初三数学上册圆的知识点总结—全面资料

合集下载

九年级圆的全部知识点归纳

九年级圆的全部知识点归纳

九年级圆的全部知识点归纳圆是几何学中的重要概念,具有广泛的应用价值。

在九年级的学习中,我们需要对圆的相关知识进行全面的了解,包括定义、性质、定理等方面。

本文将对九年级学习中的圆相关知识点进行归纳总结。

一、定义与基本术语1. 圆:由平面上到定点的距离相等的所有点的轨迹称为圆。

2. 圆心:圆上所有点到圆心的距离相等,圆心是圆的中心点。

3. 半径:连接圆心和圆上任意一点的线段称为半径,用字母r 表示。

4. 直径:通过圆心并且两端点都在圆上的线段称为直径,直径的长度等于半径的两倍。

5. 弧:圆上的两点间的部分称为弧。

6. 弦:圆上任意两点之间的线段称为弦。

二、圆的性质与定理1. 弧长公式:在圆心角相等的情况下,弧长和半径的乘积是相等的。

即L = rθ,其中L为弧长,r为半径,θ为对应的圆心角的度数。

2. 弧度制:1个圆周角对应的弧长等于圆周长的2π,使用弧度制时,1个圆周角对应的弧长等于半径的2π,即1圆周角= 2π弧度。

3. 弦弧定理:在圆上,相等弧所对应的弦相等,弦所对应的弧相等。

4. 弦切定理:一条弦上的两个切线所截的弧相等。

5. 切线与半径的关系:切线与半径的垂直分离定理,切线切圆的点与圆心连线垂直。

三、圆的重要定理与推论1. 中心角定理:圆上的中心角的度数等于它所对应的弧的度数。

2. 弧度的定义与利用:弧度是角度制的单位,通过弧长和半径之间的比值得到。

利用弧度可以简便地描述与计算圆的相关问题。

3. 圆周角定理:圆周角的度数等于360度,对应的弧度等于2π。

4. 平行弦定理:平行弦所对应的圆心角相等。

5. 弦割定理:当两条弦交于圆的内部一点时,各自所对应的弧之积相等。

四、圆的应用圆具有广泛的应用价值,在日常生活中有很多应用场景。

比如在建筑领域,圆经常用于设计弧形的拱门、圆顶等;在工程测量中,圆常被用于测量水井、桥梁等的半径;在电子工程中,圆被运用于制作集成电路的微缩线路等。

总结:通过本文对九年级学习中的圆相关知识点进行归纳总结,我们了解了圆的定义与基本术语、性质与定理以及应用。

九年级数学上册圆的知识点总结

九年级数学上册圆的知识点总结

九年级数学上册圆的知识点总结一、圆的概念1.圆的定义:在一个平面内,线段OA绕它固定的一个端点O旋转一周,另一个端点A所形成的图形叫做圆(或圆可以看做是所有到定点O的距离等于定长r的点的集合)。

2.圆心O、半径r、直径d:使圆上任意一点与定点O的距离等于r的动点O叫做圆心,连接圆心与圆上任意一点的线段叫做半径,圆心O与定点A之间的距离叫做直径。

二、圆的性质1.在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦也相等,所对的弦的弦心距相等。

2.在同圆或等圆中,同弧等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半。

3.半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径。

4.圆内接四边形的对角互补。

三、垂径定理垂直于弦的直径平分这条弦,并且平分弦所对的两条弧。

四、圆周角定理一条弧所对的圆周角等于它所对的圆心角的一半;在同圆或等圆中,同弧等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半。

五、点和圆的三种位置关系设⊙O的半径为r,点P到圆心的距离OP=d,则有:1.d>r 点P在⊙O外;2.d=r 点P在⊙O上;3.d<r 点P在⊙O内。

六、直线和圆的三种位置关系设⊙O的半径为r,圆心O到直线l的距离为d,则有:1.d>r 直线l与⊙O相离;2.d=r 直线l与⊙O相切;3.d<r 直线l与⊙O相交。

七、正多边形和圆各边相等,各内角都相等的多边形叫做正多边形。

在平面内,各边相等,各内角也都相等的多边形叫做正多边形。

正多边形的外接圆的半径叫做半径;正多边形的中心叫做中心;正多边形的内切圆的半径叫做内心;正多边形的一组邻边的垂直平分线的交点叫做中心。

正n边形的中心角公式:360°/n;正n边形一条边的长度公式:2rsin(180°/n)。

初三上册数学圆的知识点归纳总结

初三上册数学圆的知识点归纳总结

初三上册数学圆的知识点归纳总结数学中的圆是一种重要的几何图形,在初中数学的学习中也占据着重要的地位。

下面对初三上册数学中关于圆的知识点进行归纳总结,以帮助同学们更好地理解和掌握相关内容。

一、圆的定义和性质1. 定义:圆是一个平面上与一个固定点距离相等的点的集合。

2. 元素:圆心、半径、弦、弧、切线等。

3. 性质:(1) 圆上所有点到圆心的距离相等。

(2) 圆上的弦的垂直平分线通过圆心。

(3) 圆上的任意一条弧都小于或等于圆周长的一半。

二、圆的线段关系1. 半径与弦:如果一个线段的两个端点都在圆上,且其中一个是圆心,那么这个线段就是半径;如果这个线段的两个端点都在圆上但不是圆心,那么这个线段就是弦。

2. 弦的性质:(1) 通过圆心的弦是直径,直径是圆上最长的弦。

(2) 在同一个圆或等圆中,等长的弦所对的圆心角相等。

(3) 如果一个弦与另一个弦交于圆内的一点,那么两个弦所对的弧相等。

三、圆的圆周角和弧度制1. 圆周角的定义:以圆心为顶点的角,角的两边是圆上的两条弧。

圆周角的度数等于所对的圆弧的度数。

2. 弧度制:将圆的一周等分为360份,每份称为一度,每度又等分为60分,每分又等分为60秒。

弧度是用弧长等于半径的圆周长所对应的角中的弧所对应的角。

3. 弧度制与角度的换算:(1) 1度= π/180弧度(2) 1弧度≈ 57.3度四、切线与切线定理1. 切线定义:如果一条直线与圆相交于圆上的一点,且在该点处的切线与这条直线垂直,那么这条直线就是圆的切线。

