. 最高次数:多项式中各单项式的次数的最大值称为多项式的最高次数。

6. 约束条件:用于限制变量的取值范围的条件,如不等式、方程等。

二、整式的运算1. 加法:整式与整式相加,按照对应项相加的原则进行运算。

2. 减法:整式与整式相减,按照对应项相减的原则进行运算。

3. 乘法:整式与整式相乘,按照分配律和乘法运算法则进行运算。

4. 除法:整式与整式相除,除法运算可通过因式分解与因式消去进行简化。

三、整式的性质和特点1. 对称性:整式具有对称性,即交换两个整式的次序仍可保持运算结果不变。

2. 同类项合并:多项式中相同次数的单项式可合并,该性质有助于简化整式。

3. 分解因式:整式可以通过因式分解化简,找到整式的因式有助于求解方程、图像等问题。

4. 比较大小:可通过整式的次数和系数对比大小,进一步研究整式的性质。

5. 二次函数:一种特殊的整式,其最高次数为2,常见的代表形式为f(x)=ax^2+bx+c。

四、整式的应用领域1. 代数方程:利用整式进行方程的求解和求根。

2. 几何学:整式在图形的建模中起重要作用,如通过函数图像求解交点、切线等。

3. 概率和统计:整式在概率和统计中用于计算合成概率、数据拟合等。

4. 数值计算:整式在数值计算中用于插值和多项式逼近等。

5. 计算机科学:整式在计算机科学中用于编程和算法设计等。

整式与分式的运算法则

整式与分式的运算法则

整式与分式的运算法则在数学中,整式和分式是常见的数学表达式形式。

这两种形式在进行数值计算和推导时,有着各自的运算法则。

本文将介绍整式和分式的运算法则,帮助读者更好地理解和应用这些规则。

整式运算法则整式是由数字、字母和运算符号组成的代数表达式,通常包含加法、减法和乘法运算。

对于整式的运算,我们有以下几个重要法则:加法法则:对于整式a和b,我们有a + b = b + a。

也就是说,整式的加法满足交换律。

减法法则:对于整式a和b,我们有a - b = a + (-b)。

也就是说,整式的减法可以转化为加法运算。

乘法法则:对于整式a、b和c,我们有a(b + c) = ab + ac。

也就是说,整式的乘法满足分配律。

乘方法则:对于整式a和n,我们有an = a × a × ... × a (n个a相乘)。

也就是说,整式的乘方是多次乘法的简化形式。

除法法则:对于整式a和b (b ≠ 0),我们有a ÷ b = a × (1/b)。

也就是说,整式的除法可以转化为乘法运算。

分式运算法则分式是由分子和分母组成的表达式,通常以a/b的形式表示,其中a和b为整数。

对于分式的运算,我们有以下几个重要法则:分子分母法则:对于分式a/b,a和b都是整式。

我们可以对分子和分母分别应用整式的运算法则。

加减法法则:对于分式a/b和c/d,我们有a/b + c/d = (ad + bc)/(bd)。

也就是说,分式的加法和减法都需要对分子和分母进行相应的运算。

乘法法则:对于分式a/b和c/d,我们有(a/b) × (c/d) = (ac)/(bd)。

也就是说,分式的乘法需要将分子和分母分别相乘。

除法法则:对于分式a/b和c/d (c/d ≠ 0),我们有(a/b) ÷ (c/d) = (a/b)× (d/c) = (ad)/(bc)。

也就是说,分式的除法可以转化为乘法运算。

整式的加减乘除法则总结

整式的加减乘除法则总结

整式的加减乘除法则总结一、整式的定义整式是由数字、字母和运算符号(加号、减号、乘号)通过运算得出的式子。

例如,2x - 5y + 3 是一个整式。

二、整式的加法法则整式加法法则可以总结为下列两条规则:1.对于整式的同类项进行合并,即将相同字母的幂次相同的项合并。

例如:2x - 3x + 4x + 5 可以合并为 3x + 5。

2.对合并后的同类项进行系数相加。

例如:3x - 2y + 4x - 5y 可以合并为 7x - 7y。

三、整式的减法法则整式减法法则是整式加法法则的特例,即将减号后面的各项取相反数后,按整式加法法则进行运算。

例如:5x^2 - 3x + 2y - (2x^2 - 4x + 3y) = 5x^2 - 3x + 2y - 2x^2 + 4x - 3y = 3x^2 + x - y。

四、整式的乘法法则整式乘法法则可以总结为下列规则:1.将两个整式的每一项按照乘法分配律进行相乘。

例如:(2x - 3)(4x + 5) 可以按乘法分配律展开为 2x(4x + 5) - 3(4x + 5) = 8x^2 + 10x - 12x - 15 = 8x^2 - 2x - 15。

