函数与方程

合集下载

函数和方程

函数和方程

函数和方程
函数(function)表示每个输入值对应唯一输出值的一种对应关系。

方程(英文:equation)是表示两个数学式(如两个数、函数、量、运算)之间相等关系的一种等式
函数f中对应输入值的输出值x的标准符号为f(x).包含某个函数所有的输入值的集合被称作这个函数的定义域,包含所有的输出值的集合被称作值域.若先定义映射的概念,可以简单定义函数为,定义在非空数集之间的映射称为函数。

方程(equation)是指含有未知数的等式。

是表示两个数学式(如两个数、函数、量、运算)之间相等关系的一种等式,使等式成立的未知数的值称为“解”或“根”。

求方程的解的过程称为“解方程”。

通过方程求解可以免去逆向思考的不易,直接正向列出含有欲求解的量的等式即可。

方程具有多种形式,如一元一次方程、二元一次方程、一元二次方程等等,还可组成方程组求解多个未知数。

函数(function),最早由中国清朝数学家李善兰翻译,出于其著作《代数学》。

之所以这么翻译,他给出的原因是“凡此变数中函彼变数者,则此为彼之函数”,也即函数指一个量随着另一个量的变化而变化,或者说一个量中包含另一个量。

函数的定义通常分为传统定义和近代定义,函数的两个定义本质是相同的。

高考数学总复习第一讲:函数与方程

高考数学总复习第一讲:函数与方程

高考数学总复习第一讲:函数与方程函数描述了自然界中量的依存关系,反映了一个事物随着另一个事物变化而变化的关系和规律.函数思想的实质是剔除问题的非数学特征,用联系和变化的观点提出数学对象,抽象其数学特征,建立函数关系.在解决某些数字问题时,先设定一些未知数,然后把它们当作数,根据题设本身各量间的制约,列出等式,所设未知数沟通了变量之间的关系,这就是方程的思想.函数与方程是两个不同的概念,但它们之间有着密切的联系,一个函数假设有解析表达式,那么这个表达式就可看成是一个方程.一个二元方程,两个变量存在着对应关系,如果这个对应关系是函数,那么这个方程可以看成是一个函数,一个一元方程,它的两端可以分别看成函数,方程的解即为两个函数图象交点的横坐标,因此,许多有关方程的问题可以用函数的方法解决;反之,许多有关函数的问题那么可以用方程的方法解决.总之,在复习中要注意领悟蕴含在知识和解题过程中函数和方程的思想,用它来指导解题.在解题中,同时要注意从不同的角度去观察探索,寻求多种方法,从而得到最正确解题方案.一、例题分析例1.F(x)=xα-xβ在x∈(0,1)时函数值为正数,试比拟α,β的大小.分析:一般情况下,F〔x〕可以看成两个幂函数的差.函数值为正数,即f1(x)=xα的图象在x∈(0,1)上位于f2(x)=xβ的图象的上方,这时为了判断幂指数α,β的大小,就需要讨论α,β的值在〔1,+∞〕上,或是在〔0,1〕上,或是在〔0,1〕内的常数,于是F〔x〕成为两个同底数指数函数之差,由于指数函数y=a t(0<α<1)是减函数,又由于xα-xβ>0,所以得α<β.例2.0<a<1,试比拟的大小.分析:为比拟aα与(aα) α的大小,将它们看成指数相同的两个幂,由于幂函数在区间[0,+∞]上是增函数,因此只须比拟底数a与aα的大小,由于指数函数y=a x(0<a<1)为减函数,且1>a,所以a<aα,从而aα<(aα) α.比拟aα与(aα) α的大小,也可以将它们看成底数相同〔都是aα〕的两个幂,于是可以利用指数函数是减函数,由于1>a,得到aα<(aα) α.由于a<aα,函数y=a x(0<a<1)是减函数,因此aα>(aα) α.综上, .解以上两个例题的关键都在于适当地选取某一个函数,函数选得恰当,解决问题简单.例3.关于x的方程有实根,且根大于3,求实数a的范围.分析:先将原方程化简为a x=3,但要注意0<x<3且x≠1.现将a x看成以a为底的指数函数,考虑底数a为何值时,函数值为3.如图〔1〕,过〔3,3〕点的指数函数的底,现要求0<x<3时,a x=3,所以,又由于x≠1,在图〔1〕中,过〔1,3〕点的指数函数的底a=3,所以.假设将a x=3变形为,令,现研究指数函数a=3t,由0<x<1且x≠1,得,如图〔2〕,很容易得到:.通过本例,说明有些问题可借助函数来解决,函数选择得当,解决就便利.例4.函数f(x)是定义在实数集上的周期函数,且是偶函数,当x∈[2,3]时,f(x)=x,那么当x∈[-2,0]时,f(x)的解析式是〔〕.〔A〕f(x)=x+4 〔B〕f(x)=2-x〔C〕f(x)=3-|x+1| 〔D〕f(x)=3+|x+1|解法一、∵f(-2)=f(2)=2 f(-1)=f(3)=3,∴只有〔A〕、〔C〕可能正确.又∵f(0)=f(2)=2,∴〔A〕错,〔C〕对,选〔C〕.解法二、依题意,在区间[2,3]上,函数的图象是线段AB, ∵函数周期是2, ∴线段AB左移两个单位得[0,1]上的图象线段CD;再左移两个单位得[–2,1]上的图象线段EF .∵函数是偶函数, ∴把线段CD沿y轴翻折到左边,得[–1,0]上的图象线段FC.于是由直线的点斜式方程,得函数在[–2,0]上的解析式:即由于x∈[-2,-1]时,x+1≤0,x∈(-1,0)时,x+1>0, 所以y=3-|x+1|, x∈[-2,0].解法三、当x∈[-2,-1]时,x+4∈[2,3],∵函数周期是2,∴f(x+4)=f(x).而f(x+4)=x+4, ∴x∈[-2,-1]时,f(x)=x+4=3+(x+1).当x∈[-1,0]时,-x∈[0,1], 且-x+2∈[2,3].∵函数是偶函数,周期又是2,∴ ,于是在[–2,0]上, .由于x∈[-2,-1]时,x+1≤0,x∈(-1,0)时,x+1>0, 根据绝对值定义有x∈[-2,0]时,f(x)=3-|x+1|.此题应抓住“偶函数〞“周期性〞这两个概念的实质去解决问题.例5.y=log a(2-ax)在[0,1]上是x的减函数,那么a的取值范围是〔〕.〔A〕〔0,1〕〔B〕〔1,2〕〔C〕〔0,2〕〔D〕[2,+∞]分析:设t=2-ax,那么y=log a t, 因此,函数是上面这两个函数的复合函数,其增减性要考查这两个函数的单调性,另外,还要考虑零和负数无对数以及参数a对底数和真数的制约作用.解法一、由于a≠1,所以〔C〕是错误的.又a=2时,真数为2–2x,于是x≠1,这和矛盾,所以〔D〕是错的.当0<a<1时,t=2-ax是减函数,而y=log a t也是减函数, 故y=log a(2-ax)是x的增函数,所以〔A〕是错的.于是应选〔B〕.解法二、设t=2-ax,y=log a t 由于a>0,所以t=2-ax是x的减函数, 因此,只有当a>1,y=log a t是增函数时,y=log a(2-ax)在[0,1]上才是减函数;又x=1时,y=log a(2-a), 依题意,此时,函数有定义,故2–a>0 综上可知:1<a<2, 故应选〔B〕.例6. ,函数y=g(x)的图象与函数y=f-1(x+1)的图象关于y’=x对称,那么g(5)=_____________-解法一、由去分母,得 ,解出x,得 , 故 ,于是 , 设 ,去分母得, ,解出x,得 ,∴的反函数.∴.解法二、由 ,那么 , ∴ ,∴.即的反函数为 ,根据:∴.解法三、如图,f(x)和f-1(x)互为反函数,当f-1(x)的图象沿x轴负方向平移一个单位时,做为“镜面〞的另一侧的“象〞f(x)的图象一定向下平移1个单位,因此f-1(x+1)的图象与f(x)-1的图象关于y=x对称.故f-1(x+1)的反函数是g(x)=f(x)-1,∴.本解法从图象的运动变化中,探求出f-1(x+1)的反函数,表达了数形结合的优势出二、稳固练习(1)函数在区间上的最大值为1,求实数a的值.〔1〕解:f(x)在区间上最大值可能在端点外取得,也可能在顶点外取得, , ,而顶点横坐标 ,最大值在顶点外取得,故此解舍去.当最大值为f(2)时,f(2)=1, ,顶点在应在区间右端点取得最大值,此解合理.当最大值在顶点处取得时,由 ,解得 ,当,此时,顶点不在区间内,应舍去.综上,.〔2〕函数的定义域是[a,b],值域也是[a,b],求a.b的值.2〕解:y=f(x)的图象如图,分三种情况讨论.当a<b≤0时,f(x)为递增函数,有 ,解得, ,由于b>0,应舍去.当0≤a<b时,f(x)为递减函数,有 ,解得:a=1,b=2.当a<0<b时,f(x)最大值在顶点处取得,故 , ,所以最小值应在a处取得.〔2〕解:y=f(x)的图象如图,分三种情况讨论.当a<b≤0时,f(x)为递增函数,有 ,解得, ,由于b>0,应舍去.当0≤a<b时,f(x)为递减函数,有 ,解得:a=1,b=2.当a<0<b时,f(x)最大值在顶点处取得,故 , ,所以最小值应在a处取得.,解得: ,综上,或〔3〕求函数的最小值.解〔3〕分析:由于对数的底已明确是2,所以只须求的最小值.〔3〕解法一:∵ ,∴x>2.设 ,那么 ,由于该方程有实根,且实根大于2,∴解之,μ≥8.当μ=8时,x=4,故等号能成立.于是log2≥0且x=4时,等号成立,因此的最小值是3.解法二:∵ ,∴x>2设 ,那么 =∴μ≥8且 ,即x=4时,等号成立,∴log2μ≥3且x=4时,等号成立.故的最小值是3.〔4〕a>0,a≠1,试求方程有解时k的取值范围. 4〕解法一:原方程由②可得:③,当k=0时,③无解,原方程无解;当k≠0时,③解为 ,代入①式,.解法二:原方程 ,原方程有解,应方程组,即两曲线有交点,那么ak<-a或0<ak<a(a>0)∴k<-1或0<k<1.〔5〕设函数〔Ⅰ〕解不等式f(x)≤1〔Ⅱ〕求a的取值范围,使f(x)在[0,+∞]上是单调函数.5〕解〔Ⅰ〕,不等式f(x≤1),即由此得:1≤1+ax即ax≥0,其中常数a>0, ∴原不等式即∴当0<a<1时,所给不等式解集为 ,当a≥1时,所给不等式解集为{x|x≥0}.〔Ⅱ〕在区间[0,+∞)上任取x1,x2,使得x1<x2,〔ⅰ〕当a≥1时,∵∴又∴所以,当a≥1时,函数f(x)在区间[0,+∞)上是单调递减函数.〔ⅱ〕当0<a<1时,在[0,+∞)上存在两点满足f(x1)=1,f(x2)=1 ,即f(x1)=f(x2),∴函数f(x)在区间[0,+∞)上不是单调函数.。

