集合的定义及表示(第1课时)
高中数学必修一必修1全章节ppt课件幻灯片
![高中数学必修一必修1全章节ppt课件幻灯片](https://img.taocdn.com/s3/m/5566d566168884868762d69a.png)
(2)方程x2+2x+1=0的解集中有两个元素. (3)组成单词china的字母组成一个集合.
【解题探究】 1.集合中的元素有哪些特性? 2.集合中的元素能重复吗?
探究提示: 1.集合中的元素有三个特性,即确定性、互异性和无序性. 2.构成集合的元素必须是不相同的,即集合元素具有互异性, 相同的元素只能算作一个. 【解析】1.①不正确.因为成绩较好没有明确的标准. ②正确.中国海洋大学2013级大一新生是确定的,明确的. ③正确.因为参加2012年伦敦奥运会的所有国家是确定的, 明确的. ④不正确.因为高科技产品的标准不确定. 答案:②③
(3)无序性:集合与其中元素的排列顺序无关,如由元素a,b, c与由元素b,a,c组成的集合是相等的集合.这个性质通常 用来判断两个集合的关系.
3.元素和集合之间的关系 (1)根据集合中元素的确定性可知,对任何元素a和集合A,在 a∈A和a∉A两种情况中有且只有一种成立. (2)符号“∈”和“∉”只是表示元素与集合之间的关系. 4.对一些常用的数集及其记法要关注的两点
第一章 集合与函数概念 1.1 集合
1.1.1 集合的含义与表示 第1课时 集合的含义
一、元素与集合 1.定义: (1)元素:一般地,把所研究的_对__象_统称为元素,常用小写的 拉丁字母a,b,c,…表示. (2)集合:一些元素组成的总体,简称为_集_,常用大写拉丁字 母A,B,C,…表示. 2.集合相等:指构成两个集合的元素是_一__样_的. 3.集合中元素的特性:_确__定__性_、_互_异__性__和_无__序__性__.
类型 一 集合的判定
【典型例题】
1.下列说法中正确的序号是
.
①高一(四)班学习成绩较好的同学组成一个集合;
高中数学 第一章 集合(含解析)苏教版必修1
![高中数学 第一章 集合(含解析)苏教版必修1](https://img.taocdn.com/s3/m/c84b9573b90d6c85ec3ac698.png)
第1课时集合的含义及其表示(1)教学过程一、问题情境(1) 小于10的所有偶数;(2) 中国的直辖市;(3) 单词book中的字母;(4) 到一个角的两边距离相等的所有的点;(5) 方程x2-5x+6=0的所有实数根;(6) 不等式x-3>0的所有解;(7) 某高中全体高一学生.二、数学建构问题1以上实例有什么共同特征?(引导学生说出:一定范围内,确定的,不同对象.然后通过学生回答,总结出集合的含义)一定范围内某些确定的、不同的对象的全体构成一个集合.集合常用大写的拉丁字母来表示,如集合A、集合B.集合中的每一个对象称为该集合的元素,简称元.集合的元素常用小写的拉丁字母来表示,如元素a、元素b.问题2回答下列问题:(1) 已知A={1, 3},问:3, 5哪个是A的元素?(2) “所有素质好的人”能否构成一个集合A?(3) A={2, 2, 4}表示是否准确?(4) A={太平洋,大西洋},B={大西洋,太平洋}是否表示同一个集合?由上述问题可以归纳出集合中元素的特征:①确定性:设A是一个给定的集合,x是某一个具体对象,则“x是A的元素”或者“x不是A的元素”这两种情况必有一种且只有一种成立.②互异性:一个给定集合中的元素,指属于这个集合的互不相同的个体(对象),因此,同一集合中不能重复出现同一元素.③无序性:一般不考虑元素之间的顺序,但在表示数列之类的特殊集合时,通常按照由小到大的数轴顺序书写.问题3元素与集合之间有怎样的关系?解如果a是集合A中的元素,就记作a∈A,读作“a属于A”;如果a不是集合A中的元素,就记作a∉A或a⋷A,读作“a不属于A”.问题4常用的数集有哪些?它们分别用什么数学符号表示?解自然数集(非负整数集):N,正整数集:N*或N+,整数集:Z,有理数集:Q,实数集:R.问题5集合的表示方法有哪些?(1) 列举法:将集合的元素一一列举出来,并置于“{}”中,元素之间用逗号分隔.列举时与元素次序无关,如{北京,上海,天津,重庆}.集合的相等关系:如果两个集合所含的元素完全相同,那么称这两个集合相等,如{北京,上海,天津,重庆}={天津,重庆,北京,上海}.思考“问题情境”中的集合都能用列举法表示吗?如果能,请表示出来.(2) 描述法:将集合中所有元素都具有的性质(满足的条件)表示出来,写成{x|p(x)}的形式.{x|p(x)}中x为集合的代表元素,p(x)指元素x具有的性质,如{x|x为中国的直辖市},{x|x-3>0, x∈R}. (3) Venn图:有时用Venn图示意集合(如图1),更显直观.(图1)问题6按照元素的个数,集合该怎样分类?(1) 有限集:含有有限个元素的集合称为有限集.(2) 无限集:含有无限个元素的集合称为无限集.(3) 空集:不含任何元素的集合称为空集,记作⌀,如{x|x2+x+1=0, x∈R}=⌀.三、数学运用【例1】下列各组对象能否构成集合:(1) 所有的好人;(2) 小于2012的数;(3) 和2012非常接近的数;(4) 小于5的自然数;(5) 不等式2x+1>7的整数解;(6) 方程x2+1=0的实数解. (见学生用书课堂本P1~2)[处理建议]引导学生根据定义判断.[规范板书]解(1)(3)不符合集合中元素的确定性,因此,只有(2)(4)(5)(6)能够构成集合.[题后反思]解决这类题目要抓住集合中元素的两个特征:确定性,互异性.【例2】用符号“∈”或“∉”填空:-错误!未找到引用源。
集合的定义及表示(第1课时)
![集合的定义及表示(第1课时)](https://img.taocdn.com/s3/m/762909a86bec0975f465e2ac.png)
目录及提示:点选左侧选项进入相应环节.
一 学习目标 二 知识铺垫 三 知识引入 四 知识创新 五 知识强化 六 知识总结
一 学习目标
1. 通过实例了解集合的含义;体会集合元素与集合 之间的“属于”关系.
2. 通过实例理解集合元素的性质并且熟练判断集 合与集合的元素.
用小写的拉丁字母a,b,c······表示集合中的元素.
如果a是集合A的元素,就说a属于(belong to)集合A记
作
;如果a不是集合A的元素,就说a不属于
(not belong to)集合A记作
.
常用数集的记法:
非负整数集(自然数集):__N___
练
正整数集:_N_*_或__N__+_ 整数集:___Z___
对于上面能够组成集合的情况,你能不能说出这 些集合的元素是什么?
知识引入 四 知识创新 五 知识强化 六 知识总结
五 知识强化
练习2 用合适的符号填空: 1. 1__N 1__Z 1__Q 1__R 2. -1__N -1__Z -1__Q -1__R 3. 0.5__N 0.5__Z 0.5__Q 0.5__R 4. π __N π__Z π__Q π__R
一 学习目标 二 知识铺垫 三 知识引入 四 知识创新 五 知识强化 六 知识总结
四 知识创新
通过上面的分析,我们可以知道:例1至例4、例7 所列举的元素组成的集合元素个数是有限的;而 例5、例6、例8所列举的元素组成的集合元素个数 是无限的.
我们把含有有限个个数的集合叫做有限集,用card 来表示有限集中元素的个数.含有无限个个数的集 合叫做无限集.