2.将展开后的各项进行合并。

例如:3x(2x - 1) + 5y(3x + 2y) 可以合并为 6x^2 - 3x^2 + 15xy + 10y^2。

五、整式的除法法则整式除法法则可以总结为下列规则:1.将除法转化为乘法。

即将被除数乘以除数的倒数。

例如:(4x^2 + 8x) / 2x 可以转化为 (4x^2 + 8x) * (1 / 2x)。

2.化简分式。

例如:(4x^2 + 8x) * (1 / 2x) 可以化简为 2x + 4。

六、整式的总结通过以上的总结,可以得出整式的加减乘除法则:1.加法法则:合并同类项后,进行系数相加。

2.减法法则:减号后面的各项取相反数,按照整式加法法则进行运算。

3.乘法法则:按乘法分配律展开,并合并同类项。

整式运算法则公式

整式运算法则公式

整式运算法则公式一、整式的加法和减法。

1. 同类项。

- 定义:所含字母相同,并且相同字母的指数也相同的项叫做同类项。

几个常数项也是同类项。

例如,3x^2y与-5x^2y是同类项,4和-7是同类项。

- 合并同类项法则:同类项的系数相加,所得的结果作为系数,字母和指数不变。

即ax + bx=(a + b)x。

例如,3x^2y-5x^2y=(3 - 5)x^2y=-2x^2y。

2. 整式的加减。

- 运算法则:几个整式相加减,如果有括号就先去括号,然后再合并同类项。

- 去括号法则:- 如果括号前面是“+”号,去括号时括号里面各项不变号。

例如,a+(b - c)=a + b - c。

- 如果括号前面是“-”号,去括号时括号里面各项都变号。

例如,a-(b -c)=a - b + c。

二、整式的乘法。

1. 同底数幂的乘法。

- 法则:同底数幂相乘,底数不变,指数相加。

即a^m· a^n=a^m + n(m,n 都是正整数)。

例如,2^3×2^4=2^3 + 4=2^7。

2. 幂的乘方。

- 法则:幂的乘方,底数不变,指数相乘。

即(a^m)^n=a^mn(m,n都是正整数)。

例如,(3^2)^3=3^2×3=3^6。

3. 积的乘方。

- 法则:积的乘方等于把积的每一个因式分别乘方,再把所得的幂相乘。

即(ab)^n=a^nb^n(n是正整数)。

例如,(2x)^3=2^3× x^3=8x^3。

4. 单项式与单项式相乘。

- 法则:把它们的系数、同底数幂分别相乘,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式。

例如,2x^2y·3xy^2=(2×3)(x^2· x)(y· y^2) = 6x^3y^3。

5. 单项式与多项式相乘。

- 法则:就是用单项式去乘多项式的每一项,再把所得的积相加。

即m(a + b + c)=ma+mb + mc。

整式的运算法则

整式的运算法则

整式的运算法则整式是由数字及其系数和字母及其指数通过加减乘除等运算符号连接而成的代数式。

在代数运算中,整式的运算法则是非常重要的,它包括了加法、减法、乘法和除法四种基本运算法则。

本文将分别介绍这四种运算法则,并通过例题进行详细说明。

一、加法法则加法法则是指将同类项相加时,保持其字母部分不变,将其系数相加即可。

例如,对于整式3x^2+5x^2,将其同类项3x^2和5x^2的系数相加,得到8x^2。

二、减法法则减法法则与加法法则相似,也是将同类项相减时,保持其字母部分不变,将其系数相减即可。

例如,对于整式7x^3-4x^3,将其同类项7x^3和4x^3的系数相减,得到3x^3。

三、乘法法则乘法法则是指将整式相乘时,按照分配律和乘法交换律进行计算。

例如,对于整式2x(3x+4),首先将2x分别乘以3x和4,得到6x^2+8x。

四、除法法则除法法则是指将整式相除时,首先进行除数的分解,然后利用乘法的逆运算进行计算。

例如,对于整式6x^2÷2x,首先将6x^2分解为2x*3x,然后进行约分,得到3x。

以上就是整式的四种基本运算法则,下面通过例题进行详细说明。

例题1:计算整式的和已知整式3x^2+5x^2+2x-4x,求其和。

解:根据加法法则,将同类项相加,得到8x^2-2x。

例题2:计算整式的差已知整式7x^3-4x^3-2x^2+5x^2,求其差。

解:根据减法法则,将同类项相减,得到3x^3+3x^2。

例题3:计算整式的积已知整式2x(3x+4),求其积。

解:根据乘法法则,将2x分别乘以3x和4,得到6x^2+8x。

例题4:计算整式的商已知整式6x^2÷2x,求其商。

解:根据除法法则,首先将6x^2分解为2x*3x,然后进行约分,得到3x。

通过以上例题的计算,我们可以看到整式的运算法则是非常简单的,只需要按照规则进行操作即可得到结果。

在代数运算中,整式的运算法则是非常基础的,也是后续学习更复杂代数式和方程的基础。

整式的运算知识点

整式的运算知识点

整式的运算知识点整式是数学中的一个重要概念,是指由常数、变量及它们的乘积和幂次构成的代数式。

在代数运算中,我们常常需要对整式进行加减乘除的运算。

下面将分别介绍整式运算中的加法、减法、乘法和除法知识点。

一、加法运算在整式的加法运算中,我们对同类项进行合并。

所谓同类项,指的是具有相同的字母部分和相同的指数部分的项。

例如,对于整式3x² + 2xy + 5x² - 4xy,我们可以将其中的同类项合并,得到3x² + 2xy + 5x² - 4xy = 8x² - 2xy。

二、减法运算整式的减法运算与加法运算类似,仍然需要对同类项进行合并。

例如,对于整式3x² + 2xy - 5x² + 4xy,我们可以将其中的同类项合并,得到3x² + 2xy - 5x² + 4xy = -2x² + 6xy。

三、乘法运算整式的乘法运算是将一个整式与另一个整式相乘,需要运用分配律和同底数幂相乘的法则。

例如,对于整式(2x + 3)(4x - 5),我们可以使用分配律展开式子,得到8x² - 10x + 12x - 15 = 8x² + 2x - 15。

四、除法运算整式的除法运算需要使用长除法的方法进行。

例如,对于整式12x³ + 6x² - 4x + 8除以3x + 2,我们可以按照长除法的步骤进行计算:先将被除式按照指数从高到低的顺序排列:12x³ + 6x² - 4x + 8。

再将除式按照指数从高到低的顺序排列:3x。

将被除式的第一项与除式的第一项相除,得到4x²。

将4x²与除式相乘,得到12x³ + 8x²。

将被除式减去12x³ + 8x²,得到-2x² - 4x + 8。

重复以上步骤,直到被除式的所有项都被除尽或次数不够减为止。

整式的加减与乘法运算法则

整式的加减与乘法运算法则

整式的加减与乘法运算法则整式是指只包含整数、变量和乘幂的代数表达式。

在代数学中,整式的加减与乘法运算是非常基础的操作。

本文将介绍整式加减与乘法运算法则,以便帮助读者更好地理解整式的运算方法。

一、整式的加法运算法则整式的加法运算基本法则是对应项相加。

根据这个法则,我们可以将两个整式相加或多个整式相加时,将同类项对齐进行运算。

例如:3x² + 2x + 1+ 2x² - 3x + 4----------------------5x² - x + 5在上述例子中,我们对应相加了每一项的系数。