函数和方程的区别和联系

函数和方程的区别和联系

函数和方程的区别和联系
函数和方程是数学中常见的概念,它们有一些区别和联系。

首先,函数是一种映射关系,它把一个自变量映射成一个因变量。

函数可以用一个公式或者一张图像来表示,比如 y=x^2 或者一条曲线。

而方程则是一个等式,它表示两个表达式之间的关系,比如 y=x+2。

其次,函数和方程可以相互转换。

一个函数可以被表示成一个方程,比如 y=x^2 可以转换为 x^2-y=0。

同样地,一个方程也可以被
表示成一个函数的形式,比如 x+y=3 可以表示成 y=3-x。

另外,函数和方程的解的含义也有所不同。

一个方程的解是使等式成立的变量值,而一个函数的解则是使函数取到某个特定值的自变量值。

比如,对于方程 x^2=4,它的解是 x=2 或者 x=-2;而对于函数 y=x^2,它的解是使 y=4 的 x 值,即 x=2 或者 x=-2。

总之,函数和方程是数学中基础的概念,它们之间有相互转换的关系,但是解的含义有所不同。

在数学中,我们经常使用这两个概念来描述自然界和社会现象中的规律和关系。

- 1 -。

函数与方程知识点总结

函数与方程知识点总结

函数与方程知识点总结函数与方程是数学中的重要概念和工具,它们在解决实际问题和数学推理中起着关键的作用。

本文将对函数与方程的知识点进行总结。

一、函数的概念与性质:1. 函数的定义:函数是一个或多个自变量和因变量之间的一种变化规律,它将每一个自变量值映射到唯一的因变量值。

在函数中,自变量通常表示为x,因变量表示为y或f(x)。

2. 函数的性质:函数有以下几个重要性质:a. 定义域:函数的自变量取值范围的集合。

b. 值域:函数的因变量的取值范围的集合。

c. 单调性:函数的增减关系。

可以分为增函数和减函数。

d. 奇偶性:函数关于y轴的对称性。

可以分为奇函数和偶函数。

e. 周期性:函数在一个周期内的性质重复出现。

3. 常见函数类型:a. 线性函数:y = kx + b,其中k和b是常数,描述了一条直线的方程。

b. 幂函数:y = ax^b,其中a和b是常数,x的指数为整数。

c. 指数函数:y = a^x,其中a为常数,指数为变量。

d. 对数函数:y = log_a(x),其中a为常数。

e. 三角函数:如sin(x)、cos(x)和tan(x)等。

4. 函数的运算:a. 函数的加法和减法:当两个函数具有相同的定义域时,可以通过函数的加法和减法得到新的函数。

b. 函数的乘法和除法:当两个函数具有相同的定义域时,可以通过函数的乘法和除法得到新的函数。

二、方程的概念与性质:1. 方程的定义:方程是一个等式,其中包含未知数和已知的数之间的关系。

在方程中,通常需要求解未知数的值使等式成立。

2. 方程的解:方程的解是能够使方程成立的未知数的值。

根据方程不同类型的解,可以将其分为实数解、复数解和无解。

3. 一元方程:只含有一个未知数的方程称为一元方程。

求解一元方程的方法包括等式两边同时加减、乘除相同的数等。

4. 二元方程:含有两个未知数的方程称为二元方程。

求解二元方程的方法包括代入法、消元法和配方法等。

5. 线性方程组:由多个线性方程组成的方程组称为线性方程组。

高二数学函数与方程的关系及应用

高二数学函数与方程的关系及应用

高二数学函数与方程的关系及应用高二数学: 函数与方程的关系及应用在高二数学学习中,函数与方程是两个重要的概念。

函数是一种特殊的关系,而方程则是未知数的等式。

本文将探讨函数与方程之间的关系,以及它们在实际问题中的应用。

一、函数与方程的基本概念函数是一种特殊的关系,其包含输入值和输出值之间的映射关系。

数学上,我们通常用 f(x) 或 y 来表示函数,其中 x 是自变量,y 是因变量。

函数可以用公式、图像或表格等形式来表示。

在函数中,每个输入值都对应唯一的输出值。

方程是一个等式,其中包含了一个或多个未知数。

方程是用来解决未知数的值的问题的。

数学中有各种各样的方程,包括一元一次方程、二次方程、指数方程等。

二、函数与方程的关系函数和方程之间存在着紧密的关联。

事实上,函数可以用来表示方程。

通常情况下,我们将函数表示为 f(x),其中 x 是自变量,y 是因变量。

在方程中,我们也可以将等式表示为 f(x) = 0 的形式。

例如,考虑一元二次方程 f(x) = ax^2 + bx + c = 0,其中 a、b、c 是已知常数。

这个方程是一个二次函数,其图像是抛物线。

方程的解即为使得方程成立的 x 值,在图像中,解对应了抛物线与 x 轴的交点。

三、函数与方程的应用函数与方程在实际问题中有广泛的应用。

它们可以帮助我们解决各种数学和实际问题。

1. 函数的图像分析:通过函数的图像,我们可以了解函数的性质,包括定义域、值域、增减性、奇偶性等。

我们可以利用这些性质来解答图像分析问题,例如求极值、交点等。

2. 方程的解析求解:方程可以用来解决各种未知数的值的问题。

通过解方程,我们可以求得未知数的具体值,例如求一元一次方程的解、二次方程的解等。

3. 函数的应用问题:函数可以帮助我们解决各种实际问题,包括数学建模、物理问题等。

例如,通过建立数学模型,我们可以利用函数来描述和分析实际问题,如弹射问题、物体运动问题等。

4. 方程的几何应用:方程可以与几何图形相结合,帮助我们解决几何问题。

函数与方程

函数与方程

函数与方程一、考点聚焦1.函数零点的概念对于函数))((D x x f y ∈=,我们把使0)(=x f 的实数x 叫做函数)(x f y =的零点,注意以下几点:(1)函数的零点是一个实数,当函数的自变量取这个实数时,其函数值等于零。

(2)函数的零点也就是函数)(x f y =的图象与x 轴的交点的横坐标。

(3)求零点就是求方程0)(=x f 的实数根。

2、函数零点的判断如果函数)(x f y =在区间],[b a 上的图象是连续不断的曲线,并且有0)()(<∙b f a f ,那么,函数)(x f y =在区间),(b a 内有零点,即存在),(0b a x ∈,使得0)(0=x f ,这个0x 也就是方程0)(=x f 的根。

但要注意:如果函数)(x f y =在],[b a 上的图象是连续不断的曲线,且0x 是函数在这个区间上的一个零点,却不一定有.0)()(<∙b f a f3.函数零点与方程的根的关系根据函数零点的定义可知:函数)(x f 的零点,就是方程0)(=x f 的根,因此判断一个函数是否有零点,有几个零点,就是判断方程0)(=x f 是否有实数根,有几个实数根。

函数零点的求法:解方程0)(=x f ,所得实数根就是)(x f 的零点。

4.函数零点具有的性质注意:①函数是否有零点是针对方程是否有实数根而言的,若方程0)(=x f 没有实数根,则函数)(x f 没有零点。

5、二分法,就是通过不断地把函数的零点所在的区间一分为二,使区间的两个端点逐步副近零点,进而得到零点近似值的方法。

二、点击考点[考题1]若一次函数b ax x f +=)(有一个零点2,则二次函数ax bx x g -=2)(的零点是。

[考题2]求函数673+-=x x y 的零点。

[考题3]若方程0=--a x a x 有两个根,则a 的取值范围是( )A .)1(∞+B .)1,0(C .),0(+∞D .∅[考题4]无论m 取哪个实数值,函数)23(}23{2--+-=x m x x y 的零点个数都是( )A .1B .2C .3D .不确定[考题5]3.方程|x 2-2x |=a 2+1(a >0)的解的个数是( ).A .1B .2C .3D .4 [考点6]已知2>a ,且函数131)(23+-=ax x x f 在区间)2,0(上是减函数,则方程013123=+-ax x 在区间)2,0(上的实根个数为( ) A .0B .1C .2D .3[考题7]函数xx x f 2ln )(-=的零点所在的大致区间是( ) A .)2,1(B .)3,2(C .)1,1(e和)4,3( D .),(+∞e[考题8]已知)1)(1(+-=x x x y 的图象如图所示,因考虑01.0)1)(1()(++-=x x x x f ,则方程式0)(=x f ( )A .有三个实根B .当1-<x 时,恰有一实根C .当01<<-x 时,恰有一实根D .当1>x 时,恰有一实根三、夯实双基1.下列函数中,不能用二分法求零点的是( )2.已知函数22)(m mx x x f --=,则)(x f ( ) A .有一个零点B .有两个零点C .有一个或两个零点D .无零点 3函数)(x f 在区间]6,1[上的零点至少有( )A .2个B .3个C .4个D .5个4.下列方程在区间)1,0(内存在实数解的是( ) A .012=-+x xB .032=-+x xC .012=-xD .0212=+x x 5.若函数)(x f 的图象是连续不间断的,且0)4()2()1(,0)0(<∙∙>f f f f ,则下列命题正确的是( )A .函数)(x f 在区间)1,0(内有零点B .函数)(x f 在区间)2,1(内有零点C .函数)(x f 在区间)2,0(内有零点D .函数)(x f 在区间)4,0(内有零点6.函数1)(23+--=x x x x f 在]2,0[上( ) A .有三个零点 B .有两个零点C .有一个零点D .没有零点7.已知方程x x -=-521,则该方程的解会落在区间( )内。

函数与方程

函数与方程

函数与方程(1)知识要点: 命题人: 程奋权 1.函数的零点:方程0)(=x f 的根也称作函数)(x f y =的零点.(1)方程0)(=x f 有实数根⇔函数)(x f y =的图象与x 轴有交点⇔函数)(x f y =有零点.(2)零点存在性定理:如果函数)(x f y =在区间],[b a 上的图象是连续不断的一条曲线,并且有 ,那么函数)(x f y =在区间),(b a 内有零点.即存在),(b a c ∈,使得0)(=c f ,这个c 也就是方程的根.① 定理中函数)(x f y =不一定有唯一的零点,当函数)(x f 在),(b a 上是单调函数时,有唯一的零点.② 如果函数)(x f y =在区间),(b a 内有零点,不一定有0)()(<b f a f . 2.二分法:对于在区间a [,]b 上连续且满足)(a f ·)(b f 0<的函数)(x f y =,通过不断地把函数)(x f 的零点所在的区间一分为二,使区间的两个端点逐步逼近零点,进而得到零点近似值的方法叫做二分法.3.二次函数)0()(2≠++=a c bx ax x f 的零点:(1)当0>∆时,方程0)(=x f 有两不等实根,二次函数)(x f 的图象与x 轴有两个交点,即有两个零点.(2)当0=∆时,方程0)(=x f 有两相等实根,二次函数)(x f 的图象与x 轴有一个交点,即有一个零点.(3)当0<∆时,方程0)(=x f 无实根,二次函数)(x f 的图象与x 轴无交点,即无零点. 4.二次方程)0(02≠=++a c bx ax 的实根分布及条件. 典型习题:1.函数xx x f 2ln )(-=的零点所在的大致区间是 ( ) A .)2,1( B .)3,2( C .)4,3( D .),(+∞e2.方程xx12=的解0x 所在的区间是 ( )A .)2.0,1.0(B .)4.0,3.0(C .)7.0,5.0(D .)1,9.0(3.函数()⎩⎨⎧>+-≤-=1,341,442x x x x x x f 的图象和函数()x x g 2log =的图象的交点个数是( )A .4B .3C .2D .1 4.关于x 的方程()011222=+---k x x ,给出下列四个命题:①存在实数k ,使得方程恰有2个不同的实根;②存在实数k ,使得方程恰有4个不同的实根;③存在实数k ,使得方程恰有5个不同的实根;④存在实数k ,使得方程恰有8个不同的实根.其中假命题的个数是( )A .0B .1C .2D .35.设函数⎩⎨⎧>≤++=0,20,)(2x x c bx x x f ,且2)2(),0()4(-=-=-f f f ,则关于x 的方程x x f =)(解的个数为( )A .1B .2C .3D .46.已知函数)(x f y =和)(x g y =在]2,2[-的图象如下图所示,给出下列四个命题:(1)方程0)]([=x g f 有且仅有6个根;(2)方程0)]([=x f g 有且仅有3个根; (3)方程0)]([=x g f 有且仅有5个根;(4)方程0)]([=x f g 有且仅有4个根其中正确的命题个数是 ( ) A .4个 B .3个 C . 2个 D .1个 7.设函数)(||1)(R x x xx f ∈+-=,区间],[b a M =)(b a <,集合}),(|{M x x f y y N ∈==,则使N M =成立的实数对),(b a 有 ( )A .0个B .1个C .2个D .无数个8.函数)(x f y =的反函数)(1x f y -=的图象与y 轴交于点)2,0(P ,则方程0)(=x f 的根是=x ( ) A .4 B .3 C .2 D .1 9.设()f x 是连续的偶函数,且当0>x 时()f x 是单调函数,则满足3()4x f x f x +⎛⎫=⎪+⎝⎭的所有x 之和为 ( ) A .3- B .3 C .8- D .810.设c b a ,,均为正数,且a a21log 2=,b b 21log 21=⎪⎭⎫ ⎝⎛,c c2log 21=⎪⎭⎫⎝⎛.则( )A .c b a <<B .a b c <<C .b a c <<D .c a b <<11.已知函数2()22(4)1f x mx m x =--+,()g x mx =,若对于任一实数x ,()f x 与()g x 至少有一个为正数,则实数m 的取值范围是 ( ) A .(0,2) B .(0,8) C .(2,8) D .(,0)-∞12.设定义域为R 的函数111()11x x f x x ⎧≠⎪-=⎨⎪=⎩,, ,若关于x 的方程2()()0f x bf x c ++=有3个不同的整数解123,,x x x ,则222123x x x ++等于 ( )A .5B .2222b b +C .13D .2222c c +函数与方程(2)13.已知)(x f y =是偶函数,且其图象C 与x 轴有4个交点,则方程0)(=x f 的所有实根之和为 .14.设⎩⎨⎧>-≤-=-0,)1(0,2)(1x x f x a x f x ,若x x f =)(有且只有两个实数根,则实数a 的取值范围是_ __.15.已知关于x 的方程016)82(22=-+--m x m x 的两个实根21,x x 满足2123x x <<,则实数m 的取值范围_______________.16.二次函数c bx ax y ++=2中,0<ac ,则函数的零点个数为 .17.若方程2210ax x ++=至少有一个负数根,则实数a 的取值范围_______________. 18.关于x 的方程x a x x =-+-|34|2恰有三个不同的实根,则实数a 的取值范围_____. 19.已知1x 是方程27lg =+x x 的解,2x 是方程2710=+xx 的解,则=+21x x 三.解答题20.确定下列方程的解的个数(1)62lg =+x x (2)0133=--x x(3)0ln 31=--x x (4)x x e x82-=思考:方程x a a xlog =0(>a 且)1≠a 的解的个数.21.如果二次函数1)3()(2+-+=x m mx x f 的图象与x 轴的交点至少有一个在原点的右侧,试求m 的取值范围.22. 已知关于x 的方程03)3()13)(1(3112=⋅----+++x x x m m 有两个不同的实数根,求m 的取值范围.23.已知a 是实数,函数()a x ax x f --+=3222,如果函数()x f y =在区间[]1,1-上有零点,求a 的取值范围.24.已知二次函数)0()(2≠+=a bx ax x f 满足条件:)3()1(x f x f -=-且方程x x f 2)((=有等根. (1)求)(x f 的解析式;(2)是否存在实数n m ,)(n m <,使)(x f 定义域和值域分别为],[n m 和]4,4[n m ,如果存在,求出n m ,的值;如果不存在,说明理由.。

