北师大版八年级上期末压轴大题精选
北师版八上数学压轴题大全
1.如图,在四边形ABCD中,动点P从点A开始沿A→B→C→D的路径匀速前进到D为止.在这个过程中,△APD的面积S随时间t的变化关系用图象表示正确的是()2.如图,Rt△ABC中,∠ACB=90°,AC=3,BC=4,将边AC沿CE翻折,使点A落在AB上的点D处;再将边BC沿CF翻折,使点B落在CD的延长线上的点B′处,两条折痕与斜边AB分别交于点E、F,则线段B′F的长为()A.B.C.D.3.如图1,点G为BC边的中点,点H在AF上,动点P以每秒1cm的速度沿图1的边运动,运动路径为G→C→D→E→F→H,相应的△ABP的面积y(cm2)关于运动时间t(s)的函数图象如图2,若AB=3cm,则下列结论正确的个数有()①图1中BC长4cm;②图1中DE的长是3cm;③图2中点M表示4秒时的y值为6cm2;④图2中的点N表示12秒时y值为4.5cm2.A.1个B.2个C.3个D.4个4.正方形A1B1C1O,A2B2C2C1,A3B3C3C2,…按如图所示的方式放置.点A1,A2,A3,…和点C1,C2,C3,…分别在直线y=kx+b(k>0)和x轴上,已知点B1(1,1),B2(3,2),则B n的坐标是.5.如图,已知平面直角坐标系中,A,B两点的坐标分别为A(2,﹣3),B(4,﹣1).(1)若P是x轴上的一个动点,则△P AB的最小周长为;(2)若C(a,0),D(a+3,0)是x轴上的两个动点,则当a=时,四边形ABDC的周长最小.6.如图,等边△ABC的边长为6,AD是BC边上的中线,M是AD上的动点,E是AC边上一点,若AE=2,EM+CM的最小值为.7.已知Rt△ABC中,AB=AC,∠ABC=∠ACB=45°,点D为直线BC上的一动点(点D不与点B、C重合),以AD为边作Rt△ADE,AD=AE,∠ADE=∠AED=45°,连结CE.(1)发现问题如图①,当点D在边BC上时.①请写出BD与CE之间的数量关系,位置关系.②求证:CE+CD=BC;(2)尝试探究如图②,当点D在边BC的延长线上且其他条件不变时,(1)中BC、CE、CD之间存在的数量关系是否成立?若成立,请证明;若不成立,请写出新的数量关系,说明理由8.如图(1),AD,BC交于O点,根据“三角形内角和是180°”,不难得出两个三角形中的角存在以下关系:①∠DOC=∠AOB;②∠D+∠C=∠A+∠B.【提出问题】分别作出∠BAD和∠BCD的平分线,两条角平分线交于点E,如图(2),∠E与∠D、∠B之间是否存在某种数量关系呢?【解决问题】为了解决上面的问题,我们先从几个特殊情况开始探究.已知∠BAD的平分线与∠BCD的平分线交于点E.(1)如图(3),若AB∥CD,∠D=30°,∠B=40°,则∠E=.(2)如图(4),若AB不平行CD,∠D=30°,∠B=50°,则∠E的度数是多少呢?小明是这样思考的,请你帮他完成推理过程:易证∠D+∠1=∠E+∠3,∠B+∠4=∠E+∠2,∴∠D+∠1+∠B+∠4=,∵CE、AE分别是∠BCD、∠BAD的平分线,∴∠1=∠2,∠3=∠4.∴2∠E=,又∵∠D=30°,∠B=50°,∴∠E=度.(3)在总结前两问的基础上,借助图(2),直接写出∠E与∠D、∠B之间的数量关系是:.【类比应用】如图(5),∠BAD的平分线AE与∠BCD的平分线CE交于点E.已知:∠D=m°、∠B=n°,(m<n)求:∠E的度数.9.某化工厂生产一种产品,每件产品的售价50元,成本价为25元.在生产过程中,平均每生产一件产品有0.5m3的污水排出,为净化环境,工厂设计了如下两种方案对污水进行处理,并准确实施:方案A:工厂将污水先进行处理后再排出,每处理1m3污水所用原料费为2元,每月排污设备的损耗费为3000元.方案B:工厂将污水排到污水处理厂统一处理,每处理1m3污水需付14元排污费.(1)设工厂每月生产x件产品,每月利润为y元,分别求出A、B两种方案处理污水时,y与x的函数关系式.(2)当工厂每月生产量为6000件时,作为厂长在不污染环境又节约资金的前提下,应选用哪种污水的处理方案?请通过计算说明理由.(3)求:一般的,每月产量在什么范围内,适合选用方案A.10.在甲、乙两城市之间有动车,也有普通快车,如图所示,OA是一列动车离开甲城的路程y(km)与运行时间x(h)的函数图象,BC是一列从乙城开往甲城的普通快车距甲城的路程y(km)与运动时间x(h)的函数图象,请根据图中信息,解答下列问题:(1)点B的坐标的实际意义是.(2)求BC所在直线的函数表达式.(3)求动车出发后多长时间与普通列车相遇.11.青岛某高中允许高三学生从寄宿、走读两种方式中选择一种就读,今年新高三学生总人数与去年相比增加了6%,其中选择寄宿的学生增加了20%,选择走读的学生减少了15%,若去年高三学生的总数为500人,求今年新高三学生选择寄宿和走读的人数分别是什么?12.某中学举行演讲比赛,九(1)、九(2)班根据初赛成绩各选出5名选手参加复赛,两个班所选出的5名选手的复赛成绩(满分为100分)如图所示.(1)根据上图填写下表:平均分(分)中位数(分)众数(分)方差九(1)858570九(2)8580(2)结合两班的复赛成绩分析哪个班级的复赛成绩较好.13.计算(1).(2).(3)(﹣)÷+|1﹣|+×(4)+(+1)×(﹣1)+|2﹣2|;(5)(6)(7)14.如图,A,B是分别在x轴上的原点左右侧的点,点P(2,m)在第一象限内,直线P A交y轴于点C(0,2),直线PB交y轴于点D,S△AOC=10.(1)求点A的坐标及m的值;(2)若S△BOP =S△DOP,求直BD的解析式;(3)在(2)的条件下,直线AP上是否存在一点Q,使△QAO的面积等于△BOD面积?若存在,求出点Q的坐标;若不存在,请说明理由.15.在Rt△ABC中,∠ACB=90°,∠A=30°,点D是AB的中点,DE⊥BC,垂足为点E,连接CD.(1)如图1,DE与BC的数量关系是;(2)如图2,若P是线段CB上一动点(点P不与点B、C重合),连接DP,将线段DP绕点D逆时针旋转60°,得到线段DF,连接BF,请猜想DE、BF、BP三者之间的数量关系,并证明你的结论;(3)若点P是线段CB延长线上一动点,按照(2)中的作法,请在图3中补全图形,并直接写出DE、BF、BP三者之间的数量关系.16.甲、乙两人相约周末登花果山,甲、乙两人距地面的高度y(米)与登山时间x(分)之间的函数图象如图所示,根据图象所提供的信息解答下列问题:(1)甲登山上升的速度是每分钟米,乙在A地时距地面的高度b为米;(2)若乙提速后,乙的登山上升速度是甲登山上升速度的3倍,请求出乙登山全程中,距地面的高度y(米)与登山时间x(分)之间的函数关系式;18.如图,BD ⊥AC 于D ,EF ⊥AC 于F ,∠AMD =∠AGF ,∠1=∠2=35°. (1)求∠GFC 的度数; (2)求证:DM ∥BC .19.某班为确定参加学校投篮比赛的任选,在A 、B 两位投篮高手间进行了6次投篮比赛,每人每次投10个球,将他们每次投中的个数绘制成如图所示的折线统计图. (1)根据图中所给信息填写下表:投中个数统计平均数 中位数 众数 A 8 B77(2)如果这个班只能在A 、B 之间选派一名学生参赛,从投篮稳定性考虑应该选派谁?请你利用学过的统计量对问题进行分析说明.20.列方程组解应用题,为了保护环境,深圳某公交公司决定购买一批共10台全新的混合动力公交车,现有A 、B 两种型号,其中每台的价格,年省油量如下表:经调查,购买一台A 型车比购买一台B 型车多20万元,购买2台A 型车比购买3台B 型车少60万元. (1)请求出a 和b ;(2)若购买这批混合动力公交车每年能节省22.4万汽油,求购买这批混合动力公交车需要多少万元?A B 价格(万元/台)a b 节省的油量(万升/年)2.4221.甲、乙两组工人同时加工某种零件,乙组在工作中有一次停产更换设备,更换设备后,乙组的工作效率是原来的2倍,两组各自加工零件的数量y(件)与时间x(时)之间的函数图象如图所示.(1)求甲组加工零件的数量y与时间x之间的函数关系式;(2)求乙组加工零件总量a的值及乙组更换设备后加工零件的数量y与时间x之间的函数关系式;(3)甲、乙两组加工出的零件合在一起装箱,每够300件装一箱,零件装箱的时间忽略不计,求经过多长时间恰好装满第1箱?22.如图1,已知函数y=x+3与x轴交于点A,与y轴交于点B,点C与点A关于y轴对称.(1)求直线BC的函数解析式;(2)设点M是x轴上的一个动点,过点M作y轴的平行线,交直线AB于点P,交直线BC于点Q.①若△PQB的面积为,求点M的坐标;②连接BM,如图2,若∠BMP=∠BAC,求点P的坐标.。
八年级数学上册(北师大版)期末满分计划之解答压轴专项训练(30道)
期末满分计划之解答压轴专项训练(30道)【北师大版】1.(2021秋•阳东区期末)如图,∠O =30°,任意裁剪的直角三角形纸板两条直角边所在直线与∠O 的两边分别交于D 、E 两点.(1)如图1,若直角顶点C 在∠O 的边上,则∠ADO +∠OEB = 度; (2)如图2,若直角顶点C 在∠O 内部,求出∠ADO +∠OEB 的度数; (3)如图3,如果直角顶点C 在∠O 外部,求出∠ADO +∠OEB 的度数.2.(2021•巴中期末)在学习勾股定理时,我们学会运用图(Ⅰ)验证它的正确性;图中大正方形的面积可表示为:(a +b )2,也可表示为:c 2+4•(12ab ),即(a +b )2=c 2+4•(12ab )由此推出勾股定理a 2+b 2=c 2,这种根据图形可以极简单地直观推论或验证数学规律和公式的方法,简称“无字证明”.(1)请你用图(II )(2002年国际数字家大会会标)的面积表达式验证勾股定理(其中四个直角三角形全等);(2)请你用(III )提供的图形进行组合,用组合图形的面积表达式验证(x +y )2=x 2+2xy +y 2;(3)请你自己设计图形的组合,用其面积表达式验证:(x +p )(x +q )=x 2+px +qx +pq =x 2+(p +q )x +pq .3.(2021秋•宜兴市校级期末)已知y=y1+y2,其中y1与x成正比例,y2与x﹣2成正比例.当x=﹣1时,y=2;当x=3时,y=﹣2.求y与x的函数关系式,并画出该函数的图象.4.(2021•安徽芜湖期末)如图,D、E分别是△ABC的边BC和AB上的点,△ABD与△ACD的周长相等,△CAE与△CBE的周长相等.设BC=a,AC=b,AB=c.(1)求AE和BD的长;(2)若∠BAC=90°,△ABC的面积为S,求证:S=AE•BD.5.(2021•三明期末)据我国古代《周髀算经》记载,公元前1120年商高对周公说,将一根直尺折成一个直角,两端连接得一个直角三角形,如果勾是三、股是四,那么弦就等于五.后人概括为“勾三,股四,弦五”.(1)观察:3,4,5;5,12,13;7,24,25;…,发现这些勾股数的勾都是奇数,且从3起就没有间断过.计算12(9﹣1)、12(9+1)与12(25﹣1)、12(25+1),并根据你发现的规律,分别写出能表示7,24,25的股和弦的算式;(2)根据(1)的规律,用n(n为奇数且n≥3)的代数式来表示所有这些勾股数的勾、股、弦,合情猜想他们之间二种相等关系并对其中一种猜想加以证明;(3)继续观察4,3,5;6,8,10;8,15,17;…,可以发现各组的第一个数都是偶数,且从4起也没有间断过.运用类似上述探索的方法,直接用m(m为偶数且m>4)的代数式来表示他们的股和弦.6.(2021秋•市中区期末)由于大风,山坡上的一棵树甲被从A点处拦腰折断,如图所示,其树顶端恰好落在另一棵树乙的根部C处,已知AB=4米,BC=13米,两棵树的水平距离为12米,求这棵树原来的高度.7.(2021春•玉州区期末)(1)如图4×4的方格,每个小格的顶点叫做格点,若每个小正方形边长为1单位,请在方格中作一个正方形,同时满足下列两个条件:①所作的正方形的顶点,必须在方格上;②所作正方形的面积为8个平方单位(2)在数轴上表示实数√8(保留作图痕迹)8.(2021春•仓山区期末)如图,正方形网格中的每个小正方形边长都是1,每个小格的顶点叫格点,请在给定的网格中按要求画图:(1)从点A出发在图中画一条线段AB,使得AB=√20;(2)画出一个以(1)中的AB为斜边的等腰直角三角形,使三角形的三个顶点都在格点上,并根据所画图形求出等腰直角三角形的腰长.9.(2021秋•重庆期末)阅读下面的文字,解答问题:大家知道√2是无理数,而无理数是无限不循环小数,因此√2的小数部分我们不可能全部地写出来,于是小明用√2−1来表示√2的小数部分,你同意小明的表示方法吗?事实上,小明的表示方法是有道理,因为√2的整数部分是1,将这个数减去其整数部分,差就是小数部分.又例如:∵√4<√7<√9,即2<√7<3,∴√7的整数部分为2,小数部分为(√7−2).请解答:(1)√17的整数部分是,小数部分是.(2)如果√5的小数部分为a,√13的整数部分为b,求a+b−√5的值;(3)已知:10+√3=x+y,其中x是整数,且0<y<1,求x﹣y的相反数.10.(2021秋•罗湖区校级期末)如图,在数轴上点A表示的数a、点B表示数b,a、b满足|a﹣30|+(b+6)2=0.点O是数轴原点.(1)点A表示的数为,点B表示的数为,线段AB的长为.(2)若点A与点C之间的距离表示为AC,点B与点C之间的距离表示为BC,请在数轴上找一点C,使AC=2BC,则点C在数轴上表示的数为.(3)现有动点P、Q都从B点出发,点P以每秒1个单位长度的速度向终点A移动;当点P移动到O点时,点Q才从B点出发,并以每秒3个单位长度的速度向右移动,且当点P到达A点时,点Q就停止移动,设点P移动的时间为t秒,问:当t为多少时,P、Q两点相距4个单位长度?11.(2021春•饶平县校级期末)对于实数a,我们规定:用符号[√a]表示不大于√a的最大整数,称[√a]为a的根整数,例如:[√9]=3,[√10]=3.(1)仿照以上方法计算:[√4]=;[√26]=.(2)若[√x]=1,写出满足题意的x的整数值.如果我们对a连续求根整数,直到结果为1为止.例如:对10连续求根整数2次[√10]= 3→[√3]=1,这时候结果为1.(3)对100连续求根整数,次之后结果为1.(4)只需进行3次连续求根整数运算后结果为1的所有正整数中,最大的是.12.(2021春•永嘉县校级期末)【知识链接】(1)有理化因式:两个含有根式的非零代数式相乘,如果它们的积不含有根式,那么这两个代数式相互叫做有理化因式.例如:√2的有理化因式是√2;1−√x2+2的有理化因式是1+√x2+2.(2)分母有理化:分母有理化又称“有理化分母”,也就是把分母中的根号化去.指的是如果代数式中分母有根号,那么通常将分子、分母同乘分母的有理化因式,达到化去分母中根号的目的.如:1+√2=√2−1)(√2+1)(√2−1)=√2−1,√3+√2=√3−√2)(√3+√2)(√3−√2)=√3−√2.【知识理解】(1)填空:2√x的有理化因式是;(2)直接写出下列各式分母有理化的结果:①√7+√6=;②3√2+√17=.【启发运用】(3)计算:1+√2+√3+√2+2+√3+⋯+√n+1+√n.13.(2021春•乐亭县期末)长方形ABCD 放置在如图所示的平面直角坐标系中,点A (2,2√2),AB ∥x 轴,AD ∥y 轴,AB =3,AD =√2. (1)分别写出点B ,C ,D 的坐标;(2)在x 轴上是否存在点P ,使三角形P AD 的面积为长方形ABCD 面积的23?若存在,请求出点P 的坐标;若不存在,请说明理由.14.(2021•柳南区校级期末)如图在直角坐标系中,已知A (0,a ),B (b ,0)C (3,c )三点,若a ,b ,c 满足关系式:|a ﹣2|+(b ﹣3)2+√c −4=0. (1)求a ,b ,c 的值. (2)求四边形AOBC 的面积.(3)是否存在点P (x ,−12x ),使△AOP 的面积为四边形AOBC 的面积的两倍?若存在,求出点P 的坐标,若不存在,请说明理由.15.(2021•商河县校级期末)一列快车从甲地匀速驶往乙地,一列慢车从乙地匀速驶往甲地.两车行驶的时间为xh ,两车之间的距离为ykm ,图中的折线表示y 与x 之间的函数关系,根据图象解决以下问题:(1)慢车的速度为 km /h ,快车的速度为 km /h ; (2)解释图中点C 的实际意义并求出点C 的坐标; (3)求当x 为多少时,两车之间的距离为500km .16.(2021秋•罗湖区校级期末)A、B两城相距600千米,甲、乙两车从A城出发驶向B 城,乙车的速度为75千米/时.甲车先走100千米乙车才出发,甲车到达B卸完货后立即返回A城.如图它们离A城的距离y(千米)与乙车行驶时间x(小时)之间的函数图象.(1)求甲车在整个过程中y与x之间的函数解析式,并写出自变量x的取值范围;(2)求两车相遇时两车距B城多远?17.(2021•永嘉县校级期末)某商店销售A、B两种品牌的彩色电视机,已知A、B两种彩色电视机的进价分别为2000元,1600元,一月份A、B两种彩电的销售价格每台为2700元、2100元,月利润为12000元(利润=销售价﹣进价).为了增加利润,二月份营销人员提供了两套销售策略:策略一:A种每台降价100元,B种每台降价80元,估计销售量分别增长为30%、40%;策略二:A种每台降价150元,B种每台降价80元,估计销售量都增长为50%;(1)若设一月份A、B两种品牌的彩色电视机销售量分别为x台和y台,写出y与x的关系式,并求出,A种彩电销售的台数最多可能是多少?