同类项是具有相同变量的幂的项,比如x²和x²,x和x。

通过对应项相加,我们可以得到最终的运算结果。

二、整式的减法运算法则整式的减法运算法则和加法类似,也是对应项相减。

所以,当我们进行整式的减法运算时,可以将减法转化为加法,然后按照加法运算法则进行运算。

例如:3x² + 2x + 1- (2x² - 3x + 4)----------------------3x² + 2x + 1 - 2x² + 3x - 4= x² + 5x - 3在上述例子中,我们将减法转化为加法,并且在括号中的整式每一项都要取负号。

然后,我们根据加法运算法则进行运算,最终得到了运算结果。

三、整式的乘法运算法则整式的乘法运算法则是将每一个乘数的每一项与另一个乘数的每一项进行相乘,并将所得项相加。

例如:(2x + 3)(x - 1)= 2x * x + 2x * (-1) + 3 * x + 3 * (-1)= 2x² - 2x + 3x - 3= 2x² + x - 3在上述例子中,我们将每个乘数的每一项相乘,并将所得项相加。

通过这个运算法则,我们可以得到乘法的结果。

综上所述,整式的加减与乘法运算法则是代数学中的基础运算法则。

整式的加减运算及简化法则

整式的加减运算及简化法则

整式的加减运算及简化法则整式是由字母、数字和运算符号组成的代数表达式,其中运算符号主要包括加号和减号。

整式的加减运算是指对整式进行加法和减法运算,而简化法则是指将整式进行合并和化简的方法。

本文将重点介绍整式的加减运算和简化法则,以帮助读者更好地理解和应用整式。

一、整式的加减运算整式的加减运算满足以下两个基本法则:1. 加法的交换律和结合律加法的交换律表示两个或多个整式进行加法运算时,可以改变它们的顺序而不改变结果。

例如,对于整式a、b、c,有a+b+c=c+b+a。

加法的结合律表示三个或多个整式进行加法运算时,可以改变它们的分组方式而不改变结果。

例如,对于整式a、b、c,有(a+b)+c=a+(b+c)。

2. 减法的运算法则减法可以看作是加法的逆运算,因此减法的运算法则可以通过加法的法则进行推导。

对于整式a和b,a-b可以转化为a+(-b),即将减号变为加号,并在b前面加上负号。

因此,减法运算可以通过加法来实现。

二、整式的简化法则整式的简化是指通过合并同类项和化简合并后的项来简化整式的过程。

下面是整式简化的几条基本法则:1. 合并同类项合并同类项是指将具有相同字母部分的项合并成一个项,其系数为相同项的系数相加。

例如,对于整式a+b+c+a-b,可以将其中的同类项a合并,并将系数相加,得到2a+b+c-b,进一步简化为2a+c。

2. 乘法的分配律乘法的分配律是指一个数与两个或多个数的和相乘时,可以分别与其中的每个数相乘,然后将乘积相加得到最终结果。

例如,对于整式a(b+c),可以分别将a与b和a与c相乘,然后将乘积相加,得到ab+ac。

3. 减法的简化减法的简化可以通过加法的简化法则来实现。

对于整式a-b,可以将减号变为加号,然后将b前面加上负号,即a+(-b)。

4. 去括号去括号是指将整式中的括号去掉,并根据运算法则进行合并和化简。

例如,对于整式2(a+b),可以先去掉括号,得到2a+2b,然后根据合并同类项的法则进行简化。

整式运算笔记知识点总结

整式运算笔记知识点总结

整式运算笔记知识点总结一、整式的基本概念1. 整式的定义整式是由常数和变量按照代数运算法则所组成的式子,包括单项式、多项式和零项式。

例如,3x² + 2xy - 5、a²b + 4ab - 7ab²等都是整式。

2. 单项式和多项式单项式是由常数与变量的乘积所构成的代数式,例如3x²、-4ab、5cd等都是单项式。

而多项式是由多个单项式经过加减运算所得的代数式,例如3x² + 2xy - 5、a²b + 4ab - 7ab²等都是多项式。

3. 同类项同类项是指具有相同字母及其指数的代数式,可以通过合并同类项简化整式的表示形式。

例如,3x²和-5x²就是同类项,可以合并为-2x²。

4. 零项式零项式是不含有任何非零项的多项式,也称为零多项式,通常用0来表示。

5. 整式的次数整式的次数是指整式中变量的最高次幂,如3x² + 2xy - 5的次数是2,a²b + 4ab - 7ab²的次数是3。

二、整式运算的基本法则1. 加法和减法整式的加法和减法遵循交换律和结合律,可以对同类项进行合并,最终得到一个简化的整式。

例如:3x² + 2xy - 5 + 4x² - 3xy + 7 = 7x² - xy + 22. 乘法整式的乘法遵循分配律和结合律,可以通过展开式子,找到各项之间的关系,然后合并同类项。

例如:(3x + 2)(4x - 5) = 12x² - 15x + 8x - 10 = 12x² - 7x - 103. 除法整式的除法通常通过因式分解或长除法来进行,目的是将整式分解成乘法的形式,进而进行简化或化简。

例如:(12x² - 7x - 10) ÷ (3x + 2) = 4x - 5三、整式运算的应用整式运算在代数学中有着广泛的应用,尤其是在解决代数方程、不等式、函数等问题时起着至关重要的作用。

考点一整式的运算

考点一整式的运算

考点一、整式的运算法则整式的加减法:(1)去括号;(2)合并同类项。

整式的乘法:),(都是正整数n m a a a n m n m +=∙ ),(都是正整数)(n m a a m n n m = )()(都是正整数n b a ab n n n = 22))((b a b a b a -=-+2222)(b ab a b a ++=+ 2222)(b ab a b a +-=-整式的除法:)0,,(≠=÷-a n m a a a n m n m 都是正整数注意:(1)单项式乘单项式的结果仍然是 。