第八节 函数与方程 课件(共31张PPT)

第八节 函数与方程 课件(共31张PPT)

答案:C
2.函数 f(x)=4cos2 x2·cosπ2-x-2sin x-|ln(x+1)| 的零点个数为________.
解析:f(x)=2(1+cos x)sin x- 2sin x-|ln(x+1)|=sin 2x-|ln(x+ 1)|,x>-1,函数 f(x)的零点个数即为 函数 y1=sin 2x(x>-1)与 y2=|ln(x+1)|(x>-1)的图象的 交点个数.分别作出两个函数的图象如图所示,可知有两 个交点,则 f(x)有两个零点.
x2-2x,x≤0, 1.已知函数 f(x)=1+1x,x>0, 则函数 y=f(x)+
3x 的零点个数是( )
A.0 B.1
C.2 D.3
解析:令 f(x)+3x=0,
则xx≤2-02,x+3x=0或x1>+01x,+3x=0,
解得 x=0 或 x=-1,
所以函数 y=f(x)+3x 的零点个数是 2.
的取值范围是( )
A.a<-1
B.a>1
C.-1<a<1 D.0≤a<1 解析:令 f(x)=2ax2-x-1, ①当 a=0 时,-x-1=0,x=-1 不合适. ②a≠0 时,f(0)·f(1)<0,a>1.验证若 f(0)=0,此式不成立; 当 f(1)=0 时,2a-1-1=0.
a=1,方程另一根为-12(不合题意),故 a>1,选 B. 答案:B
考点 2 判断函数零点个数
[例 1] (1)函数 f(x)=x-2+1+x-ln2x,,xx≤>00,的零点个数
为( )
A.3
B.2
C.7
D.0
(2)已知函数 y=f(x)是周期为 2 的周期函数,且当 x∈

数学函数与方程的关系

数学函数与方程的关系

数学函数与方程的关系数学函数与方程是数学中两个重要的概念,它们之间存在着紧密的联系与相互作用。

函数是描述一种特定关系的规则,方程则是描述等式关系的数学式子。

在数学中,函数可以通过方程进行定义,并且方程可以用函数来表示。

下面将从函数定义的角度出发,探讨函数与方程的关系。

一、函数的定义函数是数学中一个非常重要的概念,它描述了自变量与因变量之间的一种特定关系。

数学函数通常用公式或者图像的形式进行表示。

其中,自变量是函数的输入值,而因变量是函数的输出值。

函数的定义包括定义域、值域和函数关系的规则。

二、方程的定义方程是一个等式,它描述了两个表达式之间的平衡关系。

方程中通常包含未知数,通过求解方程,可以得到未知数的值使得等式成立。

方程可以是一元方程,也可以是多元方程。

数学中的常见方程有线性方程、二次方程、三角方程等。

三、函数与方程的关系函数与方程之间存在着紧密的联系和相互作用。

一方面,函数可以用方程进行定义。

比如,对于一元函数y=f(x),可以通过方程y=x^2来定义。

这个方程表示了输入x与输出y之间的平方关系。

另一方面,方程可以用函数来表示。

比如,对于二次方程y=ax^2+bx+c,可以将它视为一个关于x的函数,得到函数表达式y=f(x)=ax^2+bx+c。

通过这种方式,我们可以将方程转化为函数形式来进行研究和分析。

四、函数与方程的应用函数与方程是数学中非常重要的工具,它们在各个学科领域都有着广泛的应用。

在数学中,函数和方程是代数、几何、微积分等分支的重要基础。

在工程和物理学中,函数和方程被用来描述和解决各种实际问题。

在经济学和社会科学中,函数和方程可以用来建立模型和预测趋势。

通过函数与方程的研究和应用,我们可以解决现实世界中的各种问题,并且推动科学的发展进步。

总结:数学函数与方程之间存在着密切的联系和相互作用。

函数可以通过方程进行定义,并且方程也可以用函数来表示。

函数与方程在数学中有着广泛的应用,是数学研究和实际问题解决的重要工具。

函数与方程

函数与方程

第8讲 函数与方程1.函数的零点(1)函数零点的定义:对于函数y =f (x ),把使f (x )=0的实数x 叫做函数y =f (x )的零点. (2)三个等价关系:方程f (x )=0有实数根⇔函数y =f (x )的图象与x 轴有交点⇔函数y =f (x )有零点.2.函数零点的判定如果函数y =f (x )在区间[a ,b ]上的图象是连续不断的一条曲线,并且有f (a )·f (b )<0,那么函数y =f (x )在区间(a ,b )内有零点,即存在c ∈(a ,b ),使得f (c )=0,这个c 也就是f (x )=0的根.我们把这一结论称为函数零点存在性定理. 3.二次函数y =ax 2+bx +c (a >0)的图象与零点的关系判断正误(正确的打“√”,错误的打“×”) (1)函数的零点就是函数的图象与x 轴的交点.( )(2)函数y =f (x )在区间(a ,b )内有零点(函数图象连续不断),则f (a )·f (b )<0.( ) (3)二次函数y =ax 2+bx +c (a ≠0)在b 2-4ac <0时没有零点.( )(4)若函数f (x )在(a ,b )上连续单调且f (a )·f (b )<0,则函数f (x )在[a ,b ]上有且只有一个零点.( )(教材习题改编)函数f (x )=ln x +2x -6的零点在下列哪个区间内( ) A .(0,1) B .(1,2) C .(2,3)D .(3,4)(教材习题改编)函数f (x )=x 12-⎝⎛⎭⎫12x的零点个数为 ( ) A .0 B .1 C .2D .3若函数f (x )=ax +b 有一个零点是2,那么函数g (x )=bx 2-ax 的零点是________.(教材习题改编)函数f (x )=3x -7+ln x 的零点位于区间(n ,n +1)(n ∈N )内,则n =________.函数零点所在区间的判断[典例引领](1)函数f (x )=ln x -2x 的零点所在的大致区间是 ( )A .(1,2)B .(2,3)C .(1,e)和(3,4)D .(e ,+∞)(2)设f (x )=0.8x -1,g (x )=ln x ,则函数h (x )=f (x )-g (x )存在的零点一定位于下列哪个区间( ) A .(0,1) B .(1,2) C .(2,e)D .(e ,3)判断函数零点所在区间的3种方法(1)解方程法:当对应方程f (x )=0易解时,可先解方程,然后再看求得的根是否落在给定区间上.(2)定理法:利用函数零点的存在性定理,首先看函数y =f (x )在区间[a ,b ]上的图象是否连续,再看是否有f (a )·f (b )<0.若有,则函数y =f (x )在区间(a ,b )内必有零点.(3)图象法:通过画函数图象,观察图象与x 轴在给定区间上是否有交点来判断.[通关练习]1.(2018·金华十校联考)函数f (x )=πx +log 2x 的零点所在区间为( ) A .⎣⎡⎦⎤14,12 B .⎣⎡⎦⎤18,14 C .⎣⎡⎦⎤0,18 D .⎣⎡⎦⎤12,1 2.(2018·杭州市严州中学高三模拟)若a <b <c ,则函数f (x )=(x -a )(x -b )+(x -b )(x -c )+(x -c )(x -a )的两个零点分别位于区间( ) A .(a ,b )和(b ,c )内 B .(-∞,a )和(a ,b )内 C .(b ,c )和(c ,+∞)内D .(-∞,a )和(c ,+∞)内函数零点个数的问题[典例引领]函数f (x )=⎩⎪⎨⎪⎧x 2+x -2,x ≤0,-1+ln x ,x >0的零点个数为( )A .3B .2C .1D .0判断函数零点个数的3种方法(1)方程法:令f (x )=0,如果能求出解,则有几个解就有几个零点.(2)零点存在性定理法:利用定理不仅要求函数在区间[a ,b ]上是连续不断的曲线,且f (a )·f (b )<0,还必须结合函数的图象与性质(如单调性、奇偶性、对称性)才能确定函数有多少个零点或零点值所具有的性质.(3)数形结合法:转化为两个函数的图象的交点个数问题.先画出两个函数的图象,看其交点的个数,其中交点的横坐标有几个不同的值,就有几个不同的零点.[通关练习]1.函数f (x )=|x -2|-ln x 在定义域内的零点的个数为( ) A .0 B .1 C .2D .32.已知函数f (x )是定义在(-∞,0)∪(0,+∞)上的偶函数,当x >0时,f (x )=⎩⎪⎨⎪⎧2|x -1|-1,0<x ≤2,12f (x -2),x >2,则函数g (x )=4f (x )-1的零点个数为( ) A .4 B .6 C .8D .10函数零点的应用(高频考点)高考对函数零点的考查多以选择题或填空题的形式出现.主要命题角度有: (1)利用函数零点比较大小;(2)已知函数的零点(或方程的根)求参数的值或范围; (3)利用函数零点的性质求参数的范围.[典例引领]角度一 利用函数零点比较大小(2018·台州模拟)已知e 是自然对数的底数,函数f (x )=e x +x -2的零点为a ,函数g (x )=ln x +x -2的零点为b ,则下列不等式中成立的是( ) A .f (a )<f (1)<f (b ) B .f (a )<f (b )<f (1) C .f (1)<f (a )<f (b )D .f (b )<f (1)<f (a )角度二 已知函数的零点(或方程的根)求参数的值或范围(1)设函数f (x )=log 2(2x +1),g (x )=log 2(2x -1),若关于x 的函数F (x )=g (x )-f (x )-m 在[1,2]上有零点,则m 的取值范围为________.(2)已知函数f (x )=⎩⎪⎨⎪⎧|x |,x ≤m ,x 2-2mx +4m ,x >m ,其中m >0.若存在实数b ,使得关于x 的方程f (x )=b有三个不同的根,则m 的取值范围是__________.角度三 利用函数零点的性质求参数的范围已知函数f (x )=|ln x |,若0<a <b ,且f (a )=f (b ),则a +2b 的取值范围是( ) A .(22,+∞) B .[22,+∞) C .(3,+∞)D .[3,+∞)已知函数的零点(或方程根)的情况求参数问题常用的三种方法(1)直接法:直接根据题设条件构建关于参数的不等式,再通过解不等式确定参数范围. (2)分离参数法:先将参数分离,转化成求函数值域问题加以解决.(3)数形结合法:先对解析式变形,在同一平面直角坐标系中画出函数的图象,然后数形结合求解.[通关练习]1.设函数f (x )=e x +2x -4,g (x )=ln x +2x 2-5,若实数a ,b 分别是f (x ),g (x )的零点,则( ) A .g (a )<0<f (b ) B .f (b )<0<g (a ) C .0<g (a )<f (b )D .f (b )<g (a )<02.已知函数f (x )=⎩⎪⎨⎪⎧log 2(x +1),x >0,-x 2-2x ,x ≤0,若函数g (x )=f (x )-m 有3个零点,则实数m 的取值范围是________.3.(2018·杭州学军中学高三质检)若函数f (x )=|2x -1|+ax -5(a 是常数,且a ∈R )恰有两个不同的零点,则a 的取值范围为________.转化思想在函数零点问题中的应用方程解的个数问题可转化为两个函数图象交点的个数问题;已知方程有解求参数范围问题可转化为函数值域问题.判断函数零点个数的常用方法 (1)通过解方程来判断.(2)根据零点存在性定理,结合函数性质来判断.(3)将函数y =f (x )-g (x )的零点个数转化为函数y =f (x )与y =g (x )图象公共点的个数来判断.已知函数零点情况求参数的一般步骤及方法 (1)一般步骤:①判断函数的单调性;②利用零点存在性定理,得到参数所满足的不等式(组);③解不等式(组),即得参数的取值范围. (2)方法:常利用数形结合法.易错防范(1)函数的零点不是点,是方程f (x )=0的实根.(2)函数零点存在性定理只能判断函数在某个区间上的变号零点,而不能判断函数的不变号零点,而且连续函数在一个区间的端点处函数值异号是这个函数在这个区间上存在零点的充分不必要条件.1.(2018·温州十校联考(一))设函数f (x )=ln x +x -2,则函数f (x )的零点所在的区间为( ) A .(0,1) B .(1,2) C .(2,3)D .(3,4)2.函数f (x )=2x -2x -a 的一个零点在区间(1,2)内,则实数a 的取值范围是( )A .(1,3)B .(1,2)C .(0,3)D .(0,2)3.(2018·兰州模拟)已知奇函数f (x )是R 上的单调函数,若函数y =f (2x 2+1)+f (λ-x )只有一个零点,则实数λ的值是( ) A .14 B .18C .-78D .-384.已知函数f (x )=23x +1+a 的零点为1,则实数a 的值为________.5.已知函数f (x )=⎩⎪⎨⎪⎧2x ,x ≤0,|log 2x |,x >0,则函数g (x )=f (x )-12的零点所构成的集合为________.6.(2018·瑞安市龙翔高中高三月考)若关于x 的不等式x 2+|x -a |<2至少有一个正数解,则实数a 的取值范围是________.7.设函数f (x )=ax 2+bx +b -1(a ≠0). (1)当a =1,b =-2时,求函数f (x )的零点;(2)若对任意b ∈R ,函数f (x )恒有两个不同零点,求实数a 的取值范围.8.已知函数f (x )=-x 2-2x ,g (x )=⎩⎪⎨⎪⎧x +14x ,x >0,x +1,x ≤0.(1)求g (f (1))的值;(2)若方程g (f (x ))-a =0有4个实数根,求实数a 的取值范围.。