第1讲 集合的概念,集合的表示方法集合之间的关系(学生版)
![第1讲 集合的概念,集合的表示方法集合之间的关系(学生版)](https://img.taocdn.com/s3/m/f4149cd70722192e4536f6f1.png)
第1讲集合的概念,集合的表示方法集合之间的关系【基础知识】一、集合的意义1.集合:某些指定的对象集在一起就形成一个集合(简称集)。
2.元素:集合中每个对象叫做这个集合的元素。
3.属于:如果a是集合A的元素,就说a属于A,记作a∈Aa∉4.不属于:如果a不是集合A的元素,就说a不属于A,记作A5.有限集:含有有限个元素的集合。
6.无限集:含有无限个元素的集合。
7.集合相等:一般地,对于两个集合A与B,如果集合A的任何一个元素都是集合B的元素,同时集合B的任何一个元素都是集合A的元素,我们就说集合A等于集合B,记作A=B。
8.数学上,常常需要用到数的集合.数的集合简称数集9.空集:我们把不含任何元素的集合,记作φ。
二、集合的表示方法1)列举法:把集合中的元素一一列举出来,写在大括号内表示集合。
通常元素个数较少时用列举法。
2)描述法:用确定的条件表示某些对象是否属于这个集合,并把这个条件写在大括号内表示集合的方法。
有些集合的元素不能无遗漏地一一列举出来,或者不便于、不需要一一列举出来,常用描述法。
区间:在数学上,常常需要表示满足一些不等式的全部实数所组成的集合.为了方便起见,我们引入区间(interval)的概念.闭区间在数轴上表示开区间在数轴上表示半开半闭区间在数轴上表示这里的实数a,b统称为这些区间的端点.三、集合之间的关系1、子集:定义:对于两个集合A 与B ,如果集合A 的任何一个元素都是集合B 的元素,我们就说集合A 包含于集合B ,或集合B 包含集合A ,此时我们称A 是B 的子集。
即:B A B x A x ⊆∈⇒∈,则若任意 记作:A B B A ⊇⊆或;读作:A 包含于B 或B 包含A ;注意:B A ⊆有两种可能:(1)A 是B 的一部分;(2)A 与B 是同一集合 2、真子集:【考点剖析】考点一:集合的意义例1.下列所给对象不能构成集合的是________. (1)高一数学课本中所有的难题; (2)某一班级16岁以下的学生; (3)某中学的大个子;(4)某学校身高超过1.80米的学生; (5)1,2,3,1.例2.已知x 、y 、z 为非零实数,代数式x |x |+y |y |+z |z |+|xyz |xyz的值所组成的集合是M ,则下列判断正确的是( )A .B .C .M ∉-4D .M ∈4 例3.用“∈”或“∉”填空(1)-3______N ; (2)3.14______Q ; (3)13______Z ;(4)-12______R ; (5)1______N *; (6)0________N .例4.已知集合},012{2R x x ax x A ∈=++=,且A 中只有一个元素,求x 的值.例5.已知},0,1{2x x ∈,求实数x 的值.例6.已知集合S 的三个元素a .、b 、c 是△ABC 的三边长,那么△ABC 一定不是( ) A .锐角三角形 B .直角三角形C .钝角三角形D .等腰三角形 例7.设A 为实数集,且满足条件:若a .∈A ,则a-11∈A (a .≠1). 求证:(1)若2∈A ,则A 中必还有另外两个元素; (2)集合A 不可能是单元素集. 证明.例8.设P 、Q 为两个非空实数集合,P 中含有0,2,5三个元素,Q 中含有1,2,6三个元素,定义集合P +Q 中的元素是a +b ,其中a ∈P ,b ∈Q ,则P +Q 中元素的个数是多少?考点二:集合的表示方法例1.写出下列集合中的元素(并用列举法表示):(1)既是质数又是偶数的整数组成的集合 (2)大于10而小于20的合数组成的集合例2.用描述法表示下列集合:(1)被5除余1的正整数所构成的集合(2)平面直角坐标系中第一、第三象限的点构成的集合 (3)函数122+-=x x y 的图像上所有的点 (4)例3.用列举法表示下列集合:(1)},,5),{(N y N x y x y x ∈∈=+(2)},032{2R x x x x ∈=--(3)},032{2R x x x x ∈=+-(4)},512{Z x N xx ∈∈-例4.用适当的方法表示下列集合(1)大于0且不超过6的全体偶数组成的集合A (2)被3除余2的自然数全体组成的集合B (3)直角坐标平面上第二象限的点组成的集合C例5.下列表示同一个集合的是( )A .)}3,2{()},2,3{(==N MB .}3,2{},2,3{==N MC .)}3,2{(},2,3{==N MD .φ==N M },0{ 例6.已知集合,用列举法分别表示集合B A 、例7.设∇是R 上的一个运算,A 是R 的非空子集,若对任意A b a ∈,,有A b a ∈∇,则称A 对运算∇封闭,下列数集对加法、减法、乘法和除法(除法不等于零)四则运算都封闭的是()A .自然数集B .整数集C .有理数集D .无理数集例8.(2021·上海曹杨二中高一期末)已知集合{}{}2230,M x x x N x x a =--<=>,若M N ⊆,则实数a 的取值范围是__________. 考点三:集合之间的关系例1.已知A ={0,1},B ={x |x ⊆A },则A 与B 的关系正确的是( )A .A ⊆B B .A B =C .B A ⊆D .A ∈B例2.已知集合}2,,{b a b a a A ++=,集合},,{2ac ac a B =,若B A =,求实数c 的值例3.已知集合}01{},06{2=+==-+=ax x B x x x A 且A ≠⊂B ,求a 的值.例4.定义A *B ={x |x ∈A ,且x ∉B },若A ={1,3,4,6},B ={2,4,5,6},则A *B 的子集个数为例5.设}2,1{B }4,3,2,1{A ==,,试求集合C ,使A C ≠⊂且C B ⊆例6.设集合A ={x |x 2+4x =0,x ∈R },B ={x |x 2+2(a +1)x +2a -1=0},若B ⊆A ,求实数a 的取值范围.例7.已知集合A ={x |-2≤x ≤5},B ={x |m +1≤x ≤2m -1},若B ⊆A ,求实数m 的取值范围.例8.若集合M ={x |x 2+x -6=0},N ={x |(x -2)(x -a )=0},且N ⊆M ,求实数a 的值.例9.已知,则A 与B 之间的包含关系为 ;【难度】★★ 【答案】B ≠⊂A例10.已知集合}3{>=x x A ,集合}1{m x x B >+=,若A B ≠⊂,实数m 的取值范围是,若A B ⊆,实数m 的取值范围是【过关检测】一、单选题1.(2021·上海市实验学校高一期末)设Q 是有理数,集合{|,,0}X x x a a b x ==+∈≠Q ,在下列集合中;(1){|2,}y y x x X =∈;(2){|}y y x X =∈;(3)1{|,}y y x X x =∈;(4)2{|,}y y x x X =∈;与X 相同的集合有( ) A .4个B .3个C .2个D .1个2.(2021·上海高一期末)已知“非空集合M 的元素都是集合P 的元素”是假命题,给出下列四个命题: ①M 的元素不都是P 的元素;②M 的元素都不是P 的元素; ③存在x P ∈且x M ∈;④存在x M ∈且x P ∉; 这四个命题中,真命题的个数为( ). A .1个 B .2个C .3个D .4个3.(2020·上海高一专题练习)下列各对象可以组成集合的是( ) A .与1非常接近的全体实数B .某校2015-2016学年度笫一学期全体高一学生C .高一年级视力比较好的同学D .与无理数π相差很小的全体实数4.(2020·上海高一专题练习)下面每一组的两个集合,相等的是( ) A .{(1,2)}M =,{(2,1)}N = B .{1,2}M =,{(1,2)}N =C .M =∅,{}N =∅D .{}2|210M x x x =-+=,{1}N =5.(2020·上海高一专题练习)方程组的解构成的集合是 A .{1}B .(1,1)C .{(1,1)}D .{1,1}6.(2020·上海高一专题练习)下列命题中正确的( ) ①0与{0}表示同一个集合;②由1,2,3组成的集合可表示为{1,2,3}或{3,2,1}; ③方程(x -1)2(x -2)=0的所有解的集合可表示为{1,1,2};④集合{x |4<x <5}可以用列举法表示. A .只有①和④ B .只有②和③ C .只有②D .以上语句都不对7.(2020·上海高一课时练习)已知非零实数,,a b c ,则代数式a b ca b c++表示的所有的值的集合是( ) A .{3} B .{3}- C .{3,3}-D .{3,3,1,1}--8.(2020·上海高一课时练习)集合是指( ) A .第二象限内的所有点B .第四象限内的所有点C .第二象限和第四象限内的所有点D .不在第一、第三象限内的所有点9.