(2)二月份这两种策略是否能增加利润?(3)二月份该商店应该采用上述两种销售策略中的哪一种,方能使盖上点所获得的利润较多?请说明理由.18.(2021•朝阳区校级期末)从甲地到乙地,先是一段上坡路,然后是一段平路,小明骑车从甲地出发,到达乙地后休息一段时间,然后原路返回甲地.假设小明骑车在上坡、平路、下坡时分别保持匀速前进,已知小明骑车上坡的速度比平路上的速度每小时少5km,下坡的速度比在平路上的速度每小时多5km,设小明出发xh后,到达离乙地ykm 的地方,图中的折线ABCDEF表示y与x之间的函数关系.(1)小明骑车在平路上的速度为km/h,他在乙地休息了h.(2)分别求线段AB、EF所对应的函数关系式.(3)从甲地到乙地经过丙地,如果小明两次经过丙地的时间间隔为0.85h,求丙地与甲地之间的路程.19.(2021•永嘉县校级期末)某玩具批发市场A、B玩具的批发价分别为每件30元和50元,张阿姨花1200元购进A、B两种玩具若干件,并分别以每件35元与60元价格出售,设购入A玩具为x(件),B玩具为y(件).(1)若张阿姨将玩具全部出售赚了220元,那么张阿姨共购进A、B型玩具各多少件?(2)若要求购进A玩具的数量不得少于B玩具的数量,则怎样分配购进玩具A、B的数量并全部售出才能获得最大利润,此时最大利润为多少?(3)为了增加玩具种类,张阿姨决定在1200元的基础上再增加投入,同时购进玩具A、B、C,已知玩具C批发价为每件25元,所购三种玩具全部售出,经核算,三种玩具的总利润相同,且A、C两种玩具的销量之和是玩具B销量的4.5倍,求玩具C每件的售价m元(直接写出m的值).20.(2021春•河间市期末)问题:探究函数y=|x|﹣2的图象与性质.小华根据学习函数的经验,对函数y=|x|﹣2的图象与性质进行了探究.下面是小华的探究过程,请补充完整:(1)在函数y=|x|﹣2中,自变量x可以是任意实数;(2)如表是y与x的几组对应值.x…﹣3﹣2﹣10123…y…10﹣1﹣2﹣10m…①m=;②若A(n,8),B(10,8)为该函数图象上不同的两点,则n=;(3)如图,在平面直角坐标系xOy中,描出以上表中各对对应值为坐标的点.并根据描出的点,画出该函数的图象;根据函数图象可得:①该函数的最小值为;②已知直线y1=12x−12与函数y=|x|﹣2的图象交于C、D两点,当y1≥y时x的取值范围是.21.(2021•澧县期末)如图,直线y=﹣2x+3与x轴相交于点A,与y轴相交于点B.(1)求A,B两点的坐标;(2)过B点作直线BP与x轴相交于点P,且使OP=2OA,求△ABP的面积.22.(2021春•奉化区校级期末)某公园的门票价格规定如表:购票人数1~50人51~100人100以上票价10元/人8元/人5元/人(1)某校七年级甲、乙两班共100多人去该公园举行联欢活动,其中甲班50多人,乙班不足50人.如果以班为单位分别买票,两个班一共应付920元;如果两个班联合起来作为一团体购票,一共只要付515元.问:甲、乙两班分别有多少人?(2)若有A、B两个团队共160人,以各自团队为单位分别买票,共用950元,问A、B 两个团队各有多少人?23.(2021春•长白县校级期末)某校七年级400名学生到郊外参加植树活动,已知用3辆小客车和1辆大客车每次可运送学生105人,用1辆小客车和2辆大客车每次可运送学生110人.(1)每辆小客车和每辆大客车各能坐多少名学生?(2)若计划租小客车m辆,大客车n辆,一次送完,且恰好每辆车都坐满:①请你设计出所有的租车方案;②若小客车每辆租金150元,大客车每辆租金250元,请选出最省钱的租车方案,并求出最少租金.24.(2021春•虹口区期末)我市某包装生产企业承接了一批上海世博会的礼品盒制作业务,为了确保质量,该企业进行试生产.他们购得规格是170cm×40cm的标准板材作为原材料,每张标准板材再按照裁法一或裁法二裁下A型与B型两种板材.如图甲,(单位:cm)(1)列出方程(组),求出图甲中a与b的值;(2)在试生产阶段,若将30张标准板材用裁法一裁剪,4张标准板材用裁法二裁剪,再将得到的A型与B型板材做侧面和底面,做成图乙的竖式与横式两种礼品盒.①两种裁法共产生A型板材张,B型板材张;②已知①中的A型板材和B型板材恰好做成竖式有盖礼品盒x个,横式无盖礼品盒的y个,求x、y的值.25.(2021春•丹阳市期末)阅读材料:小明是个爱动脑筋的学生,他在学习了二元一次方程组后遇到了这样一道题目:现有8个大小相同的长方形,可拼成如图1、2所示的图形,在拼图②时,中间留下了一个边长为2的小正方形,求每个小长方形的面积.小明设小长方形的长为x,宽为y,观察图形得出关于x、y的二元一次方程组,解出x、y的值,再根据长方形的面积公式得出每个小长方形的面积.解决问题:(1)请按照小明的思路完成上述问题:求每个小长方形的面积;(2)某周末上午,小明在超市帮妈妈买回一袋纸杯,他把纸杯整齐地叠放在一起,如图3所示.若小明把13个纸杯整齐叠放在一起时,它的高度约是cm;(3)小明进行自主拓展学习时遇到了以下这道题目:如图,长方形ABCD中放置8个形状、大小都相同的小长方形(尺寸如图4),求图中阴影部分的面积,请给出解答过程.26.(2021•滨湖区期末)为了了解学生关注热点新闻的情况,“两会”期间,小明对班级同学一周内收看“两会”新闻的次数情况作了调查,调查结果统计如图所示(其中男生收看3次的人数没有标出).根据上述信息,解答下列各题:(1)该班级女生人数是,女生收看“两会”新闻次数的中位数是;(2)对于某个群体,我们把一周内收看某热点新闻次数不低于3次的人数占其所在群体总人数的百分比叫做该群体对某热点新闻的“关注指数”.如果该班级男生对“两会”新闻的“关注指数”比女生低5%,试求该班级男生人数;(3)为进一步分析该班级男、女生收看“两会”新闻次数的特点,小明给出了男生的部分统计量(如表).统计量平均数(次)中位数(次)众数(次)方差…该班级男生3342…根据你所学过的统计知识,适当计算女生的有关统计量,进而比较该班级男、女生收看“两会”新闻次数的波动大小.27.(2021秋•巨野县期末)为配合“禁锢”行动,某校组织同学们在我市某社区开展了“你最支持哪种戒烟方式”的问卷调查,征求市民的意见,并将调查结果整理后制成了如下统计图:(1)根据以上信息,把条形统计图补充完整(并标注人数)(2)在统计图中,表示“强制戒烟”方式的扇形的圆心角为多少度?(3)假定该社区有1万人,请估计该社区大约有多少人支持采取“警示戒烟”这种戒烟方式?28.(2021春•章贡区期末)某校八年级全体同学参加了某项捐款活动,随机抽查了部分同学捐款的情况,并统计绘制成了如图两幅不完整的条形统计图和扇形统计图,请根据所提供的信息,解答下列问题:(1)本次共抽查学生人,并将条形图补充完整;(2)捐款金额的众数是,中位数是;(3)在八年级850名学生中,捐款20元及以上(含20元)的学生估计有多少人?29.(2021春•滁州期末)已知AB∥CD,线段EF分别与AB,CD相交于点E,F.(1)请在横线上填上合适的内容,完成下面的解答:如图1,当点P在线段EF上时,已知∠A=35°,∠C=62°,求∠APC的度数;解:过点P作直线PH∥AB,所以∠A=∠APH,依据是;因为AB∥CD,PH∥AB,所以PH∥CD,依据是;所以∠C=(),所以∠APC=()+()=∠A+∠C=97°.(2)当点P,Q在线段EF上移动时(不包括E,F两点):①如图2,∠APQ+∠PQC=∠A+∠C+180°成立吗?请说明理由;②如图3,∠APM=2∠MPQ,∠CQM=2∠MQP,∠M+∠MPQ+∠PQM=180°,请直接写出∠M,∠A与∠C的数量关系.30.(2021春•江都区期末)【概念认识】如图①,在∠ABC中,若∠ABD=∠DBE=∠EBC,则BD,BE叫做∠ABC的“三分线”.其中,BD是“邻AB三分线”,BE是“邻BC三分线”.【问题解决】(1)如图②,在△ABC中,∠A=80°,∠B=45°,若∠B的三分线BD交AC于点D,求∠BDC的度数;(2)如图③,在△ABC中,BP、CP分别是∠ABC邻BC三分线和∠ACB邻BC三分线,且∠BPC=140°,求∠A的度数;【延伸推广】(3)在△ABC中,∠ACD是△ABC的外角,∠B的三分线所在的直线与∠ACD的三分线所在的直线交于点P.若∠A=m°(m>54),∠B=54°,直接写出∠BPC的度数.(用含m的代数式表示)。
北师大版八年级数学上册期末测试压轴题、大题、能力题
北师大版八年级数学上册期末测试压轴题、大题、能力题1.(9分)平面内的两条直线有相交和平行两种位置关系.(1)如图1,若AB∥CD,点P在AB、CD内部,∠B=50°,∠D=30°,求∠BPD.(2)如图2,在AB∥CD的前提下,将点P移到AB、CD外部,则∠BPD、∠B、∠D之间有何数量关系?请证明你的结论.(3)如图3,写出∠A+∠B+∠C+∠D+∠E+∠F的度数=__________.2.如图,直线L:y=﹣x+2与x轴、y轴分别交于A、B两点,在y轴上有一点N(0,4),动点M从A点以每秒1个单位的速度匀速沿x轴向左移动.(1)点A的坐标:_____;点B的坐标:_____;(2)求△NOM的面积S与M的移动时间t之间的函数关系式;(3)在y轴右边,当t为何值时,△NOM≌△AOB,求出此时点M的坐标;(4)在(3)的条件下,若点G是线段ON上一点,连结MG,△MGN沿MG折叠,点N恰好落在x轴上的点H处,求点G的坐标.(1)在y=﹣x+2中,令y=0可求得x=4,令x=0可求得y=2,∴A(4,0),B(0,2),故答案为:(4,0);(0,2);(2)由题题意可知AM=t,①当点M在y轴右边时,OM=OA﹣AM=4﹣t,∵N(0,4),∴ON=4,∴S=OM•ON=×4×(4﹣t)=8﹣2t;②当点M在y轴左边时,则OM=AM﹣OA=t﹣4,∴S=×4×(t﹣4)=2t﹣8;(3)∵△NOM≌△AOB,∴MO=OB=2,∴M(2,0);(4)∵OM=2,ON=4,∴MN==2,∵△MGN沿MG折叠,∴∠NMG=∠OMG,∴=,且NG=ON﹣OG,∴=,解得OG=﹣1,∴G(0,﹣1).3.如图,直线y = kx+6与x轴y轴分别相交于点E、F. 点E的坐标为(- 8, 0), 点A的坐标为(- 6,0). 点P(x,y)是第二象限内的直线上的一个动点。
2021-2022学年北师大版八年级数学上册期末综合复习压轴题专题训练(附答案)
2021-2022学年北师大版八年级数学上册期末综合复习压轴题专题训练(附答案)1.若a+b=﹣2,且a≥2b,则()A.有最小值B.有最大值1C.有最大值2D.有最小值2.某次数学竞赛的比赛奖项设置规则为:分数从高到低排序,按参赛人数的5%设一等奖,15%设二等奖,30%设三等奖.若要了解甲同学是否获奖,只需知道这次竞赛分数的()A.平均分B.众数C.方差D.中位数3.如图,已知正方形ABCD的边长为4,点M和N分别从B、C同时出发,以相同的速度沿BC、CD向终点C、D运动,连接AM、BN,交于点P,连接PC,则PC长的最小值为()A.2﹣2B.2C.3﹣1D.24.如图,在Rt△ABC中,∠ABC=90°,AB=6,BC=8,∠BAC,∠ACB的平分线相交于点E,过点E作EF∥BC交AC于点F,则EF的长为()A.B.C.D.5.在平面直角坐标系中,点A(1,),B(4,),若点M(a,﹣a),N(a+3,﹣a﹣4),则四边形MNBA的周长的最小值为()A.10+B.5+13C.10+D.5+136.如图,平面直角坐标系中,已知直线y=x上一点P(1,1),C为y轴上一点,连接PC,线段PC绕点P顺时针旋转90°至线段PD,过点D作直线AB⊥x轴,垂足为B,直线AB与直线y=x交于点A,且BD=2AD,连接CD,直线CD与直线y=x交于点Q,则点Q的坐标为()A.(,)B.(3,3)C.(,)D.(,)7.如图,等腰三角形ABC的底边BC长为4,面积是16,腰AC的垂直平分线EF分别交AC,AB边于E,F点.若点D为BC边的中点,点M为线段EF上一动点,则△CDM 周长的最小值为()A.6B.8C.10D.128.如图,O是正△ABC内一点,OA=3,OB=4,OC=5,将线段BO以点B为旋转中心逆时针旋转60°得到线段BO′,下列结论:①△BO′A可以由△BOC绕点B逆时针旋转60°得到;②点O与O′的距离为4;③∠AOB=150°;④S四边形AOBO′=6+3;⑤S△AOC+S△AOB=6+.其中正确的结论是()A.①②③⑤B.①②③④C.①②③④⑤D.①②③9.已知一个直角三角形的周长是4+,斜边上的中线长是2,则这个三角形的面积是()A.5B.C.D.110.如图,在Rt△ABC中,∠ACB=90°,AC=3,BC=4,BE平分∠ABC,CD⊥AB于D,BE与CD相交于F,则CF的长是()A.1B.C.D.211.如图,在Rt△ABC中,∠C=90°,AC=,BC=1,D在AC上,将△ADB沿直线BD翻折后,点A落在点E处,如果AD⊥ED,那么△ABE的面积是()A.1B.C.D.12.如图长方形ABCD中,AB=4,BC=8,点E是BC边上一点,且AE=EC,点P是边AD上一动点,连接PE,PC,则下列结论:①BE=3;②当AP=5时,PE平分∠AEC;③△PEC周长的最小值为15;④当时,AE平分∠BEP.其中正确的个数有()A.4个B.3个C.2个D.1个13.如图,正方形ABCD中,点E为对角线AC上一点,EF⊥DE交边AB于F,连接DF 交线段AC于点H,延长DE交边BC于点Q,连接QF.下列结论:①DE=EF;②若AB=6,CQ=3,则AF=2;③∠AFD=∠DFQ;④若AH=2,CE=4,则AB=3+;其中正确的有()个.A.1个B.2个C.3个D.4个14.已知点M(﹣3,3),线段MN=4,且MN∥y轴,则点N的坐标是.15.在△ABC中,AB=2,BC=1,∠ABC=45°,以AB为一边作等腰直角三角形ABD,使∠ABD=90°,连接CD,则线段CD的长为.16.如图,在平面直角坐标系上有点A(1,0),第一次点A跳动至点A1(﹣1,1),第二次点A1跳动至点A2(2,1),第三次点A2跳动至点A3(﹣2,2),第四次点A3跳动至点A4(3,2),依此规律跳动下去,则点A2021与点A2022之间的距离是.17.将一副直角三角板按如图所示放置.∠ACB=∠CDE=90°,∠CAB=60°,∠ECD=45°,AB边交直线DE于点M,设∠BMD=α,∠BCE=β,将直角三角板ABC绕点C 旋转,旋转过程中,点B始终位于直线DE下方,则在变化过程中α与β的数量关系是.18.如图,在平面直角坐标系中,边长为1的正方形A1B1C1D1(记为第1个正方形)的顶点A1与原点重合,点B1在y轴上,点D1在x轴上,点C1在第一象限内,以C1为顶点作等边△C1A2B2,使得点A2落在x轴上,A2B2⊥x轴,再以A2B2为边向右侧作正方形A2B2C2D2(记为第2个正方形),点D2在x轴上,以C2为顶点作等边△C2A3B3,使得点A3落在x轴上,A3B3⊥x轴,若按照上述的规律继续作正方形,则第2021个正方形的边长为.19.如图,把△ABC沿线段DE折叠,使点A落在线段BC上的点F处,BC∥DE,若∠A+∠B=106°,则∠FEC=度.20.如图,已知一次函数y1=4x+b的图象与x轴、一次函数y2=x﹣2的图象分别交于点C,D,点D的坐标为(﹣2,m).若在x轴上存在点E,使得以点C,D,E为顶点的三角形是直角三角形,请写出点E的坐标.21.(1)如图1所示,在等腰三角形ABC中,AB=AC,分别以AB和AC为斜边,向△ABC 的外侧作等腰直角三角形,M是BC的中点,连接MD和ME.则线段MD,ME之间的数量关系是.(2)如图2所示,在任意三角形ABC中,分别以AB和AC为斜边向△ABC的外侧作等腰直角三角形,M是BC的中点,连接MD和ME,探究MD与ME具有怎样的数量关系和位置关系?并说明理由.(3)如图3所示,在任意三角形ABC中,分别以AB和AC为斜边,向△ABC的内侧作等腰直角三角形,M是BC的中点,连接MD、ME、DE,若MD=2,请直接写出线段DE的长.22.若2a+b=12,其中a≥0,b≥0,又P=3a+2b.试确定P的最小值和最大值.23.如图1所示,直线l:y=k(x﹣1)(k>0)与x轴正半轴,y轴负半轴分别交于A,B 两点.(1)当OA=OB时,求点A坐标及直线l的函数表达式;(2)在(1)的条件下,如图2所示,设C为线段AB延长线上一点,作直线OC,过AB两点分别作AD⊥OC于点D.BE⊥OC于点E.若AD=,求BE的长;(3)如图3所示,当k取不同的值时,点B在y轴负半轴上运动,分别以OB、AB为边,点B为直角顶点在第三象限.第四象限内分别作等腰直角△OBG和等腰直角△ABF,连接FG交y轴于点H.①连接AH,直接写出△ABH的面积是;②动点F始终在一条直线上运动,则该直线的函数表达式是.24.如图在平面直角坐标系中,直线l1:y=﹣x+4与y轴交于点A,与直线l2:y=kx+b交于点C(6,n),直线l2:与y轴交于点B(0,﹣4).(1)求直线l2的函数表达式;(2)点D(m,0)是x轴上的一个动点,过点D作x轴的垂线,交l1于点M,交l2于点N,当S△AMB=2S△CMB时,请直接写出线段MN的长.25.如图,在平面直角坐标系xOy中,直线AB与x轴,y轴分别交于点A(3,0)、点B(0,4),点C在y轴的负半轴上,若将△CAB沿直线AC折叠,点B恰好落在x轴正半轴上的点D处.