小学数学:方程和函数思想

小学数学:方程和函数思想

方程和函数思想1.方程和函数思想的概念。

方程和函数是初等数学代数领域的主要内容,也是解决实际问题的重要工具,它们都可以用来描述现实世界的各种数量关系,而且它们之间有着密切的联系,因此,本文将二者放在一起进行讨论。

(1)方程思想。

含有未知数的等式叫方程。

判断一个式子是不是方程,只需要同时满足两个条件:一个是含有未知数,另一个是必须是等式。

如有些小学老师经常有疑问的判断题:χ=0 和χ=1是不是方程?根据方程的定义,他们满足方程的条件,都是方程。

方程按照未知数的个数和未知数的最高次数,可以分为一元一次方程、一元二次方程、二元一次方程、三元一次方程等等,这些都是初等数学代数领域中最基本的内容。

方程思想的核心是将问题中的未知量用数字以外的数学符号(常用χ、y等字母)表示,根据相关数量之间的相等关系构建方程模型。

方程思想体现了已知与未知的对立统一。

(2)函数思想。

设集合A、B是两个非空的数集,如果按照某种确定的对应关系?,如果对于集合A中的任意一个数χ,在集合B中都有唯一确定的数y和它对应,那么就称y是χ的函数,记作y=f(χ)。

其中χ叫做自变量,χ的取值范围A叫做函数的定义域;y叫做函数或因变量,与χ相对应的y的值叫做函数值,y的取值范围B叫做值域。

以上函数的定义是从初等数学的角度出发的,自变量只有一个,与之对应的函数值也是唯一的。

这样的函数研究的是两个变量之间的对应关系,一个变量的取值发生了变化,另一个变量的取值也相应发生变化,中学里学习的正比例函数、一次函数、二次函数、幂函数、指数函数、对数函数和三角函数都是这类函数。

实际上现实生活中还有很多情况是一个变量会随着几个变量的变化而相应地变化,这样的函数是多元函数。

虽然在中小学里不学习多元函数,但实际上它是存在的,如圆柱的体积与底面半径r和圆柱的高的关系:V=πr2h。

半径和高有一对取值,体积就会相应地有一个取值;也就是说,体积随着半径和高的变化而变化。

方程与函数的区别解读

方程与函数的区别解读
7.函数和方程是数学中的两个基本概念,在许多情况下它们可以相互转化。例如在一元函数y = f(x)用一个解析式表示并且不需要区分自变量和因变量(函数)时,这个函数式就可以看作一个二元方程;反之,能够由方程F(x, y) = 0确定的函数关系称为隐函数([4], p.9)。但是函数与方程是有差别的。
8.首先,函数的自变量和因变量是一一对应的,一个X值只有一个相应的Y值与之对应,而曲线方程则不然,比如一个椭圆方程中,对于一个X值有两个Y值与之对应.像这样的曲线方程就不能成为一个函数的表达式.其次,函数表达式表示的是两个变量之间一一对应的关系,而曲线方程则借用点的集和的方式来将一个曲线以代数的形式表现出来,实质上一个曲线的表达。
联系:函数式和方程式都是由代数式组成的.没有代数式,就没有函数和方程.方程只是函数解析式在某一特定函数值的解。方程表示特定的因变量的自变量解。如5x+6=7这是方程;y=5x+6这是解析式。
区别:
1.概念不一样.
2.代数式不用等号连接.
3.函数表示两个变量之间的关系.因变量(函数)随变量(自变量)的变化而变化.
就可以确定函数
s = f(t) = gt2 ( t ³ 0 )②
以及函数
t =j(s) = ( s ³ 0 )③,
其中g > 0是一个常数。②与③显然是不同的函数,但作为方程它们都与①同解。
函数与方程的这种差别自然也应该反映在作图上。作二元方程的图形时实际上是把未知数区分为第一未知数、第二未知数,用前者的值做横坐标、后者的值做纵坐标。例如作方程①的图形时既可以用t的值、也可以用s的值做横坐标,取决于把谁看作第一未知数。但是在作以x和y为未知数的方程的图形时,因为直角坐标系中的横轴和纵轴习惯上分别表示为X轴和Y轴(以下简称习惯1),所以总是用x的值做横坐标、y的值做纵坐标以免混淆。这种作图方式事实上是默认下面的

方程与函数的联系与区别

方程与函数的联系与区别

.
..
方程与函数的联系与区别
代数式:用运算符号把数或表示数的字母连接而成的式子,叫代数式。

函数:如果对于一个变量(比如x)在某一范围内的每一个确定的值,变量
(比如y)都有唯一确定的值和它对应,那么,就把y叫做x的函数。

函数式:用解析法(公式法)表示函数的式子叫函数式。

方程:含有未知数的等式叫方程。

联系:函数式和方程式都是由代数式组成的。

没有代数式,就没有函数和方程。

方程只是函数解析式在某一特定函数值的解。

方程表示特定的因变量
的自变量解。

如5x+6=7这是方程;y=5x+6这是函数解析式。

区别:函数和方程本质区别就是:方程中未知数x是一个常量(虽然方程可能有多个解);函数中x是变量,因此y也是变量,并且是由于x的变化而变化(即函数表示两个变量之间的关系。