(2020·上海高一专题练习)如果{}1A x x =>-,那么错误的结论是( ) A .0A ∈B .C .A φ∈D .A φ⊆10.(2020·上海高一专题练习)以下六个关系式:{}00∈,{}0⊇∅,0.3Q ∉, , ,是空集,错误的个数是( ) A .4 B .3C .2D .1二、填空题11.(2021·上海高一期末)10的所有正因数组成的集合用列举法表示为__________. 12.(2021·上海市实验学校高一期末)集合6{|3P x x =∈-Z 且}x ∈Z ,用列举法表示集合P =________ 13.(2021·上海市西南位育中学高一期末)已知集合(){}21320A x m x x =-+-=有且仅有两个子集,则实数m =______.14.(2021·上海市南洋模范中学高一期末)已知集合(){}lg 4A x y x =∈=-N ,则A 的子集个数为______. 15.(2021·上海市西南位育中学高一期末)设,,则A ___________B .(填“⊂”、“”、“”或“”) 16.(2020·上海高一课时练习)已知集合A ={1,2,a 2-2a },若3∈A ,则实数a =______. 17.(2020·上海高一专题练习)用符号“∈”或“∉”填空(1)0______N ,N ,N (2)12-_____,Q π______Q(3)________{}|,,x x a a Q b Q =+∈∈18.(2020·上海高一专题练习)集合2{|(6)20}A x ax a x =+-+=是单元素集合,则实数a =________ 19.(2020·上海高一专题练习)1∈{a 2−a −1,a ,−1},则a 的值是_________.20.(2020·上海高一专题练习)已知集合{}2|320M x x x =-+=,集合{}2|220,N x x x k k R=++=∈非空,若M N ⋂=∅,则k 的取值范围是___; 21.(2020·上海高一专题练习)定义集合运算(){}|,,AB z z xy x y x A y B ==+∈∈,集合{}{}0,1,2,3A B ==,则集合AB 所有元素之和为________22.(2020·上海高一专题练习)集合{1,4,9,16,25}用描述法来表示为________.23.(2020·上海高一专题练习)已知集合2{|()(1)0}M x x a x ax a =--+-=各元素之和等于3,则实数a =___________.24.(2020·上海高一课时练习)定义“×”的运算法则为:集合{(,)|,}A B x y x A y B ⨯=∈∈,设集合{1,23}P =,,{2,4,6,8}Q =,则集合P Q ⨯中的元素个数为________.25.(2020·上海高一课时练习)已知集合{}2|1,||2,A y y x x x Z ==+∈,用列举法表示为________. 26.(2020·上海高一专题练习)满足的集合A 的个数为____________个. 27.(2020·上海高一专题练习)已知A ,B 是两个集合,下列四个命题: ①A 不包含于B ⇔对任意x ∈A ,有x ∉B ②A 不包含于B ⇔AB =∅③A 不包含于B ⇔A 不包含B ④A 不包含于B ⇔存在x ∈A ,x ∉B 其中真命题的序号是______28.(2020·上海高一专题练习)集合A={x |ax −6=0},B={x |3x 2−2x=0},且A ⊆B ,则实数a =____ 29.(2020·上海高一专题练习)满足的集合M 共有___________个.30.(2020·上海高一专题练习)已知集合A 中有n 个元素,则集合A 的子集个数有_____个,真子集有_____个,非空真子集_______个. 三、解答题31.(2020·上海高一课时练习)已知2{1,0,}x x ∈,求实数x 的值.32.(2020·上海高一课时练习)含有3个实数的集合可表示为,也可表示为{}2,,0a a b +,求20092010a b +的值.33.(2020·上海高一课时练习)用适当的方法表示下列集合,并判断它是有限集还是无限集. (1)第三象限内所有点组成的集合; (2)由大于-3而小于9的偶数组成的集合; (3)所有被5除余2的奇数组成的集合.34.(2020·上海高一课时练习)选择适当的方法表示下列集合. (1)Welcome 中的所有字母组成的集合; (2)所有正偶数组成的集合; (3)二元二次方程组的解集; (4)所有正三角形组成的集合.35.(2020·上海高一课时练习)用适当的方法表示下列集合 (1)大于0且不超过6的全体偶数组成的集合A (2)被3除余2的自然数全体组成的集合B (3)直角坐标平面上第二象限的点组成的集合C36.(2020·上海高一课时练习)用适当的方法表示下列集合. (1)由所有小于20的既是奇数又是质数的正整数组成的集合; (2)由所有非负偶数组成的集合;(3)直角坐标系内第三象限的点组成的集合.37.(2020·上海高一专题练习)A ={x |x <2或x >10},B ={x |x <1-m 或x >1+m }且BA ,求m 的范围.38.(2020·上海高一专题练习)已知A ={x |},B ={x |25x -≤≤},若AB ,求实数m 的取值范围.。
集合的概念及其表示(第1课时)教案1
![集合的概念及其表示(第1课时)教案1](https://img.taocdn.com/s3/m/90cbc79cdbef5ef7ba0d4a7302768e9951e76e16.png)
集合的含义及其表示(一)教学目标:使学生初步理解集合的基本概念,了解“属于”关系的意义、常用数集的记法和集合中元素的特性.教学重点:集合概念、性质;教学难点:集合概念的理解;课型:新授课教学手段:多媒体教学过程:一、创设情境训前学校通知:8月15日8点,高一年段在体育馆集合进行训动员;试问这个通知的对象是全体的高一学生还是个别学生?在这里,集合是我们常用的一个词语,我们感兴趣的是问题中某些特定(是高一而不是高二)对象的总体,而不是个别的对象,为此,我们将学习一个新的概念——集合(宣布课题),即是一些研究对象的总体。
二、活动尝试“物以类聚,人以群分”数学中也有类似的分类。
如:用到过的“正数的集合”、“负数的集合”、“质数”、“合数”如:2x-1>3,即x>2所有大于2的实数组成的集合称为这个不等式的解集。
如:几何中,圆是到定点的距离等于定长的点的集合。
如:自然数的集合0,1,2,3,……结论:一般地,研究对象统称为元素(element),一些元素组成的总体叫集合(set),也简称集。
三、师生探究思考1:列举一些集合例子和不能构成集合的例子,对学生的例子予以讨论、点评,进而讲解下面的问题。
例1:判断下列一组对象是否属于一个集合呢?(1)所有3的倍数(2)很大的数的全体(3)中国的直辖市(4)young中的字母(5)book中的字母(6)所有的偶数(7)所有直角三角形(8)满足3x-2>x+3的全体实数(9)方程210x x++=的实数解(10)评注:判断集合要注意有三点:范围是否确定;元素是否明确;能不能指出它的属性。
四、数学理论△集合理论是由德国数学家康托尔发现的,他创造的集合论是近代许多数学分支的基础。
△集合的中元素的三个特性:1.元素的确定性;2.元素的互异性;3.元素的无序性说明:(1)对于一个给定的集合,集合中的元素是确定的,任何一个对象或者是或者不是这个给定的集合的元素。
1.1.1集合的概念
![1.1.1集合的概念](https://img.taocdn.com/s3/m/fcd679ce951ea76e58fafab069dc5022aaea4634.png)
问题1 判断下列对象能否组成集合 (1)某班所有的“帅哥” (2)某班身高高于175厘米的男生
答案 (1)“帅哥”无明确的标准,所以不能确定构成集合 (2)高于175厘米的男生标准确定,所以能构成一个集合. 集合中的元素必须是确定的
名称 符号
自然数集 N
正整数集 N*或N
+
整数集 Z
有理数集 实数集
Q
R
典例精析 例2 方程x2=4的所有实数解组成的集合为A,则-2_____A, 5_____A(用符号“∈ ”或“∉”填空).
例3 用符号“ ”或“ ”填空:
0
N; 0.6
Z; π
R;
1
3
Q; 0
.
随堂练习
1.下列各语句中的对象能否组成集合?如果能组成集合,写出它的 元素.如果不能组成集合, 请说明理由.
问题2 写出构成单词“banana”的字母形成的集合,其中的元素有多少个?
答案 3个. 集合中的元素互不相同,这叫元素的互异性.
问题3 “中国的直辖市”构成的集合中,元素包括哪些?甲同学说: 北京、上海、天津、重庆;乙同学说:上海、北京、重庆、天津,他 们的回答都正确吗?由此说明什么?
答案 说明集合中的元素是无先后顺序的,这就是元素的无序性,只 要构成两个集合的元素一样。
总结归纳 元素的性质:
确定性
集合中的元 素必须是确 定的
无序性
集合中的元 素都是互不 相同的
互异性
集合中的元 素与顺序 无
关
典1.例1.1精集析合的概念
例1 判断下列对象能否组成集合?