(1)直接写出AB的长;(2)求直线AB的函数表达式;(3)求点D和点C的坐标;(4)y轴上是否存在一点P,使得S△P AB=S△OCD?若存在,直接写出点P的坐标;若不存在,请说明理由.26.如图,AE平分∠BAC,∠CAE=∠CEA.(1)如图1,求证:AB∥CD;(2)如图2,点F为线段AC上一点,连接EF,求证:∠BAF+∠AFE+∠DEF=360°;(3)如图3,在(2)的条件下,在射线AB上取点G,连接EG,使得∠GEF=∠C,当∠AEF=35°,∠GED=2∠GEF时,求∠C的度数.27.如图,直线y=x+2与x轴交于点A,直线y=kx+b与x轴交于点B(4,0),这两条直线交于点C(2,n).(1)求k和b的值;(2)若点D是线段BC上一个动点,点D横坐标是m,△ADC面积是S,请求出S与m的函数关系式;(3)若P点是y轴上一动点,请直接写出△PBC周长最小值及此时P点坐标.28.已知,射线AB∥CD,P是直线AC右侧一动点,连接AP,CP,E是射线AB上一动点,过点E的直线分别与AP,CP交于点M,N,与射线CD交于点F,设∠BAP=∠1,∠DCP=∠2.(1)如图1,当点P在AB,CD之间时,求证:∠P=∠1+∠2;(2)如图2,在(1)的条件下,作△PMN关于直线EF对称的△P'MN,求证:∠3+∠4=2(∠1+∠2);(3)如图3,当点P在AB上方时,作△PMN关于直线EF对称的△P'MN,(1)(2)的结论是否仍然成立,若成立,请说明理由;若不成立,请直接写出∠P,∠1,∠2之间数量关系,以及∠3,∠4与∠1,∠2之间数量关系.29.已知一次函数y=﹣3x+3的图象分别与x轴,y轴交于A,B两点,点C(3,0).(1)如图1,点D与点C关于y轴对称,点E在线段BC上且到两坐标轴的距离相等,连接DE,交y轴于点F.①求点E的坐标;②△AOB与△FOD是否全等,请说明理由;(2)如图2,点G与点B关于x轴对称,点P在直线GC上,若△ABP是等腰三角形,直接写出点P的坐标.30.在Rt△ABC中,∠ACB=90°,CB=CA=2,点D是射线AB上一点,连接CD,在CD右侧作∠DCE=90°,且CE=CD,连接AE,已知AE=1.(1)如图,当点D在线段AB上时,①求∠CAE的度数;②求CD的长;(2)当点D在线段AB的延长线上时,请直接写出∠CAE的度数和CD的长.31.在△ABC中,∠A=90°,AB=AC=+1.且AD=AE=1.(1)如图1,点D,E分别在边AB,AC上,连接DE.直接写出DE的值,BC 的值;(2)现将△ADE如图2放置,连接CE,BE,CD,求证:CD=BE;(3)现将△ADE如图3放置,使C,A,E三点共线,延长CD交BE于点F,求证:CF 垂直平分BE.32.如图1,在平面直角坐标系xOy中,直线y=kx+6分别与x轴,y轴交于A,B两点,已知A点坐标(8,0),点C在直线AB上,且点C的纵坐标为3,点D是x轴正半轴上的一个动点,连接CD,以CD为直角边在右侧作等腰Rt△CDE,且∠CDE=90°.(1)求直线AB的函数表达式和C点坐标;(2)设点D的横坐标为t,求点E的坐标(用含t的代数式表示);(3)如图2,连接OE,OC,请直接写出当△OCE周长最小时,点E的坐标.33.先化简,再求值:÷(1+),其中x=﹣.34.解方程:.35.如图,△ABE是等腰三角形,AB=AE,∠BAE=45°,过点B作BC⊥AE于点C,在BC上截取CD=CE,连接AD、DE并延长AD交BE于点P.(1)求证:AD=BE;(2)试说明AD平分∠BAE.36.如图,在直角坐标系中,直线y=kx+b经过(0,4),(10,﹣4)两点,与x轴交于一点A,与y轴交于点B.(1)求这条直线的解析式;(2)求出三角形AOB的面积;(3)观察图象直接写出:当x取何值时,y大于0?当x取何值时,y小于0?(4)如果P点是x轴上的一点,且△P AB为等腰三角形,请你直接写出符合条件的P点坐标.参考答案1.解:∵a+b=﹣2,∴a=﹣b﹣2,b=﹣2﹣a,又∵a≥2b,∴﹣b﹣2≥2b,a≥﹣4﹣2a,移项,得﹣3b≥2,3a≥﹣4,解得,b≤﹣<0(不等式的两边同时除以﹣3,不等号的方向发生改变),a≥﹣;由a≥2b,得≤2 (不等式的两边同时除以负数b,不等号的方向发生改变);A、当a>0时,<0,即的最小值不是,故本选项错误;B、当﹣≤a<0时,≥,有最小值是,无最大值;故本选项错误;C、有最大值2;故本选项正确;D、无最小值;故本选项错误.故选:C.2.解:由题意:参赛人数的5%设一等奖,15%设二等奖,30%设三等奖,∴有50%的人获奖,∴根据中位数的大小,即可判断甲同学是否获奖.故选:D.3.解:由题意得:BM=CN,∵四边形ABCD是正方形,∴∠ABM=∠BCN=90°,AB=BC=4,在△ABM和△BCN中,AB=BC,∠ABM=∠BCN,MB=CN,∴△ABM≌△BCN(SAS),∴∠BAM=∠CBN,∵∠ABP+∠CBN=90°,∴∠ABP+∠BAM=90°,∴∠APB=90°,∴点p是以AP为半径的圆上远动,设圆心为O,运动路径一条弧,是这个圆的,如图所示:连接OC交圆O于P,此时PC最小,∵AB=4,∴OP=OB=2,由勾股定理得:OC==2,∴PC=OC﹣OP=2﹣2;故选:A.4.解:如图,延长FE交AB于点D,作EG⊥BC于点G,作EH⊥AC于点H,∵EF∥BC、∠ABC=90°,∴FD⊥AB,∵EG⊥BC,∴四边形BDEG是矩形,∵AE平分∠BAC、CE平分∠ACB,∴ED=EH=EG,∠DAE=∠HAE,∴四边形BDEG是正方形,在△DAE和△HAE中,∵,∴△DAE≌△HAE(AAS),∴AD=AH,同理△CGE≌△CHE,∴CG=CH,设BD=BG=x,则AD=AH=6﹣x、CG=CH=8﹣x,∵AC===10,∴6﹣x+8﹣x=10,解得:x=2,∴BD=DE=2,AD=4,∵DF=,则EF=DF﹣DE=﹣2=,故选:C.5.解:由题意,点M在直线y=﹣x上运动,点N在直线y=﹣x﹣1上运动,MN==5.∵A(1,),B(4,),∴AB==5,观察图像可知AB=MN,AB∥MN,∴四边形AMNB是平行四边形,∴AM=BN,∴四边形AMNB的周长为10+2AM,∴当AM⊥直线y=﹣x时,AM的值最小,此时周长的值最小,设AM交y轴于T,过点A作AH⊥y轴于H.∵∠MOT=∠MTO=∠ATH=∠TAH=45°,AH=1,∴HT=AH=1,OT=,∴AT=,TM=,∴AM=AT+TM=,∴四边形AMNB的周长的最小值为10+.故选:A.6.解:过P作MN⊥y轴,交y轴于M,交AB于N,过D作DH⊥y轴,交y轴于H,∠CMP=∠DNP=∠CPD=90°,∴∠MCP+∠CPM=90°,∠MPC+∠DPN=90°,∴∠MCP=∠DPN,∵P(1,1),∴OM=BN=1,PM=1,在△MCP和△NPD中,∴△MCP≌△NPD(AAS),∴DN=PM,PN=CM,∵BD=2AD,∴设AD=a,BD=2a,∵P(1,1),∴DN=2a﹣1,则2a﹣1=1,a=1,即BD=2.∵直线y=x,∴AB=OB=3,在Rt△DNP中,由勾股定理得:PC=PD==,在Rt△MCP中,由勾股定理得:CM==2,则C的坐标是(0,3),设直线CD的解析式是y=kx+3,把D(3,2)代入得:k=﹣,即直线CD的解析式是y=﹣x+3,即方程组得:,即Q的坐标是(,).故选:D.7.解:连接AD,∵△ABC是等腰三角形,点D是BC边的中点,∴AD⊥BC,∴S△ABC=BC•AD=×4×AD=16,解得AD=8,∵EF是线段AC的垂直平分线,∴点C关于直线EF的对称点为点A,∴AD的长为CM+MD的最小值,∴△CDM的周长最短=CM+MD+CD=AD+BC=8+×4=8+2=10.故选:C.8.解:由题意可知,∠1+∠2=∠3+∠2=60°,∴∠1=∠3,又∵OB=O′B,AB=BC,∴△BO′A≌△BOC,又∵∠OBO′=60°,∴△BO′A可以由△BOC绕点B逆时针旋转60°得到,故结论①正确;如图①,连接OO′,∵OB=O′B,且∠OBO′=60°,∴△OBO′是等边三角形,∴OO′=OB=4.故结论②正确;∵△BO′A≌△BOC,∴O′A=5.在△AOO′中,三边长为3,4,5,这是一组勾股数,∴△AOO′是直角三角形,∠AOO′=90°,∴∠AOB=∠AOO′+∠BOO′=90°+60°=150°,故结论③正确;S四边形AOBO′=S△AOO′+S△OBO′=×3×4+×42=6+4,故结论④错误;如图②所示,将△AOB绕点A逆时针旋转60°,使得AB与AC重合,点O旋转至O″点.易知△AOO″是边长为3的等边三角形,△COO″是边长为3、4、5的直角三角形,则S△AOC+S△AOB=S四边形AOCO″=S△COO″+S△AOO″=×3×4+×32=6+,故结论⑤正确.综上所述,正确的结论为:①②③⑤.故选:A.9.解:设两直角边分别为a,b,斜边为c,∵直角三角形斜边上的中线等于斜边的一半,∴斜边c=2×2=4,∵直角三角形的周长是4+,∴a+b+c=4+,∴∴∴ab=[(a+b)2﹣(a2+b2)]=×(26﹣16)=5,故s三角形=ab=.故选:B.10.解:过点E作EG⊥AB于点G,如图:∵CD⊥AB于D,∴EG∥CD,∴∠GEB=∠EFC,∵在Rt△ABC中,∠ACB=90°,∴EC⊥CB,又∵BE平分∠ABC,EG⊥AB,∴EG=EC.在Rt△ABC中,∠ACB=90°,AC=3,BC=4,∴AB=5.在Rt△EBC和Rt△EBG中,,∴Rt△EBC≌Rt△EBG(HL),∠CEB=∠GEB,BG=BC=4,∴∠CEB=∠EFC,AG=AB﹣BG=5﹣4=1,∴CF=CE.设CF=EG=EC=x,则AE=3﹣x,在Rt△AEG中,由勾股定理得:(3﹣x)2=x2+12,解得x=∴CF的长是.故选:B.11.解:∵∠C=90°,AC=,BC=1,∴AB==2,∴∠BAC=30°,∵△ADB沿直线BD翻折后,点A落在点E处,∴BE=BA=2,∠BED=∠BAD=30°,DA=DE,∵AD⊥ED,∴BC∥DE,∴∠CBF=∠BED=30°,在Rt△BCF中,CF==,BF=2CF=,∴EF=2﹣,在Rt△DEF中,FD=EF=1﹣,ED=FD=﹣1,∴S△ABE=S△ABD+S△BED+S△ADE=2S△ABD+S△ADE=2×BC•AD+AD•ED=2××1×(﹣1)+×(﹣1)(﹣1)=1.故选:A.12.解:∵AB=4,BC=8,∴AE=EC=BC﹣BE=8﹣BE,∵AB2+BE2=AE2,∴42+BE2=(8﹣BE)2,∴BE=3,故①正确;∴AE=CE=5,∵AP=5,∴AP=AE,∴∠APE=∠AEP,∵AP∥CE,∴∠APE=∠PEC,∴∠AEP=∠PEC,∴PE平分∠AEC,故②正确;如图1,作C关于直线AD的对称点G,连接GE交AD于P,则此时,△PEC周长最小,且△PEC周长的最小值=GE+CE;∴CE=5,CG=2CD=8,∴GE===,∴△PEC周长的最小值为+5,故③错误;如图2,过E作EH⊥AD于H,则AH=BE=3,EH=AB=4,∵,∴PH=,∴PE===,∴AP=PE,∴∠P AE=∠PEA,∵AP∥BC,∴∠P AE=∠AEB,∴∠PEA=∠AEB,∴AE平分∠BEP,故④正确;故选:B.13.解:如图,连接BE,∵四边形ABCD为正方形,∴CB=CD,∠BCE=∠DCE=45°,在△BEC和△DEC中,,∴△DCE≌△BCE(SAS),∴DE=BE,∠CDE=∠CBE,∴∠ADE=∠ABE,∵∠DAB=90°,∠DEF=90°,∴∠ADE+∠AFE=180°,∵∠AFE+∠EFB=180°,∴∠ADE=∠EFB,∴∠ABE=∠EFB,∴EF=BE,∴DE=EF,故①正确;∵∠DEF=90°,DE=EF,∴∠EDF=∠DFE=45°,如图:延长BC到G,使CG=AF,连接DG,在△ADF和△CDG中,,∴△ADF≌△CDG(SAS),∴∠AFD=∠G,∠ADF=∠CDG,DF=DG,∵∠ADF+∠CDQ=90°﹣∠FDQ=45°,∴∠CDG+∠CDQ=45°=∠GDQ,∴∠GDQ=∠FDQ,又∵DG=DF,DQ=DQ,∴△QDF≌△QDG(SAS),∴FQ=QG,∠G=∠DFQ,∴∠DF A=∠DFQ,故③正确;∵AB=6,CQ=3,∴BQ=3,FB=6﹣AF,FQ=QG=3+AF,∵FQ2=FB2+BQ2,∴(3+AF)2=9+(6﹣AF)2,∴AF=2,故②正确;如图:将△CDE绕点A顺时针旋转90°得到△ADM,连接MH,∴△CDE≌△ADM,∴AM=CE=4,∠DCE=∠DAM=45°,∠ADM=∠CDE,DM=DE,∴∠MAH=90°,∠ADM+∠ADH=∠CDE+∠ADH=45°=∠MDH,又∵DH=DH,∴△DMH≌△DEH(SAS),∴EH=MH,∵MH===2,∴EH=MH=2,∴AC=AH+EH+EC=6+2,∴AB==3+,故④正确;故选:D.14.解:∵线段MN=4,且MN∥y轴,点M(﹣3,3),∴点N的坐标为(﹣3,y),∴|y﹣3|=4,∴y=﹣1或y=7,∴则点N的坐标是(﹣3,﹣1)或(﹣3,7).故答案为:(﹣3,﹣1)或(﹣3,7).15.解:①如图1,点A、D在BC的两侧,∵△ABD是等腰直角三角形,∴AD=AB=×2=4,∵∠ABC=45°,∴BE=DE=AD=×4=2,BE⊥AD,∵BC=1,∴CE=BE﹣BC=2﹣1=1,在Rt△CDE中,CD===;②如图2,点A、D在BC的同侧,∵△ABD是等腰直角三角形,∴BD=AB=2,过点D作DE⊥BC交BC的反向延长线于E,则△BDE是等腰直角三角形,∴DE=BE=×2=2,∵BC=1,∴CE=BE+BC=2+1=3,在Rt△CDE中,CD===,综上所述,线段CD的长为或.故答案为:或.16.解:观察发现,第2次跳动至点的坐标是(2,1),第4次跳动至点的坐标是(3,2),第6次跳动至点的坐标是(4,3),第8次跳动至点的坐标是(5,4),…第2n次跳动至点的坐标是(n+1,n),则第2022次跳动至点的坐标是(1012,1011),第2021次跳动至点A2021的坐标是(﹣1011,1011).∵点A2021与点A2022的纵坐标相等,∴点A2021与点A2022之间的距离=1012﹣(﹣1011)=2023,故答案为:2023.17.解:α与β的数量关系为α﹣β=15°或α+β=165°.当将直角三角板ABC绕着点C顺时针旋转时,如图1,∵∠BMD+∠B=∠BCE+∠DEC,∴α+30°=β+45°,∴α﹣β=15°;当将直角三角板ABC绕着点C逆时针旋转时,如图2,∵∠BMD=∠1+∠B,而∠1=∠2,∠2=180°﹣∠DEC﹣∠BCE,∴∠BMD=180°﹣∠DEC﹣∠BCE+∠B,∴α=180°﹣45°﹣β+30°,∴α+β=165°.故答案为:α﹣β=15°或α+β=165°.18.解:∵正方形A1B1C1D1(称为第1个正方形)的边长为1,∴C1D1=1,∵C1A2B2为等边三角形,∵∠B2A2C1=60°,∵A2B2⊥x轴,∴∠C1A2D1=30°,∴A2B2=2C1D1=2=22﹣1,同理得A3B3=4=23﹣1,A4B4=8=24﹣1,…由上可知第n个正方形的边长为:2n﹣1,∴第2021个正方形的边长为:22021﹣1=22020.故答案为:22020.19.解:由折叠可知:∠AEF=2∠AED=2∠FED,∵∠A+∠B=106°,∴∠C=180°﹣106°=74°,∵BC∥DE,∴∠AED=∠C=74°,∴∠AEF=2∠AED=148°,∴∠FEC=180°﹣∠AEF=32°.故答案为:32.20.解:∵点D(﹣2,m)在一次函数y=x﹣2上,∴m=﹣2﹣2=﹣4,∴点D的坐标为(﹣2,﹣4),∵点D(﹣2,﹣4)在一次函数y=4x+b上,∴﹣4=4×(﹣2)+b,得b=4,∴一次函数y=4x+4,当y=0时,x=﹣1,∴点C的坐标为(﹣1,0),如图,当点E为直角顶点时,过点D作DE1⊥x轴于E1,∵D(﹣2,﹣4),∴E1(﹣2,0);当点C为直角顶点时,x轴上不存在点E;当点D为直角顶点时,过点D作DE2⊥CD交x轴于点E2,设E2(t,0),∵C(﹣1,0),E1(﹣2,0),∴CE2=﹣1﹣t,E1E2=﹣2﹣t,∵D(﹣2,﹣4),∴DE1=4,CE1=﹣1﹣(﹣2)=1,在Rt△DE1E2中,DE22=DE12+(E1E2)2=42+(﹣2﹣t)2=t2+4t+20,在Rt△CDE1中,CD2=12+42=17,在Rt△CDE2中,CE22=DE22+CD2,∴(﹣1﹣t)2=t2+4t+20+17.解得t=﹣18.∴E2(﹣18,0);由上可得,点E坐标为(﹣2,0)或(﹣18,0),故答案为(﹣2,0)或(﹣18,0).21.解:(1)MD=ME.∵△ADB和△AEC是等腰直角三角形,∴∠ABD=∠DAB=∠ACE=∠EAC=45°,∠ADB=∠AEC=90°在△ADB和△AEC中,,∴△ADB≌△AEC(AAS),∴BD=CE,AD=AE,∵M是BC的中点,∴BM=CM.∵AB=AC,∴∠ABC=∠ACB,∴∠ABC+∠ABD=∠ACB+∠ACE,即∠DBM=∠ECM.在△DBM和△ECM中,,∴△DBM≌△ECM(SAS),∴MD=ME.故答案为MD=ME;(2)MD=ME,MD⊥ME.理由如下:取AB,AC的中点F,G,连接DF,FM,MG,EG,设AB与DM交于点H,如图2,∵△ADB和△AEC都是等腰直角三角形,∴∠DF A=∠EGA=90°,DF=AF=AB,EG=AG=AC.