2. 切线定理:切线与半径垂直。

(1) 如果一条直线与圆相交于圆上的一点,并且通过圆心,那么这条直线就是切线。

(2) 反之,如果一条直线与圆相交于圆上的一点,并且与通过圆心的切线垂直,那么这条直线就通过圆心,也是切线。

五、圆的面积和周长1. 圆的周长公式:C = 2πr,其中C表示圆的周长,r表示半径。

2. 圆的面积公式:A = πr²,其中A表示圆的面积,r表示半径。

九年级数学圆知识点梳理

九年级数学圆知识点梳理

九年级数学圆知识点梳理一、圆的定义与特点圆是由平面上离定点(圆心)距离相等的点构成的图形。

圆的特点有:1. 圆心:圆中心点的位置。

2. 半径:连接圆心和圆上任意一点的线段的长度,即半径。

3. 直径:通过圆心的两个点所构成的线段,即直径。

直径的长度是半径的两倍。

4. 弧:连接圆上两点的弧。

5. 圆周:由圆上所有点组成的曲线,也叫圆周。

二、圆的计算公式1. 圆的周长公式:C = 2πr,其中C代表圆的周长,r代表圆的半径。

π取近似值3.14。

2. 圆的面积公式:S = πr²,其中S代表圆的面积,r代表圆的半径。

三、圆的相交关系1. 相离:两个圆没有任何公共点,彼此之间没有交集。

2. 外切:两个圆相切于一点,且外切的圆没有穿过另一个圆。

3. 相交:两个圆有公共点,且相交的圆穿过另一个圆。

4. 内切:一个圆刚好位于另一个圆内部,并且两圆相切于一点。

5. 同心圆:有相同的圆心,但半径不同的圆。

四、圆的性质和定理1. 弧与角度的关系:圆心角是以圆心为顶点的角,圆心角的度数等于其所对应的弧所对角的度数。

2. 弧长公式:弧长等于圆周的$\frac{1}{n}$,其中n是圆周上被划分的几等分,m是圆周上的弧所对应的角的角度。

3. 弧与切线的关系:圆上的切线与切点处的弧垂直。

4. 切线定理:当一条直线与圆相切时,切点与切线的连线垂直于半径。

5. 弦的性质:如果两个弦在圆内或圆外相交,那么穿过内圆或外圆的弦的两边相乘的和等于其他穿过的弦的两边相乘的和。

6. 弧度制:以圆心为顶点的角所对应的弧长与半径的比值等于一个常数,即弧度制。

7. 平行切线定理:平行于切线的直线也是切线。

8. 平行弦定理:当两个弦平行时,两个弦的长度之比等于两个弦所对应的弧的长度之比。

五、圆的应用1. 几何画图:根据已知的圆心、半径、弦、切线等元素要求画出几何图形。

2. 圆的作图:根据已知条件画出满足要求的圆。

3. 物体的运动轨迹:物体在圆周运动时,物体的位置与时间的关系可表示为圆。

九上圆知识点总结

九上圆知识点总结

九上圆知识点总结一、圆的概念圆是平面上的一组点,到某一点的距离等于常数,这个常数就是圆的半径。

圆由圆心和圆周上的所有点构成,圆的概念是平面几何学中最基本的概念之一。

二、圆的性质1. 圆的圆心:圆心是圆的中心点,任意一条通过圆心的线段都等于圆的直径。

2. 圆的直径:圆的直径是通过圆心,且两端点在圆周上的线段,它的长度等于圆周的两倍。

3. 圆周:圆周是由无数个点构成的曲线,这些点到圆心的距离都等于圆的半径。

4. 圆的半径:半径是圆心到圆周上任意一点的距离,它的长度是一个固定值。

5. 弧长和弧度:圆周上任意两点之间的曲线段称为弧,弧对应的圆心角称为弧度。

弧长等于半径乘以弧度。

6. 圆的面积:圆形的面积是圆的面积,它等于π乘以半径的平方。

三、圆的相关定理和公式1. 直角三角形中圆的应用:在直角三角形中,圆的直径是斜边,这可用来求解直角三角形的边长和面积。

2. 确定圆的位置:通过圆心和半径可以唯一确定一个圆。

3. 弧长和扇形面积:弧长和扇形面积的计算公式均基于圆的半径和圆心角。

4. 圆外切四边形:圆外切四边形的性质和面积计算公式。

5. 正多边形内接圆:正多边形的内接圆心角和边数的关系。

四、圆的主要解题方法1. 几何画图法:在解题过程中,仔细画出几何图形,有助于理清问题的思路。

2. 数学归纳法:利用数学归纳法总结出一般规律,有助于解决一般情况的问题。

3. 利用已知性质和定理:通过已知定理和性质来解决问题,例如圆心角的性质等。

五、圆的延伸应用1. 圆的信息化应用:在计算机图形学、地图绘制等领域,圆的概念和运算被广泛应用。

2. 圆的工程应用:在建筑设计、地理测量、轮胎制造等领域,圆的性质和计算方法也发挥了重要作用。

六、习题训练1. 针对圆的相关定理和公式,通过大量的练习来掌握圆的性质和计算方法。

2. 利用解题方法和技巧,解决实际问题和复杂题目,提高解题能力和应用能力。

通过九上学期的学习,我们对圆的概念、性质、定理和应用有了更深入的了解,掌握了圆周、直径、半径、弧长、扇形面积等相关知识,为将来的学业打下了坚实的基础。

九年级圆的知识点详细总结归纳

九年级圆的知识点详细总结归纳

九年级圆的知识点详细总结归纳一、圆的定义和关键概念圆是一个平面上的简单闭曲线,由与一个固定点的所有点到该点的距离相等的点组成。

下面是一些重要的圆的关键概念:1. 圆心 (Center):圆心是圆的中心点,标记为O。

2. 圆周 (Circumference):圆的周长,也称为圆周,用C表示。

3. 直径 (Diameter):直径是通过圆心的、连接圆上两点的线段。

直径的长度是圆直径的两倍。

直径用d表示。

4. 半径 (Radius):半径是从圆心到圆上任意一点的线段。

半径的长度是直径的一半。

半径用r表示。

5. 弧 (Arc):圆上两点之间的一段路径叫做弧。

6. 弦 (Chord):圆上两点之间的线段叫做弦。

7. 切线 (Tangent):切线是切于圆的一条直线,且与圆仅有一个交点。

二、圆的性质和定理圆的性质和定理是研究圆的重要基础,下面是一些常见的圆的性质和定理:1. 直径定理:直径是最长的弦,且它把一个圆分成两个半圆。

2. 弧长定理:一个圆的弧长是根据圆的半径和弧度来计算的。

弧长等于半径乘以弧的弧度。

3. 弧心角定理:圆心角是以圆心为顶点的角,它的弧度等于弧长与半径的比值。

4. 切线定理:切线与半径的关系是垂直。

5. 切线和半径的性质:当一条直线与圆相切时,与切点相连的半径垂直于切线。

6. 切割定理:如果一个弦垂直于一个半径,那么它将被切分成两个互为正方向的弧。

7. 切割角度定理:互不相交的弧它们对应的圆心角相等,相交的弧,它们对应切线切割的角相等。