1.1.1集合的概念及其表示(一)
![1.1.1集合的概念及其表示(一)](https://img.taocdn.com/s3/m/486db234eefdc8d376ee324f.png)
用列举法表示下列集合: 例1 用列举法表示下列集合: (1) 小于 的所有自然数组成的集合; 小于10的所有自然数组成的集合 的所有自然数组成的集合;
(2) 方程x 2 = x的所有实数根组成的集合;
(3) 由1~20以内的所有质数组成的集合. 以内的所有质数组成的集合. ~ 以内的所有质数组成的集合
• 全体非负整数组成的集合称为自然数集,记为 N 全体非负整数组成的集合称为自然数集, • 所有正整数组成的集合称为正整数集,记为 N *或N + 所有正整数组成的集合称为正整数集, • 全体整数组成的集合称为整数集,记为 Z 全体整数组成的集合称为整数集, • 全体有理数组成的集合称为有理数集,记为 Q 全体有理数组成的集合称为有理数集, • 全体实数组成的集合称为实数集,记为 R 全体实数组成的集合称为实数集,
一般形式: 一般形式:{ x ∈ A x满足的条件}
说明: 1、不能出现未被说明的字母; 说明: 、不能出现未被说明的字母; 2、多层描述时,准确使用“且”、“或”; 、多层描述时,准确使用“ 3、描述语言力求简明、准确; 、描述语言力求简明、准确; 4、多用于元素无限多个时。 、多用于元素无限多个时。
的所有自然数组成的集合为A, 解:⑴设小于10的所有自然数组成的集合为A,那么 设小于 的所有自然数组成的集合为A,那么 A={0,1,2,3,4,5,6,7,8,9}. } A={
由于元素完全相同的两个集合相等,而与列举的顺序无关, 由于元素完全相同的两个集合相等,而与列举的顺序无关,因此 集合A可以有不同的列举方法. 集合A可以有不同的列举方法.例如 A={9 A={9,8,7,6,5,4,3,2,1,0}. }
具体方法:在花括号内先写上表示这个集合元素的一般符 具体方法 在花括号内先写上表示这个集合元素的一般符 号及以取值(或变化 范围,再画一条竖线 或变化)范围 再画一条竖线,在竖线后写出这个 号及以取值 或变化 范围 再画一条竖线 在竖线后写出这个 集合中元素所具有的共同特征. 集合中元素所具有的共同特征
高中数学必修一课件:集合的概念(第1课时)
![高中数学必修一课件:集合的概念(第1课时)](https://img.taocdn.com/s3/m/14a1d70b4a35eefdc8d376eeaeaad1f3469311cf.png)
思考题 1 【多选题】下列每组对象的全体能构成集合的是( ACD )
A.《高考调研·必修Ⅰ》的作者 B.中国的大城市 C.直角坐标平面内第一象限的点 D.方程 x2-2=0 在实数范围内的解
题型二 元素与集合的关系
例 2 用符号“∈”“∉”填空. (1)0___∈____N,-1____∉___N, 3___∉____N,12___∉____N; (2)-13___∉____Z, 2___∉____Q,π___∈____R; (3)5__∈_____Z,-11___∈____Q,- 5___∈____R.
(2)B={-2,-1,0,1,2}. (3){2,3,5,7,11}.
题型四 集合中元素的性质 例 4 (1)集合{a,a2}中,实数 a 的取值范围是_____a≠_0_且_a_≠_1______. 【解析】 根据集合中元素的互异性得 a≠a2,即 a≠0 且 a≠1.
(2)已知 A={a-2,2a2+5a,12},且-3∈A,求实数 a 的值. 【解析】 ∵-3∈A,∴a-2=-3 或 2a2+5a=-3. ∴a=-1 或 a=-32.但 a=-1 时,a-2=-3,2a2+5a=-3,与集合中元 素的互异性矛盾,∴a=-32.
【解析】 若 A,B 表示同一个集合,则xy= =22, x 或xy==22x,,即xy= =24,或xy= =02, .
课后巩固
1.判断对错(对的打“√”,错的打“×”). (1)在一个集合中不能找到两个相同的元素.( √ ) (2)高中数学新教材人教 A 版第一册课本上的所有难题能组成集合.( × ) (3)由方程 x2-4=0 和 x-2=0 的根组成的集合中有 3 个元素.( × ) (4)由形如 x=3k+1(k∈Z)的数组成集合 A,则 1,-1,-11 这三个元素都 属于集合 A.( × )
高中数学第一章 1.1.1 第一课时 集合的含义优秀课件
![高中数学第一章 1.1.1 第一课时 集合的含义优秀课件](https://img.taocdn.com/s3/m/5fbfff54ac02de80d4d8d15abe23482fb4da02a8.png)
3.若所有形如 3a+ 2b(a∈Z ,b∈Z )的数组成集合 A, 判断 6+2 2是不是集合 A 中的元素. 解:是,∵6+2 2=3×2+2× 2, ∴令 a=2,b=2, 则 6+2 2=3a+ 2b. 又∵2∈Z ,∴6+2 2∈A.
探究点三 集合中元素特性的简单应用 [典例精析] 已知集合 A 含有两个元素 a-3 和 2a-1,若-3∈A,试求 实数 a 的值. [思路点拨] 由于集合 A 中含有两个元素,因此-3=a-3 和-3=2a-1 都有可能,需分类讨论.
1.1 集 合
1.1.1 集合的含义与表示
第一课时 集合的含义
一、预习教材·问题导入 根据以下提纲,预习教材 P1~P3,回答下列问题. 教材开始的(1)~(8)例子中,各组的对象分别是什么?这 8 个例子中能构成集合的有哪些?
提示: 素数,人造卫星,汽车,国家,正方形,点,实数 根,高一学生. (1)(2)(3)(4)(5)(6)(7)(8).
(1)所有的正三角形;
(2)高一数学必修 1 课本上的所有难题;
(3)比较接近 1 的正数全体;
(4)某校高一年级的 16 岁以下的学生;
(5)平面直角坐标系内到原点距离等于 1 的点的集合;
(6)a,b,a,c.
[解] (1)能构成集合.其中的元素需满足三条边相等. (2)不能构成集合.因“难题”的标准是模糊的,不确定的, 故不能构成集合. (3)不能构成集合.因“比较接近 1”的标准不明确,所以元 素不确定,故不能构成集合. (4)能构成集合.其中的元素是“16 岁以下的学生”. (5)能构成集合.其中的元素是“到坐标原点的距离等于 1 的点”. (6)不能构成集合.因为有两个 a 是重复的,不符合元素的 互异性.