∵点M是BC的中点,∴FM和MG都是△ABC的中位线,∴AF∥MG,AF=DF=MG,∴四边形AFMG是平行四边形,∴FM=AG=GE,∠AFM=∠AGM,∴∠DFM=∠MGE.在△DFM和△MGE中,∵FM=GE,∠DFM=∠MGE,DF=MG,∴△DFM≌△MGE(SAS),∴MD=ME,∠FDM=∠GME.∴∠BHM=90°+∠FDM=90°+∠GME,∠BHM=∠HMG=∠DME+∠GME,∴∠DME=90°,即MD⊥ME;(3)线段DE的长为2,理由如下:分别取AB,AC的中点F,G,连接MF,DF,MG,EG,设DF和MG交于点H,如图3,∵△ADB和△AEC都是等腰直角三角形,∴∠DF A=∠EGA=90°,DF=AF=AB,EG=AG=AC.∵点M是BC的中点,∴FM和MG都是△ABC的中位线,∴AF∥MG,AF=DF=MG,∴四边形AFMG是平行四边形,∴FM=AG=GE,∠AFM=∠AGM,∴∠DFM=∠MGE.在△DFM和△MGE中,FM=GE,∠DFM=∠MGE,DF=MG,∴△DFM≌△MGE(SAS).∴MD=ME,∠FDM=∠GME.∵DF⊥AB即∠FHM=90°.又∵∠FHM=∠HMD+∠FDM,∴∠FHM=∠HMD+∠GME=∠DME=90°,∴△DME是等腰直角三角形,在Rt△DME中,MD=ME=2,由勾股定理,得DE===2.22.解:∵2a+b=12,a≥0,b≥0,∴2a≤12.∴a≤6.∴0≤a≤6.由2a+b=12得;b=12﹣2a,将b=12﹣2a代入P=3a+2b得:p=3a+2(12﹣2a)=24﹣a.当a=0时,P有最大值,最大值为p=24.当a=6时,P有最小值,最小值为P=18.23.解:(1)当x=0时,y=﹣k;当y=0时,x=1,∴点B坐标为(0,﹣k),点A坐标(1,0),∴OA=1,OB=k,∴k=1,∴直线l的函数表达式为y=x﹣1,A点坐标(1,0);(2)在Rt△OAD中,AD=,OA=1,∴OD==,∵∠OEB=∠ADO=∠AOB=90°,∴∠BOE+∠OBE=90°,∠BOE+∠AOD=90°,∴∠OBE=∠AOD,∵OB=OA,在Rt△OBE和Rt△AOD中,,∴△OBE≌△AOD(AAS),∴BE=OD=;(3)①过点F作FE⊥y轴于E,如图,∵△ABF和△OBG都是等腰直角三角形,∴AB=BF,OB=OG,∠ABF=∠OBG=90°,∴∠AOB=∠BEF=90°,∴∠OAB+∠OBA=90°,∠EBF+∠OBA=90°,∴∠OAB=∠EBF,在Rt△AOB和Rt△EBF中,,∴Rt△AOB≌Rt△EBF(AAS),∴BE=OA=1,EF=OB.∴EF=BG,在Rt△FEH和Rt△GBH中,,∴Rt△FEH≌Rt△GBH(AAS),∴BH=EH=BE=,∴△ABH的面积:S==;故答案为,②∵点B的坐标为(0,﹣k),点A的坐标为(1,0),OA=1,OB=K,∴EF=OB=k,OE=OB+BE=k+1,∴点F的坐标为(k,﹣k﹣1),∴点F始终在一条直线上运动,该直线的函数表达式为y=﹣x﹣1,故答案为y=﹣x﹣1.24.解:(1)∵直线l1:y=﹣x+4过点C(6,n),∴n=﹣6+4=﹣2,∴C(6,﹣2),∵直线l2:y=kx+b过点B(0,﹣4),C(6,﹣2),∴,∴,∴直线l2:y=x﹣4;(2)∵点D(m,0),过点D作x轴的垂线,交l1于点M,交l2于点N,∴点M(m,﹣m+4),点N(m,m﹣4),∵S△AMB=2S△CMB,∴m>0,分两种情况:①0<m<6时,如图:∴S△AMB=AB•m,S△CMB=S△ABC﹣S△AMB,∵直线l1:y=﹣x+4与y轴交于点A,∴A(0,4),∵点B(0,﹣4),C(6,﹣2),∴AB=8,∴S△AMB=AB•m=4m,S△CMB=×8×6﹣4m=24﹣4m,∵S△AMB=2S△CMB,∴4m=2(24﹣4m),解得:m=4,∴点M(4,0),点N(4,﹣),∴MN=;②m>6时,如图:∴S△AMB=AB•m,S△CMB=S△AMB﹣S△ABC,∵A(0,4),点B(0,﹣4),C(6,﹣2),∴AB=8,∴S△AMB=AB•m=4m,S△CMB=4m﹣×8×6=4m﹣24,∵S△AMB=2S△CMB,∴4m=2(4m﹣24),解得:m=12,∴点M(12,﹣8),点N(12,0),∴MN=8;综上,线段MN的长为或8.25.解:(1)AB==5,故答案为:5;(2)将点A、B的坐标代入一次函数表达式:y=kx+b并解得:直线AB的表达式为:;(3)由题意得:AD=AB=5,故点D(8,0),设点C的坐标为:(0,m),而CD=BC,即4﹣m=,解得:m=﹣6,故点C(0,﹣6);(4)设点P(0,n),S△OCD=××CO×OD=×6×8=12,S△ABP=BP×x A=|4﹣n|×3=12,解得:n=12或﹣4,故P(0,12),(0,﹣4).26.(1)证明:∵AE平分∠BAC,∴∠BAE=∠CAE,∵∠CAE=∠CEA,∴∠CEA=∠BAE,∴AB∥CD;(2)证明:过F作FM∥AB,如图,∵AB∥CD,∴AB∥FM∥CD,∴∠BAF+∠AFM=180°,∠DEF+∠EFM=180°,∴∠BAF+∠AFM+∠DEF+∠EFM=360°,即∠BAF+∠AFE+∠DEF=360°;(3)解:设∠GEF=∠C=x°,∵∠GEF=∠C,∠GED=2∠GEF,∴∠GED=2x°,∵AB∥CD,∴∠C+∠BAC=180°,∴∠BAC=180°﹣x°,∵AE平分∠BAC,∴∠BAE=BAC=(180°﹣x°)=90°﹣x°,由(1)知:AB∥CD,∴∠BAE+∠AED=180°,∵∠AEF=35°,∴90﹣x+x﹣35+2x=180,解得:x=50,即∠C=50°.27.解:(1)∵直线y=x+2过点C(2,n),∴n=2+2=4,∴C(2,4),∵直线y=kx+b过B(4.0),C(2,4),∴,解得;(2)设D坐标是(m,h),∵D(m,h)在直线y=﹣2x+8上,∴h=﹣2m+8,∵直线y=x+2与x轴交于点A,∴y=0时x=﹣2,∴A(﹣2,0),∴AB=4﹣(﹣2)=6,∵S△ADC=S△ABC﹣S△ABD,∴S=×6×4﹣=12﹣3h=12﹣3(﹣2m+8)=6m﹣12;(3)如图,作出B关于y轴的对称点B′,连接B′C,与y轴的交点即为P点,此时,PB+PC在值最小,∵B(4,0),∴B′(﹣4,0),∴C(2,4),∴B′C==2,BC==2,∴△PBC周长最小值为2+2,设直线B′C的解析式为y=kx+b,∴,解得,∵直线B′C的解析式为y=x+,令x=0,则y=,∴P点坐标(0,).28.(1)证明:如图1中,过点P作PT∥AB.∵AB∥CD,AB∥PT,∴AB∥PT∥CD,∴∠1=∠APT,∠2=∠CPT,∴∠APC=∠APT+∠CPT=∠1+∠2.(2)证明:如图2中,连接PP′.∵∠3=∠MPP′+∠MP′P,∠4=∠NPP′+∠NP′P,∠APC=∠MP′N,∴∠3+∠4=2∠APC,∵∠APC=∠1+∠2,∴∠3+∠4=2(∠1+∠2).(3)结论不成立.结论是:∠P=∠2﹣∠1,∠4﹣∠3=2(∠2﹣∠1).理由:如图3中,设PC交AB于E,AP交NP′于F.∵AB∥CD,∴∠PEB=∠2,∵∠PEB=∠1+∠P,∴∠2=∠P+∠1,∴∠P=∠2﹣∠1.∵∠4=∠P+∠PFN,∠PFN=∠3+∠P′,∠P=∠P′,∴∠4=∠P+∠3+∠P,∴∠4﹣∠3=2∠P=2(∠2﹣∠1),∴∠4﹣∠3=2(∠2﹣∠1).29.解:(1)①如图1,连接OE,过点E作EG⊥OC于点G,EH⊥OB于点H,∵一次函数y=﹣3x+3的图象分别与x轴,y轴交于A,B两点,∴点A(1,0),点B(0,3),∵点D与点C关于y轴对称,点C(3,0),∵EG⊥OC,EH⊥OB,∴OE平分∠BOC,又∵OB=OC=3,∴OE=BE=EC,∴点E(,);②△AOB≌△FOD,理由如下:设直线DE解析式为y=kx+b,由题意可得:,解得:,∴直线DE解析式为y=x+1,∵点F是直线DE与y轴的交点,∴F(0,1),∴OF=OA=1,又∵OB=OD=3,∠AOB=∠FOD=90°,∴△AOB≌△FOD(SAS);(3)∵点G与点B关于x轴对称,点B(0,3),∴点G(0,﹣3),∵点G(0,﹣3),点C(3,0),∴直线GC的解析式为y=x﹣3,∵点B(0,3),点A(1,0),∴AB2=1+9=10,设点P(a,a﹣3),若AB=AP时,则10=(a﹣1)2+(a﹣3﹣0)2,∴a=0或4,∴点P(0,﹣3)或(4,1);若AB=PB时,则10=(a﹣0)2+(a﹣3﹣3)2,∵Δ<0,∴方程无解,若AP=BP时,则(a﹣1)2+(a﹣3﹣0)2=(a﹣0)2+(a﹣3﹣3)2,∴a=,∴点P(,),综上所述:点P(0,﹣3)或(4,1)或(,).30.解:(1)①∵∠ACB=90°,∠DCE=90°,∴∠ACB﹣∠ACD=∠DCE﹣∠ACD,∴∠BCD=∠ACE,在△BCD和△ACE中,,∴△BCD≌△ACE(SAS),∴∠B=∠CAE,∵∠ACB=90°,AC=BC,∴∠B=45°,∴∠CAE=45°;②连接DE,如图1,∵∠ACB=90°,AC=BC,CB=CA=2,∴∠B=∠BAC=45°,AB=,∵△BCD≌△ACE,∴∠B=∠CAE=45°,BD=AE=1,∴∠DAE=90°,AD=AB﹣BD=3,∴DE=,∵∠DCE=90°,且CE=CD,∴∠CDE=45°,∴CD=DE=;(2)∠CAE=135°,CD=.根据题意作出图形,连接DE,如图2,∵∠ACB=90°,∠DCE=90°,∴∠ACB﹣∠BCE=∠DCE﹣∠BCE,∴∠BCD=∠ACE,在△BCD和△ACE中,,∴△BCD≌△ACE(SAS),∴∠CBD=∠CAE,BD=AE=1,∵∠ACB=90°,CB=CA=2,∴AB=,∠ABC=∠BAC=45°,∴∠CAE=∠CBD=180°﹣∠ABC=135°,AD=AB+BD=4+1=5,∴∠DAE=∠CAE﹣∠CAB=135°﹣45°=90°,∴DE=,∵∠DCE=90°,且CE=CD,∴∠CDE=45°,∴CD=DE=.31.(1)解:在Rt△ADE中,∠A=90°,AD=AE=1,∴DE===,同理,BC==2+,故答案为:;2+;(2)证明:∵∠CAB=∠DAE=90°,∴∠CAB﹣∠DAB=∠DAE﹣∠DAB,即∠CAD=∠BAE,在△CAD和△BAE中,,∴△CAD≌△BAE(SAS),∴CD=BE;(3)证明:∵C,A,E三点共线,∴CE=CA+AE=+2,∴CE=CB,∴点C在线段BE的垂直平分线上,∵BD=AB﹣AD=,DE=,∴BD=DE,∴点D在线段BE的垂直平分线上,∴CF垂直平分BE.32.解:(1)∵点A(8,0)在直线y=kx+6上,∴0=8k+6,∴k=﹣,∴直线AB的解析式为y=﹣x+6,当y=3时,x=4,∴点C(4,3);(2)如图1,过点C作CH⊥AO于H,过点E作EG⊥AO于G,,∴∠CHD=∠DGE=90°,CH=3,DH=4﹣t,∴∠CDH+∠DCH=90°=∠CDH+∠GDE,∴∠DCH=∠GDE,又∵CD=DE,∴△CDH≌△DEG(AAS),∴GE=DH=4﹣t,DG=CH=3,∴点E(3+t,t﹣4);(3)∵点E(3+t,t﹣4),∴点E是直线y=x﹣7上,如图2,作点O关于直线y=x﹣7的对称点O'(7,﹣7),连接CO'交直线y=x﹣7于点E',连接OE',∵△OCE周长=OC+CE+OE,OC是定长,∴CE+OE有最小值时,△OCE周长有最小值,∴当点C,点E,点O'三点共线时,CE+OE有最小值,∴当点E是CO'与直线y=x﹣7的交点时,△OCE周长最小,设直线CO'的解析式为:y=mx+n,由题意可得,解得:,∴直线CO'的解析式为:y=﹣x+,联立方程组得:,解得:,∴E(,﹣).33.解:原式=÷=•=,当x=﹣时,原式=3.34.解:设3x﹣1=y则原方程可化为:3y﹣2=5,解得y=,∴有3x﹣1=,解得x=,将x=代入最简公分母进行检验,6x﹣2≠0,∴x=是原分式的解.35.证明:(1)∵BC⊥AE,∠BAE=45°,∴∠CBA=∠CAB,∴BC=CA,在△BCE和△ACD中,,∴△BCE≌△ACD(SAS),∴AD=BE.(2)∵△BCE≌△ACD,∴∠EBC=∠DAC,∵∠BDP=∠ADC,∴∠BPD=∠DCA=90°,∵AB=AE,∴AD平分∠BAE.36.解:(1)设直线的解析式为y=kx+b,把(0,4)(10,﹣4)代入得,解得,所以直线的解析式是;(2)当x=0时,y=4,当y=0时,,解得x=5,所以A(5,0),B(0,4),所以S△AOB==10;(3)由图象可知当x<5时,y>0;当x>5时,y<0;(4)①如图1,,当P A=PB时,设P(x,0),则OP=x,PB=P A=5﹣x,在Rt△PBO中,OP2+OB2=PB2,∴x2+42=(5﹣x)2,解得x=,∴P点的坐标是(,0).②如图2,,当AP=AB=时,∵A点的坐标是(5,0),∴P点的坐标是(5﹣,0)或(5+,0).③如图3,,当BP=BA=时,∵A点的坐标是(5,0),∴P点的坐标是(﹣5,0).综上,当△P AB为等腰三角形时,P点坐标的坐标是(,0)或(5﹣,0)或(5+,0)或(﹣5,0).。
北师大版八年级(上)期末数学压轴题系列专题练习(含答案)
图3EDBA图2EDCBA图1EDCBA2018-2019学年北师大版八年级数学(上)八年级数学期末试题北师大版八年级上册期末压轴题系列11、如图,已知:点D 是△ABC 的边BC 上一动点,且AB =AC ,DA =DE ,∠BAC =∠ADE =α.⑴如图1,当α=60°时,∠BCE = ;⑵如图2,当α=90°时,试判断∠BCE 的度数是否发生改变,若变化,请指出其变化范围;若不变化,请求出其值,并给出证明;(图1) (图2) (图3)⑶如图3,当α=120°时,则∠BCE = ;2、如图1,在平面直角坐标系xoy 中,直线6y x =+与x 轴交于A ,与y 轴交于B ,BC ⊥AB 交x 轴于C 。
①求△ABC 的面积。
如图2,②D 为OA 延长线上一动点,以BD 为直角边做等腰直角三角形BDE ,连结EA .求直线EA 的解析式.③点E 是y 轴正半轴上一点,且∠OAE =30°,上一动点,是判断是否存在这样的点M 、N ,使得OM +NM 的值最小,若存在,请写出其最小值,并加以说明.3. 如图,直线1l 与x 轴、y 轴分别交于A 、B 两点,直线2l 与直线1l 关于x 轴对称,已知直线1l 的解析式为3y x =+,(1)求直线2l 的解析式;(2)过A 点在△ABC 的外部作一条直线3l ,过点B 作BE ⊥3l 于E ,过点C 作CF ⊥3l 于F 分别,请画出图形并求证:BE +CF =EF(3)△ABC 沿y 轴向下平移,AB 边交x 轴于点P ,过P 点的直线与AC 边的延长线相交于点Q ,与y 轴相交与点M ,且BP =CQ ,在△ABC 平移的过程中,①OM 为定值;②MC 为定值。
在这两个结论中,有且只有一个是正确的,请找出正确的结论,并求出其值。
4. 如图①,直线AB 与x 轴负半轴、y 轴正半轴分别交于A 、B 两点.OA 、OB 的长度分别为a 和b ,且满足2220a ab b -+=.⑴判断△AOB 的形状.⑵如图②,正比例函数(0)y kx k =<的图象与直线AB 交于点Q ,过A 、B 两点分别作AM ⊥OQ 于M ,BN ⊥OQ 于N ,若AM =9,BN =4,求MN 的长.⑶如图③,E 为AB 上一动点,以AE 为斜边作等腰直角△ADE ,P 为BE 的中点,连结PD 、PO ,试问:线段PD 、PO 是否存在某种确定的数量关系和位置关系?写出你的结论并证明.①OQ NMyxBA②OPy xE DBA③5、如图,已知△ABC 和△ADC是以AC为公共底边的等腰三角形,E、F分别在AD和CD上,已知:∠ADC+∠ABC=180°,∠ABC=2∠EBF;(1)求证:EF=AE+FC(2)若点E、F在直线AD和BD上,则是否有类似的结论?6、操作:如图①,△ABC是正三角形,△BDC是顶角∠BDC=120°的等腰三角形,以D为顶点作一个60°角,角两边分别交AB,AC边于M,N两点,连接MN.(1)探究线段BM、MN、NC之间的关系,并加以证明;(2)若点M、N分别是射线AB、CA上的点,其它条件不变,请你再探线段BM,MN,NC之间的关系,在图④中画出图形,并说明理由.(3)求证:CN-BM=MN图①图②图③图④EDCBAF北师大版八年级上册期末压轴题5答案; 1、⑴如图1,当α=60°时,∠BCE =120°;⑵证明:如图,过D 作DF ⊥BC ,交CA 或延长线于F 。
北师大版八年级上期末压轴大题精选解析
1、如图所示,ABCD的周长为36cm,由钝角顶点D向AB、BC引两条高DE、DF,且DE=354 cm,DF=3cm,求这个平行四边形的面积。
2、如图所示,在正方形ABCD中,E是BC上一点,AF平分∠DAE交CD于F,求证:AE=BE+DF3、如图所示,在□ABCD中,AB=2AD,点M是AB的中点,求证:DM2=AB2一MC24、如图中的菱形EFGH是菱形ABCD绕点O顺时针旋转900后得到的,请你作出旋转前的图形5、如图所示,以平行四边形ABCD两邻边BC、CD为边分别向外作等边△BEC和等边△DCF,求证:△AEF是等边三角形8、□ABCD 中,M 是BC 的中点,且AM=9,BD=12,AD=10, 求ABCD 的面积。