(2)单项式与多项式相乘,结果是一个 ,其项数与因式中多项式的项数 。

(3)计算时要注意符号问题,多项式的每一项都包括它前面的符号,同时还要注意单项式的符号。

(4)多项式与多项式相乘的展开式中,有同类项的要合并同类项。

(5)公式中的字母可以表示数,也可以表示单项式或多项式。

(6)),0(1);0(10为正整数p a aa a a p p ≠=≠=- (7)多项式除以单项式,先把这个多项式的每一项除以这个单项式,再把所得的商 ,单项式除以多项式是不能这么计算的。

基础1. 判断下列计算是否正确,并说明理由或写出正确答案:(1)a • a 2=a 2; (2)a+a 2=a 3;(3)a 3• a 3=a 9(4)a 3+a 3=a 6 2. ⋅2x =6x ;⋅-)(2y =5y ;93×95=; a 7 • a 8= 35×27= x 2 • x 3 • x 4= 3.计算下列各式:(1)_______25=⋅x x (2)_______66=⋅x x (3)_______66=+x x(4)_______53=⋅⋅-x x x (5)_______)()(3=-⋅-x x (6)_______3423=⋅+⋅x x x x(7)_____)(33=x (8)_____)(52=-x (9)_____)(532=⋅a a(10)________)()(4233=⋅-m m (11)_____)(32=n x4.若a2n+1·ax =a3 那么x 等于( )A.n +2B.2n +2C.4-nD.2-2n巩固1.计算;1、34a a a ⋅⋅2、()()()53222---3、231010100⨯⨯4、()()()352a a a -⋅-⋅--5、254242423a a a a a a a ⋅-⋅⋅+⋅6、()()m m 2224⨯⨯7、xn ·x-xn+1 8、x6·(-x)5-(-x)8 ·(-x)39、-a3·(-a)4·(-a)5 10、-(-10) 2n ×100×(-10) 2n -111、(x -2)(x+3) 12.(3x+2)(x+5)2.计算题:(1)3324)101).(2.(21x xy y x -- (2))7)(5()1(2+-+-a a a a(3)22)5()5(y x y x +-- (4))(]12)1)(1[(22ab b a ab ab -÷+--+3.化简求值:(1) ()()()()3416x x x x ++--+,其中1x =(2)x y x x y x y x y x 2)]2(2)2)(2()2[(2÷--+-+- 其中 6,5-==y x提高1.填空(1)(x-y)2n+1·(x-y)2n+1=(y-x)2·(x-y)( )= (x-y)n+4·(x-y)( )。

整式的约分与通分运算法则

整式的约分与通分运算法则

整式的约分与通分运算法则整式是数学中的一个重要概念,指的是由整数、变量和运算符号所组成的代数式。

在计算整式时,我们经常会遇到需要进行约分与通分的运算。

本文将介绍整式的约分与通分运算法则。

一、整式的约分运算法则整式的约分指的是将其中的公因式约去,使整式的表达式更简洁、清晰。

在进行整式的约分运算时,需要注意以下几个法则:1. 提取公因式法则:当整式中的每一项都有公因式时,可以先提取出这个公因式,再进行约分。

例如: 6x^2+8xy = 2x(3x+4y)2. 拆分因式法则:当整式中的一个或多个项可以拆分为两个或多个部分时,可以按照公因式进行拆分,再进行约分。

例如: 2x^2+4xy = 2x(x+2y)3. 对整式中的每一项进行约分:当整式的各项中都有公因式时,可以对每一项进行约分,最终得到整式的最简形式。

例如: 4x^2y+6xy^2 = 2xy(2x+3y)二、整式的通分运算法则整式的通分指的是将多个整式化为相同或等价的分子,以便进行运算。

在进行整式的通分运算时,需要注意以下几个法则:1. 求最小公倍数法则:当整式的分母不同时,需要求出这些分母的最小公倍数,然后将每个整式中的各项乘以分子的对应倍数,从而将整式转化为通分的形式。

例如: 1/3x + 1/4y = 4/12x + 3/12y2. 乘法法则:当整式的分母为不同的多项式时,可以将整式转化为乘法的形式,然后将每个整式的分子乘以对应整式分母的缺项,从而进行通分运算。

例如: (3/x) + (5/y) = (3y+5x)/(xy)3. 结合法则:当整式中的某项分母可以因式分解时,可以先对该项进行因式分解,然后再进行通分运算。

例如: 1/(x+2) + 1/(x-3) = (x-3+x+2)/(x^2-x-6)通过上述的约分与通分运算法则,我们可以简化整式的表达形式,使其更加简洁、易于理解。

在实际的数学运算中,掌握这些法则对于解题和计算的准确性和高效性至关重要。

初中数学知识归纳整式的加减乘除运算法则

初中数学知识归纳整式的加减乘除运算法则

初中数学知识归纳整式的加减乘除运算法则整式是由数和字母的乘积相加或相减而得到的代数式,是数学中常见的一种表达形式。

在初中数学中,我们学习了整式的加减乘除运算法则,本文将对初中数学中整式运算的基本法则进行归纳整理。

一、整式的加法法则整式相加的法则可以简单地概括为:同类项相加,不同类项不能相加。

同类项是指具有相同的字母部分和相同的指数部分,不同类项则是指具有不同的字母部分或不同的指数部分。

在进行整式的加法运算时,我们需要先合并同类项,然后将合并后的同类项相加。

例如:2x + 3x = 5x4a^2b - 2a^2b = 2a^2b二、整式的减法法则整式相减的法则与整式相加的法则相似,基本步骤也是先合并同类项,然后将合并后的同类项相减。

例如:2x - 3x = -x4a^2b - 2a^2b = 2a^2b需要注意的是,减法可以通过加法来实现,即将减法转化为加法运算。

例如,a - b可以改写为a + (-b)来进行运算。

三、整式的乘法法则整式相乘的法则较为复杂,需要将每一个项进行两两相乘,并按指数升序排列。

例如:(2x + 3)(4x - 5) = 2x * 4x + 2x * (-5) + 3 * 4x + 3 * (-5)= 8x^2 - 10x + 12x - 15= 8x^2 + 2x - 15四、整式的除法法则整式相除的法则需要利用因式分解和约分的方法进行。