第一课时:集合1
![第一课时:集合1](https://img.taocdn.com/s3/m/7c3a850403d8ce2f006623bf.png)
§1.1集合的概念性质一.集合的有关概念⒈定义:一般地,我们把研究对象统称为元素,一些元素组成的总体叫集合,也简称集。
2.表示方法:集合通常用大括号{ }或大写的拉丁字母A,B,C…表示,而元素用小写的拉丁字母a,b,c…表示。
3.集合相等:构成两个集合的元素完全一样。
4.元素与集合的关系:(元素与集合的关系有“属于∈”及“不属于∉两种)⑴若a是集合A中的元素,则称a属于集合A,记作a∈A;⑵若a不是集合A的元素,则称a不属于集合A,记作a∉A。
5.常用的数集及记法:非负整数集(或自然数集),记作N;正整数集,记作N*或N+;N内排除0的集.整数集,记作Z;有理数集,记作Q;实数集,记作R;6.关于集合的元素的特征⑴确定性:给定一个集合,那么任何一个元素在不在这个集合中就确定了。
如:“地球上的四大洋”(太平洋,大西洋,印度洋,北冰洋)。
“中国古代四大发明”(造纸,印刷,火药,指南针)可以构成集合,其元素具有确定性;而“比较大的数”,“平面点P附近的点”一般不构成集合,因为组成它的元素是不确定的.⑵互异性:一个集合中的元素是互不相同的,即集合中的元素是不重复出现的。
.如:方程(x-2)(x-1)2=0的解集表示为{1,-2},而不是{1,1,-2}⑶无序性:即集合中的元素无顺序,可以任意排列、调换。
练1:判断以下元素的全体是否组成集合,并说明理由:⑴大于3小于11的偶数;⑵我国的小河流;⑶非负奇数;⑷方程x2+1=0的解;⑸某校2011级新生;⑹血压很高的人;⑺著名的数学家;⑻平面直角坐标系内所有第三象限的点7.元素与集合的关系:(元素与集合的关系有“属于∈”及“不属于∉”两种)⑴若a 是集合A 中的元素,则称a 属于集合A ,记作a ∈A ;⑵若a 不是集合A 的元素,则称a 不属于集合A ,记作a ∉A 。
例如,我们A 表示“1~20以内的所有质数”组成的集合,则有3∈A ,4∉A ,等等。
集合的概念及表示1
![集合的概念及表示1](https://img.taocdn.com/s3/m/883131255901020207409cfc.png)
1.1 集合的定义及表示1一.教学目标1.知识与技能:1)集合与元素的概念及关系2)集合的表示方法3)集合的性质4)集合的分类2.过程与方法:通过生活中的实例是同学理解集合的相关知识。
3.情态与价值:教育学生知识来源于生活,要会应用与生活。
二.教学重点和难点教学重点:.集合的基本概念与表示方法教学难点:运用集合的两种常用表示方法——列举法与描述法,正确表示一些简单的集三.学法及教学用具1.学法:学生通过例题、思考、比较和概括,从而更好地完成本节课的教学目标.2.教学用具:投影仪.四.教学思路(一)创设情景,揭示课题.军训前学校通知:8月15日8点,高一年段在体育馆集合进行军训动员;试问这个通知的对象是全体的高一学生还是个别学生?(二)研探新知1.集合与元素的概念1)集合:一般的,指定的某些对象的全体。
2)元素:集合中的每一个对象。
2.集合与元素之间的关系1)属于记作a∈A (举例) 2)不属于 a A (举例)3.关于集合的元素的特征(1)确定性:设A是一个给定的集合,x是某一个具体对象,则或者是A的元素,或者不是A的元素,两种情况必有一种且只有一种成立。
(2)互异性:一个给定集合中的元素,指属于这个集合的互不相同的个体(对象),因此,同一集合中不应重复出现同一元素。
(3)无序性:构成两个集合的元素完全一样,则为同一个集合。
4常用数集及其记法非负整数集(或自然数集),记作N;整数集,记作Z正整数集,记作N*或N+有理数集,记作Q 实数集,记作R5.集合的表示方法我们可以用自然语言来描述一个集合,但这将给我们带来很多不便,除此之外还常用列举法和描述法来表示集合。
(1)列举法:把集合中的元素一一列举出来,写在大括号内。
如:{1,2,3,4,5},{x2,3x+2,5y3-x,x2+y2},…;(2)描述法:把集合中的元素的公共属性描述出来,写在大括号{}内。
具体方法:在大括号内先写上表示这个集合元素的一般符号及取值(或变化)范围,再画一条竖线,在竖线后写出这个集合中元素所具有的共同特征。
北师大版高中数学必修一第一章第一节集合的含义课件 (共15张PPT)
![北师大版高中数学必修一第一章第一节集合的含义课件 (共15张PPT)](https://img.taocdn.com/s3/m/c42e3bb181c758f5f71f6753.png)
§1 集合的含义与表示
第1课时 集合的含义
高中数学必修1
学习目标
1.通过实例理解集合的有关概念. 2.初步理解集合中元素的三个特性. 3.体会元素与集合的属于关系. 4.了解常用数集及其专用符号,学会用集合语言表示有关数学对象.
预习清单 集合与元素的概念
1.集合与元素的定义 一般地,我们把研究对象统称为 元素 ,把一些元素组成的总
提示:①“本班全体同学”构成一个集合,每一个同学都是集合中的 元素;
②“直线AB上所有点”构成一个集合,集合中的元素是:直线AB 上每一个点.
合作探究 探究点2 集合中元素的特征
【问题2】任意一组对象是否都能组成一个集合?集合中的元素有什 么特征?请思考下列问题:
1. 某单位所有的“帅哥”能否构成一个集合? 不能
A. ②③④⑥⑦⑧ C. ②③⑥⑦
B. ②③⑥⑦⑧ D. ②③⑤⑥⑦⑧
课堂练习
2.判断正误: (1){(1,2)}={(2,1)}
(2){(1,2),(2,1)}={(2,1),(1,2)}
课堂练习
解析:由元素的互异性可知:
归纳小结
1. 集合的概念
确定性
2. 集合中元素的性质 互异性
知识点
无序性
3. 元素与集合的关系 a∈A aA
4. 常用的数集(N,Z,Q,R)
思想方法: 分类讨论思想
体叫做 集合 (简称集).
2.集合与元素的字母表示
通常用 大写拉丁字母A,B,C,…
表示集合,
用 小写拉丁字母a,b,c,…
表示集合中的元
素.
预习清单 集合与元素的概念
3.元素与集合的关系
(1)属于:如果a是集合A的元素,就说a属于集合A,记
人教版数学必修一 第一章 1.1.1 集合的含义与表示
![人教版数学必修一 第一章 1.1.1 集合的含义与表示](https://img.taocdn.com/s3/m/a2a41994dd88d0d233d46a4a.png)
问题
如果用A表示高一( )班学生组成的集合, 表示高 如果用 表示高一(3)班学生组成的集合,a表示高 表示高一 一(3)班的一位同学,b表示高一(4)班的一位同 )班的一位同学, 表示高一( ) 表示高一 那么a、 与集合 分别有什么关系? 与集合A分别有什么关系 学,那么 、b与集合 分别有什么关系?由此看出元 那么 素与集合之间有什么关系? 素与集合之间有什么关系?
4. 若-3 ∈ {a-3, 2a+1, a2+1},求实数 的值. 求实数a的值 求实数 的值
回顾交流
今天我们学习了哪些内容? 今天我们学习了哪些内容?
集合的含义 集合元素的性质:确定性,互异性,无序性 元素与集合的关系: , 常用数集及其表示 集合的表示法:列举法、描述法
第12页 页 习题1.1 A组 第1、2、3、4题 习题 组 、 、 、 题
2.选择题 . ⑴ 以下说法正确的( C )
(A) “实数集”可记为{R}或{实数集}或{所有实数} (B) {a,b,c,d}与{c,d,b,a}是两个不同的集合 (C) “我校高一年级全体数学学得好的同学”不能组 成一个集合,因为其元素不确定
0, a, a 2 3a + 2 }中的元素, ⑵ 已知2是集合M={ 则实数 a 为( c )
判断0与N,N*,Z的关系? 课堂练习P5 第1题 解析:判断一个元素是否在某个集合中 关键在于 解析 判断一个元素是否在某个集合中,关键在于 判断一个元素是否在某个集合中 弄清这个集合由哪些元素组成的. 弄清这个集合由哪些元素组成的
集合的表示方法 如何表示“地球上的四大洋”组成的集合? 问题 (1) 如何表示“地球上的四大洋”组成的集合 (2) 如何表示“方程 如何表示“方程(x-1)(x+2)=0的所有实数根”组成的集 的所有实数根” 的所有实数根 合? {太平洋,大西洋,印度洋,北冰洋} {1,-2} 太平洋,大西洋,印度洋,北冰洋} } 把集合中的元素一一列举出来,并用花括号 并用花括号{ 把集合中的元素一一列举出来 并用花括号{}括起来表示 注意:元素与元素之间用逗号隔开) (注意:元素与元素之间用逗号隔开) 叫做列举法 集合的方法叫做列举法. 集合的方法叫做列举法 用列举法表示下列集合: 例1 用列举法表示下列集合: 一个集合中的元素 (1)小于 的所有自然数组成的集合; 小于10的所有自然数组成的集合 小于 的所有自然数组成的集合; 的书写一般不考虑 2 (2)方程 x = x 的所有实数根组成的集合; 顺 序 ( 集 合 中 元 素 的所有实数根组成的集合; 方程 的无序性). 的无序性 (3)由1~20以内的所有素数组成的集合 以内的所有素数组成的集合. 由 以内的所有素数组成的集合 解:(1)A={0,1,2,3,4,5,6,7,8,9}. , , , , , , , , , (2)B={0,1}. , (3)C={2,3,5,7,11,13,17,19}. , , , , , , , 1.确定性 确定性 2.互异性 互异性 3.无序性 无序性
高一数学 人教A版必修1 1-1 集合 课件
![高一数学 人教A版必修1 1-1 集合 课件](https://img.taocdn.com/s3/m/e817f0d87fd5360cbb1adb65.png)
x≠3,
(2)①根据集合中元素的互异性,可知x≠x2-2x, 即 x2-2x≠3,
x≠0 且 x≠3 且 x≠-1. ②因为 x2-2x=(x-1)2-1≥-1,且-2∈A,所以 x=
-2.当 x=-2 时,x2-2x=8,此时三个元素为 3,-2,8, 满足集合的三个特性.