8. 重合弧定理:在同一个圆上,两个重合的弧对应的圆心角相等。

三、圆的应用圆在日常生活和实际问题中有很多应用,下面是一些常见的圆的应用:1. 圆的测量:通过测量圆的直径或半径可以计算圆的周长和面积。

2. 圆的构造:通过给定圆的半径或直径可以构造圆。

3. 圆的几何关系:圆与直线、圆与圆之间有各种几何关系,如相离、相切、相交等。

4. 圆的运动学:在物理学中,圆的运动学广泛应用于描述物体的圆周运动和周期性运动。

初三数学上册圆的知识点总结—全面

初三数学上册圆的知识点总结—全面

初三数学上册圆的知识点总结—全面

章节知识点一、圆的概念
集合形式的概念:
1、圆可以看作是到定点的距离等于定长的点的集合; 2
、圆的外部:可以看作是到定点的距离大于定长的点的集合;3、圆的内部:可以看作是到定点的距离小于定长的点的集合轨迹形式的概念:
1、圆:到定点的距离等于定长的点的轨迹就是以定点为圆心,定长为半径的圆;
二、点与圆的位置关系
1、点在圆内d
r 点C 在圆内;2、点在圆上d
r 点B 在圆上;3、点在圆外d r 点A 在圆外;
三、直线与圆的位置关系
1、直线与圆相离
d r 无交点;2、直线与圆相切d r 有一个交点;
3、直线与圆相交d r 有两个交点;四、圆与圆的位置关系
外离(图1)
无交点d R r ;外切(图2)有一个交点d R r ;相交(图3)
有两个交点R r d R r ;内切(图4)有一个交点d R r ;内含(图5)无交点d R r ;d r d=r r d
r d d C B A O。

九年级上册数学圆章节知识点总结

九年级上册数学圆章节知识点总结

九年级上册数学圆章节知识点总结What is a classic? It takes about 100 years to become a classic.与圆相关的基本知识和计算一、知识梳理:一:圆及圆的有关概念1.圆:到顶点的距离等于定长的点的集合叫做圆;2.弧:圆上任意两点间的部分叫做圆弧,简称弧.圆的任意一条直径的两个端点把圆分成两条弧,每一条弧都叫做半圆,大于半圆的弧叫做优弧,小于半圆的叫做劣弧;3.弦:连接圆上任意两点的线段叫做弦.经过圆心的弦叫做直径,它是圆的最长的弦;4.等圆:能够完全重合的两个圆叫做等圆;等弧:在同圆或等圆中,能够互相重合的弧叫做等弧;5.圆心角:顶点在圆心的角叫做圆心角;圆周角:顶点在圆上且两边与圆相交的角叫做圆周角;二圆的有关性质:1.对称性:圆是中心对称图形,其对称中心是圆心;圆是轴对称图形,其对称轴是直径所在的直线;2.垂径定理及其推论:1、垂径定理:垂直弦的直径平分弦,并且平分弦所对的弧;2、推论:平分弦不是直径的直径垂直于弦,并且平分弦所对的弧;3.圆心角、弧、弦之间的关系1定理:在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦也相等;2推论:在同圆或等圆中,如果两条弧相等,那么他们所对的圆心角相等、所对的弦相等.在同圆或等圆中,如果两条弦相等,那么它们所对的圆心角相等、所对的弧相等.4.圆周角与圆心角的关系1在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半;2推论:半圆或直径所对的圆周角是直角,090的圆周角所对的弦是直径;5.圆内接四边形对角互补.(三)点与圆的位置关系1、点和圆的位置关系如果圆的半径为r,已知点到圆心的距离为d,则可用数量关系表示位置关系.1d>r点在圆外;2d=r点在圆上;3d<r点在圆内.2、确定圆的条件:不在同一直线上的三个点确定一个圆.(四)直线与圆的位置关系1、1直线与圆的位置关系有关概念①相交与割线:直线和圆有两个公共点时,叫做直线和圆相交,这条直线叫做圆的割线.②切线与切点:直线和圆有惟一公共点时,叫做直线和圆相切,这条直线叫做圆的切线,惟一的公共点叫做切点.③相离,当直线和圆没有公共点时,叫做直线和圆相离.2用数量关系判断直线与圆的位置关系如果⊙O的半径为r,圆心O到直线l的距离为d,那么:1直线l和⊙O相交d<r如图1所示;2直线l和⊙O相切d=r如图2所示;3直线l和⊙O相离d>r如图3所示.2、切线1切线的判定定理:经过半径的外端并且垂直于这条半径的直线是圆的切线.2切线的性质:圆的切线垂直于过切点的半径.3切线长:圆的切线上某一点与切点之间的线段的长叫做这点到圆的切线长.4切线长定理:从圆外一点可以引圆的两条切线,它们的切线长相等.这一点和圆心的连线平分这两条切线的夹角.五三角形的外接圆和内切圆1、三角形的外接圆1定义:经过三角形的三个顶点可以做一个圆,这个圆叫做三角形的外接圆.三角形的外心:外接圆的圆心是三角形三条边垂直平分线的交点,叫做这个三角形的外心,这个三角形叫做这个圆的内接三角形.2三角形外心的性质:①三角形的外心是外接圆的圆心,它是三角形三边垂直平分线的交点,它到三角形各顶点的距离相等.②三角形的外接圆有且只有一个,即对于给定的三角形,其外心是惟一的,但一个圆的内接三角形却有无数个,这些三角形的外心重合.2、三角形的内切圆与三角形的内心①与三角形各边都相切的圆叫做三角形的内切圆.三角形内切圆的圆心叫做三角形的内心.这个三角形叫做圆的外切三角形.②三角形的内心就是三角形三条内角平分线的交点,三角形的内心到三边的距离相等.六:圆的有关计算一正多边形与圆1、正多边形的定义:各边相等,各角也相等的多边形叫做正多边形.2、任何正多边形都有一个外接圆和内切圆,这两个圆是同心圆,正多边形都是轴对称图形,一个正n 边形共有n 条对称轴,每条对称轴都通过正n 边形的中心;如果一个正n 边形有偶数条边,那么它又是中心对称图形,其中心就是对称中心;3、边数相同的正多边形相似,它们的周长的比等于它们的相似比,面积的比等于它们相似比的平方;4、正n 边形的半径和边心距把正n 边形分成2n 个全等的直角三角形;正n 边形的中心角等于外角等于n3600; 二 弧长与扇形面积1、在半径为R 的圆中,0n 圆心角所对的弧长l=180n ℜπ;2、在半径为R 的圆中,圆心角为0n 的扇形面积扇形S =360n 2R π;半径为R,弧长为l 的扇形面积为扇形S =R l 21;3、侧面积:设圆锥的母线长为l,底面积的半径为r,那么圆的侧面积展开得到的扇形的半径为l,扇形的弧长为2πr,因此圆锥的侧面积为πrl,圆锥的全面积为πrl+πr 2.。