例如:(6x^3 + 9x^2 - 12x) ÷ 3x = (3x)(2x^2 + 3x - 4) ÷ 3x= 2x^2 + 3x - 4需要注意的是,被除数应能够整除除数,否则除法就无法进行。

综上所述,初中数学中整式的加减乘除运算法则可以归纳整理为:同类项相加,不同类项不能相加;同类项相减,不同类项不能相减;整式相乘,将每一个项进行两两相乘,并按指数升序排列;整式相除,利用因式分解和约分的方法进行。

通过掌握这些法则,我们能够更加熟练地对整式进行操作,解决实际问题,为进一步学习代数提供坚实的基础。

数学中的整式运算知识点

数学中的整式运算知识点

数学中的整式运算知识点数学中的整式运算是指对整式进行各种加减乘除的运算。

整式是由常数、变量及其指数和系数之和组成的表达式,其中变量都是以整数指数出现的。

一、整式的加法和减法整式的加法和减法遵循相同的规律:将相同的项按照系数相加或相减,并保留同类项的系数。

例如,考虑以下两个整式的加法和减法:整式A:3x^3 + 2x^2 - 5x + 1整式B:-2x^3 + 4x^2 + 3x - 2将两个整式对应的同类项相加或相减得到结果:A +B = (3x^3 + (-2x^3)) + (2x^2 + 4x^2) + (-5x + 3x) + (1 + (-2))= x^3 + 6x^2 - 2x - 1A -B = (3x^3 - (-2x^3)) + (2x^2 - 4x^2) + (-5x - 3x) + (1 - (-2))= 5x^3 - 2x^2 - 2x + 3二、整式的乘法整式的乘法遵循分配律和乘法法则,即将每个项相乘,再将同类项相加。

例如,考虑以下两个整式的乘法:整式A:(2x + 1)(3x - 4)整式B:(x^2 - 3)(x + 2)将每个项相乘并将同类项相加得到结果:A = 2x * 3x + 2x * (-4) + 1 * 3x + 1 * (-4)= 6x^2 - 8x + 3x - 4= 6x^2 - 5x - 4B = x^2 * x + x^2 * 2 + (-3) * x + (-3) * 2= x^3 + 2x^2 - 3x - 6三、整式的除法整式的除法是将一个整式除以另一个整式,得到商和余式。

但需要注意的是,整式的除法不一定能得到整式的结果。

例如,考虑以下整式的除法:整式A:4x^3 - 9x^2 + 2x - 3整式B:2x - 1计算得到商和余式:2x^2 - 5__________________2x - 1 | 4x^3 - 9x^2 + 2x - 3- (4x^3 - 2x^2)__________________-7x^2 + 2x - 3- (-7x^2 + 7x)__________________-5x - 3通过除法运算可得到商为2x^2 - 5,余式为-5x - 3。

教学内容整式的定义整式的加减法则整式的运算规则

教学内容整式的定义整式的加减法则整式的运算规则

教学内容整式的定义整式的加减法则整式的运算规则教学内容:整式的定义、整式的加减法则、整式的运算规则整式是数学中的一种表达式形式,它由常数与变量的乘积、幂、和差构成。

它是整数和有限项的代数和,用于描述数学问题中的多项式关系。

在本文中,我们将探讨整式的定义、整式的加减法则以及整式的运算规则。

定义:整式是由代数式的常数项、整数项与各种项组成的多项式。

代数式是由常数项与变量的乘积、幂、和差所构成的表达式。

整式的形式如下:F(x) = aₙxⁿ + aₙ₋₁xⁿ⁻¹ + ... + a₁x + a₀其中,aₙ, aₙ₋₁, ..., a₁, a₀是常数项,x 是变量,n 是非负整数。

整式的加减法则:1. 类似项的合并:在进行整式的加减运算时,首先要将具有相同变量幂次的项进行合并。

具体步骤如下:a₁xⁿ + b₁xⁿ = (a₁ + b₁)xⁿ例如,3x² + 2x² = (3 + 2)x² = 5x²2. 常数项的合并:合并具有相同变量幂次的项后,再对常数项进行合并。

例如,2x³ + 5x² - 3x³ = (2 - 3)x³ + 5x² = -x³ + 5x²3. 零多项式的概念:零多项式是指所有系数均为零的多项式,表示为0。

整式的运算规则:1. 加法运算:将两个整式的各项对应相加,合并具有相同变量幂次的项,并对常数项进行合并。

例如,(3x² - 2x + 1) + (2x² + 3x - 5) = 3x² + 2x² - 2x + 3x + 1 - 5 = 5x²+ x - 42. 减法运算:将被减整式的各项取相反数,然后按照加法运算的规则进行计算。

例如,(3x² - 2x + 1) - (2x² + 3x - 5) = 3x² - 2x + 1 - 2x² - 3x + 5 = (3 -2)x² + (-2 - 3)x + (1 + 5) = x² - 5x + 63. 乘法运算:使用分配律,将每一项乘以另一个整式的每一项,并合并同类项。

整式运算知识点总结

整式运算知识点总结

整式运算知识点总结一、整式的基本概念1.整数:整数是自然数、0、负整数的总称,它们可以进行加、减、乘、除、乘方、开方等数学运算,是整式的基本元素。

2.字母:字母通常用来代表数,它可以代表任意一个数,字母在整式中可以表示一个未知数或者变量。

3.整式:由整数、字母和运算符(加减乘除)组成的代数表达式称为整式。

例如,3x^2+2xy-5是一个整式。

4.项:整式中的每一个部分称为项,项由系数和字母的乘积组成。

例如,在3x^2+2xy-5中,3x^2、2xy、-5都是整式的项。

5.同类项:整式中的项如果具有相同的字母部分,就称为同类项。

同类项可以相加或者相减。

例如,在3x^2+2xy-5中,3x^2和2xy是同类项。

6.系数:整式中字母的系数是指字母的前面的数字,它表示字母的数量。

例如,在3x^2+2xy-5中,3、2、-5分别是x^2、xy、1的系数。

二、整式的基本运算法则1.整式的加法和减法运算整式的加法和减法运算就是将同类项相加或者相减。

首先将整式中的同类项合并,然后将系数相加或者相减,不同类项保持不变。

例如:3x^2+2xy-5 + 2x^2-xy+3 = 5x^2+xy-2在这个例子中,首先将同类项3x^2和2x^2合并得到5x^2,然后将2xy和-xy合并得到xy,最后将-5和3相加得到-2。