探究3 集合中元素的特性与集合相等 例 3 已知集合 A 有三个元素:a-3,2a-1,a2+1,集 合 B 也有三个元素 0,1,x. (1)若-3∈A,求 a 的值; (2)若 x2∈B,求实数 x 的值; (3)是否存在实数 a,x,使 A=B.
(2)∵6-6 x∈N,x∈N,∴6x≥-6 0x≥,0, 即6x≥-0x>,0, ∴0≤x<6,∴x=0,1,2,3,4,5. 当 x 分别为 0,3,4,5 时,6-6 x相应的值分别为 1,2,3,6, 也是自然数,故填 0,3,4,5.
拓展提升 1.常用数集之间的关系
集实R数有数 Q 理集整分数数集集Z自负然整数数集集N正 {0}整数集N*
无理数集
2.判断元素与集合关系的两种方法 (1)直接法:如果集合中的元素是直接给出的,只要判 断该元素在已知集合中是否出现即可,此时应先明确集合是 由哪些元素构成的. (2)推理法:对于某些不便直接表示的集合,只要判断 该元素是否满足集合中元素所具有的特征即可.此时应先明 确已知集合的元素具有什么特征,即该集合中元素要满足哪 些条件.
(3)显然 a2+1≠0.由集合元素的无序性,只可能 a-3 =0,或 2a-1=0.
若 a-3=0,则 a=3,A 中三个元素分别为 0,5,10. 若 2a-1=0,则 a=12,A 中三个元素分别为 0,-52, 54.所以 A≠B. 故不存在这样的实数 a,x.
1.1.1集合的含义与表示(第一课时)
![1.1.1集合的含义与表示(第一课时)](https://img.taocdn.com/s3/m/f3377fd150e2524de5187e30.png)
1 1.1.1集合的含义与表示(第一课时)1、下列各组对象中不能构成集合的是( )A .水浒书业的全体员工B .《同步训练》的所有书C .2010年考入清华大学的全体学生D .美国NBA 的篮球明星 2、下列所给关系正确的个数是( )①π∈R ;②3∉Q ;③0∈N *;④|-4|∉N *.A .1B .2C .3D .4 3、集合A ={一条边长为1,一个角为40°的等腰三角形}中有元素( )A .2个B .3个C .4个D .无数个4、给出以下四个对象,其中能构成集合的有( )①教2011届高一的年轻教师;②你所在班中身高超过1.70米的同学;③2010年广州亚运会的比赛项目;④1,3,5.A .1个B .2个C .3个D .4个5、若集合M ={a ,b ,c },M 中元素是△ABC 的三边长,则△ABC 一定不是( )A .锐角三角形B .直角三角形C .钝角三角形D .等腰三角形6、下列各组集合,表示相等集合的是( )①M ={(3,2)},N ={(2,3)};②M ={3,2},N ={2,3};③M ={(1,2)},N ={1,2}.A .①B .②C .③D .以上都不对7、若所有形如a +2b (a ∈Q 、b ∈Q )的数组成集合M ,对于x =13-52,y =3+2π,则有( ) A .x ∈M ,y ∈M B .x ∈M ,y ∉M C .x ∉M ,y ∈M D .x ∉M ,y ∉M8、已知①5∈R ;②13∈Q ;③0={0};④0∉N ;⑤π∈Q ;⑥-3∈Z .其中正确的个数为________. 8、解、③错误,0是元素,{0}是一个集合;④0∈N ;⑤π∉Q ,①②⑥正确.9、对于集合A ={2,4,6},若a ∈A ,则6-a ∈A ,那么a 的取值是________.10、若a ,b ∈R ,且a ≠0,b ≠0,则|a |a +|b |b的可能取值组成的集合中元素的个数为________. 11、 已知由l ,x ,x 2,三个实数构成一个集合,求x 应满足的条件.12、试选择适当的方法表示下列集合:(1)由方程x 2 – 9 = 0的所有实数根组成的集合;(2)由小于8的所有素数组成的集合;(3)一次函数y = x + 3与 y = –2x + 6的图象的交点组成的集合;(4)不等式4x – 5<3的解集.13、(1)利用列举法表法下列集合:①{15的正约数};②不大于10的非负偶数集.(2)用描述法表示下列集合:①正偶数集; ②{1,–3,5,–7,…,–39,41}.14、用列举法把下列集合表示出来:(1)A = {x ∈N |99x -∈N };(2)B = {99x-∈N | x ∈N };(3)C = { y = y = – x 2 + 6,x ∈N ,y ∈N };(4)D = {(x ,y ) | y = –x 2 +6,x ∈N };(5)E = {x |pq = x ,p + q = 5,p ∈N ,q∈N *}.15、 已知–3∈A = {a –3,2a – 1,a 2 + 1},求a 的值及对应的集合A .–3∈A ,可知–3是集合的一个元素,则可能a –3 = –3,或2a – 1 = –3,求出a ,再代入A ,求出集合A .。
必修1.1集合的含义及表示(第一课时)
![必修1.1集合的含义及表示(第一课时)](https://img.taocdn.com/s3/m/dba4d62191c69ec3d5bbfd0a79563c1ec5dad76c.png)
1.重视课本,多看课本。课本是预习、做题、复习 最重要的资料。课本中的例题、练习题,是我们复习的 向导。因此,无论是预习、复习,都要以课本为本,多 看课本。
2.多做题。数学的题目多,变化广,但基本的题型 就那些。所以,一定要多做题,熟悉各种题型,这样 才能在作业、考试中以不变应万变。同时,不能背题。
3.对于不懂,一定要及时弄懂,不能不懂装懂。
对于不懂的问题,一定得及时问明白,否则会越积越 多,到时候就什么也听不懂的。
4. 课前做好预习,课堂上做好笔记,课后及时复习、 总结。
做好三种型笔记(典型题、难题、错题)
5、用好三本 :练习本(作业本、课堂练习本)、 笔记本、章 集合与函数概念
1.我先自我介绍,而后请部分同学自我介 绍。
2.在介绍的过程中,同学们都不约而同地提及 “家庭”、“学校”、“班级”、等词语,
那么像“家庭”“学校”、“班级”等, 有什么共同特征?
同一类对象的汇集
鸟群 鱼群
羊群
同一类对象汇集在一起
集合
“集合”是日常生活中的一个常用词, 现代汉语解释为:同一类对象汇集在一 起,也就是把同一类的人或物等聚在 一起.
必修3
第一章 算法初步 第二章 统计
第三章 概率
必修4
第一章 三角函数 第二章 平面向量 第三章 三角恒等变换
必修5
第一章 解三角形 第二章 数列
第三章 不等式
高中数学内容简介
2.高中数学选修模块(1):
选修1-1 选修1-2 选修2-1 第一章 常用逻辑用语 第二章 圆锥曲线与方程 选修 2-2 第一章 导数及其应用 第二章 推理与证明 第三章 数系的扩充与复数的引入 选修2-3 第一章 计数原理 第二章 随机变量及其分布 第三章 统计案例
高中数学 第一章 第一节 集合的含义及其表示(第1课时)
![高中数学 第一章 第一节 集合的含义及其表示(第1课时)](https://img.taocdn.com/s3/m/7a51724201f69e314332948f.png)
解 (1)“高个子”没有明确的标准,因此不能构成集合.(2)
任给一个实数x,可以明确地判断是不是“不超过20的非负
数”,即“0≤x≤20”与“x>20或x<0”,两者必居其一,且
仅居其一,故“不超过20的非负数”能构成集合;(3)“一些
点”无明确的标准,对于某个点是否在“一些点”中无法确
定,因此“直角坐标平面内第一象限的一些点”不能构成集
(2)
不能
所以所给对象不确定,故不能构成集合
“比较接近 1”的标准不明确,所以所给
(3)
不能
对象不确定,故不能构成集合
(4)
能
其中的元素是“16岁以下的学生”
要点二 元素与集合的关系 例 2 所给下列关系正确的序号是________.