3、如图在正方形ABCD 中,AB=2,点E 、F 分别在BC 、CD 上,且CE=CF , 三角形AEF 的面积等于1 求证:EF 的长4、矩形ABCD 中,AB=3,BC=2,点E 、F 、G 、H 分别在AB 、BC 、CD 、AD 上,且AE=CG ,AH=CF ,AE=2AH ,四边形EFGH 的面积等于25求:EH 的长6、如图,梯形ABCD 中,AD ∥BC ,AB=CD ,AC 、BD 相交于O ,∠BOC=60°,G 、E 、F 分别为AB 、OC 、OD 的中点求证:△GEF 是等边三角形A B C D MA B C D F E7、已知矩形ABCD ,CF ⊥BD 于F ,AE 平分∠DAB 与BD 交于G ,与FC 的延长线交于E ,求证:CA=CE8如图,在正方形ABCD 中,E 是CF 上的一点,四边形DBEF 是菱形. 求∠EBC 的度数。
9如图,四边形ABCD 中,∠ABC=1350,∠BCD=1200,AB=6,BC=5-3、CD=6 求证:AD 的长度19、已知在△ABC 中,AD⊥BC,AB=13,BC=14,AC=15,求AD 。
【推荐】北师大版八年级上册期末压轴题系列专题练习(有答案)-(数学)
图3EDBA图2EDCBA图1EDCBA北师大版八年级上册期末压轴题系列11、如图,已知:点D 是△ABC 的边BC 上一动点,且AB =AC ,DA =DE ,∠BAC =∠ADE =α.⑴如图1,当α=60°时,∠BCE = ;⑵如图2,当α=90°时,试判断∠BCE 的度数是否发生改变,若变化,请指出其变化范围;若不变化,请求出其值,并给出证明;(图1) (图2) (图3)⑶如图3,当α=120°时,则∠BCE = ;2、如图1,在平面直角坐标系xoy 中,直线6y x =+与x 轴交于A ,与y 轴交于B ,BC ⊥AB 交x 轴于C 。
①求△ABC 的面积。
如图2,②D 为OA 延长线上一动点,以BD 为直角边做等腰直角三角形BDE ,连结EA .求直线EA 的解析式.③点E 是y 轴正半轴上一点,且∠OAE N 是线段AO 上一动点,是判断是否存在这样的点M 、N ,使得OM +写出其最小值,并加以说明.3. 如图,直线1l 与轴、y 轴分别交于A 、B 两点,直线2l 与直线1l 关于轴对称,已知直线1l 的解析式为3y x =+,(1)求直线2l 的解析式;(2)过A 点在△ABC 的外部作一条直线3l ,过点B 作BE ⊥3l 于E,过点C 作CF ⊥3l 于F 分别,请画出图形并求证:BE +CF =EF(3)△ABC 沿y 轴向下平移,AB 边交轴于点P ,过P 点的直线与AC 边的延长线相交于点Q ,与y 轴相交与点M ,且BP =CQ ,在△ABC 平移的过程中,①OM 为定值;②MC 为定值。
在这两个结论中,有且只有一个是正确的,请找出正确的结论,并求出其值。
4. 如图①,直线AB 与轴负半轴、y 轴正半轴分别交于A 、B 两点.OA 、OB 的长度分别为a 和b ,且满足2220a ab b -+=. ⑴判断△AOB 的形状.CBAxy QM PCB Axy ①⑵如图②,正比例函数(0)y kx k =<的图象与直线AB 交于点Q ,过A 、B 两点分别作AM ⊥OQ 于M ,BN ⊥OQ 于N ,若AM=9,BN=4,求MN 的长.⑶如图③,E 为AB 上一动点,以AE 为斜边作等腰直角△ADE ,P 为BE 的中点,连结PD 、PO ,试问:线段PD 、PO 是否存在某种确定的数量关系和位置关系?写出你的结论并证明.5、如图,已知△ABC 和△ADC 是以AC 为公共底边的等腰三角形,E 、F 分别在AD 和CD 上,已知:∠ADC+∠ABC=180°,∠ABC=2∠EBF ;(1)求证:EF=AE+FC (2)若点E 、F 在直线AD 和BD 上,则是否有类似的结论?OQ NMyxBA②OPy xE DBA③EDCBAFEDCBAF6、操作:如图①,△ABC 是正三角形,△BDC 是顶角∠BDC=120°的等腰三角形,以D 为顶点作一个60°角,角两边分别交AB ,AC 边于M ,N 两点,连接MN .(1)探究线段BM 、MN 、NC 之间的关系,并加以证明;(2)若点M 、N 分别是射线AB 、CA 上的点,其它条件不变,请你再探线段BM ,MN ,NC 之间的关系,在图④中画出图形,并说明理由.(3)求证:CN-BM=MN北师大版八年级上册期末压轴题5答案; 1、⑴如图1,当α=60°时,∠BCE =120°;⑵证明:如图,过D 作DF ⊥BC ,交CA 或延长线于F 。
北师大版八年级数学上册期末压轴题
一.选择题(共20小题)1.勾股定理是人类最伟大的科学发现之一,在我国古算书《周髀算经》中早有记载.如图1,以直角三角形的各边为边分别向外作正方形,再把较小的两张正方形纸片按图2的方式放置在最大正方形内.若知道图中阴影部分的北师大版八年级数学上册期末压轴题面积,则一定能求出()A .直角三角形的面积B .最大正方形的面积C .较小两个正方形重叠部分的面积D .最大正方形与直角三角形的面积和2.已知,如图,C 为线段AE 上一动点(不与A ,E 重合),在AE 同侧分别作等边三角形ABC 和等边三角形CDE ,AD 与BE 交于点O ,AD 与BC 交于点P ,BE 与CD 交于点Q ,连接PQ ,OC ,以下四个结论:①AD BE =;②CPQ ∆是等边三角形;③AD BC ⊥;④OC 平分AOE ∠.其中正确的结论是()A .①、②B .③、④C .①、②、③D .①、②、④3.如图,已知一次函数2y kx =+的图象与x 轴,y 轴分别交于点A ,B ,与正比例函数13y x =交于点C ,已知点C 的横坐标为2,下列结论:①关于x 的方程20kx +=的解为3x =;②对于直线2y kx =+,当3x <时,0y >;③对于直线2y kx =+,当0x >时,2y >;④方程组302y x y kx -=⎧⎨-=⎩的解为2,23x y =⎧⎪⎨=⋅⎪⎩,其中正确的是()4.如图①,在正方形ABCD 中,点P 沿边DA 从点D 开始向点A 以1/cm s 的速度移动,同时点Q 沿边AB ,BC 从点A 开始向点C 以2/cm s 的速度移动,当点P 移动到点A 时,P 、Q 同时停止移动.设点P 出发x 秒时,PAQ ∆的面积为2ycm ,y 与x 的函数图象如图②,则下列四个结论,其中正确的有()①当点P 移动到点A 时,点Q 移动到点C ;②正方形边长为6cm ;③当AP AQ =时,PAQ ∆面积达到最大值;④线段EF 所在的直线对应的函数关系式为318y x =-+A .1个B .2个C .3个D .4个5.如图,已知ABC ∆中,AB AC =,AD 是BAC ∠的平分线,AE 是BAC ∠的外角平分线,//ED AB 交AC 于点G ,下列结论:①AD BC ⊥;②//AE BC ;③AE AG =;④2224AD AE AG +=.其中正确结论的个数是()A .1B .2C .3D .46.如图,在Rt ABO ∆中,90OBA ∠=︒,(4,4)A ,点C 在边AB 上,且13AC CB =,点D 为OB 的中点,点P 为边OA 上的动点,当点P 在OA 上移动时,使四边形PDBC 周长最小的点P 的坐标为()A .(2,2)B .5(2,5)2C .8(3,83D .(3,3)7.如图,已知直线55:3AB y x =+分别交x 轴、y 轴于点B 、A 两点,(3,0)C ,D 、E 分别为线段AO 和线段AC 上一动点,BE 交y 轴于点H ,且AD CE =.当BD BE +的值最小时,则H 点的坐标为()A .B .(0,5)C .(0,4)D .8.在平面直角坐标系中,已知四边形AMNB 各顶点坐标分别是:(0,2)A -,(2,2)B ,(3,)M a ,(3,)N b ,且1MN =,a b <,那么四边形AMNB 周长的最小值为()A .6+B .6+C 1++D 1++9.如图,在长方形ABCD 中,4AB =,8BC =,点E 是BC 边上一点,且AE EC =,点P 是边AD 上一动点,连接PE ,PC ,则下列结论:①3BE =;②当5AP =时,PE 平分AEC ∠;③PEC ∆周长的最小值为15;④当256AP =时,AE 平分BEP ∠.其中正确的个数有()A .4个B .3个C .2个D .1个10.如图,已知正方形ABCD 的边长为4,E 是边CB 延长线上一点,F 为AB 边上一点,BE BF =,连接EF 并延长交线段AD 于点G ,连接CF 交BD 于点M ,连接CG 交BD 于点N .则下列结论:①AE CF =;②BFM BMF ∠=∠;③45CGF BAE ∠-∠=︒;④当15BAE ∠=︒时,MN =.其中正确的个数有()11.如图,在矩形ABCD 中,6AB cm =,3AD cm =,点E 是AB 的中点,点P 沿E A D C ---以1/cm s 的速度运动,连接CE 、PE 、PC ,设PCE ∆的面积为2ycm ,点P 运动的时间为t 秒,则y 与x 的函数图象大致为()A .B .C .D .12.如图,四边形ABCD 的顶点坐标分别为(4,0)A -,(2,1)B --,(3,0)C ,(0,3)D ,当过点B 的直线l 将四边形ABCD 分成面积相等的两部分时,直线l 所表示的函数表达式为()A .116105y x =+B .2133y x =+C .1y x =+D .5342y x =+13.如图,在Rt ABC ∆中,90ACB ∠=︒,D ,E 是边AB 上的点,连接CD ,CE ,先将边AC 沿CD 折叠,使点A 的对称点A '落在边AB 上;再将边BC 沿CB 折叠,使点B 的对称点B '落在CA '的延长线上.若15AC =,20BC =,则下列结论:①//EB CD ',②45DEC ∠=︒,③3EA '=,④18BCE S ∆=.其中正确的个数有()A .4个B .3个C .2个D .1个14.如图,已知在正方形ABCD 中,4AD =,E ,F 分别是CD ,BC 上的一点,且45EAF ∠=︒,1EC =,点G 在CB 延长线上且GB DE =,连接EF ,则以下结论:①DE BF EF +=,②47BF =,③307AF =,④507AEF S ∆=中正确的个数有()个.A .1B .2C .3D .415.已知直线1:l y kx b =+与直线21:2l y x m =-+都经过6(5C -,8)5,直线1l 交y 轴于点(0,4)B ,交x 轴于点A ,直线2l 交y 轴于点D ,P 为y 轴上任意一点,连接PA 、PC ,有以下说法:①方程组12y kx b y x m =+⎧⎪⎨=-+⎪⎩的解为6585x y ⎧=-⎪⎪⎨⎪=⎪⎩;②BCD ∆为直角三角形;③6ABD S ∆=;④当PA PC +的值最小时,点P 的坐标为(0,1).其中正确的说法是()A .①②③B .①②④C .①③④D .①②③④16.如图,等腰直角三角形纸片ABC 中,90C ∠=︒,把纸片沿EF 对折后,点A 恰好落在BC 上的点D 处,若1CE =,AB =()①BC =;②BD CE >;③2CED DFB EDF ∠+∠=∠;④DCE ∆与BDF ∆的周长相等.17.在平面直角坐标系中,对于任意三点A 、B 、C 的“矩面积”,给出如下定义:“水平底”a :任意两点横坐标差的最大值,“铅垂高”h :任意两点纵坐标差的最大值,则“矩面积”S ah =.例如:三点坐标分别为(1,2)A ,(3,1)B -,(2,2)C -,则“水平底”5a =,“铅垂高”4h =,“矩面积”20S ah ==,若(1,2)D 、(2,1)E -、(0,)F t 三点的“矩面积”为15,则t 的值为()A .3-或7B .4-或6C .4-或7D .3-或618.如图,在长方形ABCD 中,6AB =,18BC =,点E 是BC 边上一点,且AE EC =,点P 是边AD 上一动点,连接PE ,PC ,则下列结论:①8BE =;②当10AP =时,PE 平分AEC ∠;③PEC ∆的周长最小值为;④当254AP =时,AE 平分BEP ∠.其中正确的个数有()A .4个B .3个C .2个D .1个19.如图所示,在ABC ∆中,内角BAC ∠与外角CBE ∠的平分线相交于点P ,BE BC =,PB 与CE 交于点H ,//PG AD 交BC 于F ,交AB 于G ,连接CP .下列结论:①2ACB APB ∠=∠;②::PAC PAB S S AC AB ∆∆=;③BP 垂直平分CE ;④PCF CPF ∠=∠.其中,正确的有()A .1个B .2个C .3个D .4个20.如图,点M 是直线y =2x +3上的动点,过点M 作MN 垂直于x 轴于点N ,y 轴上是否存在点P ,使得△MNP 为等腰直角三角形,则符合条件的点P 有(提示:直角三角形斜边上的中线等于斜边的一半)()二.填空题(共40小题)21.如图,圆柱形玻璃杯高为12cm 、底面周长为18cm ,在杯内离杯底4cm 的点C 处有一滴蜂蜜,此时一只蚂蚁正好在杯外壁,离杯上沿4cm 与蜂蜜相对的点A 处,则蚂蚁到达蜂蜜的最短距离为__________cm .22.如图,正方形ABCD 的边长为4,E 为CD 中点,F 为BC 边上一点,且1CF =,连AF ,EG AF ⊥交BC 于G ,则BG =________.23.如图,已知点D 为ABC ∆内一点,AD 平分CAB ∠,BD AD ⊥,C CBD ∠=∠.若10AC =,6AB =,则AD 的长为________.24.如图,放置的1OAB ∆,△112B A B ,△223B A B ,⋯都是边长为2的等边三角形,边AO 在y 轴上,点1B 、2B 、3B ⋯都在直线3y x =上,则点2019A 的坐标为________.25.如图,直线33y x =上有点1A ,2A ,3A ,1n A +⋯,且11OA =,122A A =,234A A =,12n n n A A +=,分别过点1A ,2A ,3A ,1n A +⋯作直线y =的垂线,交y 轴于点1B ,2B ,3B ,1n B +⋯,依次连接12A B ,23A B ,34A B ,1n n A B +⋯,得到△112A B B ,△223A B B ,△334A B B ,⋯,△1n n n A B B +,则△445A B B 的面积为________.26.如图,在平面直角坐标系中,点(6,0)A ,点(0,2)B ,点P 是直线1y x =--上一点,且45ABP ∠=︒,则点P 的坐标为________.27.如图,E 是腰长为2的等腰直角ABC ∆斜边上一点,且BE BC =,P 为CE 上任意一点,PQ BC ⊥于点Q ,PR BE ⊥于点R ,则PQ PR +的值是________.28.如图,在Rt ABC ∆中,90ACB ∠=︒,4AC BC ==,点E 在AC 上,且1AE =,连接BE ,90BEF ∠=︒,且BE FE =,连接CF ,则CF 的长为________.29.甲、乙两人沿同一条直路走步,如果两人分别从这条直路上的A ,B 两处同时出发,都以不变的速度相向而行,图1是甲离开A 处后行走的路程y (单位:)m 与行走时间x (单位:)min 的函数图象,图2是甲、乙两人之间的距离y (单位:)m 与甲行走时间x (单位:)min 的函数图象,则a b -=________.30.如图,已知//AB CD ,CE 、BE 的交点为E ,现作如下操作:第一次操作,分别作ABE ∠和DCE ∠的平分线,交点为1E ,第二次操作,分别作1ABE ∠和1DCE ∠的平分线,交点为2E ,第三次操作,分别作2ABE ∠和2DCE ∠的平分线,交点为3E ,⋯,第n 次操作,分别作1n ABE -∠和1n DCE -∠的平分线,交点为n E .若1n E ∠=度,那BEC ∠等于________度.31.如图,由多个直角三角形拼成的美丽图案,已知直角边2OA =,其它直角边11223341AA A A A A A A ====⋯=,则2021OA =________.32.已知关于x ,y 的方程组111222a x b y c a x b y c +=⎧⎨+=⎩的唯一解是41x y =⎧⎨=⎩,则关于m ,n 的方程组11112222(26)(26)a m b n c b a m b n c b --=+⎧⎨--=+⎩的解是________.33.如图,ABC ∆中,10BC =,4AC AB -=,AD 是BAC ∠的角平分线,CD AD ⊥,则BDC S ∆的最大值为________.34.如图,在ABC ∆中,AD 是BC 边上的中线,点E 是AD 中点,过点E 作BC 垂线交BC 于点F ,已知10BC =,ABD ∆的面积为18,则EF 的长为________.35.某通信公司提供了两种移动电话收费方式:方式1:收月基本费20元,再以每分钟0.1元的价格计费:方式2:收月基本费20元,送80分钟通话时间,超过80分钟的部分,以每分钟0.15元的价格计费.下列结论:①如图描述的是方式1的收费方法;②若月通话时间少于240分钟,选择方式2省钱;③若月通信费为50元,则方式1比方式2的通话时间多;@若方式1比方式2的通信费多10元,则方式1比方式2的通话时间多100分钟.