2.整式的乘法运算整式的乘法运算是分配率的运用,将一个整式中的每一项分别乘以另一个整式中的每一项,然后将所得乘积相加。

例如:(3x+2)(2x-1) = 6x^2-3x+4x-2 = 6x^2+x-2在这个例子中,首先将(3x+2)分别乘以2x和-1,然后将所得乘积相加得到6x^2-3x+4x-2。

3.整式的除法运算整式的除法运算就是求商和余数,将被除式除以除式,然后将所得商和余数相加得到原式。

例如:(6x^2-3x+4x-2) ÷ (3x+2) = 2x-1在这个例子中,首先将6x^2-3x+4x-2除以3x+2得到2x-1。

整式运算法则

整式运算法则

《整式运算法则》
同学们,咱们今天来一起学习整式运算法则。

啥是整式呢?简单说,就是由数字和字母通过加、减、乘这些运算组成的式子。

先来说说整式的加法。

比如说,咱们有两个整式,一个是3x,另一个是2x,那把它们加起来就是3x + 2x = 5x。

就好像你有 3 个苹果,我有2 个苹果,加在一起就是5 个苹果。

再说说整式的减法。

比如5y -2y ,那就是3y 。

这就好比你有 5 块糖,给了别人2 块,自己就剩下 3 块。

然后是乘法。

假如有个整式2x 乘以3,那结果就是6x 。

这就像每个盒子里有2 个球,有 3 个盒子,那一共就有 6 个球。

给大家讲个小故事。

小明在做整式运算的作业,遇到了一道题:(2a + 3b)×(4a -5b) 。

他一开始有点懵,后来他想啊,先把第一个括号里的2a 分别乘以第二个括号里的4a 和-5b ,再把3b 分别乘以4a 和-5b ,然后加起来。

经过认真计算,他算出了正确答案,可高兴啦!
咱们再看个例子,(x + 2)² 。

这就等于x² + 4x + 4 。

同学们,整式运算法则其实不难,只要咱们多练习,多思考,就能掌握好。

比如说,计算3(x + 5) - 2(x - 1) 。

咱们先把括号打开,3x + 15 - 2x + 2 ,然后合并同类项,就是x + 17 。

大家在做整式运算的时候,一定要认真仔细,别马虎。

相信通过不断地学习和练习,大家都能熟练运用整式运算法则,解决更多的数学问题!。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

整式的运算法则整式的加减法:(1)去括号;(2)合并同类项。

整式的乘法:),(都是正整数n m aa a nm nm+=• 整式的除法:)0,,(≠=÷-a n m aa a nm n m 都是正整数【注意】(1)单项式乘单项式的结果仍然是单项式。

(2)单项式与多项式相乘,结果是一个多项式,其项数与因式中多项式的项数 相同。

(3)计算时要注意符号问题,多项式的每一项都包括它前面的符号,同时还要 注意单项式的符号。

(4)多项式与多项式相乘的展开式中,有同类项的要合并同类项。

(5)公式中的字母可以表示数,也可以表示单项式或多项式。

(6)),0(1);0(10为正整数p a a a a a p p ≠=≠=-(7)多项式除以单项式,先把这个多项式的每一项除以这个单项式,再把所得 的商相加,单项式除以多项式是不能这么计算的。

一、选择(每题2分,共24分) 1.下列计算正确的是( ).A .2x 2·3x 3=6x 3B .2x 2+3x 3=5x 5C .(-3x 2)·(-3x 2)=9x 5D .54x n ·25x m =12x m+n2.一个多项式加上3y 2-2y -5得到多项式5y 3-4y -6,则原来的多项式为( ). A .5y 3+3y 2+2y -1 B .5y 3-3y 2-2y -6 C .5y 3+3y 2-2y -1 D .5y 3-3y 2-2y -13.下列运算正确的是().A.a2·a3=a5B.(a2)3=a5C.a6÷a2=a3D.a6-a2=a4 4.下列运算中正确的是().A.12a+13a=15a B.3a2+2a3=5a5C.3x2y+4yx2=7 D.-mn+mn=0二、填空(每题2分,共28分)6.-xy2的系数是______,次数是_______.8.x_______=x n+1;(m+n)(______)=n2-m2;(a2)3·(a3)2=______.9.月球距离地球约为×105千米,一架飞机速度为8×102千米/时, 若坐飞机飞行这么远的距离需_________.10.a2+b2+________=(a+b)2a2+b2+_______=(a-b)2(a-b)2+______=(a+b)211.若x2-3x+a是完全平方式,则a=_______.12.多项式5x2-7x-3是____次_______项式.三、计算(每题3分,共24分)13.(2x2y-3xy2)-(6x2y-3xy2)14.(-32ax4y3)÷(-65ax2y2)·8a2y17.(x-2)(x+2)-(x+1)(x-3)18.(1-3y)(1+3y)(1+9y2)19.(ab+1)2-(ab-1)2四、运用乘法公式简便计算(每题2分,共4分)20.(998)221.197×203五、先化简,再求值(每题4分,共8分)22.(x+4)(x-2)(x-4),其中x=-1.23.[(xy+2)(xy -2)-2x 2y 2+4],其中x=10,y=-125. 六、解答题(每题4分,共12分) 24.已知2x+5y=3,求4x ·32y 的值.25.已知a 2+2a+b 2-4b+5=0,求a ,b 的值.幂的运算一、同底数幂的乘法(重点)1.运算法则:同底数幂相乘,底数不变,指数相加。