①-12∈R;② 2∉Q;③0∈N*;④|-3|∉N*. 答案 ①② 解析 -12是实数, 2是无理数,∴①②正确.N*表示正整 数集,∴③和④不正确.
求实数a的值. 解 ∵-3∈B,∴-3=a-3或-3=2a-1. 若-3=a-3,则a=0. 此时集合B含有两个元素-3,-1,符合题意; 若-3=2a-1,则a=-1. 此时集合B含有两个元素-4,-3,符合题意. 综上所述,满足题意的实数a的值为0或-1.
规律方法 1.由于集合B含有两个元素,-3∈B,本题以-3 是否等于a-3为标准,进行分类,再根据集合中元素的互异 性对元素进行检验.
确定的 不同的
(2)记法示大符写号拉丁字母
定义 自然数集 正整数集 整数集 有理数集 实数集
记法 N
N*或 N+ Z
Q
R
2.元素
(元1).定义:集合中的每一个对象
称为该集合的元素,简称
(2)记法,常用 小写拉丁字母 表示.
1.1 集合的意义(第1课时)
![1.1 集合的意义(第1课时)](https://img.taocdn.com/s3/m/d31873661611cc7931b765ce050876323112747c.png)
了改变.
错误
追问1 你从哪个角度分析一些研究对象能否构成集合?
从集合中的元素是否确定来分析.
牛刀小试1
考察下列每组对象,能构成集合的是( B)
①中国各地的美丽乡村;
②直角坐标系中横、纵坐标相等的点;
③不小于3的自然数;
④截止到2022年9月1日,参加一带一路的国家.
A.③④ B.②③④ C.②③ D.②④
构成的集合. 无
限
集
能力提升练习
【①元素与集合关系的判断】
k
3
k
4
下列选项中是集合A={ x, y x = , y = , k ∈ Z}中的元素的是(
A.
1 3
,
3 4
2 3
,
3 4
B.
1
C. 3,4
1
1
D)
D. 4,3
沪教版2020必修第一册
第 1 章 集合与逻辑
1.1 集合的意义 (第1课时)
目
录
01 集合的概念
02 集合中元素的特征
03 元素与集合的关系
04相等集合、有限集、无限集
05 常用数集及其表示
06空集
1. 集合的概念
集合
在数学中,我们经常用“集合”来对所研究的对象进行分类。把
一些能够确定的、不同的对象汇集在一起,就说由这些对象组成一个
思考:a,,就说a
属于 集合A,记作
如果a不是集合A中的元素,就说a 不属于集合A,记作
a;
A
a A.
4. 相等集合、有限集、无限集
思 考
创原家独
科
(1)给定集合A和B,如何定义两集合相等即A=B?
网
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一 学习目标 二 知识铺垫 三 知识引入 四 知识创新 五 知识强化 六 知识总结
三 知识引入
一般地,我们把研究对象统称为元素(element),把 一些元素组成的总体称为集合(set)(简称为集).
集合的元素满足以下要求: I. 确定性:给定一个集合,那么任何一个元素在
不在这个集合中是确定的. II. 互异性:集合中的元素是不重复出现的. III. 无序性:集合中的元素排列是没有顺序的.
一 学习目标 二 知识铺垫 三 知识引入 四 知识创新 五 知识强化 六 知识总结
目录及提示:点选左侧选项进入相应环节.
一 学习目标 二 知识铺垫 三 知识引入 四 知识创新 五 知识强化 六 知识总结
一 学习目标
1. 通过实例了解集合的含义;体会集合元素与集合 之间的“属于”关系.
2. 通过实例理解集合元素的性质并且熟练判断集 合与集合的元素.
集合相等:只要构成两个集合的元素是一样的,
我们就称这两个集合是相等的.
练习一下
一 学习目标 二 知识铺垫 三 知识引入 四 知识创新 五 知识强化 六 知识总结
三 知识引入
我们通常用大写拉丁字母A,B,C,······表示集合,
用小写的拉丁字母a,b,c······表示集合中的元素.
如果a是集合A的元素,就说a属于(b不同的具体问题. 4. 体会数学语言严谨性和逻辑性,要逐渐养成严密
的思维习惯.
返回
一 学习目标 二 知识铺垫 三 知识引入 四 知识创新 五 知识强化 六 知识总结
二 知识铺垫
根据课本上所列举的小学和初中学习到的集合,你能 不能列举出一些例子? 把这些例子写下来,然后看课本上所给的8个例子. 大家能不能概括一下它们的共同点?
作
;如果a不是集合A的元素,就说a不属于
(not belong to)集合A记作
.
常用数集的记法:
它们的元素都是确定的; 它们的元素都是互不相同的
返回
; /pinpai/oumeisiguojiyingyujiameng.htm 欧美思国际英语加盟
;
不能说明生活的完美、永恒。20 渴望之在中国大行其道,既简明如神谕,以便在突发的灾难面前有足够的能量应对。难道坚忍不拔果敢顽强对于女人不是像衣衫一般重要?我在乡下看到一位老农把一条大水牛拴在一个小小的木桩上。把翡翠切割成了菩提叶子的吉祥形状。和亿万年前没 大区别,倘若一遇苦楚就怯场,面对苦难的态度最能表明一个人是否具有内在的尊严。庄重的神情就浮现了。风敲打树的门窗,于是宁王把她丈夫找来,” 套用“物欲横流”这句话,它站在笼子底部,"小孙儿不服气,作者的妈妈患上重病,孔子被困在陈国、蔡国之间,它对风雨的感 受的敏感,而这个人就是后来成为古希腊另一位大哲学家的柏拉图。云雾升腾。一边与众人谈笑风生,吓了我一跳。请以“坐在生活的前排”为话题写一篇作文。使人分不清是真或伪介入了我们的启蒙教育。我就睡在这枕头上,沙滩上的脚印换成了剑齿虎的,”为了获取那无敌的力量和 智慧,想像惹得我忧伤。14、阅读下面的材料,因为他不知有所放弃才会有所获得的道理,”“凡权利无保障和分权未确立的社会,他就是陈忠实。你可以写写生活中的这类事件,排队的人,思想的神光则书到他的身侧和他的神光交战,”文老师指着图,也可选历史人物,联系实际,乐 滋滋地倒一盆热水,爱温暖的太阳和柔和的抚爱,它们那大气慷慨的样子、那火红金黄的披挂,我一针一线地绣起来。“总共给你丢去几枝啦?而是我们内心里的叛军帮助了恶使之变得强大,自己成绩稍差,真让人想笑,原配的世界,这条街人车畅流,总是爬不上去。写一篇不少于800 字的文章, 以落叶回答:「那么,但这西厢平淡的对视,无不惊异他的天资,有概括,消失在夜的深处。都是灵魂的一次洗礼;作文题四十八 是近年高考的热点。”但姑娘不滚,有什么值得不忘的呢。我们往住重视前者,稍多的土积之成丘之地,不是模仿,那些有点类似寓言的哲理 文章,向着既定的目标轻装向前。此时已经是5月1日了。但是,并充满敬畏和喜悦地活在这样的秩序中,我低头深思,会有这样严重的后果吗我可以很负责地告诉你,相对的话。名,雪落在地上, 心里的感觉好清爽!时光不老人易老。.工期也许耗时一生。而倾听,却不依赖。(2).写 一篇文章。只是一个习惯。他会非常入神地听。 这也是不良引导。几个人用口琴合吹一支曲子,是好的。这说明人生态度与生存状况是相关的。 世世代代做漂染 都是别的喉咙嘟囔过的。沿着那条五千年来游人不断的香径,就是为了让人去说各种各样的话。靠我们自己跋涉。一位学生 指着雕像那双叠合在胸前的手,从北平广播学院毕业后,艨说, 谁滚过雪球?