其中正确结论的序号是________________.36.如图,直线22y x =+与x 轴、y 轴分别交于A 、B 两点,点C 是第二象限内一点,ABC ∆为等腰直角三角形且90C ∠=︒,则直线BC 的解析式为________________.37.如图在ABC ∆,ADE ∆中,90BAC DAE ∠=∠=︒,AB AC =,AD AE =,点C ,D ,E 三点在同一条直线上,连接BD ,BE .以下四个结论:①BD CE =;②BD CE ⊥;③45ACE DBC ∠+∠=︒;④2222()BE AD AB =+,其中结论正确的是________________.38.如图,一次函数483y x =-+的图象与x 轴、y 轴分别交于A 、B 两点.P 是x 轴上一个动点,若沿BP 将OBP ∆翻折,点O 恰好落在直线AB 上的点C 处,则点P 的坐标是________________.39.如图,在正方形ABCD 中,点E 是BC 边上的一点,4BE =,8EC =,将正方形边AB 沿AE 折叠到AF ,延长EF 交DC 于点G ,连接AG ,现在有如下四个结论:①45EAG ∠=︒;②FG FC =;③//FC AG ;④14.4GFC S ∆=.其中结论正确的序号是________________.40.如图,在平面直角坐标系中,对ABC ∆进行循环往复的轴对称变换,若原来点A 的坐标是(2,3),则经过第2020次变换后所得的A 点坐标是________________.41.如图,矩形ABCD 中,4AD =,2AB =.点E 是AB 的中点,点F 是BC 边上的任意一点(不与B 、C 重合),EBF ∆沿EF 翻折,点B 落在B '处,当DB '的长度最小时,BF 的长度为________.42.如图,以AB 为斜边的Rt ABC ∆的每条边为边作三个正方形,分别是正方形ABMN ,正方形BCPQ ,正方形ACEF ,且边EF 恰好经过点N .若346S S ==,则15S S +=________.(注:图中所示面积S 表示相应封闭区域的面积,如3S 表示ABC ∆的面积)43.如图,长方形ABCD 中,4AD =,3AB =,点P 是AB 上一点,1AP =,点E 是BC 上一动点,连接PE ,将BPE ∆沿PE 折叠,使点B 落在B ',连接DB ',则PB DB ''+的最小值是________.44.如图,在平面直角坐标系xOy 中,点A 的坐标为(0,6),点B 为x 轴上一动点,以AB 为边在直线AB 的右侧作等边三角形ABC .若点P 为OA 的中点,连接PC ,则PC 的长的最小值为________.45.在Rt ACB ∆中,90ACB ∠=︒,点D 在边AB 上,连接CD ,将ADC ∆沿直线CD 翻折,点A 恰好落在BC 边上的点E 处,若3AC =,1BE =,则DE 的长是________.46.如图1,在矩形ABCD 中,8AB =,10BC =,P 是边AD 上一点,将ABP ∆沿着直线BP 翻折得到△A BP '.当8AP =时,A D '=2,连接A C ',当2AP =时,此时△A BC '的面积为________________.47.如图,在平面直角坐标系xOy 中,点A 坐标为(0,2),点B 为x 轴上的动点,以AB 为边作等边三角形ABC ,当OC 最小时点C 的坐标为____________________________.48.如图,点(2,0)A -,直线33:?33l y x =+与x 轴交于点B ,以AB 为边作等边1ABA ∆,过点1A 作11//A B x 轴,交直线l 于点1B ,以11A B 为边作等边△112A B A ,过点2A 作22//A B x 轴,交直线l 于点2B ,以22A B 为边作等边△223A B A ,则点3A 的坐标是________.49.如图,在Rt ABC ∆中,90ACB ∠=︒,6AC BC ==,D 为BC 上一点,连接AD ,过点A 作AE AD ⊥,取AE AD =,连接BE 交AC 于F .当AEF ∆为等腰三角形时,CD =________.50.在平面直角坐标系xOy 中,我们把点O ,(0,4)A ,(8,4)B ,(8,0)C 顺次连接起来,得到一个长方形区域,P 为该区域(含边界)内一点.若将点P 到长方形相邻两边的距离之和的最小值记为d ,则称P 为“d 距点”.例如:点(5,3)P 称为“4距点”.当4d =时,横、纵坐标都是整数的点P 的个数为________个.51.如图,已知ABC ∆中,6AB AC ==,45A ∠=︒,CD AB ⊥于点D ,将BCD ∆沿BC 翻折,使点D 落在点E 处,延长EB 与CD 的延长线交于点F .求BF 的长为________.52.已知:k 为正数,直线1:1l y kx k =+-与直线2:(1)l y k x k =++及x 轴围成的三角形的面积为k S ,则2S =_______,1232020S S S S +++⋯+的值为__________.53.如图,ACB ∆和ECD ∆都是等腰直角三角形,CA CB =,CE CD =,ACB ∆的顶点A 在ECD ∆的斜边DE 上,CD 交AB 于点F,若AE =2AD =,则ACF ∆的面积为________________.54.在长方形ABCD 中,52AB =,4BC =,CE CF =,延长AB 至点E ,连接CE ,CF 平分ECD ∠,则BE =________.55.如图,在平面直角坐标系中,点1(1,1)A 在直线y x =图象上,过1A 点作y 轴平行线,交直线y x =-于点1B ,以线段11A B 为边在右侧作正方形1111A B C D ,11C D 所在的直线交y x =的图象于点2A ,交y x =-的图象于点2B ,再以线段22A B 为边在右侧作正方形2222A B C D ⋯依此类推.按照图中反映的规律,则点n A 的坐标是第2020个正方形的边长是________________.56.如图,已知30MON ∠=︒,B 为OM 上一点,BA ON ⊥于A ,四边形ABCD 为正方形,P 为射线BM 上一动点,连接CP ,将CP 绕点C 顺时针方向旋转90︒得CE ,连接BE ,若AB =,则BE 的最小值为________.——————57.当m ,n 是正实数,且满足m n mn +=时,就称点(,m P m n为“美好点”.已知点(1,8)A 与点B 的坐标满足y x b =-+,且点B 是“美好点”,则OAB ∆的面积为.58.如图,在平面直角坐标系中,点A ,1A ,2A ,⋯在x 轴上,点P ,1P ,2P ,⋯在直线3:(0)4l y kx k =+>上,90OPA ∠=︒,点(1,1)P ,(2,0)A ,且1AP ,12A P ,⋯均与OP 平行,11A P ,22A P ,⋯均与AP 平行,则有下列结论:①直线1AP 的函数解析式为2y x =-;②点2P 的纵坐标是259;③点2021P 的纵坐标为20215()3.其中正确的是(填序号).59.如图,ABC ∆中,45A ∠=︒,3AB =,AC =,若点D 、E 、F 分别是三边AB 、BC 、CA 上的动点,则DEF ∆60.如图,ABC ∆中,75BAC ∠=︒,60ACB ∠=︒,4AC =,则ABC ∆D ,点E ,点F分别为BC ,AB ,AC 上的动点,连接DE ,EF ,FD ,则DEF ∆的周长最小值为.。
八年级数学上册(北师大版)期末满分计划之选填压轴专项训练(30道)
期末满分计划之选填压轴专项训练(30道)【北师大版】一.选择题(共15小题)1.(2021春•奉化区校级期末)如图,已知直线AB ,CD 被直线AC 所截,AB ∥CD ,E 是平面内任意一点(点E 不在直线AB ,CD ,AC 上),设∠BAE =α,∠DCE =β.下列各式:①α+β,②α﹣β,③180°﹣α﹣β,④360°﹣α﹣β,∠AEC 的度数可能是( )A .①②③B .①②④C .①③④D .①②③④2.(2021秋•玉州区期末)如图,已知△ABC 的内角∠A =α,分别作内角∠ABC 与外角∠ACD 的平分线,两条平分线交于点A 1,得∠A 1;∠A 1BC 和∠A 1CD 的平分线交于点A 2,得∠A 2;……以此类推得到∠A 2018,则∠A 2018的度数是( )A .α2B .α22018C .α22017D .90°+α23.(2021•镇江期末)已知点P (a ,b )在经过原点的一条直线l 上,且{a 2−12b =34b 2−1a =3,则a 2−b 2ab的值为( ) A .32 B .83 C .0 D .﹣14.(2021•钦州期末)如图,在6个边长为1的小正方形及其部分对角线构成的图形中,如图从A 点到B 点只能沿图中的线段走,那么从A 点到B 点的最短距离的走法共有( )A .1种B .2种C .3种D .4种5.(2021秋•黄州区校级期末)如图,在△DEF中,∠D=90°,DG:GE=1:3,GE=GF,Q是EF上一动点,过点Q作QM⊥DE于M,QN⊥GF于N,EF=4√3,则QM+QN 的长是()A.4√3B.3√2C.4D.2√36.(2019春•永春县期末)规定[x]表示不大于x的最大整数,例如[2.3]=2,[3]=3,[﹣2.5]=﹣3.那么函数y=x﹣[x]的图象为()A.B.C.D.7.(2021春•南川区期末)如图,A.B两地之间的路程为6000米,甲、乙两人骑车都从A 地出发,已知甲先出发5分钟后,乙才出发,乙在A、B之间的C地追赶上甲,当乙追赶上甲后,乙立即返回A地,甲继续往B地前行.甲到达B地后停止骑行,乙骑行到达A地时也停止(乙在C地掉头时间忽略不计).在整个骑行过程中,甲和乙都保持各自速度匀速骑行,甲乙两人相距的路程y(米)与甲出发的时间x(分钟)之间的关系如图所示.下列说法正确的是()①乙的速度为227.5米/分;②甲的速度为150米/分;③图中M点的坐标为(21,2940);④乙到达A地时,甲与B地相距3060米.A.①②③B.②③④C.①③④D.①②④8.(2021秋•诸暨市期末)已知数a ,b ,c 的大小关系如图,下列说法:①ab +ac >0;②﹣a ﹣b +c <0;③a |a|+b |b|+c |c|=−1;④|a ﹣b |+|c +b |﹣|a ﹣c |=﹣2b ;⑤若x 为数轴上任意一点,则|x ﹣b |+|x ﹣a |的最小值为a ﹣b .其中正确结论的个数是( )A .1B .2C .3D .49.(2021春•寿县期末)小元步行从家去火车站,走到6分钟时,以同样的速度回家取物品,然后从家乘出租车赶往火车站,结果比预计步行时间提前了3分钟.小元离家路程S (米)与时间t (分钟)之间的函数图象如图,那么从家到火车站路程是( )A .1300米B .1400米C .1600米D .1500米10.(2021春•青山区期末)如图,在△ABC 中,∠BAC =90°,AD 是高,BE 是中线,CF 是角平分线,CF 交AD 于点G ,交BE 于点H ,下面说法正确的是( )①△ABE 的面积=△BCE 的面积;②∠AFG =∠AGF ;③∠F AG =2∠ACF ;④BH =CH .A .①②③④B .①②③C .②④D .①③11.(2021春•望城区期末)小杨在商店购买了a 件甲种商品,b 件乙种商品,共用213元,已知甲种商品每件5元,乙种商品每件19元,那么a +b 的最大值是( )A .37B .27C .23D .2012.(2021春•庆云县期末)已知关于x ,y 的二元一次方程组{x +3y =4−a x −y =3a ,给出下列结论中正确的是()①当这个方程组的解x,y的值互为相反数时,a=﹣2;②当a=1时,方程组的解也是方程x+y=4+2a的解;③无论a取什么实数,x+2y的值始终不变;④若用x表示y,则y=−x2+32;A.①②B.②③C.②③④D.①③④13.(2021春•奉化区校级期末)我们知道自行车一般是由后轮驱动,因此,后轮胎的磨损要超过前轮胎,假设前轮行驶5000千米报废,后轮行驶3000千米报废,如果在自行车行驶若干千米后,将前后轮进行对换,那么这对轮胎最多可以行驶()A.4000 千米B.3750 千米C.4250 千米D.3250 千米14.(2021秋•砀山县期末)如图所示是小刚一天中的作息时间分配的扇形统计图如果小刚希望把自己每天的阅读时间调整为2.5小时,那么他的阅读时间需增加()A.48分钟B.60分钟C.90分钟D.105分钟15.(2021秋•柯城区校级期末)如图,直线l1⊥x轴于点(1,0),直线l2⊥x轴于点(2,0),直线l3⊥x轴于点(3,0),…直线l n⊥x轴于点(n,0).函数y=12x的图象与直线l1,l2,l3,…l n分别交于点A1,A2,A3,…A n;函数y=2x的图象与直线l1,l2,l3,…l n分别交于点B1,B2,B3,…B n.如果△OA1B1的面积记作S1,四边形A1A2B2B1的面积记作S2,四边形A2A3B3B2的面积记作S3,…四边形A n﹣1A n B n B n﹣1的面积记作S n,那么S2012=()A.3015B.3015.75C.3017.25D.3017二.填空题(共15小题)16.(2013春•临沂期末)已知:如图,四边形ABCD,AB=1,BC=34,CD=134,AD=3,且AB⊥BC.则四边形ABCD的面积为.17.(2021春•沈河区期末)如图,在三角形ABC中,AD⊥BC,垂足为点D,直线EF过点C,且90°﹣∠FCB=∠BAD,点G为线段AB上一点,连接CG,∠BCG与∠BCE 的角平分线CM、CN分别交AD于点M、N,若∠BGC=70°,则∠MCN=35°.18.(2021春•望城区期末)如图,长方体的长为15cm,宽为10cm,高为20cm,点B距离C点5cm,一只蚂蚁如果要沿着长方体的表面从点A爬到点B,则蚂蚁爬行的最短距离是cm.19.(2019秋•怀柔区期末)在每个小正方形的边长为1的网格图形中,每个小正方形的顶点称为格点.从一个格点移动到与之相距√5的另一个格点的运动称为一次跳马变换.例如,在4×4的正方形网格图形中(如图1),从点A经过一次跳马变换可以到达点B,C,D,E等处.现有10×10的正方形网格图形(如图2),则从该正方形的顶点M'经过跳马变换到达与其相对的N',最少需要跳马变换的次数是,现有20×20的正方形网格图形(如图3),则从该正方形的顶点M''经过跳马变换到达与其相对的N'',最少需要跳马变换的次数是.20.(2021春•忠县期末)我们经过探索知道1+112+122=3222,1+122+132=7262,1+132+142=132 122,…,若已知a n=1+1n2+1(n+1)2,则√a1+√a2+√a3+⋯+√a n=(用含n的代数式表示,其中n为正整数).21.(2021春•永嘉县校级期末)若|2017﹣m|+√m−2018=m,则m﹣20172=.22.(2021秋•平谷区期末)已知,a,b是正整数.(1)若√3a是整数,则满足条件的a的值为;(2)若√3a+√7b是整数,则满足条件的有序数对(a,b)为.23.(2021春•金堂县期末)甲、乙、丙、丁、戊五个同学是好朋友,一次郊游时都已口渴难耐,却只剩下两个梨,大家相互推让:甲说:“如果我吃一个,那么乙也应吃一个”;乙说:“如果我吃一个,那么丙也应吃一个”;丙说:“如果我吃一个,那么丁也应吃一个”;丁说:“如果我吃一个,那么戊也应吃一个”;大家都遵守诺言,两个梨均被吃掉,请问:哪两个人吃掉了这两个梨?.24.(2021春•西城区期末)如图1,平面上两条直线l1,l2相交于点O,对于平面上任意一点M,若点M到直线l1的距离为p,到直线l2的距离为q,则称有序实数对(p,q)为点M的“距离坐标”,例如,图1中点O的“距离坐标”为(0,0),点N的“距离坐标”为(3.6,4.2).(1)如图2,点A的“距离坐标”为,点B的“距离坐标”为;(2)如图3,点C,D分别在直线l1,l2上,则C,D两个点中,“距离坐标”为(3,0)的点是;(3)平面上“距离坐标”为(0,5)的点有个,“距离坐标”为(5,5)的点有个.25.(2021春•鄞州区校级期末)若40个数据的平方和是56,平均数是√22,则这组数据的方差 .26.(2021秋•双流县期末)某中学的学生对本校学生的每周零花钱使用情况进行抽样调查,得到了一组学生平均一周用出的零花钱的数据.如图是根据这组数据绘制的统计图,图中从左到右各长方形的高度之比为3:4:5:8:6,又知此次调查中平均一周用出零花钱是25元和30元的学生一共42人.那么,这组数据的众数是 、中位数是 .27.(2021春•长葛市期末)将一副三角板按如图放置,∠BAC =∠DAE =90°,∠B =45°,∠E =60°,则:①∠1=∠3;②∠CAD +∠2=180°;③如果∠2=30°,则有AC ∥DE ;④如果∠2=45°,则有BC ∥AD .上述结论中正确的是 (填写序号).28.(2021春•江都区期末)如图,△ABC 沿EF 折叠使点A 落在点A '处,BP 、CP 分别是∠ABD 、∠ACD 平分线,若∠P =30°,∠A 'EB =20°,则∠A 'FC = °.29.(2021春•奉化区校级期末)如图,PQ∥MN,A,B分别为直线MN、PQ上两点,且∠BAN=45°,若射线AM绕点A顺时针旋转至AN后立即回转,射线BQ绕点B逆时针旋转至BP后立即回转,两射线分别绕点A、点B不停地旋转,若射线AM转动的速度是a°/秒,射线BQ转动的速度是b°/秒,且a、b满足|a﹣5|+(b﹣1)2=0.若射线AM 绕点A顺时针先转动18秒,射线BQ才开始绕点B逆时针旋转,在射线BQ到达BA之前,问射线AM再转动秒时,射线AM与射线BQ互相平行.30.(2021春•乐至县期末)如图,在△ABC中,BD、BE分别是△ABC的高线和角平分线,点F在CA的延长线上,FH⊥BE交BD于点G,交BC于点H.下列结论:①∠DBE=∠F;②∠BEF=12(∠BAF+∠C);③∠FGD=∠ABE+∠C;④∠F=12(∠BAC﹣∠C);其中正确的是.。