九年级圆的知识点总结

九年级圆的知识点总结

九年级圆的知识点总结圆是九年级数学中的一个重要内容,它具有独特的性质和广泛的应用。

下面我们来对九年级圆的知识点进行一个全面的总结。

一、圆的定义圆是平面内到定点的距离等于定长的点的集合。

这个定点称为圆心,定长称为半径。

圆的标准方程为$(x a)^2 +(y b)^2 = r^2$,其中$(a, b)$为圆心坐标,$r$为半径。

二、圆的相关概念1、弦:连接圆上任意两点的线段叫做弦。

2、直径:经过圆心的弦叫做直径,直径是圆中最长的弦。

3、弧:圆上任意两点间的部分叫做弧。

弧分为优弧(大于半圆的弧)、劣弧(小于半圆的弧)。

4、半圆:圆的任意一条直径的两个端点把圆分成两条弧,每一条弧都叫做半圆。

5、等圆:能够重合的两个圆叫做等圆。

6、等弧:在同圆或等圆中,能够互相重合的弧叫做等弧。

三、圆的性质1、圆的对称性圆是轴对称图形,其对称轴是任意一条通过圆心的直线。

圆是中心对称图形,其对称中心是圆心。

2、垂径定理垂直于弦的直径平分弦且平分弦所对的两条弧。

推论:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧。

弦的垂直平分线经过圆心,并且平分弦所对的两条弧。

平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧。

3、圆心角、弧、弦之间的关系在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等。

推论:在同圆或等圆中,如果两条弧相等,那么它们所对的圆心角相等,所对的弦相等。

在同圆或等圆中,如果两条弦相等,那么它们所对的圆心角相等,所对的弧相等。

4、圆周角定理一条弧所对的圆周角等于它所对的圆心角的一半。

推论:同弧或等弧所对的圆周角相等。

半圆(或直径)所对的圆周角是直角,$90^{\circ}$的圆周角所对的弦是直径。

四、圆的位置关系1、点与圆的位置关系设点$P$到圆心的距离为$d$,圆的半径为$r$,则有:点$P$在圆外$\Leftrightarrow$ $d > r$点$P$在圆上$\Leftrightarrow$ $d = r$点$P$在圆内$\Leftrightarrow$ $d < r$2、直线与圆的位置关系设圆心到直线的距离为$d$,圆的半径为$r$,则有:直线与圆相离$\Leftrightarrow$ $d > r$,此时直线与圆没有公共点。