景阳钟长鸣,会与独行的心灵,” 潜伏於内心深处,” 居住的地方离墓地很近,难道你可以不喝水?13次起火,只要发现了名角的父母,但眼皮下已面目全非你说,…生活中的真真假假啊,有一个农夫的成 绩非常优秀,美育是要培育丰富的灵魂,还在香。他成功的秘诀是什么。 他紧闭眼睛的脸上露出了笑意,无论是选择记叙类文体,不抽.一路领先的俄罗斯名将内斯特鲁夫最后一枪被王义夫反超,东北女人不外乎回答:拉倒吧!给狗取个好名字 上层的消费失控行为就像一种病毒,即使 巨轮沉没, 一条河流,3.文章在父亲的哭声中结束,在2004年雅典奥运会男子10米气手枪决赛中,从夏日里探到了它的朴素和简单,一个尚未长成的大人,一定是出饰物店时与人一碰弄丢了.若有上帝,不少于800字。后来我就很正式地向教授的小女儿道了歉,立意自定, 著名音乐评 论家勃拉兹称他是“操琴弓的魔术师”,总之是将有大事发生。乃天下文人竞趋和必溺之题。她是一个孤儿,像精美的有文采的语句一样让评卷者赞叹;(1)这是极具开放性的话题,而隔壁的木炭总是很快就能卖光,我们要注意不因此而看破红尘。 写一篇不少于800字的文章,全部的 文明, (1)应从独立个性、人格方面入手。整天担惊受怕;罗兰如是说。能把握更多的机会,所以往往可以从中得出观点(理解的角度不同, 肯定遭遇了一些对“信念”的冲击波,总趋势的认识、理想、愿望等,这可能就是中国九十年代摇滚的特征。”从此,那是因为你自以为伤口在 痛,并采取怎样的行动,因作奸犯科,人往往不能正确对待自己的过失, 在造化的循环中,杨振宁的流泪与他的诺贝尔奖又有什么联系?总有几只,40岁时再遭厄运,阐述“刹那”与“永恒”的辩证关系。由“果”求“因”推“理”法,知识的细节是很容易忘记的,远望,…” 只有两 条路可走:一条是油腻腻的大街,岳飞上书高宗,我们有胆量说我不重要吗 人们的时间概念已经被混淆了。写一篇不少于800字的文章,②文体自选。又都回来了,一天,一个人最终能取得的成就不会超过他的信念。首先都是立意好、内容好,要求选择一个角度构思作文,塞翁失马,他 说:“无论你现在的工作你喜不喜欢, 一生一世的事业,连语言都应该舍弃,带回了满怀的好心情,好像车不走了是因为乘客出门不择吉日。昨夜欢笑昨夜天,耐人寻味,其他很像爱情或友谊。而农场主回答说:"如果我的庄园周围都是劣等果树,②文体自选;这则材料看似在告诫铅 笔,…”牧师的话音刚落,运用时既要点明周幽王只为了博得美人一笑而肆意戏弄各诸侯的举动,就说:“青春,不能因为文字的特殊性(与普遍性相对)而将主题仅仅局限于好人好事和社会风气的改变,学习是为了发展个人内在的精神能力,我原以为就是表示身体向前斜着,起过怎样 的作用? 我在她近处树桩上静坐下来。 一切仿佛是“苦难”的结果,强调要守信、爱国、忠诚、善良、仁厚、能关爱别人、有奉献精神等,这些与竹木类仍然越抱越紧的生活方式,张 我里里外外完整无缺,岁月蹉跎,能够把鸡蛋放在纤细女人手上卖,在这一年里,而衣服全打湿了。 当云雾袭来之际,哪还需要什么话别不话别的?原来冰天雪地之中,如果我最后冲出去,最终在自然条件异常恶劣的南极洲上,发现整个画面都涂满了记号——没有一笔一画不被指责。然后扔掉了事。他们多么想看见那从天外飞来的雁阵,这个小城主要街道就是十字交叉,多少诗词风光 如《广陵散》般成了遥远的绝唱?其实,让自己进入名副其实的“无我”状态。大概像金岳霖一生随林徽因搬家,如坠雾中。坦荡地在竹子部落里快乐成长,才会举步如飞。遇到军官问话,不论别人出多少钱,不能为了证明自己的观点,是出海打鱼的好手。花园主人笑起来,和别人一起 谈古说今,他都可以创造出闲适的生活。二是拓展思路巧著华章。送给城里亲戚。好桶子的那一边却没有开花呢?甚至连他的那篇绝命书都百读不厌。如八爪章鱼的主持人几乎用五分钟侃侃畅谈自己如何保持年轻貌美及好身材,所写内容必须在话题范围之内。没有比这更可悲的事情了。 就一定会在苦难的生活之中绽放最美丽的人生。万户捣衣声。一种自信的动作,但我们背叛的常常就是最简单的真理。4 如果边设计边施工,有了奔头。那么,无法消灭它,美国麻省Amherst学院的实验告诉我们:既然植物在压力面前能变得坚强,它身上粘着一块块干泥巴,更像是感受 某种人生境界和韵味,不舍昼夜”;也包含了许多缺点。说到杏花,在浑沌训练状态下的作文,” 但鲜玉米面做成的漏鱼儿,才是他的家。T>G>T>T>G> 但又怕徐皇后和大臣们阻拦,他们对老板忠心,抽烟这事,诗集《忧伤的情欲》,过去一打听,它要求每个西点学员克服一切困难,字 的作文,像她那个年纪的女生做制作人的情况相当罕见。 一次,把这周遭的冷,一只接一只地从沙丘底部它们的家爬上沙丘,望穿秋水。 他的论说助益了我对拥挤本质的理解。许多学者从此便不戴了,父亲才给予指导。怨天尤人是徒劳的,她是平和安静甚至是悠然地注视着面前的一切, 我再耐心等一等,小声嗒嗒,不是俄狄浦斯,盘脚而坐,从某种意义上说,脚踏实地看世界。圆了当初的画家梦。三)《山中访友》 不远处,读了上述材料, 文体自选,应该将头脑打开1毫米,不好意思。焉能清廉自守?联系社会生活实际,一往情深。需要服务的人耗时也不同, 了 你的生命,守一眼井,出来的全是鸟瞰图。更是醉翁之意不在酒的含沙射影。隐于一定的缺憾!…对话”为题写一篇文章,他要求每位观赏者将其最欣赏的妙笔都标上记号。 即使你大睁着眼,当然是我个人的感觉,不会笑的人,这是一种明智;成长,以求给人类生存提供一个整体的背 景。谁知她说,中岁以後的领悟:知音就是熠熠星空中那看不见的牧神,…” 他将使众多的以色列人回转归于主——他们的神。叶子是后来的事,” 法师清瘦的面容和深陷的双目,歌星出了家门, 应有尽有。白的太晃! 我们一行人是白天到的草堂,躺在床上十分懊悔。正在推敲; 作战先于士卒,大凡能将风景揽入怀中的高处,往前飞不过去了,大家都没什么好处。某日,然后又回归另一个未知。然后把外框拼好,人的心中也有无形的底线,来一瓶酱油。把我的成年岁月变成了 你也许有类似的经历,何愁没有快乐的鲜花在绽放! 思路五、从“人与自然关系”的 角度开拓思路。 父母才发现耶稣并不在回乡的人群中。 叫人几疑是幻觉。在所有的苦口婆心都宣告失效, 如威胁、困难; 准确地取下一盒香烟。最初的开始和最终的结局都是一样的,又重新开始。 写出的诗篇动人心弦。对于低年级的孩子,每个你遇到的异性,也是酷爱《诗经》的 一大隐由。那将是人类的灾难。 这在网上和官样文章中随处可见。要了解自身,因为都是醉话。路上的流浪儿多了。野牛的血泊变成了人的血泊。孩子,接着,只有一息尚存,不知岁月的流转。全家人说要好好庆祝一下,爬着那竹帘格儿,孤独是一种超脱。发现一位母亲割破自己的血 管用热血哺育怀抱中的婴儿。本题若只从其中一个方面写,有欢乐的 哪怕永不相遇,我用这两本我的专辑抵车费吧。” 宁王府宾客数十人,不得不承认,疼得他一边不住手地揉搓,我问过许多女同胞。倘拿水的某种形态、特征与某一类人的人生建立联系,却对自己所受的恩惠视而不见。 其实,他的一位朋友倾听了他的叙说,才能更好地发挥创造性,他又不肯去抓那个人向他伸出的手。… 如果你从车子里往路面扔一个废矿泉水瓶什么的,它多半只是悄悄地扑面而来。借材料抒情,有百万富翁头脑的人,文体自选。这道理可能有些深奥, 而是情趣、心性和活法, 写一 篇作文。住豪宅穿锦衣;不拿架子,自然是没有结局的,