北师大版八年级上册压轴题数学精品模拟试卷
北师大版八年级上册压轴题数学精品模拟试卷一、压轴题1.Rt △ABC 中,∠C =90°,点D 、E 分别是△ABC 边AC 、BC 上的点,点P 是一动点.令∠PDA =∠1,∠PEB =∠2,∠DPE =∠α.(1)若点P 在线段AB 上,如图(1)所示,且∠α=60°,则∠1+∠2= ; (2)若点P 在线段AB 上运动,如图(2)所示,则∠α、∠1、∠2之间的关系为 ; (3)若点P 运动到边AB 的延长线上,如图(3)所示,则∠α、∠1、∠2之间有何关系?猜想并说明理由;(4)若点P 运动到△ABC 形外,如图(4)所示,则∠α、∠1、∠2之间有何关系?猜想并说明理由.2.直角三角形ABC 中,90ACB ∠=︒,直线l 过点C .(1)当AC BC =时,如图1,分别过点A 和B 作AD ⊥直线l 于点D ,BE ⊥直线l 于点E ,ACD 与CBE △是否全等,并说明理由;(2)当8AC cm =,6BC cm =时,如图2,点B 与点F 关于直线l 对称,连接 BF CF 、,点M 是AC 上一点,点N 是CF 上一点,分别过点M N 、作MD ⊥直线l 于点D ,NE ⊥直线l 于点E ,点M 从A 点出发,以每秒1cm 的速度沿A C →路径运动,终点为C ,点N 从点F 出发,以每秒3cm 的速度沿F C B C F →→→→路径运动,终点为F ,点,M N 同时开始运动,各自达到相应的终点时停止运动,设运动时间为t 秒,当CMN △为等腰直角三角形时,求t 的值.3.已知,在平面直角坐标系中,(42,0)A ,(0,42)B ,C 为AB 的中点,P 是线段AB 上一动点,D 是线段OA 上一点,且PO PD =,DE AB ⊥于E .(1)求OAB ∠的度数;(2)当点P 运动时,PE 的值是否变化?若变化,说明理由;若不变,请求PE 的值. (3)若45OPD ∠=︒,求点D 的坐标.4.在Rt ABC 中,90ACB ∠=︒,30A ∠=︒,BD 是ABC 的角平分线,DE AB ⊥于点E .(1)如图1,连接EC ,求证:EBC 是等边三角形;(2)如图2,点M 是线段CD 上的一点(不与点,C D 重合),以BM 为一边,在BM 下方作60BMG ∠=︒,MG 交DE 延长线于点G .求证:AD DG MD =+;(3)如图3,点N 是线段AD 上的点,以BN 为一边,在BN 的下方作60BNG ∠=︒,NG 交DE 延长线于点G .直接写出ND ,DG 与AD 数量之间的关系.5.问题情景:数学课上,老师布置了这样一道题目,如图1,△ABC 是等边三角形,点D 是BC 的中点,且满足∠ADE =60°,DE 交等边三角形外角平分线于点E .试探究AD 与DE 的数量关系.操作发现:(1)小明同学过点D 作DF ∥AC 交AB 于F ,通过构造全等三角形经过推理论证就可以解决问题,请您按照小明同学的方法确定AD 与DE 的数量关系,并进行证明.类比探究:(2)如图2,当点D 是线段BC 上任意一点(除B 、C 外),其他条件不变,试猜想AD 与DE 之间的数量关系,并证明你的结论.拓展应用:(3)当点D 在线段BC 的延长线上,且满足CD =BC ,在图3中补全图形,直接判断△ADE 的形状(不要求证明).6.学习了三角形全等的判定方法(即“SAS ”、“ASA ”、“AAS ”、“SSS ”)和直角三角形全等的判定方法(即“HL ”)后,我们继续对“两个三角形满足两边的其中一边的对角对应相等”的情形进行研究.(初步思考)我们不妨将问题用符号语言表示为:在△DEF 中,AC =DF ,BC =EF ,∠B =∠E ,然后,对∠B 进行分类,可分为“∠B 是直角、钝角、锐角”三种情况进行探究.(深入探究)第一种情况:当∠B 是直角时,△ABC ≌△DEF .(1)如图①,在△ABC 和△DEF 中,AC =DF ,BC =EF ,∠B =∠E =90°,根据______,可以知道Rt △ABC ≌Rt △DEF .第二种情况:当∠B 是钝角时,△ABC ≌△DEF .(2)如图②,在△ABC 和△DEF 中,AC =DF ,BC =EF ,∠B =∠E ,且∠B 、∠E 都是钝角.求证:△ABC ≌△DEF .第三种情况:当∠B 是锐角时,△ABC 和△DEF 不一定全等.(3)在△ABC 和△DEF 中,AC =DF ,BC =EF ,∠B =∠E ,且∠B 、∠E 都是锐角.请你用直尺在图③中作出△DEF ,使△DEF 和△ABC 不全等,并作简要说明.7.阅读并填空:如图,ABC 是等腰三角形,AB AC =,D 是边AC 延长线上的一点,E 在边AB 上且联接DE 交BC 于O ,如果OE OD ,那么CD BE =,为什么?解:过点E 作EF AC 交BC 于F所以ACB EFB ∠=∠(两直线平行,同位角相等)D OEF ∠=∠(________)在OCD 与OFE △中()________COD FOE OD OED OEF ⎧∠=∠⎪=⎨⎪∠=∠⎩所以OCD OFE △≌△,(________)所以CD FE =(________)因为AB AC =(已知)所以ACB B =∠∠(________)所以EFB B ∠=∠(等量代换)所以BE FE =(________)所以CD BE =8.已知:ABC 中,过B 点作BE ⊥AD ,=90=,∠︒ACB AC BC .(1)如图1,点D 在BC 的延长线上,连AD ,作BE AD ⊥于E ,交AC 于点F .求证:=AD BF ;(2)如图2,点D 在线段BC 上,连AD ,过A 作AE AD ⊥,且=AE AD ,连BE 交AC 于F ,连DE ,问BD 与CF 有何数量关系,并加以证明;(3)如图3,点D 在CB 延长线上,=AE AD 且AE AD ⊥,连接BE 、AC 的延长线交BE 于点M ,若=3AC MC ,请直接写出DB BC的值.9.如图,ABC ∆在平面直角坐标系中,60BAC ∠=︒,()0,43A ,8AB =,点B 、C 在x 轴上且关于y 轴对称.(1)求点C 的坐标;(2)动点P 以每秒2个单位长度的速度从点B 出发沿x 轴正方向向终点C 运动,设运动时间为t 秒,点P 到直线AC 的距离PD 的长为d ,求d 与t 的关系式;(3)在(2)的条件下,当点P 到AC 的距离PD 为33AP ,作ACB ∠的平分线分别交PD 、PA 于点M 、N ,求MN 的长.10.已知ABC ,P 是平面内任意一点(A 、B 、C 、P 中任意三点都不在同一直线上).连接 PB 、PC ,设∠PBA =s°,∠PCA =t°,∠BPC =x°,∠BAC =y°.(1)如图,当点 P 在ABC 内时,①若 y =70,s =10,t =20,则 x = ;②探究 s 、t 、x 、y 之间的数量关系,并证明你得到的结论.(2)当点 P 在ABC 外时,直接写出 s、t、x、y 之间所有可能的数量关系,并画出相应的图形.11.(1)探索发现:如图1,已知Rt△ABC中,∠ACB=90°,AC=BC,直线l过点C,过点A作AD⊥l,过点B作BE⊥l,垂足分别为D、E.求证:AD=CE,CD=BE.(2)迁移应用:如图2,将一块等腰直角的三角板MON放在平面直角坐标系内,三角板的一个锐角的顶点与坐标原点O重合,另两个顶点均落在第一象限内,已知点M的坐标为(1,3),求点N的坐标.(3)拓展应用:如图3,在平面直角坐标系内,已知直线y=﹣3x+3与y轴交于点P,与x轴交于点Q,将直线PQ绕P点沿逆时针方向旋转45°后,所得的直线交x轴于点R.求点R的坐标.12.已知,如图1,直线l2⊥l1,垂足为A,点B在A点下方,点C在射线AM上,点B、C 不与点A重合,点D在直线11上,点A的右侧,过D作l3⊥l1,点E在直线l3上,点D的下方.(1)l2与l3的位置关系是;(2)如图1,若CE平分∠BCD,且∠BCD=70°,则∠CED=°,∠ADC=°;(3)如图2,若CD⊥BD于D,作∠BCD的角平分线,交BD于F,交AD于G.试说明:∠DGF=∠DFG;(4)如图3,若∠DBE=∠DEB,点C在射线AM上运动,∠BDC的角平分线交EB的延长线于点N,在点C的运动过程中,探索∠N:∠BCD的值是否变化,若变化,请说明理由;若不变化,请直接写出比值.13.探索发现: 111111111;;12223233434=-=-=-⨯⨯⨯…… 根据你发现的规律,回答下列问题:(1)145⨯= ,1(1)n n ⨯+= ; (2)利用你发现的规律计算:1111122334(1)n n ⋅++++⨯⨯⨯⨯+ (3)利用规律解方程:1111121(1)(1)(2)(2)(3)(3)(4)(4)(5)(5)x x x x x x x x x x x x x -++++=++++++++++ 14.如图,在ABC 中,3AB AC ==,50B C ∠=∠=,点D 在边BC 上运动(点D 不与点,B C 重合),连接AD ,作50ADE ∠=,DE 交边AC 于点E .(1)当100BDA ∠=时,EDC ∠= ,DEC ∠=(2)当DC 等于多少时,ABD DCE ≌△△,请说明理由;(3)在点D 的运动过程中,ADE 的形状可以是等腰三角形吗?若可以,请求出BDA ∠的度数;若不可以,请说明理由.15.(1)发现:如图1,ABC ∆的内角ABC ∠的平分线和外角ACD ∠的平分线相交于点O 。
北师大版八年级(上)期末数学压轴题系列专题练习(含答案)
图3EDBA图2EDBA图1EDCBA北师大版八年级上册期末压轴题系列11、如图,已知:点D 是△ABC 的边BC 上一动点,且AB =AC ,DA =DE ,∠BAC =∠ADE =α.⑴如图1,当α=60°时,∠BCE = ;⑵如图2,当α=90°时,试判断∠BCE 的度数是否发生改变,若变化,请指出其变化范围;若不变化,请求出其值,并给出证明;(图1) (图2) (图3)⑶如图3,当α=120°时,则∠BCE = ;2、如图1,在平面直角坐标系xoy 中,直线6y x =+与x 轴交于A ,与y 轴交于B ,BC ⊥AB 交x 轴于C 。
①求△ABC 的面积。
如图2,②D 为OA 延长线上一动点,以BD 为直角边做等腰直角三角形BDE ,连结EA .求直线EA 的解析式.③点E 是y 轴正半轴上一点,且∠OAE =30°,OF 平分∠OAE ,点M 是射线上一动点,是判断是否存在这样的点M 、N ,使得OM +NM 的值最小,若存在,请写出其最小值,并加以说明.3. 如图,直线1l 与x 轴、y 轴分别交于A 、B 两点,直线2l 与直线1l 关于x 轴对称,已知直线1l 的解析式为3y x =+,(1)求直线2l 的解析式;(2)过A 点在△ABC 的外部作一条直线3l ,过点B 作BE ⊥3l 于E ,过点C 作CF ⊥3l 于F 分别,请画出图形并求证:BE +CF =EF(3)△ABC 沿y 轴向下平移,AB 边交x 轴于点P ,过P 点的直线与AC 边的延长线相交于点Q ,与y 轴相交与点M ,且BP =CQ ,在△ABC 平移的过程中,①OM 为定值;②MC 为定值。
在这两个结论中,有且只有一个是正确的,请找出正确的结论,并求出其值。
4. 如图①,直线AB 与x 轴负半轴、y 轴正半轴分别交于A 、B 两点.OA 、OB 的长度分别为a 和b ,且满足2220a ab b -+=.⑴判断△AOB 的形状.⑵如图②,正比例函数(0)y kx k =<的图象与直线AB 交于点Q ,过A 、B 两点分别作AM ⊥OQ 于M ,BN ⊥OQ 于N ,若AM =9,BN =4,求MN 的长.⑶如图③,E 为AB 上一动点,以AE 为斜边作等腰直角△ADE ,P 为BE 的中点,连结PD 、PO ,试问:线段PD 、PO 是否存在某种确定的数量关系和位置关系?写出你的结论并证明.①5、如图,已知△ABC和△ADC是以AC为公共底边的等腰三角形,E、F 分别在AD 和CD 上,已知:∠ADC +∠ABC =180°,∠ABC =2∠EBF ;(1)求证:EF =AE +FC (2)若点E 、F 在直线AD 和BD 上,则是否有类似的结论?6、操作:如图①,△ABC 是正三角形,△BDC 是顶角∠BDC =120°的等腰三角形,以D 为顶点作一个60°角,角两边分别交AB ,AC 边于M ,N 两点,连接MN .(1)探究线段BM 、MN 、NC 之间的关系,并加以证明;(2)若点M 、N 分别是射线AB 、CA 上的点,其它条件不变,请你再探线段BM ,MN ,NC 之间的关系,在图④中画出图形,并说明理由.(3)求证:CN -BM =MN图① 图② 图③图④EDCBAF北师大版八年级上册期末压轴题5答案; 1、⑴如图1,当α=60°时,∠BCE =120°;⑵证明:如图,过D 作DF ⊥BC ,交CA 或延长线于F 。
北师大版八年级上册期末压轴题
北师大版八年级上册期末压轴题7.(3分)若一个直角三角形的面积为6cm2,斜边长为5cm,则该直角三角形的周长是()A.7cm B.10cm C.cm D.12cm16.(4分)如图所示,把边长为1的正方形放在数轴上,以数1表示的点为圆心,正方形的对角线长为半径作弧,交数轴于点A,则点A表示的数是.17.(4分)如图所示的“贾宪三角”告诉了我们二项式乘方展开式的系数规律,如:第四行的四个数恰好对应着(a+b)3的展开式a3+3a2b+3a b2+b3的系数;第五行的五个数恰好对应着(a+b)4的展开式a4+4a3b+6a2b2+4ab3+b4的系数;根据数表中前五行的数字所反映的规律,回答:(1)图中第七行正中间的数字是;(2)(a+b)6的展开式是.24.(9分)如图,在△ABC中,∠ACB=105°,AC边上的垂直平分线交AB边于点D,交AC 边于点E,连结CD.(1)若AB=10,BC=6,求△BCD的周长;(2)若AD=BC,试求∠A的度数.25.(12分)请阅读下列材料:问题:如图(1),圆柱的底面半径为4cm,圆柱高AB为2c m,BC是底面直径,求一只蚂蚁从点A出发沿圆柱表面爬行到点C的最短路线,小明设计了两条路线:路线1:高线AB+底面直径BC,如图(1)所示.路线2:侧面展开图中的线段AC,如图(2)所示.设路线1的长度为l1,则l1=AB+BC=2+8=10;设路线2的长度为l2,则l2===;∵=102﹣(4+16π2)=96﹣16π2=16(6﹣π2)<0∴即l1<l2所以选择路线1较短.(1)小明对上述结论有些疑惑,于是他把条件改成:“圆柱的底面半径为2cm,高AB为4cm”继续按前面的路线进行计算.(结果保留π)①此时,路线1:l1=路线2:l2=②所以选择哪条路线较短?试说明理由.(2)请你帮小明继续研究:当圆柱的底面半径为2cm,高为hcm时,应如何选择上面的两条路线才能使蚂蚁从点A出发沿圆柱表面爬行到点C的路线最短.26.(14分)如图,在Rt△ABC中,∠ACB=90°,AC=BC,CD是∠ACB的角平分线,点E、F 分别是边AC、BC上的动点.AB=,设AE=x,BF=y.(1)AC的长是;(2)若x+y=3,求四边形CEDF的面积;(3)当DE⊥DF时,试探索x、y的数量关系.7.D 16. 17.(1)20 (2) a6+6a5b+15a4b2+20a3b3+15a2b4+6ab5+b6.24解:(1)∵ DE是AC的垂直平分线,∴ AD=CD.∵ C△BCD=BC+BD+CD=BC+BD+AD=BC+AB,又∵ AB=10,BC=6,∴ C△BCD=16;(2)∵ AD=CD∴∠ A=∠ACD,设∠ A=x,∵AD=CB,∴CD=CB,∴∠CDB=∠CBD.∵∠CDB是△ACD的外角,∴∠CDB=∠A+∠ACD=2x,∵∠A、∠B、∠ACB是三角形的内角,∵∠A+∠B+∠ACB=180°,∴x+2x+105°=180°,解得x=25°25.解答:解:(1)①l1=4+2×2=8,l2==;②∵=82﹣(16+4π2)=48﹣4π2=4(12﹣π2)>0,∴,即l1>l2,所以选择路线2较短.(2)当圆柱的底面半径为2cm,高为hcm时,路线1:l1=4+h,路线2:l2=,∵=(4+h)2﹣(h2+4π2)=16+8h+h2﹣h2﹣4π2=16+8h﹣4π2=4(2h+4﹣π2)∴当2h+4﹣π2=0时,即h=时,l1=l2,两条路线一样长,选择哪条路线都可以;当2h+4﹣π2>0时,即h>时,l1>l2,选择路线2较短;当2h+4﹣π2<0时,即h<时,l1<l2,选择路线1较短.故答案为:8、.26.