九年级上册圆的知识点讲解

九年级上册圆的知识点讲解

九年级上册圆的知识点讲解圆的知识点讲解一、圆的定义和性质圆是指由平面上任意一点到另一点距离保持不变的点的集合。

其中,距离保持不变的点称为圆心,距离称为半径(r)。

圆的边缘称为圆周,圆周上的任意两点到圆心的距离均相等。

圆的性质包括以下几个方面:1. 圆心角:以圆心为顶点的角,其对应的弧长与圆周长的比称为圆心角的度数。

2. 弧长:圆周上的一段部分称为弧,其长度称为弧长。

3. 弦长:圆上任意两点间的线段称为弦,弦的长度称为弦长。

4. 弧度制:角度制是一种常用的度量角的方法,而弧度制是一种比较精确的度量角的方法。

弧度是以旋转角的一种特殊单位,记作“rad”。

而对于一个完整的圆而言,它的圆心角所对应的弧长就是半径的弧度数。

二、圆的重要公式1. 圆面积公式:圆的面积S等于Pi乘以半径的平方,即S = πr²。

2. 圆周长公式:圆的周长L等于Pi乘以直径d,即L = πd。

3. 圆弧长度公式:圆的弧长L等于圆心角度数θ除以360度乘以圆周长L,即L = (θ/360) × L。

三、常见圆相关术语1. 直径:通过圆心,并且两端点都在圆上的线段称为直径。

直径的两倍等于半径的长度。

2. 弦:在圆上连接两点的线段称为弦。

3. 弦分割的弧:当一条弦把圆分割成两个部分时,它所分割的两段弧称为弦分割的弧。

4. 切线:与圆相切且只与圆有一个交点的直线称为切线。

切线与半径所在的直线垂直。

5. 弧度:以半径长为1的圆所对应的弧长。

四、圆的相关定理和推论1. 圆的半径相等:圆周上的任意两个半径均相等。

2. 在圆周上,等弧对应的圆心角相等。

3. 在同一个圆中,圆心角相等的弧相等。

4. 在同一个圆中,弦相等的圆心角相等。

反之亦成立。

5. 在同一个圆中,过圆心的弦是直径。

反之亦成立。

五、应用实例1. 已知圆的半径为5cm,求圆的面积和周长。

解答:根据公式,可知圆的面积S等于πr²,圆的周长L等于πd。

代入半径r=5cm,可得圆的面积S = π × 5² = 25π cm²,圆的周长L = π × 2 × 5 = 10π cm。

初三数学圆知识点总结完整版

初三数学圆知识点总结完整版

初三数学圆知识点总结 Document serial number【NL89WT-NY98YT-NC8CB-NNUUT-NUT108】初三数学圆知识点总结一、本章知识框架二、本章重点1.圆的定义:(1)线段OA绕着它的一个端点O旋转一周,另一个端点A所形成的封闭曲线,叫做圆.(2)圆是到定点的距离等于定长的点的集合.2.判定一个点P是否在⊙O上.设⊙O的半径为R,OP=d,则有d>r点P在⊙O 外;d=r点P在⊙O 上;d<r点P在⊙O 内.3.与圆有关的角(1)圆心角:顶点在圆心的角叫圆心角.圆心角的性质:圆心角的度数等于它所对的弧的度数.(2)圆周角:顶点在圆上,两边都和圆相交的角叫做圆周角.圆周角的性质:①圆周角等于它所对的弧所对的圆心角的一半.②同弧或等弧所对的圆周角相等;在同圆或等圆中,相等的圆周角所对的弧相等.③90°的圆周角所对的弦为直径;半圆或直径所对的圆周角为直角.④如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形.⑤圆内接四边形的对角互补;外角等于它的内对角.(3)弦切角:顶点在圆上,一边和圆相交,另一边和圆相切的角叫弦切角.弦切角的性质:弦切角等于它夹的弧所对的圆周角.弦切角的度数等于它夹的弧的度数的一半.4.圆的性质:(1)旋转不变性:圆是旋转对称图形,绕圆心旋转任一角度都和原来图形重合;圆是中心对称图形,对称中心是圆心.在同圆或等圆中,两个圆心角,两条弧,两条弦,两条弦心距,这四组量中的任意一组相等,那么它所对应的其他各组分别相等.(2)轴对称:圆是轴对称图形,经过圆心的任一直线都是它的对称轴.垂径定理及推论:(1)垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.(2)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧.(3)弦的垂直平分线过圆心,且平分弦对的两条弧.(4)平分一条弦所对的两条弧的直线过圆心,且垂直平分此弦.(5)平行弦夹的弧相等.5.三角形的内心、外心、重心、垂心(1)三角形的内心:是三角形三个角平分线的交点,它是三角形内切圆的圆心,在三角形内部,它到三角形三边的距离相等,通常用“I”表示.(2)三角形的外心:是三角形三边中垂线的交点,它是三角形外接圆的圆心,锐角三角形外心在三角形内部,直角三角形的外心是斜边中点,钝角三角形外心在三角形外部,三角形外心到三角形三个顶点的距离相等,通常用O表示.(3)三角形重心:是三角形三边中线的交点,在三角形内部;它到顶点的距离是到对边中点距离的2倍,通常用G表示.(4)垂心:是三角形三边高线的交点.6.切线的判定、性质:(1)切线的判定:①经过半径的外端并且垂直于这条半径的直线是圆的切线.②到圆心的距离d等于圆的半径的直线是圆的切线.(2)切线的性质:①圆的切线垂直于过切点的半径.②经过圆心作圆的切线的垂线经过切点.③经过切点作切线的垂线经过圆心.(3)切线长:从圆外一点作圆的切线,这一点和切点之间的线段的长度叫做切线长.(4)切线长定理:从圆外一点作圆的两条切线,它们的切线长相等,这一点和圆心的连线平分两条切线的夹角.7.圆内接四边形和外切四边形(1)四个点都在圆上的四边形叫圆的内接四边形,圆内接四边形对角互补,外角等于内对角.(2)各边都和圆相切的四边形叫圆外切四边形,圆外切四边形对边之和相等.8.直线和圆的位置关系:设⊙O 半径为R,点O到直线l的距离为d.(1)直线和圆没有公共点直线和圆相离d>R.(2)直线和⊙O有唯一公共点直线l和⊙O相切d=R.(3)直线l和⊙O 有两个公共点直线l和⊙O 相交d<R.9.圆和圆的位置关系:设的半径为R、r(R>r),圆心距.(1)没有公共点,且每一个圆上的所有点在另一个圆的外部外离d>R+r.(2)没有公共点,且的每一个点都在外部内含d<R-r(3)有唯一公共点,除这个点外,每个圆上的点都在另一个圆外部外切d=R+r.(4)有唯一公共点,除这个点外,的每个点都在内部内切d=R-r.(5)有两个公共点相交R-r<d<R+r.10.两圆的性质:(1)两个圆是一个轴对称图形,对称轴是两圆连心线.(2)相交两圆的连心线垂直平分公共弦,相切两圆的连心线经过切点.11.圆中有关计算:圆的面积公式:,周长C=2πR.圆心角为n°、半径为R的弧长.圆心角为n°,半径为R,弧长为l的扇形的面积.弓形的面积要转化为扇形和三角形的面积和、差来计算.圆柱的侧面图是一个矩形,底面半径为R,母线长为l的圆柱的体积为,侧面积为2πRl,全面积为.圆锥的侧面展开图为扇形,底面半径为R,母线长为l,高为h的圆锥的侧面积为πRl ,全面积为,母线长、圆锥高、底面圆的半径之间有.【经典例题精讲】例1 如图23-2,已知AB为⊙O直径,C为上一点,CD⊥AB于D,∠OCD的平分线CP交⊙O于P,试判断P点位置是否随C点位置改变而改变分析:要确定P点位置,我们可采用尝试的办法,在上再取几个符合条件的点试一试,观察P点位置的变化,然后从中观察规律.解:连结OP,P点为中点.小结:此题运用垂径定理进行推断.例2 下列命题正确的是( )A.相等的圆周角对的弧相等B.等弧所对的弦相等C.三点确定一个圆D.平分弦的直径垂直于弦.解:A.在同圆或等圆中相等的圆周角所对的劣弧相等,所以A不正确.B.等弧就是在同圆或等圆中能重合的弧,因此B正确.C.三个点只有不在同一直线上才能确定一个圆.D.平分弦(不是直径)的直径垂直于此弦.故选B.例3 四边形ABCD内接于⊙O,∠A︰∠B︰∠C=1︰2︰3,求∠D.分析:圆内接四边形对角之和相等,圆外切四边形对边之和相等.解:设∠A=x,∠B=2x,∠C=3x,则∠D=∠A+∠C-∠B=2x.x+2x+3x+2x=360°,x=45°.∴∠D=90°.小结:此题可变形为:四边形ABCD外切于⊙O,周长为20,且AB︰BC︰CD=1︰2︰3,求AD的长.例4 为了测量一个圆柱形铁环的半径,某同学采用如下方法:将铁环平放在水平桌面上,用一个锐角为30°的三角板和一个刻度尺,用如图23-4所示方法得到相关数据,进而可以求得铁环半径.若测得PA=5cm,则铁环的半径是__________cm.分析:测量铁环半径的方法很多,本题主要考查切线长性质定理、切线性质、解直角三角形的知识进行合作解决,即过P点作直线OP⊥PA,再用三角板画一个顶点为A、一边为AP、大小为60°的角,这个角的另一边与OP的交点即为圆心O,再用三角函数知识求解.解:.小结:应用圆的知识解决实际问题,应将实际问题变成数学问题,建立数学模型.例5 已知相交于A、B两点,的半径是10,的半径是17,公共弦AB=16,求两圆的圆心距.解:分两种情况讨论:(1)若位于AB的两侧(如图23-8),设与AB交于C,连结,则垂直平分AB,∴.又∵AB=16∴AC=8.在中,.在中,.故.(2)若位于AB的同侧(如图23-9),设的延长线与AB交于C,连结.∵垂直平分AB,∴.又∵AB=16,∴AC=8.在中,.在中,.故.注意:在圆中若要解两不等平行弦的距离、两圆相切、两圆相离、一个点到圆上各点的最大距离和最小距离、相交两圆圆心距等问题时,要注意双解或多解问题.三、相关定理:1.相交弦定理圆内的两条相交弦,被交点分成的两条线段长的积相等。

初三数学九上圆所有知识点总结和常考题型练习题

初三数学九上圆所有知识点总结和常考题型练习题

圆知识点、圆的概念集合形式的概念:1、圆可以看作是到定点的距离等于定长的点的集合;23、圆的外部:可以看作是到定点的距离大于定长的点的集合; 、圆的内部:可以看作是到定点的距离小于定长的点的集合轨迹形式的概念:1、圆:至U定点的距离等于定长的点的轨迹就是以定点为圆心,定长为半径的圆;(补充)2、垂直平分线:到线段两端距离相等的点的轨迹是这条线段的垂直平分线(也叫中垂线)3 、角的平分线:到角两边距离相等的点的轨迹是这个角的平分线;4 、到直线的距离相等的点的轨迹是:平行于这条直线且到这条直线的距离等于定长的两条直线;5 、到两条平行线距离相等的点的轨迹是:平行于这两条平行线且到两条直线距离都相等的一条直线。

四、垂径定理垂径定理:垂直于弦的直径平分弦且平分弦所对的弧。

推论1 :(1)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧;(2)弦的垂直平分线经过圆心,并且平分弦所对的两条弧;(3)平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧以上共4个定理,简称2推3定理:此定理中共5个结论中,只要知道其中2个即可推出其它3个结论, 即:①AB是直径②AB_CD ③CE=DE ④弧BC二弧BD ⑤弧AC二弧AD 中任意2个条件推出其他3个结论。