用式子表示为: n m n ma a a+=⋅(m 、n 是正整数)2、同底数幂的乘法可推广到三个或三个以上的同底数幂相乘,即 注意点:(1) 同底数幂的乘法中,首先要找出相同的底数,运算时,底数不变,直接把指数相加,所得的和作为积的指数.(2) 在进行同底数幂的乘法运算时,如果底数不同,先设法将其转化为相同的底数,再按法则进行计算.【典型例题】1.计算(-2)2007+(-2)2008的结果是( )A .22015B .22007C .-2D .-22008 2.当a<0,n 为正整数时,(-a )5·(-a )2n 的值为( ) A .正数 B .负数 C .非正数 D .非负数3.(一题多解题)计算:(a -b )2m -1·(b -a )2m ·(a -b )2m+1,其中m 为正整数. 4.(一题多变题)(1)已知x m =3,x n =5,求x m+n . (2)一变:已知x m =3,x n =5,求x 2m+n ;(3)二变:已知x m =3,x n =15,求x n .二、同底数幂的除法(重点)1、同底数幂的除法同底数幂相除,底数不变,指数相减.公式表示为:()0,m n m n a a a a m n m n -÷=≠>、是正整数,且. 2、零指数幂的意义任何不等于0的数的0次幂都等于1.用公式表示为:()010a a =≠. 3、负整数指数幂的意义任何不等于0的数的-n(n 是正整数)次幂,等于这个数的n 次幂的倒数,用公式表示为()10,n n a a n a-=≠是正整数4、绝对值小于1的数的科学计数法对于一个小于1且大于0的正数,也可以表示成10n a ⨯的形式,其中110,a n ≤<是负整数.注意点:(1) 底数a 不能为0,若a 为0,则除数为0,除法就没有意义了; (2) ()0,a m n m n ≠>、是正整数,且是法则的一部分,不要漏掉.(3) 只要底数不为0,则任何数的零次方都等于1.【典型例题】 一、选择1.在下列运算中,正确的是( )A .a 2÷a=a 2B .(-a )6÷a 2=(-a )3=-a 3C .a 2÷a 2=a 2-2=0 D .(-a )3÷a 2=-a2.在下列运算中,错误的是( )A .a 2m ÷a m ÷a 3=a m -3 B .a m+n ÷b n =a mC .(-a 2)3÷(-a 3)2=-1D .a m+2÷a 3=a m-1二、填空题1.(-x 2)3÷(-x )3=_____. 2.[(y 2)n ] 3÷[(y 3)n ] 2=______. 3.104÷03÷102=_______. 4.(-)0=_____. 三、解答1.(一题多解题)计算:(a -b )6÷(b -a )3. 2.(巧题妙解题)计算:2-1+2-2+2-3+…+2-2008.3、已知a m =6,a n =2,求a 2m-3n 的值.4.(科外交叉题)某种植物的花粉的直径约为×10-5米,用小数把它表示出来.三、幂的乘方(重点)幂的乘方,底数不变,指数相乘. 公式表示为:()()nm mn a a m n =、都是正整数.注意点:(1) 幂的乘方的底数是指幂的底数,而不是指乘方的底数.(2) 指数相乘是指幂的指数与乘方的指数相乘,一定要注意与同底数幂相乘中“指数相加”区分开.【典型例题】1.计算(-a 2)5+(-a 5)2的结果是( )A .0B .2a 10C .-2a 10D .2a 7 2.下列各式成立的是( )πA .(a 3)x =(a x )3B .(a n )3=a n+3C .(a+b )3=a 2+b 2D .(-a )m =-a m 3.如果(9n )2=312,则n 的值是( )A .4B .3C .2D .1 4.已知x 2+3x+5的值为7,那么3x 2+9x -2的值是( ) A .0 B .2 C .4 D .66.计算:(1) (2) 补充:同底数幂的乘法与幂的乘方性质比较:四、积的乘方运算法则:两底数积的乘方等于各自的乘方之积。

用式子表示为:()n n nb a b a ⋅=⋅(n 是正整数)扩展p n m p n m a a a a -+=÷⋅()np mp pn mb a b a= (m 、n 、p是正整数)注意点:(1) 运用积的乘方法则时,数字系数的乘方,应根据乘方的意义计算出结果;(2) 运用积的乘方法则时,应把每一个因式都分别乘方,不要遗漏其233342)(a a a a a +⋅+⋅22442)()(2a a a ⋅+⋅中任何一个因式.【典型例题】1.化简(a 2m ·a n+1)2·(-2a 2)3所得的结果为____________________________。

2.( )5=(8×8×8×8×8)(a ·a ·a ·a ·a)3.如果a≠b ,且(a p )3·b p+q =a 9b 5 成立,则p=______________,q=__________________。