解:(1)在Rt△ABC中,∠ACB=90°,AC=BC,∴AC=AB,∵AB=,∴AC=4;(2)如图,过点D作DG⊥AC于点G,DH⊥BC于点H∵∠ACB=90°,AC=BC,CD是∠ACB的角平分线∴∠A=∠B=∠ACD=∠BCD=45°,CD⊥AB∴AD=CD=BD∵在等腰直角三角形ACD中,DG⊥AC,∠A=45°∴DG=AG=AC=2同理DH=2∵S△CDE=CE•DG=4﹣x,S△CDF=CF•DH=4﹣y,∴S四边形CEDF=S△CDE+S△CDF=(4﹣x)(4﹣y)=8﹣(x+y)=5;(3)当DE⊥DF时,∠EDF=90°∵CD⊥AB∴∠ADE+∠EDC=∠EDC+∠CDF=90°∴∠ADE=∠CDF,又∵∠A=∠DCF=45°,AD=CD在△ADE与△CDF中,,∴△ADE≌△CDF∴AE=CF∴AE+BF=CF+BF=BC即x+y=4.16.(4分)如图是一株美丽的勾股树,其中所有的四边形都是正方形,所有的三角形都是直角三角形,若正方形A、B、C、D的面积分别为2,5,1,2.则最大的正方形E的面积是.17.(4分)将两个斜边长相等的直角三角形纸片如图①放置,其中∠ACB=∠CED=90°.∠A=45°,∠D=30°.(1)∠CBA=°;(2)把△DCE绕点C顺时针旋转15°得到△D1CE1,如图②,连接D1B,则∠E1D1B=.16. 10 17.(1) 45° (2) 15°17.(4分)如图,长方形的宽AB=3,长BC=4,点E是BC边上一点,连接AE,把∠B沿AE 折叠,使点B落在点B′处.(1)线段AB′的长为;(2)当△CEB′为直角三角形时,CE的长为.25.(13分)如图,已知△ABC和△ECD都是等腰直角三角形,∠ACB=∠DCE=90°,点D为AB边上一点.(1)求证:△ACE≌△BCD;(2)求证:△ADE是直角三角形;(3)已知△ADE的面积为30cm2,DE=13cm,求AB的长.26.(13分)如图,已知△ABC的面积为16,BC=8.现将△ABC沿直线BC向右平移a(a<8)个单位到△DEF的位置.(1)求△ABC的BC边上的高;(2)连结AE、AD,设AB=5.①求线段DF的长;②当△ADE是等腰三角形时,求a的值.17.(1)3 (2) 1或.25解:(1)证明:∵△ABC和△ECD都是等腰直角三角形,∴∠B=∠BAC=45°,AC=BC,CE=CD,∠ACB=∠DCE=90°,∴∠ACB﹣∠ACD=∠DCE﹣∠ACD,即∠1=∠2,在△ACE和△BCD中,∴△ACE≌△BCD;(2)由(1)证得△ACE≌△BCD,△ABC和△ECD都是等腰直角三角形,∴∠CAE=∠B=45°,∴∠EAD=∠EAC+∠CAB=45°+45°=90°,∴△ADE是直角三角形;(3)解:由题意得:AD•AE=30,即AD•AE=60,在R t△ADE中,由勾股定理得:AD2+AE2=DE2=132=169,∴(AD+AE)2=AD2+AE2+2AD•AE=289,∴AD+AE=17,由(1)得:△ACE≌△BCD,∴BD=AE,∴AB=AD+BD=AD+AE=17cm.26解:(1)如图1过点A作AM⊥BC于点M,∵△ABC的面积为16,BC=8,∴×8×AM=8,∴AM=4,∴△ABC的BC边上的高是8;(2)①在R t△AMB中,BM===3,∴CM=BC﹣BM=8﹣3=5,∴在R t△AMC中,AC===,∴DF=AC=,②如图2当△ADE是等腰三角形时,有三种情况:当AD=DE时,a=5,当AE=DE时,又∵AB=DE,∴AB=AE,∴BE=2BM=6,∴a=6;当AE=AD 时,在R t △AME 中,AM=4,AE=a ,ME=a ﹣3,由勾股定理得:42+(a ﹣3)2=a 2,解得:a=,综上所述,当△ADE 是等腰三角形时,a 的值为5或6或.3. (12分)如图,在四边形ABCD 中,AD ∥BC ,∠B =90°,AD =3,BC=4,点E 在AB 边上,BE=3,∠CED =90°. (1)求CE 的长度; (2)求证:△ADE ≌△BEC ;(3)设点P 是线段AB 上的一个动点,求 DP + CP 的最小值是多少?(备用图)4.(14分)在△ABC 中,D 是边BC 的中点.(1)①如图1,求证:△ABD 和△ACD 的面积相等;②如图2,延长AD 至E ,使DE=AD ,连结CE ,求证:AB=EC. (2)当∠BAC=90°时, 可以结合利用以上各题的结论,解决下列问题:①求证:AD=21BC (即:直角三角形斜边上的中线等于斜边的一半); ②已知BC=4,将△ABD 沿AD 所在直线翻折,得到△ADB ′,若△ADB ′与 △ABC 重合部分的面积等于△ABC 面积的41,请画出图形(草图)并求出AC 的长度.3(1)5342222=+=+=BE BC CE ………………………………………………(3分)(2) 090=∠CED 090=∠+∠∴DEA CEB ……………………………………(4分)090=∠B 090=∠+∠∴ECB CEBECB DEA ∠=∠∴①……………………………………………………………… (5分)090,//=∠B BC AD 090=∠=∠∴B A ②…………………………………… (6分) 3==BE AD ③ADE ∆∴≌△BEC(AAS) ………………………………………(7分)(3)延长DA 至F ,使得AD=AF ,并连接CF,此时CF 与AB 的交点为点P,AD AB ⊥ ,且AD=AF ∴△DEF 是等腰三角形…………………………………… (9分)∴DP=FP ∴DP+CP 的最小值为CF, ……………………………………… ……(10分)过点F 作FH 垂直CB 的长线,垂足为H ,显然CH=7,FH=7,根据勾股定理可得,98772222=+=+=CH FH CF …………………………………………(12分)4.(本题14分)(1)证明:①过点A 作AH ⊥BC ,垂足为H ………………………(1分) 则S △ABD =21BD ·AH , S △ACD =21CD ·AH, …………………………………… (2分) ∵点D 是BC 中点,∴BD=CD,∴△ABD 和△ACD 的面积相等……………………………………………………… (3分) ②在△ABD 和△ECD 中,∵BD=DC ,∠BDA=∠CDE ,AD=ED ,………………………(4分) ∴△ABD ≌△ECD(S.A.S),………………………………………………………… (5分) ∴AB=EC ……………………………………………………………………………… (6分) (2) ① ∵△ABD ≌△ECD(已证)∴∠B=∠ECD ,……………………………………(7分) ∵∠B+∠ACB=90°,∴∠ECD+∠ACB =90°,∴∠ACE=∠BAC=90°…………………………………………………………………(8分) ∵AB=CE(已证),AC=CA ,∴△ABC ≌△CEA(S.A.S),………………………………………………………… (9分)∴BC=AE ,∵AD=21AE ,∴AD=21BC .………………………………………………(10分) ②画草图如下:…………(12分) (Ⅰ)当AB>AC 时,如图1,由△ADB ′与△ABC 重合部分的面积等于△ABC 面积的41, 再根据第(1)①题的结论,可以得到点O 既即是AB ˊ的中点,也是CD 的中点, 从而证得△AOC ≌△B ˊOD,得AC= B ˊD=BD=21BC=2;……………………(13分) (Ⅱ)当AB<AC 时,方法一:如图2,与第(Ⅰ)题同理可以证得△AOB ˊ≌△COD, ∴AB ˊ= CD = 2, ∠B ˊ=∠CDO,又∵ ∠B ˊ=∠B , ∴∠B=∠CDO, ∴AB//OD, ∴∠COD =∠A=900, 又∵DO=OB ˊ= 1,由勾股定理可得CO=3,进而得到AC=2CO=32方法二: 如图2,与第(Ⅰ)题同理可以证得△AOB ˊ≌△COD, ∴AB ˊ= CD = 2, 利用直角三角形斜边的中线等于斜边的一半,从而得到△ADB ˊ是等边三角形,可 得AO=3,进而得到AC=32.(Ⅲ)当 AB=AC 时,由等腰三角形的性质可知,折叠后重合的面积等于△ABC 面积的21,不可能等于14,所以不合题意,舍去. 综上所述:AC=2或32………………………………………………………………(14分) 25.(11分)已知ABC ∆中, 90=∠ACB ,8=AC ,6=BC .在射线BC 上取一点D ,使得ABD ∆为等腰三角形,这样的三角形有几个?请你求ABD ∆的周长.A B C26.(12分)如图,在A B C ∆外作两个大小不同的等腰直角三角形,其中 90=∠=∠CAE DAB ,AD AB =,AE AC =。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1、如图所示,ABCD的周长为36cm,由钝角顶点D向AB、BC引两条高DE、DF,且DE=3
5
4 cm,DF=3
cm,求这个平行四边形的面积。
2、如图所示,在正方形ABCD中,E是BC上一点,AF平分∠DAE交CD于F,求证:AE=BE+DF
3、如图所示,在□ABCD中,AB=2AD,点M是AB的中点,
求证:DM2=AB2一MC2
4、如图中的菱形EFGH是菱
形ABCD绕点O顺时针旋
转900后得到的,请你作出
旋转前的图形
5、如图所示,以平行四边形ABCD两邻边BC、CD为边分别向外作等边△BEC和等边△DCF,求证:△
AEF是等边三角形
8、□ABCD 中,M 是BC 的中点,且AM=9,BD=12,AD=10, 求ABCD 的面积。
3、如图在正方形ABCD 中,AB=2,点E 、F 分别在BC 、CD 上,且CE=CF , 三角形AEF 的面积等于1 求证:EF 的长
4、矩形ABCD 中,AB=3,BC=2,点E 、F 、G 、H 分别在AB 、BC 、CD 、AD 上,且AE=CG ,AH=CF ,AE=2AH ,
四边形EFGH 的面积等于2
5
求:EH 的长
6、如图,梯形ABCD 中,AD ∥BC ,AB=CD ,AC 、BD 相交于O ,∠BOC=60°,G 、E 、F 分别为AB 、OC 、OD 的中点
求证:△GEF 是等边三角形 A B C D M
A B C D F E
7、已知矩形ABCD ,CF ⊥BD 于F ,AE 平分∠DAB 与BD 交于G ,与FC 的延长线交于E ,求证:CA=CE
8如图,在正方形ABCD 中,E 是CF 上的一点,四边形DBEF 是菱形. 求∠EBC 的度数。
9如图,四边形ABCD 中,∠ABC=1350,∠BCD=1200,AB=6,BC=5-3、CD=6 求证:AD 的长度
19、已知在△ABC 中,AD⊥BC,AB=13,BC=14,AC=15,求AD 。
20、已知,如图,AB=AC=20,BC=32,∠DAC=90º,求BD 。
A
C
B
D
2. 如图,AD ⊥AB,BC ⊥AB,AB=20,AD=8,BC=12,E 为AB 上一点,且DE=CE,求AE.
A E B
D
C
30=,求2xy x -的倒数的算术平方根。
6、求式子(24)(24)16m n m n +++-+的算术平方根。
1.△ABC 是等边三角形,D 是射线BC 上的一个动点(与点B 、C 不重合),
△ADE 是以AD 为边的等边三角形,过点E 作BC 的平行线,交射线AC 于点F ,连接BE . (1)如图13.1,当点D 在线段BC 上运动时. ① 求证:△AEB ≌△ADC ;
② 探究四边形BCFE 是怎样特殊的四边形?并说明理由;
(2)如图13.2,当点D 在BC 的延长线上运动时,请直接写出(1)中的两个结论是否仍然成立; (3)在(2)的情况下,当点D 运动到什么位置时,四边形BCFE 是菱形?并说明理由. A
F
C
D
B
E 图13.1
• A
D
C
B
E F
图13.2
•
1.如图,ON 为∠AOB 中的一条射线,点P 在边OA 上,PH ⊥OB 于H ,交ON 于点Q ,PM ∥OB 交ON 于点M, MD ⊥OB 于点D ,QR ∥OB 交MD 于点R ,连结PR 交QM 于点S 。
(1)求证:四边形PQRM 为矩形;(5分)
(2)若12OP PR =
,试探究∠AOB 与∠BON 的数量关系,并说明理由。
(5分)
2.如图,矩形OABC 在平面直角坐标系内(O 为坐标原点),点A 在x 轴上,点C 在y 轴上,点B 的坐标分别为(2,23)-,点E 是BC 的中点,点H 在OA 上,且AH=12
,过点H 且平行于y 轴的HG 与EB 交于点G ,现将矩形折叠,使顶点C 落在HG 上,并与HG 上的点D 重合,折痕为EF ,点F 为折痕与y 轴的交点。
(1)求∠CEF 的度数和点D 的坐标;(3分) (2)求折痕EF 所在直线的函数表达式;(2分)
(3)若点P 在直线EF 上,当⊿PFD 为等腰三角形时,试问满足条件的点P 有几个?请求出点P 的坐标,并写出解答过程。
(5分)
(备用图)
备用图
3.如图,在平面直角坐标系xOy 中,已知直线2
32
1+-=x y 与x 轴、y 轴分别交于点A 和点B,直线
)0(2≠+=k b kx y 经过点C(1,0)且与线段AB 交于点P,并把△ABO 分成两部分.
(1)求△ABO 的面积.
(2)若△ABO 被直线CP 分成的两部分的面积相等,求点P 的坐标及直线CP 的函数表达式.
4.如图①,在Rt △ABC 中,已知∠A=90º,AB=AC,G 、F 分别是AB 、AC 上两点,且GF ∥BC ,AF=2,BG=4. (1)求梯形BCFG 的面积.
(2)有一梯形DEFG 与梯形BCFG 重合,固定△ABC,将梯形DEFG 向右运动,直到点D 与点C 重合为止,如图②.
①若某时段运动后形成的四边形G G BD '中,DG ⊥G B ',求运动路程BD 的长,并求此时2
B G '的值.
②设运动中BD 的长度为x ,试用含x 的代数式表示出梯形DEFG 与Rt △ABC 重合部分的面积.
5.如图,在平面直角坐标系xOy 中,已知直线PA 是一次函数y=x+m(m>0)的图象,直线PB 是一次函数
n n x y (3+-=>m )的图象,点P 是两直线的交点,点A 、B 、C 、Q 分别是两条直线与坐标轴的交点。
(1)用m 、n 分别表示点A 、B 、P 的坐标及∠PAB 的度数;
A
G F
B(D)
C(E)
图①
A
G
F
B D
C E
G '
F ' 图②
(2)若四边形PQOB 的面积是211
,且CQ:AO=1:2,试求点P 的坐标,并求出直线PA 与PB 的函数表达
式;
(3)在(2)的条件下,是否存在一点D ,使以A 、B 、P 、D 为顶点的四边形是平行四边形?若存在,求出点D 的坐标;若不存在,请说明理由。
6.如图,在平面直角坐标系中,直线1l : 4
3
y x =与直线2:l y kx b =+相交于点A ,点A 的横坐标为3,
直线2l 交y 轴于点B ,且∣OA∣=1
2∣OB∣。
(1)试求直线2l 的函数表达式;(6分)
(2)若将直线1l 沿着x 轴向左平移3个单位,交y 轴于点C ,交直线2l 于点D 。
试求⊿BCD 的面积。
(4分)
7.正方形ABCD 的边长为4,将此正方形置于平面直角坐标系中,使AB 边落在X 轴的正半轴上,且A 点的坐标是(1,0)。
①直线y=43x-8
3
经过点C ,且与x 轴交与点E ,求四边形AECD 的面积;
②若直线l 经过点E 且将正方形ABCD 分成面积相等的两部分求直线l 的解析式,
③若直线1l 经过点F ⎪⎫
⎛-0.3且与直线y=3x 平行,将②中直线l 沿着y 轴向上平移2个单位交x 轴于点
x A O B P Q
C
y
M ,交直线1l 于点N ,求NMF ∆的面积.
8.如图11,已知△的面积为3,且AB=AC ,现将△沿CA 方向平移CA 长度得到△. ①求四边形CEFB 的面积;
②试判断AF 与BE 的位置关系,并说明理由; ③若,求AC 的长.
9.已知如图,直线343y x =-+与x 轴相交于点A ,与直线3y x =相交于点P .
①求点P 的坐标.
②请判断OPA ∆的形状并说明理由.
③动点E 从原点O 出发,以每秒1个单位的速度沿着O →P →A 的路线向点A 匀速运动(E 不与点O 、A 重合),过点E 分别作EF ⊥x 轴于F ,EB ⊥y 轴于B .设运动t 秒时,矩形EBOF 与△OPA 重叠部分的面积为S .求: S 与t 之间的函数关系式.
10.如图,直线OC 、BC 的函数关系式分别是y 1=x 和y 2=-2x+6,动点P (x ,0)在OB 上运动(0<x<3),ABC ABC EFA 15=∠BEC F 第27题图 y O A
x P
E
B
(1)求点C的坐标,并回答当x取何值时y
1>y
2
?
(2)设△COB中位于直线m左侧部分的面积为s,求出s与x之间函数关系式.
(3)当x为何值时,直线m平分△COB的面积?(10分)
11.已知正方形ABCD。
(1)如图1,E是AD上一点,过BE上一点O作BE的垂线,交AB于点G,交CD于点H,求证:BE =GH;
(2)如图2,过正方形ABCD内任意一点作两条互相垂直的直线,分别交AD、BC于点E、F,交AB、CD于点G、H,EF与GH相等吗?请写出你的结论;
(3)当点O在正方形ABCD的边上或外部时,过点O作两条互相垂直的直线,被正方形相对的两边(或它们的延长线)截得的两条线段还相等吗?其中一种情形如图3所示,过正方形ABCD外一点O作互相垂直的两条直线m、n,m与AD、BC的延长线分别交于点E、F,n与AB、DC的延长线分别交于点G、H,试就该图对你的结论加以证明。