因变量(函数)随变量(自变量)的变化而变化)。

数学函数与方程解析

数学函数与方程解析

数学函数与方程解析数学函数与方程是数学学科中的基础概念,对于解析学、微积分以及应用数学等领域具有重要意义。

本文将从函数与方程的定义、基本性质、种类及应用等方面进行分析和探讨。

一、函数的定义与基本性质函数是数学中一种特殊关系,它将一个集合中的每个元素映射到另一个集合中的一个唯一元素。

设A和B是两个非空集合,若对于任意的x∈A,存在唯一的y∈B与之对应,则称这个对应关系为函数,记作f:A→B,y=f(x)。

其中,A称为函数的定义域,B称为函数的值域。

函数具有以下基本性质:1. 定义域与值域:函数的定义域和值域可以是实数集合、复数集合或其他数学结构,取决于具体的问题。

2. 单值性:函数中的每个元素在定义域内具有唯一的映射元素,即每个x只对应一个唯一的y值。

3. 奇偶性:函数的奇偶性由函数的定义域和函数值的奇偶性决定。

若对任意的x∈A,有f(-x)=-f(x),则称函数为奇函数;若对任意的x∈A,有f(-x)=f(x),则称函数为偶函数。

二、常见种类的函数1. 代数函数:代数函数是用代数表达式定义的函数,可以通过代数运算得到函数值。

常见的代数函数有多项式函数、有理函数、指数函数和对数函数等。

2. 三角函数:三角函数是以角度或弧度作为自变量的函数,包括正弦函数、余弦函数、正切函数和其余的倒数函数。

三角函数在几何、物理、工程等领域中具有重要应用。

3. 指数函数与对数函数:指数函数是以自然常数e为底的指数幂函数,对数函数是指数函数的逆运算。

指数函数与对数函数在科学计算、概率统计等方面有广泛的应用。

4. 反函数与复合函数:如果一个函数f的定义域与值域互换,则称互换后的函数为f的反函数,记作f^{-1}。

复合函数是将一个函数的输出作为另一个函数的输入得到的新函数。

反函数与复合函数的研究对于解决实际问题非常重要。

三、方程的解析与应用方程是方程式的一种特殊形式,通常由等号连接的两个代数表达式组成。

求解方程是数学中常见的问题,解析法是指通过运用数学方法,推导出方程的解或解的性质。

函数与方程

函数与方程

函数与方程1. 函数的零点(1)函数零点的定义:对于函数y=f(x),我们把使________的实数x叫做函数y=f(x)的零点.(2)几个等价关系方程f(x)=0有实数根⇔函数y=f(x)的图象与x轴有交点⇔函数y=f(x)有零点.2. 零点存有定理假如函数y=f(x)满足:(1)在闭区间[a,b]上连续;(图象不间断) (2)f(a)·f(b)<0;则函数y=f(x)在(a,b)上存有零点,即存有c∈(a,b),使得f(c)=0,这个c也就是方程f(x)=0的根.图象4.二分法(1)二分法的定义 对于在区间[a ,b ]上连续持续且________的函数y =f (x ),通过持续地把函数f (x )的零点所在的区间________,使区间的两端点逐步逼近________,进而得到零点的近似值的方法叫做二分法.(2)用二分法求函数零点近似解的步骤第一步:确定区间[a ,b ],验证________,给定精确度ε; 第二步:求区间(a ,b )的中点c ; 第三步:计算f (c )①若f (c )=0,则c 就是函数的零点;②若f (a )·f (c )<0,则令b =c (此时零点x 0∈(a ,c )); ③若f (c )·f (b )<0,则令a =c (此时零点x 0∈(c ,b )).第四步:判断是否达到精确度ε,即若|a -b |<ε,则得到零点近似值a (或b ),否则重复第二、三、四步. 典型例题分析函数f (x )=2x +x 3-2在区间(0,1)内的零点个数是( ) A .0 B .1 C .2 D .3函数f (x )=ln(x -2)-2x的零点所在的大致区间是( )A .(1,2)B .(2,3)C .(3,4)D .(4,5)函数f (x )=x cos2x 在区间[0,2π]上的零点的个数为( ) A .2 B .3 C .4D .5在以下区间中,函数f (x )=e x+4x -3的零点所在的区间为( )A .(-14,0)B .(0,14)C .(14,12)D .(12,34)函数f (x )=mx 2-2x +1有且仅有一个为正实数的零点,则实数m 的取值范围是( ) A .(-∞,1] B .(-∞,0]∪{1} C .(-∞,0)∪(0,1] D .(-∞,1)设f (x )与g (x )是定义在同一区间[a ,b ]上的两个函数,若函数y =f (x )-g (x )在x ∈[a ,b ]上有两个不同的零点,则称f (x )和g (x )在[a ,b ]上是“关联函数”,区间[a ,b ]称为“关联区间”.若f (x )=x 2-3x +4与g (x )=2x +m 在[0,3]上是“关联函数”,则m 的取值范围为( )A .(-94,-2]B .[-1,0]C .(-∞,-2]D .(-94,+∞)设函数f (x )=13x -ln x (x >0),则y =f (x )( )A .在区间(1e ,1),(1,e)内均有零点B .在区间(1e,1),(1,e)内均无零点C .在区间(1e ,1)内有零点,在区间(1,e)内无零点D .在区间(1e,1)内无零点,在区间(1,e)内有零点函数f (x )=-⎝ ⎛⎭⎪⎫12x的零点个数为( ) A. 0 B. 1 C. 2D. 3已知a 是函数f (x )=2x-x 的零点,若0<x 0<a ,则f (x 0)的值满足( )A .f (x 0)=0B .f (x 0)<0C .f (x 0)>0D .不确定已知函数f (x )=log ax +x -b (a >0,且a ≠1).当2<a <3<b <4时,函数f (x )的零点x 0∈(n ,n +1),n ∈N *,则n =________.一、选择题1. [2013·广东四校联考]函数f (x )=x 3+2x -1的零点所在的大致区间是( ) A. (0,1) B. (1,2) C. (2,3) D. (3,4)答案:A解析:f (0)=-1<0,f (1)=2>0,f (2)=11>0,f (3)=32>0,f (4)=71>0,则f (0)·f (1)=-2<0且函数f (x )=x 3+2x -1的图象是连续曲线,所以f (x )在区间(0,1)内有零点.2. 若函数f (x )=bx +2有一个零点为13,则g (x )=x 2+5x +b 的零点是( )A. -13B. 1或-6C. -1或6D. 1或6答案:B解析:∵13是函数f (x )的零点,∴f (13)=0,即13b +2=0,解得b =-6.∴g (x )=x 2+5x -6.令g (x )=0,即x 2+5x -6=0,也就是(x -1)(x +6)=0, 解得x =1或x =-6.∴函数g (x )有两个零点1、-6.3. 如图是函数f (x )的图象,它与x 轴有4个不同的公共点.给出以下四个区间,不能用二分法求出函数f (x )零点的区间是( )A. [-2.1,-1]B. [1.9,2.3]C. [4.1,5]D. [5,6.1]答案:B解析:由图象易知,函数f (x )在区间[1.9,2.3]上不能用二分法求出函数的零点. 4. [2013·湖北八校二联]已知函数f (x )=2x-log 12x ,且实数a >b >c >0满足f (a )·f (b )·f (c )<0,若实数x 0是函数y =f (x )的一个零点,那么以下不等式中不可能成立的是( )A. x 0<aB. x 0>aC. x 0<bD. x 0<c答案:D解析:画出函数y =2x与y =log 12x 的图象可知,满足条件的c 只能在函数f (x )的零点的左边,故不可能出现x 0<c .5. 已知关于x 的方程x ln x =ax +1(a ∈R),以下说法准确的是( ) A. 有两不等根 B. 只有一正根 C. 无实数根 D. 不能确定 答案:B解析:由x ln x =ax +1(a ∈R)知x >0,∴ln x =a +1x ,作出函数y 1=ln x 与y 2=a +1x的图象,易知选B.6. [2013·深圳调研]已知符号函数sgn (x )=⎩⎪⎨⎪⎧1,x >0,0,x =0,-1,x <0,则函数f (x )=sgn (ln x )-ln x 的零点个数为( )A. 1B. 2C. 3D. 4答案:C解析:当x >1时,ln x >0,sgn (ln x )=1; 当x =1时,ln x =0,sgn (ln x )=0; 当0<x <1,ln x <0,sgn (ln x )=-1.∴f (x )=sgn (ln x )-ln x =⎩⎪⎨⎪⎧1-ln x ,x >1,0,x =1,-1-ln x ,0<x <1.由f (x )=0得,x =e 或1或1e ,应选C.二、填空题7. [2012·浙江绍兴二模]若f (x )=⎩⎪⎨⎪⎧x 2-x -1,x ≥2或x ≤-1,1,-1<x <2,则函数g (x )=f (x )-x 的零点为________.答案:1+2,1解析:求函数g (x )=f (x )-x 的零点,即求f (x )=x 的根, ∴⎩⎪⎨⎪⎧x ≥2或x ≤-1,x 2-x -1=x或⎩⎪⎨⎪⎧-1<x <2,1=x .解得x =1+2或x =1. ∴g (x )的零点为1+2,1.8. [2013·南昌模拟]已知[x ] 表示不超过实数x 的最大整数,如[1.8]=1,[-1.2]=-2.x 0是函数f (x )=ln x -2x的零点,则[x 0]等于 ________.答案:2解析:∵函数f (x )的定义域为(0,+∞),∴函数f ′(x )=1x +2x2>0,即函数f (x )在(0,+∞)上单调递增.由f (2)=ln2-1<0,f (e)=lne -2e>0,知x 0∈(2,e),∴[x 0]=2.9. [2013·金版原创]已知函数f (x )=⎩⎪⎨⎪⎧2x-1,x ≥0-x 2-2x ,x <0,若函数y =f (x )-m 有3个零点,则实数m 的取值范围是________.答案:(0,1)解析:画出函数f (x )=⎩⎪⎨⎪⎧2x-1,x ≥0-x 2-2x ,x <0的图象,由图象可知,若函数y =f (x )-m 有3个零点,则0<m <1,所以m 的取值范围是(0,1).三、解答题10. 若g (x )=x +e2x(x >0),g (x )=m 有零点,求m 的取值范围.解:法一:∵g (x )=x +e 2x≥2e 2=2e ,等号成立的条件是x =e , 故g (x )的值域是[2e ,+∞),因而只需m ≥2e,则g (x )=m 就有零点. 法二:作出g (x )=x +e2x(x >0)的大致图象如图:可知若使g (x )=m 有零点,则只需m ≥2e.法三:由g (x )=m 得x 2-mx +e 2=0. 此方程有大于零的根且e 2>0, 故根据根与系数的关系得m >0,故⎩⎪⎨⎪⎧m >0,Δ=m 2-4e 2≥0等价于⎩⎪⎨⎪⎧m >0,m ≥2e或m ≤-2e ,故m ≥2e.11. [2013·苏州模拟]是否存有这样的实数a ,使函数f (x )=x 2+(3a -2)x +a -1在区间[-1,3]上与x 轴恒有一个交点,且只有一个交点?若存有,求出范围;若不存有,请说明理由.解:若实数a 满足条件,则只需f (-1)·f (3)≤0即可.f (-1)·f (3)=(1-3a +2+a -1)·(9+9a -6+a -1)=4(1-a )(5a +1)≤0,所以a ≤-15或a ≥1.检验:(1)当f (-1)=0时a =1,所以f (x )=x 2+x .令f (x )=0,即x 2+x =0,得x =0或x =-1. 方程在[-1,3]上有两根,不合题意,故a ≠1.(2)当f (3)=0时a =-15,此时f (x )=x 2-135x -65.令f (x )=0,即x 2-135x -65=0,解之x =-25或x =3.方程在[-1,3]上有两根,不合题意,故a ≠-15.综上所述,a <-15或a >1.12.[2013·揭阳联考]已知二次函数f (x )=x 2+2bx +c (b 、c ∈R). (1)若f (x )≤0的解集为{x |-1≤x ≤1},求实数b 、c 的值;(2)若f (x )满足f (1)=0,且关于x 的方程f (x )+x +b =0的两个实数根分别在区间(-3,-2),(0,1)内,求实数b 的取值范围.解:(1)依题意,x 1=-1,x 2=1是方程x 2+2bx +c =0的两个根.由韦达定理,得⎩⎪⎨⎪⎧x 1+x 2=-2b ,x 1x 2=c .即⎩⎪⎨⎪⎧-2b =0,c =-1.所以b =0,c =-1.(2)由题知,f (1)=1+2b +c =0,所以c =-1-2b .记g (x )=f (x )+x +b =x 2+(2b +1)x +b +c =x 2+(2b +1)x -b -1,则⎩⎪⎨⎪⎧g-3=5-7b >0,g -2=1-5b <0,g 0=-1-b <0,g1=b +1>0,解得15<b <57,所以实数b 的取值范围为15<b <57.。