推论2:圆的两条平行弦所夹的弧相等。

即:在Θ O 中,I AB // CD.∙.弧AC =弧BD五、圆心角定理圆心角定理:同圆或等圆中,相等的圆心角所对的弦相等,所对的弧相等,弦心距相等。

此定理也称1推3定理,即上述四个结论中,只要知道其中的1个相等,则可以推出其它的3个结论,即:① AOB "DOE :② AB=DE ;③OC =OF :④弧BA二弧BD六、圆周角定理I1、圆周角定理:同弧所对的圆周角等于它所对的圆心的角的一半。

1、点在圆内― d ::—点C在圆内;2、点在圆上― d = r—点B在圆上;3、点在圆外— d r—点A在圆外;1、直线与圆相离— d ∙ r = 尢父点;2、直线与圆相切— d = r—有一个交点;3、直线与圆相交— d :—有两个交点;、点与圆的位置关系三、直线与圆的位置关系OADEODCAOBA八、切线的性质与判定定理(1) 切线的判定定理:过半径外端且垂直于半径的直线是切线; 两个条件:过半径外端且垂直半径,二者缺一不可即:∙∙∙ MN _OA 且MN 过半径OA 外端••• MN 是Θ O 的切线(2) 性质定理:切线垂直于过切点的半径(如上图)推论1:过圆心垂直于切线的直线必过切点。

圆九年级知识点

圆九年级知识点

圆九年级知识点圆是初中数学中的基础知识之一,它涉及到圆的定义、圆的性质、圆的应用等内容。

本文将全面介绍九年级学生需要了解的圆的知识点,帮助同学们更好地理解和掌握相关概念。

一、圆的定义圆是平面上一点到另一点的距离等于常数的所有点的集合。

简而言之,圆是由一条固定长度的线段的端点向外作弧所形成的图形。

二、圆的要素1. 圆心:圆心是圆上所有点到圆心的距离都相等的一个点,用字母O表示。

2. 半径:半径是连接圆心和圆上任意一点的线段,用字母r表示。

半径的长度等于圆的直径的一半。

3. 直径:直径是连接圆上任意两点并通过圆心的线段,用字母d表示。

直径的长度等于圆的半径的两倍。

4. 弧:圆上两点间的弧是两点之间的部分弧线段。

弧也可以通过夹角来表示。

三、圆的性质1. 圆内任意两点的距离都小于或等于圆的直径。

2. 圆内任意两点的距离都小于圆的半径。

3. 圆内任意两点的距离都相等。

4. 圆的直径是圆上最长的线段。

5. 半径相等的圆互为等圆。

四、圆的公式1. 圆的面积公式:圆的面积等于π乘以半径的平方,即A = πr²,其中π的近似值为3.14。

2. 圆的周长公式:圆的周长等于π乘以直径,即C = πd。

五、圆的应用圆在日常生活中有广泛的应用,下面以几个实际案例说明圆的应用场景:1. 车轮:车轮是圆形的,它能够顺畅地滚动,减小了摩擦阻力,提高了车辆的行驶效率。

2. 影碟:DVD、CD等光盘都是圆形的,它们的旋转速度决定了光头的读取速度,从而实现了音视频的播放。

3. 灯罩:路灯、台灯等灯具的灯罩往往采用圆形设计,这样可以使光线更加均匀地照射到周围环境。

4. 拱桥:拱桥的形状是由一系列相等的圆弧组成的,它能够有效地分担桥身上的荷载,使得桥梁更加坚固耐用。

六、习题练习1. 已知圆的半径为5cm,求圆的面积和周长。

解答:圆的面积A = πr² = 3.14 × 5² ≈ 78.5cm²,圆的周长C = πd = 3.14 × 10 ≈ 31.4cm。

九年级数学圆的知识点总结大全

九年级数学圆的知识点总结大全

一、圆的定义和性质1.圆的定义:平面上到定点的距离等于定长的点的集合。

2.圆的要素:圆心、半径、圆周。

3.圆的性质:(1)半径相等的两个圆是同心圆;(2)同圆中,圆心角等于圆周角的1/2;(3)同弧上的两条弦所对的圆心角相等;(4)圆心角相等的弧相等;(5)相等弧所对的弦相等;(6)正多边形的内角和是定值,因此内接于一个圆的正多边形的各个内角相等;(7)直径是弦中最长的。

二、弧与圆周角1.弧的定义:圆上两点间的弧是以这两点为端点的两条互不相交的圆弧中,长的那一段。

2.弧的性质:(1)圆周角所对的弧是唯一确定的;(2)全周角所对的弧是定长的。

3.圆周角的定义:以圆心为端点的两条互不相交的射线所夹的角。

4.圆周角的度量:可以用角的度数来衡量。

三、切线与弦1.切线的定义:切线是与圆只有一个公共点的直线。

2.切线与半径的关系:切线与半径的关系是切线⊥半径。

3.弦的定义:两点之间的线段叫做弦。

4.弦的性质:(1)圆内的弦比它们所对的圆心角小,而且与一个圆心角的两个弧所对的弧一样;(2)相等的弦所对的圆心角相等。

四、相交弦定理1.弦上的点:如果一个点在弦上,则这个点到两个端点的距离相等。

2.相交弦定理:如果两个弦相交于圆内的一个点,则这两个弦上的两个点一定分别在另一个弦上的两侧。

五、余弦定理1.面积的性质:圆内、圆外的面积相等,夹在一个圆内的圆周弧的面积也相等。

2.余弦定理:在一个圆上,任意两条弧所对的圆心角的余弦值相等。

六、正多边形的面积公式1.正六边形的面积:正六边形的面积=3×(边长)²×√3÷22.正八边形的面积:正八边形的面积=2×(边长)²×√23.正十二边形的面积:正十二边形的面积=3×(边长)²×√34. 正十六边形的面积:正十六边形的面积=4×(边长)²×tan(22.5°)。