4.若,则m+n 的值为( )A .1B .2C .3D .-35.的结果等于( ) A . B . C . D .7.如果单项式与是同类项,那么这两个单项式的积进( )A .B .C .D .8.(科内交叉题)已知(x -y )·(x -y )3·(x -y )m =(x -y )12,求(4m 2+2m+1)-2(2m 2-m -5)的值.课后作业一.选择题(共13小题)1.碳纳米管的硬度与金刚石相当,却拥有良好的柔韧性,可以拉伸,我国某物理所研究组已研制出直径为纳米的碳纳米管,1纳米=米,则纳米用科学记数法表示为( ) A .×10﹣9米 B .5×10﹣8米C .5×10﹣9米D .5×10﹣10米2.﹣×105表示的原数为( ) A .﹣204000 B .﹣C .﹣D .﹣20400()()b a b a b a m n n m 5321221=-++()23220032232312⎪⎭⎫ ⎝⎛-•-•⎪⎭⎫ ⎝⎛--y x y x y x 10103yx 10103-y x 10109y x 10109-y x b a 243--yx ba +331y x 46y x 23-y x 2338-y x 46-3.(2007?十堰)下列运算正确的是()A.a6?a3=a18B.(a3)2a2=a5C.a6÷a3=a2D.a3+a3=2a34.(2007?眉山)下列计算错误的是()A.(﹣2x)3=﹣2x3B.﹣a2?a=﹣a3C.(﹣x)9÷(﹣x)3=x6D.(﹣2a3)2=4a65.下列计算中,正确的是()A.x3?x4=x12B.a6÷a2=a3C.(a2)3=a5D.(﹣ab)3=﹣a3b36.(2004?三明)下列运算正确的是()A.x2?x3=x6B.(﹣x2)3=x6C.(x﹣1)0=1D.6x5÷2x=3x47.若(2x+1)0=1则()A.x≥﹣B.x≠﹣C.x≤﹣D.x≠8.在①(﹣1)0=1;②(﹣1)3=﹣1;③3a﹣2=;④(﹣x)5÷(﹣x)3=﹣x2中,正确的式子有()A.①②B.②③C.①②③D.①②③④9.若a=(﹣)﹣2,b=(﹣1)﹣1,c=(﹣)0,则a,b,c的大小关系是()A.a>b>c B.a>c>bC.c>a>b D.c>b>a10.通讯卫星的高度是×107米,电磁波在空中的传播速度是3×108米/秒,从地面发射的电磁波被通讯卫星接受并同时反射给地面需要()A.×10﹣1秒B.×10﹣1秒C.×10﹣2秒D.×10﹣1秒11.下列计算,结果正确的个数()(1)()﹣1=﹣3;(2)2﹣3=﹣8;(3)(﹣)﹣2=;(4)(π﹣)0=1 A.1个B.2个C.3个D.4个12.下列算式,计算正确的有①10﹣3=;②()0=1;③3a﹣2=;④(﹣x)3÷(﹣x)5=﹣x﹣2.A.1个B.2个C.3个D.4个13.计算:的结果是()A.B.C.D.二.填空题14.(2005?常州)=_________;=_________.15.已知(a﹣3)a+2=1,则整数a=_________.16.如果(x﹣1)x+4=1成立,那么满足它的所有整数x的值是_________.17.下雨时,常常是“先见闪电,后听雷鸣”,这是由于光速比声速快的缘故.已知光在空气中的传播速度约为3×108米/秒,而声音在空气中的传播速度约为×102米/秒,则光速是声速的_________倍.(结果保留两个有效数字)18.(2011?连云港)在日本核电站事故期间,我国某监测点监测到极微量的人工放射性核素碘﹣131,其浓度为0963贝克/立方米.数据“ 0963”用科学记数法可表示为_________.19.若3x+2=36,则=_________.20.已知a3n=4,则a6n=_________.21.多项式﹣5(ab)2+ab+1是_________次_________项式.三.解答填空题22.计算:(1)=_________;(2)(4ab2)2×(﹣a2b)3=_________.23.已知:2x=4y+1,27y=3x﹣1,则x﹣y=_________.24.(2010?西宁)计算:=_________.25.计算:(1)(﹣)2(﹣4x3)=_________;(2)(﹣104)(5×105)(3×102)=_________;26.计算下列各题:(用简便方法计算)(1)﹣102n×100×(﹣10)2n﹣1=_________;(2)[(﹣a)(﹣b)2?a2b3c]2=_________;(3)(x3)2÷x2÷x+x3÷(﹣x)2?(﹣x2)=_________;(4)=_________.27.把下式化成(a﹣b)p的形式:15(a﹣b)3[﹣6(a﹣b)p+5](b﹣a)2÷45(b﹣a)5= _________.28.如果x m=5,x n=25,则x5m﹣2n的值为_________.29.已知:a n=2,a m=3,a k=4,则a2n+m﹣2k的值为_________.30.比较2100与375的大小2100_________375.因式分解教学目标:1.知识与技能:掌握运用提公因式法、公式法分解因式,培养学生应用因式分解解决问题的能力.2.过程与方法:经历探索因式分解方法的过程,培养学生研讨问题的方法,通过猜测、推理、验证、归纳等步骤,得出因式分解的方法.3.情感态度与价值观:通过因式分解的学习,使学生体会数学美,体会成功的自信和团结合作精神,并体会整体数学思想和转化的数学思想.教学重、难点:用提公因式法和公式法分解因式.知识详解知识点1 因式分解的定义把一个多项式化成几个整式的积的形式,这种变形叫做把这个多项式因式分解,也叫做把这个多项式分解因式.【说明】 (1)因式分解与整式乘法是相反方向的变形.例如:(2)因式分解是恒等变形,因此可以用整式乘法来检验.怎样把一个多项式分解因式?知识点2 提公因式法多项式m a+mb+mc中的各项都有一个公共的因式m,我们把因式m叫做这个多项式的公因式.m a+mb+mc=m(a+b+c)就是把m a+mb+mc分解成两个因式乘积的形式,其中一个因式是各项的公因式m,另一个因式(a+b+c)是m a+mb+mc除以m所得的商,像这种分解因式的方法叫做提公因式法.例如:x2-x=x(x-1),8a2b-4a b+2a=2a(4a b-2b+1).探究交流下列变形是否是因式分解?为什么?(1)3x2y-xy+y=y(3x2-x); (2)x2-2x+3=(x-1)2+2;(3)x2y2+2xy-1=(xy+1)(xy-1); (4)x n(x2-x+1)=x n+2-x n+1+x n.典例剖析例1 用提公因式法将下列各式因式分解.(1) -x3z+x4y; (2) 3x(a-b)+2y(b-a);分析:(1)题直接提取公因式分解即可,(2)题首先要适当的变形,再把b-a化成-(a-b),然后再提取公因式.小结运用提公因式法分解因式时,要注意下列问题:(1)因式分解的结果每个括号内如有同类项要合并,而且每个括号内不能再分解.(2)如果出现像(2)小题需统一时,首先统一,尽可能使统一的个数少。

相关文档
最新文档