高考数学一轮复习第8讲 函数与方程

高考数学一轮复习第8讲 函数与方程

第8讲函数与方程1.函数的零点(1)函数零点的定义对于函数y=f(x)(x∈区间D),把使01f(x)=0的实数x叫做函数y=f(x)(x∈区间D)的零点.(2)三个等价关系方程f(x)=0有实数根⇔函数y=f(x)的图象与02x轴有交点⇔函数y=f(x)有03零点.(3)函数零点的判定(零点存在定理)如果函数y=f(x)在区间[a,b]上的图象是连续不断的一条曲线,并且有04 f(a)·f(b)<0,那么,函数y=f(x)在区间05(a,b)内有零点,即存在c∈(a,b),使得06f(c)=0,这个07c也就是方程f(x)=0的根.2.二次函数y=ax2+bx+c(a>0)的图象与零点的关系Δ>0Δ=0Δ<0 二次函数y=ax2+bx+c(a>0)的图象与x轴的交点08(x0),(x2,0)09(x1,0)无交点1,零点个数102111120有关函数零点的结论(1)若连续不断的函数f(x)在定义域上是单调函数,则f(x)至多有一个零点.(2)连续不断的函数,其相邻两个零点之间的所有函数值保持同号.(3)连续不断的函数图象通过零点时,函数值可能变号,也可能不变号.(4)函数的零点是实数,而不是点,是方程f(x)=0的实根.(5)由函数y=f(x)(图象是连续不断的)在闭区间[a,b]上有零点不一定能推出f(a)·f(b)<0,如图所示,所以f(a)·f(b)<0是y=f(x)在闭区间[a,b]上有零点的充分不必要条件.1.(2020·云南玉溪一中二调)函数f(x)=2x+3x的零点所在的一个区间是() A.(-2,-1) B.(-1,0)C.(0,1) D.(1,2)答案 B解析易知函数f(x)=2x+3x在定义域上单调递增,且f(-2)=2-2-6<0,f(-1)=2-1-3<0,f(0)=1>0,所以由函数零点存在定理得,零点所在的区间是(-1,0).故选B.2.已知函数y=f(x)的图象是连续不断的曲线,且有如下的对应值表:x 12345 6y 124.433-7424.5-36.7-123.6 则函数y=f(x)在区间[1,6]上的零点至少有()A.2个B.3个C.4个D.5个答案 B解析∵f(2)·f(3)<0,f(3)·f(4)<0,f(4)·f(5)<0,故函数f(x)在区间[1,6]上至少有3个零点.3.函数f (x )=|x -2|-ln x 在定义域内的零点的个数为( ) A .0 B .1 C .2 D .3答案 C解析 作出函数y =|x -2|与g (x )=ln x 的图象,如图所示.由图象可知两个函数的图象有两个交点,即函数f (x )在定义域内有2个零点.故选C .4.函数f (x )=e x +3x 的零点有________个. 答案 1解析 ∵f (x )=e x +3x 在R 上单调递增,且f (-1)=e -1-3<0,f (0)=1>0,∴函数f (x )有1个零点.5.(2020·河南信阳调研)若函数f (x )=3mx -4在[-2,0]上存在x 0,使f (x 0)=0,则实数m 的取值范围是________.答案 ⎝⎛⎦⎥⎥⎤-∞,-23解析 由已知得f (-2)·f (0)=(-6m -4)·(-4)≤0,解得m ≤-23,故实数m 的取值范围为⎝⎛⎦⎥⎥⎤-∞,-23.6.若函数f (x )=⎩⎪⎨⎪⎧ex ,x≤0,x2-1,x >0,则函数y =f (x )-1的零点是________.答案 0或2解析 要求函数y =f (x )-1的零点,则令y =f (x )-1=0,即f (x )=1,又因为f (x )=⎩⎪⎨⎪⎧ex ,x≤0,x2-1,x >0,①当x ≤0时,f (x )=e x ,由e x =1,解得x =0.②当x >0时,f (x )=x 2-1,由x 2-1=1,解得x =2(负值舍去).综上可知,函数y =f (x )-1的零点是0或2.考向一 函数零点所在区间的判断例1 (1)(2020·济南模拟)已知f (x )=x 3+x -4,则函数f (x )的零点所在区间是( ) A .(-1,0) B .(0,1) C .(1,2) D .(2,3)答案 C解析 由函数f (x )=x 3+x -4在定义域上单调递增,且f (1)=1+1-4=-2<0,f (2)=8+2-4=6>0,再根据函数零点存在定理可得零点所在区间是(1,2),故选C .(2)(2020·长春模拟)设函数f (x )=log 4x -⎝ ⎛⎭⎪⎪⎫14x ,g (x )=log x -⎝ ⎛⎭⎪⎪⎫14x 的零点分别是x 1,x 2,则( )A .x 1x 2=1B .0<x 1x 2<1C .1<x 1x 2<2D .x 1x 2>2 答案 B解析 由题意可得x 1是函数y =log 4x 的图象和y =⎝ ⎛⎭⎪⎪⎫14x 的图象的交点的横坐标,x 2是y =log x 的图象和函数y =⎝ ⎛⎭⎪⎪⎫14x 的图象的交点的横坐标,且x 1,x 2都是正实数,如图所示:故有log x 2>log 4x 1,故log 4x 1-log x 2<0,∴log 4x 1+log 4x 2<0,∴log 4(x 1x 2)<0,∴0<x 1x 2<1,故选B .判断函数零点所在区间的常用方法(1)定义法:利用函数零点存在定理,首先看函数y =f (x )在区间[a ,b ]上的图象是否连续,再看是否有f (a )·f (b )<0.若有,则函数y =f (x )在区间(a ,b )上必有零点.(2)解方程法:当对应方程易解时,可通过解方程确定方程是否有根落在给定区间上.(3)数形结合法:画出相应的函数图象,通过观察图象与x 轴在给定区间上是否有交点来判断,或者转化为两个函数图象在给定区间上是否有交点来判断.1.已知函数f (x )=ln x +3x -8的零点x 0∈[a ,b ],且b -a =1,a ,b∈N *,则a +b =( )A .0B .2C .5D .7答案 C解析 ∵f (2)=ln 2+6-8=ln 2-2<0,f (3)=ln 3+9-8=ln 3+1>0,且函数f (x )=ln x +3x -8在(0,+∞)上单调递增,∴x 0∈[2,3],即a =2,b =3,∴a +b =5.2.若a <b <c ,则函数f (x )=(x -a )(x -b )+(x -b )(x -c )+(x -c )(x -a )的两个零点分别位于区间( )A .(a ,b )和(b ,c )内B .(-∞,a )和(a ,b )内C .(b ,c )和(c ,+∞)内D .(-∞,a )和(c ,+∞)内答案 A解析 函数y =f (x )是图象开口向上的二次函数,最多有两个零点,由于a <b <c ,则a -b <0,a -c <0,b -c <0,因此f (a )=(a -b )(a -c )>0,f (b )=(b -c )(b -a )<0,f (c )=(c -a )(c -b )>0.所以f (a )f (b )<0,f (b )f (c )<0,即f (x )在区间(a ,b )和区间(b ,c )内各有一个零点.考向二 函数零点个数的讨论例2 (1)(2020·青岛模拟)已知图象连续不断的函数f (x )的定义域为R ,f (x )是周期为2的奇函数,y =|f (x )|在区间[-1,1]上恰有5个零点,则f (x )在区间[0,2020]上的零点个数为( )A .5050B .4041C .4040D .2020答案 B解析 因为图象连续不断的函数f (x )的定义域为R ,f (x )是周期为2的奇函数,y =|f (x )|在区间[-1,1]上恰有5个零点,所以f (0)=0,f (1)=0,x ∈(0,1)时,函数有1个零点,所以x ∈(0,1]时,函数有2个零点,所以x ∈(0,2020]时,函数有4040个零点,则f (x )在区间[0,2020]上的零点个数为4041.故选B .(2)已知函数f (x )=⎩⎪⎨⎪⎧x +2,x <0,x2+12x ,x≥0,则函数y =f (f (x ))-1的零点个数为( )A .2B .3C .4D .5答案 B解析 由题意,令f (f (x ))-1=0,得f (f (x ))=1,令f (x )=t ,由f (t )=1,得t =-1或t =-1+174,作出函数f (x )的图象,如图所示,结合函数f (x )的图象可知,f (x )=-1有1个解,f (x )=-1+174有2个解,故y =f (f (x ))-1的零点个数为3,故选B .确定函数零点个数的方法及思路(1)解方程法:令f (x )=0,如果能求出解,则有几个解就有几个零点.(2)函数零点存在定理法:利用定理不仅要求函数在区间[a ,b ]上是连续不断的曲线,且f (a )·f (b )<0,还必须结合函数的图象与性质(如单调性、奇偶性、周期性、对称性)才能确定函数有多少个零点或零点值所具有的性质.(3)数形结合法:转化为两个函数的图象的交点个数问题.先画出两个函数的图象,看其交点的个数,其中交点的横坐标有几个不同的值,就有几个不同的零点.3.函数f (x )=x 2-⎝ ⎛⎭⎪⎪⎫12|x |的零点个数为( )A .0B .1C .2D .3答案 C解析 由f (x )=x 2-⎝ ⎛⎭⎪⎪⎫12|x |,得f (-x )=(-x )2-⎝ ⎛⎭⎪⎪⎫12|-x |=f (x ),∴f (x )为偶函数,且在(0,+∞)上单调递增,又f (0)·f (1)<0,∴f (x )在(0,+∞)上有且仅有1个零点.∴函数f (x )的零点个数为2,故选C .4.函数f (x )=2x |log 0.5x |-1的零点个数为( ) A .1 B .2 C .3D .4答案 B解析 由2x |log 0.5x |-1=0得|log 0.5x |=⎝ ⎛⎭⎪⎪⎫12x ,作出y =|log 0.5x |和y =⎝ ⎛⎭⎪⎪⎫12x 的图象,如图所示,则两个函数图象有两个交点,故函数f (x )=2x |log 0.5x |-1有两个零点.多角度探究突破考向三 函数零点的应用 角度1 利用零点比较大小例3 (1)已知a 是函数f (x )=2x -log x 的零点,若0<x 0<a ,则f (x 0)的值满足( ) A .f (x 0)=0 B .f (x 0)>0 C .f (x 0)<0D .f (x 0)与0的大小关系不确定 答案 C解析 在同一平面直角坐标系中作出函数y =2x ,y =log x 的图象(图略),由图象可知,当0<x 0<a 时,有2x 0<log x 0,即f (x 0)<0.(2)已知函数f (x )=x +2x ,g (x )=x +ln x ,h (x )=x -x -1的零点分别为x 1,x 2,x 3,则x 1,x 2,x 3的大小关系是( )A .x 2<x 1<x 3B .x 1<x 2<x 3C .x 1<x 3<x 2D .x 3<x 2<x 1答案 B解析 令y 1=2x ,y 2=ln x ,y 3=-x -1,因为函数f (x )=x +2x ,g (x )=x +ln x ,h (x )=x -x -1的零点分别为x 1,x 2,x 3,则y 1=2x ,y 2=ln x ,y 3=-x -1与y =-x 的图象的交点的横坐标分别为x 1,x 2,x 3,在同一平面直角坐标系内分别作出函数y 1=2x ,y 2=ln x ,y 3=-x -1及y =-x 的图象如图,结合图象可得x 1<x 2<x 3,故选B .在同一平面直角坐标系内准确作出已知函数的图象,数形结合,对图象进行分析,找出零点的范围,进行大小比较.5.已知函数f (x )=⎝ ⎛⎭⎪⎪⎫15x -log 3x ,若实数x 0是方程f (x )=0的解,且x 0<x 1,则f (x 1)的值( )A .恒为负B .等于零C .恒为正D .不大于零答案 A解析 由于函数f (x )=⎝ ⎛⎭⎪⎪⎫15x -log 3x 在定义域内是减函数,于是,若f (x 0)=0,当x 0<x 1时,一定有f (x 1)<0.故选A .6.已知x 0是函数f (x )=2x+11-x的一个零点.若x 1∈(1,x 0),x 2∈(x 0,+∞),则( )A .f (x 1)<0,f (x 2)<0B .f (x 1)<0,f (x 2)>0C .f (x 1)>0,f (x 2)<0D .f (x 1)>0,f (x 2)>0答案 B解析 在同一平面直角坐标系内作出函数y =2x和函数y =1x -1的图象,如图所示.由图象可知函数y =2x和函数y =1x -1的图象只有一个交点,即函数f (x )=2x +11-x只有一个零点x 0,且x 0>1.因为x 1∈(1,x 0),x 2∈(x 0,+∞),则由函数图象可知,f (x 1)<0,f (x 2)>0.角度2 由函数零点存在情况或个数求参数范围 例4 (1)(2020·海南省新高考诊断性测试)已知函数 f (x )=⎩⎪⎨⎪⎧-x2-4x +1,x≤0,2-2-x ,x>0,若关于x 的方程[f (x )-1]·[f (x )-m ]=0恰有5个不同的实根,则m 的取值范围为( )A .(1,2)B .(1,5)C .(2,3)D .(2,5)答案 A解析 由[f (x )-1][f (x )-m ]=0,得f (x )=1或f (x )=m ,作出y =f (x )的图象,如图所示.由图可知,方程f (x )=1有2个实根,故方程f (x )=m 有3个实根,故m 的取值范围为(1,2).(2)(2020·天津高考)已知函数f (x )=⎩⎪⎨⎪⎧x3,x≥0,-x ,x <0.若函数g (x )=f (x )-|kx 2-2x |(k ∈R )恰有4个零点,则k 的取值范围是( )A .⎝ ⎛⎭⎪⎪⎫-∞,-12∪(22,+∞)B .⎝ ⎛⎭⎪⎪⎫-∞,-12∪(0,22)C .(-∞,0)∪(0,22)D .(-∞,0)∪(22,+∞)答案 D解析 注意到g (0)=0,所以要使g (x )恰有4个零点,只需方程|kx -2|=错误!