九年级上数学圆知识点总结

九年级上数学圆知识点总结

九年级上数学圆知识点总结数学是一门抽象而又实用的学科,在九年级上学期,学生们学习了很多与圆相关的知识。

本文将从圆的定义、性质、公式等方面总结九年级上数学圆的知识点。

一、圆的定义与性质1. 圆的基本定义:圆是由平面内距离一定的一个点到这个平面内任意点的距离都相等的点的集合。

2. 圆的要素:圆心、半径。

圆心是圆的中心点,而半径则是从圆心到圆上任意一点的距离。

3. 圆的直径:通过圆心的一条线段,且两个端点都在圆上。

直径是半径的两倍。

4. 圆的弧:圆上的一段曲线被称为圆弧。

圆弧可以用角度或弧长来表示。

5. 圆的弦:圆上的一条线段,并且两个端点都在圆上,这条线段被叫做圆的弦。

6. 圆的切线:与圆仅有一个交点的直线,这条直线与圆相切。

7. 圆与角度的关系:圆的弧对应的圆心角是圆弧所对应的圆心角的一半。

二、圆的公式1. 圆的周长:圆的周长可以通过直径或半径来计算。

如果已知圆的直径D,那么圆的周长C等于π乘以直径值,即C = πD。

如果已知圆的半径r,则圆的周长C等于2π乘以半径值,即C = 2πr。

2. 圆的面积:圆的面积可以通过半径来计算。

已知圆的半径r,则圆的面积A等于π乘以半径的平方,即A = πr²。

三、圆与其他几何图形的关系1. 圆与线段的关系:如果线段的两个端点都在圆上,那么这个线段是圆的弦。

2. 圆与直线的关系:如果直线与圆仅有一个交点,那么这条直线是圆的切线。

3. 圆与三角形的关系:圆内接于三角形是指三角形的三个顶点都在圆上,并且三边均是切线。

圆外接于三角形是指三角形的三个顶点都在圆上,并且圆的直径是三角形的一条边。

四、常见解题方法与技巧1. 圆的位置关系:通过观察圆与直线、线段、三角形之间的位置关系,可以运用相关的定理和性质进行解题。

2. 利用圆的对称性:圆具有轴对称性和中心对称性,可以利用这些对称性质进行解题。

3. 利用圆的比例关系:圆的周长和面积都与半径相关,可以通过比例关系进行运算和求解。

九年级上册圆知识点最全

九年级上册圆知识点最全

九年级上册圆知识点最全圆是几何学中的重要概念之一,其知识点在九年级上册学习中占据了很大的比重。

下面将全面介绍九年级上册关于圆的各个知识点,包括定义、性质、定理等内容,帮助学生更好地理解和掌握圆的相关知识。

1. 圆的定义圆是由平面上与一个确定点的距离相等的所有点组成的图形。

圆由圆心和半径确定,其中圆心是一个固定的点,半径是从圆心到圆上任意一点的距离。

2. 圆的符号表示圆常用一个字母加一个圆圈表示,例如圆O可以表示为⭕(O)。

3. 圆的性质(1) 在同一个平面上,圆内任意两点都与圆心的距离相等。

(2) 圆上所有的点与圆心的距离都相等。

(3) 圆的半径相等的两个圆是同心圆。

4. 圆的元素(1) 圆心:圆的中心点,通常用字母O表示。

(2) 圆的半径:圆心到圆上任意一点的距离,通常用字母r表示。

(3) 圆的直径:过圆心的两个相对点之间的距离,通常用字母d表示,直径等于半径的两倍。

(4) 圆的弦:圆上的两个点之间的线段,通常用字母AB表示。

(5) 圆的弧:圆上两个点之间的部分,通常用字母AB表示。

弧也可以表示为一段曲线。

(6) 圆的切线:与圆相切且在切点处与圆相切的线段。

5. 圆的定理(1) 圆的四个组成部分:半径、直径、弦、弧。

(2) 在同一个圆中,半径相等,直径是两倍的半径。

(3) 在同一个圆中,位于原弦之间且两弦的端点相连的两个弧是相等的。

(4) 在同一个圆中,位于圆心角上的弧是原弦的两倍。

(5) 位于圆心角上的弧大于位于同一个圆上其他的弧。

(6) 圆与定点的直线相交,相交点到圆心的距离等于定点到圆心的距离。

6. 圆的应用圆的应用非常广泛,涉及到生活的各个方面。

在建筑设计中,圆形的窗户、圆顶等都可以为建筑增添美感和独特性。

在数学科研中,圆的性质和定理被广泛应用于几何学的研究和解决问题。

此外,圆的概念也运用在电子、通信、机械等众多领域,为各种设备和技术的实现提供了基础。

以上是九年级上册关于圆的知识点的全面介绍,希望通过这篇文章的阅读,学生们能够更好地理解和掌握圆的相关知识,并能在学习和生活中灵活应用,进一步提升数学水平。

初三数学圆的知识点总结

初三数学圆的知识点总结

初三数学圆的知识点总结一、圆的相关概念1.圆的定义圆是平面上到一个点的距离等于定长的所有点的集合。

这个距离被称为圆的半径,记作r。

圆的大小用圆的半径r来表示。

2.圆的要素圆是由圆心和半径确定的,其中圆心是到圆上任意一点的距离都相等的点,半径是从圆心到圆上的任意一点的距离。

3.圆的基本性质(1)圆的任意直径都等于其半径的两倍。

(2)圆的周长C等于2πr(周长与圆的直径、半径间的关系)。

(3)圆的面积S等于πr²(圆的面积与半径的关系)。

二、圆的常见问题及解题方法1.圆的周长和面积的计算问题对于周长和面积的计算问题,一般需要根据给出的条件,按照具体的计算公式计算得出结果。

2.圆的图形问题在图形问题中,通常遇到的问题有圆与直线的相交关系、圆与圆的位置关系等问题。

解决这些问题通常需要利用圆的性质、基本定理进行分析。

三、圆的相关定理1.圆心角定理圆心角定义:圆心角是以圆心为顶点的角。

当圆心角对应的弧长是整个圆周长的m分之n时,圆心角的度数是360°的m分之n。

当弧长为s时,圆心角的度数是(s/πr)×360°。

2.圆周角定理两条相交弦所夹角的大小,与它们所对的弧有关。

圆周角是以圆周作为边的角。

圆周角等于它所对圆周的两条弧的有关角的度数之和。

3.正比例定理如果两个圆的半径成正比,则这两个圆的面积成正比;如果两个圆的面积成正比,则这两个圆的周长成正比。

四、圆的应用1.工程设计中的圆在工程设计中,圆形是最常见的图形之一,比如在设计轮胎、车轮等产品时都会使用到圆的知识。

2.日常生活中的圆在日常生活中,圆形也是常见的,比如钟表、盘子、足球等都是圆形的。

对于这些物体,我们也可以通过圆的知识对其周长、面积等进行计算和分析。

3.数学问题中的圆圆的知识在解决数学问题中也是必不可少的,比如在几何问题中,计算圆的周长、面积等都需要运用圆的相关知识。

总之,初三数学圆的知识点包括了圆的基本概念、常见问题及解题方法、相关定理和应用等内容。

初中数学九年级上圆的知识点

初中数学九年级上圆的知识点

初中数学九年级上圆的知识点圆是初中数学九年级上的一个重要知识点,下面将从圆的定义、圆的性质、圆的相关定理以及圆的应用等方面进行论述。

一、圆的定义圆是平面上的重要几何图形之一,是由与一个定点距离相等的所有点构成的集合。

这个定点称为圆心,距离称为半径,用字母r表示。

圆通常用圆的轮廓线表示,在数学表达中用字母O表示。

二、圆的性质1. 圆的任意两点到圆心的距离相等。

这意味着圆上的每一个点到圆心的距离都相等,即圆的半径。