恰有3个实根即可,令h (x )=错误!,即y =|kx -2|与h (x )=错误!的图象有3个不同交点.因为h (x )=错误!=错误!当k =0时,y =2,如图1,y =2与h (x )=错误!的图象有1个交点,不满足题意;当k <0时,如图2,y =|kx -2|与h (x )=错误!的图象恒有3个不同交点,满足题意;当k >0时,如图3,当y =kx -2与y =x 2的图象相切时,联立方程得x 2-kx +2=0,令Δ=0得k 2-8=0,解得k =22(负值舍去),所以k >22.综上,k的取值范围为(-∞,0)∪(22,+∞).故选D .已知函数零点求参数范围的常用方法(1)直接法:直接根据题设条件构建关于参数的不等式,再通过解不等式确定参数范围.(2)分离参数法:先将参数分离,转化成求函数值域问题加以解决.(3)数形结合法:先对解析式变形,在同一平面直角坐标系中,作出函数的图象,然后数形结合求解.7.当x ∈[1,2]时,若函数y =12x 2与y =a x (a >0)的图象有交点,则a 的取值范围是________.答案 ⎣⎢⎢⎡⎦⎥⎥⎤12,2 解析 当a =1时,显然成立.当a >1时,如图①所示,使得两个函数图象有交点,需满足12×22≥a 2,即1<a ≤2;当0<a <1时,如图②所示,要使两个函数图象有交点,需满足12×12≤a 1,即12≤a <1,综上可知,a ∈⎣⎢⎢⎡⎦⎥⎥⎤12,2. 8.若函数f (x )=4x -2x -a ,x ∈[-1,1]有零点,则实数a 的取值范围是________. 答案 -14,2解析 因为函数f (x )=4x -2x -a ,x ∈[-1,1]有零点,所以方程4x -2x -a =0在[-1,1]上有解,即方程a =4x -2x 在[-1,1]上有解.方程a =4x -2x 可变形为a =⎝ ⎛⎭⎪⎪⎫2x -122-14,因为x ∈[-1,1],所以2x∈12,2,所以⎝ ⎛⎭⎪⎪⎫2x -122-14∈-14,2.所以实数a 的取值范围是-14,2.一、单项选择题1.已知函数f (x )=6x -log 2x ,在下列区间中,包含f (x )零点的区间是( )A .(0,1)B .(1,2)C .(2,4)D .(4,+∞)答案 C解析 因为f (1)=6-log 21=6>0,f (2)=3-log 22=2>0,f (4)=32-log 24=-12<0,所以函数f (x )的零点所在区间为(2,4).故选C .2.(2021·长郡中学高三月考)设函数f (x )=x +log 2x -m ,则“函数f (x )在⎝ ⎛⎭⎪⎪⎫12,4上存在零点”是“m ∈(1,6)”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件答案 B解析 函数f (x )=x +log 2x -m 在区间(0,+∞)上单调递增,由函数f (x )在⎝ ⎛⎭⎪⎪⎫12,4上存在零点,得f ⎝ ⎛⎭⎪⎪⎫12=-12-m <0,f (4)=6-m >0,解得-12<m <6,故“函数f (x )在⎝ ⎛⎭⎪⎪⎫12,4上存在零点”是“m ∈(1,6)”的必要不充分条件.故选B . 3.(2020·北京市大兴区一模)下列函数中,在区间(0,+∞)上单调递增且存在零点的是( )A .y =e xB .y =x +1C .y =-log xD .y =(x -1)2答案 C解析 函数y =e x >0恒成立,不存在零点,即A 不符合题意;函数y =x +1>0恒成立,不存在零点,即B 不符合题意;函数y =-log x =log 2x 在(0,+∞)上单调递增,且当x =1时,y =0,所以函数的零点为x =1,即C 正确;函数y =(x -1)2在(0,1)上单调递减,在(1,+∞)上单调递增,即D 不符合题意.故选C .4.函数f (x )=x -cos x 在[0,+∞)内( )A .没有零点B .有且仅有一个零点C .有且仅有两个零点D .有无穷多个零点答案 B解析 当x ∈(0,1]时,因为f ′(x )=12x+sin x ,x >0,sin x >0,所以f ′(x )>0,故f (x )在[0,1]上单调递增,且f (0)=-1<0,f (1)=1-cos1>0,所以f (x )在[0,1]内有唯一零点.当x >1时,f (x )=x -cos x >0,故函数f (x )在[0,+∞)上有且仅有一个零点,故选B .5.函数f (x )=x cos2x 在区间[0,2π]上的零点的个数为( ) A .2 B .3 C .4 D .5答案 D解析 f (x )=x cos2x =0⇒x =0或cos2x =0,又cos2x =0在[0,2π]上的根有π4,3π4,5π4,7π4,共4个,故f (x )有5个零点. 6.若x 0是方程⎝ ⎛⎭⎪⎪⎫12x =x 的解,则x 0属于区间( )A .⎝ ⎛⎭⎪⎪⎫23,1B .⎝ ⎛⎭⎪⎪⎫12,23C .⎝ ⎛⎭⎪⎪⎫13,12D .⎝⎛⎭⎪⎪⎫0,13答案 C解析令g (x )=⎝ ⎛⎭⎪⎪⎫12x ,f (x )=x ,则g (0)=1>f (0)=0,g ⎝ ⎛⎭⎪⎪⎫12=⎝ ⎛⎭⎪⎪⎫12<f ⎝ ⎛⎭⎪⎪⎫12=⎝ ⎛⎭⎪⎪⎫12,g ⎝ ⎛⎭⎪⎪⎫13=⎝ ⎛⎭⎪⎪⎫12>f ⎝ ⎛⎭⎪⎪⎫13=⎝ ⎛⎭⎪⎪⎫13,所以由图象关系可得13<x 0<12.7.f (x )=3x -log 2(-x )的零点的个数是( ) A .0 B .1 C .2 D .3答案 B解析 f (x )的定义域为(-∞,0),且f (x )在(-∞,0)上单调递增,f (-1)=13>0,f (-2)=-89<0,所以函数f (x )=3x -log 2(-x )有且仅有1个零点,故选B .8.[x ]表示不超过x 的最大整数,例如[2.9]=2,[-4.1]=-5,已知f (x )=x -[x ](x ∈R ),g (x )=log 4(x -1),则函数h (x )=f (x )-g (x )的零点个数是( )A .1B .2C .3D .4答案 B解析 作出函数f (x )与g (x )的图象如图所示,发现有两个不同的交点,故选B .二、多项选择题9.(2020·山东德州高三模拟)已知函数f (x )=e |x |+|x |.则关于x 的方程f (x )=k 的根的情况,下列结论正确的是( )A .当k =1时,方程有一个实根B .当k >1时,方程有两个实根C .当k =0时,方程有一个实根D.当k≥1时,方程有实根答案ABD解析方程f(x)=k化为e|x|=k-|x|,设y1=e|x|,y2=k-|x|.y2=k-|x|表示斜率为1或-1的平行折线系,折线与曲线y1=e|x|恰好有一个公共点时,k=1.如图,若关于x 的方程f(x)=k有两个不同的实根,则实数k的取值范围是(1,+∞).故选ABD.10.(2021·湖南郴州高三质检)已知函数f(x)=|2x-2|+b的两个零点分别为x1,x2(x1>x2),则下列结论正确的是()A.1<x1<2 B.x1+x2<1C.x1+x2<2 D.x1<1答案AC解析函数f(x)=|2x-2|+b有两个零点,即y=|2x-2|的图象与直线y=-b有两个交点,交点的横坐标就是x1,x2(x1>x2),在同一平面直角坐标系中画出y=|2x-2|与y =-b的图象如图所示,可知1<x1<2,2x1-2+2x2-2=0,即4=2x1+2x2>22x1×2x2=22x1+x2,所以2x1+x2<4,所以x1+x2<2.11.(2020·海南中学高三月考)在数学中,布劳威尔不动点定理是拓扑学里一个非常重要的不动点定理,它可应用到有限维空间,并构成一般不动点定理的基石.布劳威尔不动点定理得名于荷兰数学家鲁伊兹·布劳威尔(L.E.J.Brouwer),简单地讲就是对于满足一定条件的连续函数f (x ),存在一个点x 0,使得f (x 0)=x 0,那么我们称该函数为“不动点”函数,下列为“不动点”函数的是( )A .f (x )=2x +xB .f (x )=x 2-x -3C .f (x )=⎩⎪⎨⎪⎧2x2-1,x≤1,|2-x|,x >1D .f (x )=1x-x答案 BCD解析 根据定义可知,若f (x )有不动点,则f (x )=x 有解.对于A ,令2x +x =x ,所以2x =0,此时无解,故f (x )不是“不动点”函数;对于B ,令x 2-x -3=x ,所以x =3或x =-1,所以f (x )是“不动点”函数;对于C ,当x ≤1时,令2x 2-1=x ,所以x =-12或x =1,所以f (x )是“不动点”函数;对于D ,令1x -x =x ,所以x =±22,所以f (x )是“不动点”函数.故选BCD .12.(2020·山东临沂高三模拟)定义域和值域均为[-a ,a ]的函数y =f (x )和y =g (x )的图象如图所示,其中a >c >b >0,给出下列四个结论,其中正确的是( )A .方程f (g (x ))=0有且仅有三个解B .方程g (f (x ))=0有且仅有四个解C .方程f (f (x ))=0有且仅有八个解D .方程g (g (x ))=0有且仅有一个解 答案 AD解析 由图象可知对于函数y =f (x ),当-a ≤y <-c 时,方程有一解,当y =-c 时,方程有两解,当-c <y <c 时方程有三解,当y =c 时,方程有两解,当c <y ≤a时,方程有一解,对于函数y =g (x ),由图象可知,函数g (x )为单调递减函数,当-a ≤y ≤a 时,方程有唯一解.对于A ,设t =g (x ),则由f (g (x ))=0,即f (t )=0,此时t =-b 或t =0或t =b ,即t =g (x )有三个不同的值,又由函数g (x )为单调递减函数且a >c >b >0,所以方程f (g (x ))=0有三个不同的解,所以是正确的;对于B ,设t =f (x ),则由g (f (x ))=0,即g (t )=0,此时只有唯一的解t =b ,即方程b =f (x ),此时有三解,所以不正确;对于C ,设t =f (x ),则由f (f (x ))=0,即f (t )=0,此时t =-b 或t =0或t =b ,当t =-b,0或b 时,方程t =f (x )均有三个不同的解,则f (f (x ))=0有九个解,所以不正确;对于D ,设t =g (x ),则由g (g (x ))=0,即g (t )=0,此时t =b ,对于方程b =g (x ),只有唯一的解,所以是正确的.故选AD .三、填空题13.函数f (x )=ax +1-2a 在区间(-1,1)上存在一个零点,则实数a 的取值范围是________.答案 ⎝ ⎛⎭⎪⎪⎫13,1解析 ∵函数f (x )的图象为直线,由题意可得f (-1)f (1)<0,∴(-3a +1)(1-a )<0,解得13<a <1,∴实数a 的取值范围是⎝ ⎛⎭⎪⎪⎫13,1.14.已知f (x )=⎩⎪⎨⎪⎧xln x ,x>0,x2-x -2,x≤0,则其零点为________.答案 -1,1解析 当x >0时,由f (x )=0,即x ln x =0得ln x =0,解得x =1;当x ≤0时,由f (x )=0,即x 2-x -2=0,也就是(x +1)(x -2)=0,解得x =-1或x =2.因为x ≤0,所以x =-1.综上,函数的零点为-1,1.15.已知函数f (x )=⎩⎪⎨⎪⎧|x|,x≤m,x2-2mx +4m ,x>m ,其中m >0.若存在实数b ,使得关于x 的方程f (x )=b 有三个不同的实根,则m 的取值范围是________.答案 (3,+∞)解析 f (x )的图象如图所示,若存在实数b ,使得关于x 的方程f (x )=b 有三个不同的实根,只需4m -m 2<m ,解得m >3或m <0,又m >0,所以m >3.16.(2020·聊城二模)已知f (x )=⎩⎪⎨⎪⎧1-ln x ,0<x≤1,-1+ln x ,x>1,若f (a )=f (b ),则1a +1b的最小值为________.答案 1+1e2解析 已知分段函数f (x )在两段区间内都是单调函数,若f (a )=f (b ),则必然分属两段内,不妨设0<a ≤1,b >1,则f (a )=1-ln a ,f (b )=-1+ln b ,即1-ln a =-1+ln b ⇒ln a +ln b =ln (ab )=2⇒ab =e 2.当1a +1b =be2+1b =1e2⎝ ⎛⎭⎪⎪⎫b +e2b 时,令g (b )=1e2⎝ ⎛⎭⎪⎪⎫b +e2b ,b ∈(1,+∞),由双勾函数性质可知g (b )在区间(1,e)上单调递减,在区间(e ,+∞)上单调递增,所以g (b )min =g (e)=2e ,此时a =e(不符合题意),当1a +1b =1a +ae2=1e2⎝ ⎛⎭⎪⎪⎫a +e2a 时,令h (a )=1e2⎝ ⎛⎭⎪⎪⎫a +e2a ,a ∈(0,1],由双勾函数性质可知h (a )在区间(0,1]上单调递减,所以h (a )min =h (1)=1+1e2,此时a =1,b =e 2.故1a +1b的最小值为1+1e2.四、解答题17.函数f(x)的定义域为实数集R,且f(x)=错误!对任意的x∈R都有f(x+2)=f(x-2).若在区间[-5,3]上函数g(x)=f(x)-mx+m恰好有三个不同的零点,求实数m的取值范围.解因为对任意的x∈R都有f(x+2)=f(x-2),所以函数f(x)的周期为4.由在区间[-5,3]上函数g(x)=f(x)-mx+m有三个不同的零点,知函数f(x)与函数h(x)=mx-m 的图象在[-5,3]上有三个不同的交点.在同一平面直角坐标系内作出函数f(x)与h(x)在区间[-5,3]上的图象,如图所示.由图可知1-0-1-1≤m<1-0-5-1,即-12≤m<-16.21 / 21。

(完整版)方程与函数的区别

(完整版)方程与函数的区别

方程与函数的区别?代数式:用运算符号把数或表示数的字母连接而成的式子,叫代数式。

函数:如果对于一个变量(比如x)在某一范围内的每一个确定的值,变量(比如y)都有唯一确定的值和它对应,那么,就把y叫做x的函数。

函数式:用解析法(公式法)表示函数的式子叫函数式。

方程:含有未知数的等式叫方程。

解析式表示因变量与自变量的关系。

联系:函数式和方程式都是由代数式组成的。

没有代数式,就没有函数和方程.方程只是函数解析式在某一特定函数值的解。

方程表示特定的因变量的自变量解。

如5x+6=7这是方程; y=5x+6这是解析式。

区别:1。

概念不一样。

2。

代数式不用等号连接。

3。

函数表示两个变量之间的关系。

因变量(函数)随变量(自变量)的变化而变化.4.方程是含有未知数的等式.其未知数(变量)的个数不固定.未知数之间不存在自变和因变的关系. 方程重在说明几个未知数之间的在数字间的关系;方程可以通过求解得到未知数的大小;方程可以通过初等变换改变等号左右两边的方程。

方程的解是固定的,但函数无固定解值解.式;函数只可以化简,但不可以对函数进行初等变换。

5。

函数和方程本质区别就是:方程中未知数x是一个常量(虽然方程可能有多个解),函数中x是变量,因此y也是变量,并且是由于x的变化而变化。

6。

函数:重在说明某几个自变量的变化对因变量的影响;特定的自变量的值就可以决定因变量的值;就像平面解析几何里圆就是方程、区别在于函数就看他们的值是否一一对应。

就像圆的方程(x—a)^2+(y—b)^2=r^2就是方程,它们的值不是一一对应关系,所以不是函数是方程的一种,函数强调的是一一对应,及1个X值(自变量)只能有一个Y值(应变量)与之对应比如:y=x+1 它是函数, y^2=x 它不是函数,但它是方程.7.函数和方程是数学中的两个基本概念,在许多情况下它们可以相互转化。

例如在一元函数y = f(x)用一个解析式表示并且不需要区分自变量和因变量(函数)时,这个函数式就可以看作一个二元方程;反之,能够由方程F(x, y) = 0确定的函数关系称为隐函数([4], p。

函数与方程的紧密联系

函数与方程的紧密联系

函数与方程的紧密联系1. 引言函数和方程是数学中两个基本概念,它们在解决数学问题和实际应用中发挥着重要的作用。

函数是一种映射关系,它将一个集合中的元素映射到另一个集合中的元素;而方程则是等式的表示形式,在其中未知数与已知数之间建立了关系。

尽管它们在概念上有所不同,但函数和方程之间存在着紧密的联系。

本文将深入探讨函数与方程之间的这种联系,并提供一些观点和理解。

2. 函数与方程的定义及基本属性2.1 函数的定义函数可以看作是一种映射关系,它将集合A中的元素通过某种规则映射到集合B中的元素,记作f: A → B。

其中,A称为定义域,B称为值域。

函数的定义可以采用不同的表达方式,如显式表达、隐式表达或参数表达式。

2.2 方程的定义方程是等式的表达形式,其中包含一个或多个未知数和已知数之间的关系。

方程可以是线性的、非线性的,也可以是代数方程、函数方程等等。

3. 函数与方程的关系3.1 函数的图像与方程的解的关系函数的图像是函数在坐标平面上的表示,它展示了函数的性质和行为。

而方程的解是满足方程等式的未知数的取值。

函数的图像与方程的解之间存在着密切的联系。

对于给定的函数f(x),我们可以将其转化为方程f(x) = 0,并求解这个方程,得到函数的零点或根,也就是函数的图像与x轴的交点。

3.2 方程与函数图像的交点方程和函数图像的交点是方程的解和函数的零点。

通过解方程和求函数的零点,我们可以找到方程与函数图像的交点。

这些交点在坐标平面上有特定的位置和特征,它们揭示了方程和函数图像之间的关系。

4. 函数与方程的应用函数和方程在数学和现实生活中有广泛的应用。

例如:4.1 函数在数学分析中的应用函数作为数学分析的基础,广泛应用于微积分、实分析和复分析等领域。

函数的性质与方程的解密切相关,在数学分析中,我们需要研究函数的连续性、可导性以及函数的极值等等,这些问题与方程的解有着紧密的联系。

4.2 方程在物理学中的应用方程在物理学中有着重要的应用。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

函数与方程
专题一:确定零点个数
例1:(x)2sin x x 1f π=-+的零点个数为
例2:设函数⎪⎩⎪⎨⎧≥-<--=2),2(2
12,11)(x x f x x x f ,则方程01)(=-x xf 根的个数为 。

例 3.函数21,0()log ,0
x x f x x x +≤⎧=⎨
>⎩,则函数[()]1y f f x =+的所有零点所构成的集合为________.
例4.若函数()|21|f x x =-,则函数()()()ln g x f f x x =+在(0,1)上不同的零点个数为 .
例5. 关于x 的方程()(0)x a x a a a --=≠的实数解的个数为 。

专题二:已知零点个数求参数
例2、函数2|1|y x =-和函数y x k =+的图像恰有三个交点,则k 的值是_______.
变式1:若函数()22
241f x x a x a =++-的零点有且只有一个,则实数a =___________.
变式2:方程t xe x
=||有3个根,确定t 的范围
变式3:关于x 的方程|x|=ax+1只有正根没有负根,求a 的取值范围
练习:(1)直线1y x =+与曲线2||194
y x x -=的公共点的个数是_______.
(2)若关于x 的不等式||22
a x x --<至少有一个负数解,则实数a 的取值范围是
(3)若函数1log 2)(|3|+-=-x x f a x 无零点,则a 的取值范围为_______.
(4)已知f (x )=|x 2-4|+x 2+kx ,若f (x )在(0,4)上有两个不同的零点,则k 的取值范围是 .
(5):若关于x 的方程
2||1
x kx x =-有四个不同的实数根,则实数k 的取值范围是 .
(6)已知函数⎩⎨⎧<≥=)
0()-(log )0(3)(3x x x x f x ,函数)()()()(2R t t x f x f x g ∈++=.关于)
(x g 的零点,下列判断正确..
的是 (1).若)(,4
1x g t =有一个零点 (2).若)(,412-x g t <<有两个零点 (3).若)(,2-x g t =有三个零点 (4).若)(,2-x g t <有四个零点
(7)定义在R 上的奇函数)(x f y =满足0)3(=f ,且不等式)()(x f x x f '->在),0(+∞上恒成立,则函数)(x g =1lg )(++x x xf 的零点的个数为
(8)若函数x x x f 3)(3-=,()(())h x f f x c =-,其中[22]c ∈-,
,求函数()y h x =的零点个数
专题二:已知零点个数求参数范围
例1:已知函数x e x x x f )2()(2-=与函数2)(-=k x g 有两个交点,求k 的范围
例2:已知函数f (x )=⎩⎪⎨⎪⎧
2-x -1,x ≤0,f (x -1),x >0.若方程f (x )=x +a 有且只有两个不相等的实数根,则实数a 的取值范围是________.
例3:已知f (x )是定义在R 上的奇函数,当2
01()0x f x x x ≤≤=>时,,当时, (1)()(1)f x f x f +=+,若直线y kx =与函数()y f x =的图象恰有3个不同的公共点,则实数k 的取值范围为 .
例 4.设定义域为R 的函数1251,0()44,0
x x f x x x x -⎧-≥⎪=⎨++<⎪⎩,若关于x 的方程22()(21)()0f x m f x m -++=有5个不同的实数解,则m =
例5.已知函数)()()(2R t t t x x f t ∈--=,设⎩⎨⎧≥<=<)
()(),()()(),()(,x f x f x f x f x f x f x f b a b a b b a a ,若方程
0)(=-++b a x x f 有四个不同的根,则a b -的取值范围是 。

练习1:若方程()lg 2lg 1kx x =+仅有一个实根,那么k 的取值范围是
练习2:已知函数()x x
f x e =∈ (x R),若关于x 方程2()()10f x mf x m -+-=恰有4个不
相等的实数根,则实数m 的取值范围
思考:1.函数f (x )=23420122013123420122013x x x x x x ⎛⎫+-+-+-+ ⎪⎝⎭
cos2x 在区间[-3,3]上的零点的个数为
2.已知函数 2342013()12342013x x x x f x x =+-+-+⋅⋅⋅+,2342013
()12342013
x x x x g x x =-+-+-⋅⋅⋅-, 设函数()(3)(4)F x f x g x =+⋅-,且函数()F x 的零点均在区间),,](,[Z ∈<b a b a b a 内,则-b a 的最小值为。

相关文档
最新文档