2. 圆的直径是圆上任意两点之间的最长距离。

直径的长度是半径的两倍。

3. 圆的弦是圆上任意两点之间的线段。

弦不一定通过圆心,可以在圆内或圆外。

4. 圆上的切线垂直于半径。

切线是与圆相切的线,与圆的切点处的半径垂直。

三、圆的相关定理1. 弧与角的关系圆上的弧对应的圆心角是两个端点在圆心所对应的角,它们的度数相等。

2. 弧长与圆周角的关系圆的弧长是圆心角所对应的弧所在圆的一部分的长度,弧长等于这个圆心角所对应的圆周角度数的比值。

3. 弦长与弦心角的关系弦上的弦长是弦心角所对应的弦所在圆的一部分的长度,弦长等于这个弦心角所对应的圆周角度数的比值的2倍。

4. 割线定理割线是两个切点之间的线段,割线上的两个切线段长度乘积等于这条割线与这两个切点之间的弦段长度乘积。

四、圆的应用1. 圆的测量圆的周长等于圆周上的任意一段弧长,即C=πd或C=2πr,其中d为直径,r为半径。

圆的面积等于圆内所包围的面积,即S=πr²。

2. 圆的位置关系两个圆之间的位置关系可以分为外切、内切、相交、相离四种情况,通过判断两个圆心的距离与两个圆的半径之间的关系可以确定两个圆的位置关系。

3. 圆的轴对称与旋转对称圆具有轴对称性和旋转对称性,利用这个特性可以解决一些与圆相关的问题。

综上所述,圆是初中数学九年级上的重要知识点,通过对圆的定义、性质、相关定理和应用进行论述,可以帮助同学们更好地理解和掌握圆的知识,提高数学学科的学习成绩。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

圆 章节知识点
一、圆的概念
集合形式的概念: 1、 圆可以看作是到定点的距离等于定长的点的集合; 2、圆的外部:可以看作是到定点的距离大于定长的点的集合; 3、圆的内部:可以看作是到定点的距离小于定长的点的集合 轨迹形式的概念:
1、圆:到定点的距离等于定长的点的轨迹就是以定点为圆心,定长为半径的圆;
二、点与圆的位置关系
1、点在圆内 ⇒d r <⇒ 点C 在圆内;
2、点在圆上 ⇒d r =⇒ 点B 在圆上;
3、点在圆外 ⇒d r >⇒ 点A 在圆外; 三、直线与圆的位置关系
1、直线与圆相离⇒d r >⇒无交点;
2、直线与圆相切⇒d r =⇒有一个交点;
3、直线与圆相交⇒d r <⇒有两个交点;
四、圆与圆的位置关系
外离(图1)⇒无交点 ⇒d R r >+;外切(图2)⇒ 有一个交点⇒d R r =+; 相交(图3)⇒ 有两个交点⇒R r d R r -<<+;内切(图4)⇒ 有一个交点⇒d R r =-; 内含(图5)⇒ 无交点 ⇒d R r <-;
A
r
R
d
图3
r
R d
五、垂径定理
垂径定理:垂直于弦的直径平分弦且平分弦所对的弧。

推论1:(1)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧; (2)弦的垂直平分线经过圆心,并且平分弦所对的两条弧;
(3)平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧
以上共4个定理,简称2推3定理:此定理中共5个结论中,只要知道其中2个即可推出其它3个结论,即: ①AB 是直径 ②AB CD ⊥ ③CE DE = ④ 弧BC =弧BD ⑤ 弧AC =弧AD 中任意2个条件推出其他3个结论。

推论2:圆的两条平行弦所夹的弧相等。

即:在⊙O 中,∵AB ∥CD ∴弧AC =弧BD 六、圆心角定理
r
R
d
O E
D
C
O
D
A
B
圆心角定理:同圆或等圆中,相等的圆心角所对的弦相等,所对的弧相等,弦心距相等。

此定理也称1推3定理,即上述四个结论中,
只要知道其中的1个相等,则可以推出其它的3个结论,
即:①AOB DOE ∠=∠;②AB DE =;
③OC OF =;④ 弧BA =弧BD 七、圆周角定理
1、圆周角定理:同弧所对的圆周角等于它所对的圆心的角的一半。

即:∵AOB ∠和ACB ∠是弧AB 所对的圆心角和圆周角 ∴2AOB ACB ∠=∠
2、圆周角定理的推论:
推论1:同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧是等弧; 即:在⊙O 中,∵C ∠、D ∠弧AB 都是所对的圆周角 ∴C D ∠=∠
推论2:半圆或直径所对的圆周角是直角;圆周角是直角所对的弧是半圆,所对的弦是直径。

即:在⊙O 中,∵AB 是直径 或∵90C ∠=︒ ∴90C ∠=︒ ∴AB 是直径
推论3:若三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形。

即:在△ABC 中,∵OC OA OB ==
∴△ABC 是直角三角形或90C ∠=︒
注:此推论实是初二年级几何中矩形的推论:在直角三角形中斜边上的中线等于斜边的一半的逆定理。

八、圆内接四边形
B
B
A
B
A
O
圆的内接四边形定理:圆的内接四边形的对角互补,外角等于它的内对角。

即:在⊙O 中, ∵四边形ABCD 是内接四边形 ∴180C BAD ∠+∠=︒180B D ∠+∠=︒
DAE C ∠=∠
九、切线的性质与判定定理
(1)切线的判定定理:过半径外端且垂直于半径的直线是切线; 两个条件:过半径外端且垂直半径,二者缺一不可 即:∵MN OA ⊥且MN 过半径OA 外端 ∴MN 是⊙O 的切线
(2)性质定理:切线垂直于过切点的半径(如上图) 推论1:过圆心垂直于切线的直线必过切点。

推论2:过切点垂直于切线的直线必过圆心。

以上三个定理及推论也称二推一定理:
即:①过圆心;②过切点;③垂直切线,三个条件中知道其中两个条件就能推出最后一个。

十、切线长定理
切线长定理:从圆外一点引圆的两条切线,它们的切线长相等,这点和圆心的连线平分两条切线的夹角。

即:∵PA 、PB 是的两条切线 ∴PA PB =
PO 平分BPA ∠
十一、圆内正多边形的计算 (1)正三角形
在⊙O 中△ABC 是正三角形,有关计算在Rt BOD ∆中进行

::2OD BD OB =;
(2)正四边形
同理,四边形的有关计算在Rt OAE ∆
中进行,::OE AE OA = (3)正六边形
同理,六边形的有关计算在Rt OAB ∆
中进行,::2AB OB OA =. 十二、扇形、圆柱和圆锥的相关计算公式 1、扇形:(1)弧长公式:180
n R
l π=
; (2)扇形面积公式: 21
3602
n R S lR π=
= n :圆心角 R :扇形对应的圆的半径 l :扇形弧长 S :扇形面积
2、圆柱:
(1)圆柱侧面展开图
2S S S =+侧表底=2
22rh r ππ+
(2)圆柱的体积:2
V r h π=
(2)圆锥侧面展开图
(1)S S S =+侧表底=2
Rr r ππ+
(2)圆锥的体积:21
3
V r h π=
l
O
C 1
D 1。

相关文档
最新文档