最新人教新课标A版高中数学必修一全册教案

合集下载

人教a版数学必修1教案6篇

人教a版数学必修1教案6篇

人教a版数学必修1教案6篇人教a版数学必修1教案篇1教学准备教学目标1、数学知识:掌握等比数列的概念,通项公式,及其有关性质;2、数学能力:通过等差数列和等比数列的类比学习,培养学生类比归纳的能力;归纳——猜想——证明的数学研究方法;3、数学思想:培养学生分类讨论,函数的数学思想。

教学重难点重点:等比数列的概念及其通项公式,如何通过类比利用等差数列学习等比数列;难点:等比数列的性质的探索过程。

教学过程教学过程:1、问题引入:前面我们已经研究了一类特殊的数列——等差数列。

问题1:满足什么条件的数列是等差数列?如何确定一个等差数列?(学生口述,并投影):如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫做等差数列。

要想确定一个等差数列,只要知道它的首项a1和公差d。

已知等差数列的首项a1和d,那么等差数列的通项公式为:(板书)an=a1+(n-1)d。

师:事实上,等差数列的关键是一个“差”字,即如果一个数列,从第2项起,每一项与它前一项的差等于同一个常数,那么这个数列就叫做等差数列。

(第一次类比)类似的,我们提出这样一个问题。

问题2:如果一个数列,从第2项起,每一项与它的前一项的……等于同一个常数,那么这个数列叫做……数列。

(这里以填空的形式引导学生发挥自己的想法,对于“和”与“积”的情况,可以利用具体的例子予以说明:如果一个数列,从第2项起,每一项与它的前一项的“和”(或“积”)等于同一个常数的话,这个数列是一个各项重复出现的“周期数列”,而与等差数列最相似的是“比”为同一个常数的情况。

而这个数列就是我们今天要研究的等比数列了。

)2、新课:1)等比数列的定义:如果一个数列从第2项起,每一项与它的前一项的比等于同一个常数,那么这个数列就叫做等比数列。

这个常数叫做公比。

师:这就牵涉到等比数列的通项公式问题,回忆一下等差数列的通项公式是怎样得到的?类似于等差数列,要想确定一个等比数列的通项公式,要知道什么?师生共同简要回顾等差数列的通项公式推导的方法:累加法和迭代法。

新教材 人教A版高中数学选择性必修第一册全册优秀学案(知识点考点汇总及配套习题,含解析)

新教材 人教A版高中数学选择性必修第一册全册优秀学案(知识点考点汇总及配套习题,含解析)

人教A版高中数学选择性必修第一册全册学案第一章空间向量与立体几何........................................................................................................ - 2 -1.1空间向量及其运算......................................................................................................... - 2 -1.1.1空间向量及其线性运算...................................................................................... - 2 -1.1.2空间向量的数量积运算.................................................................................... - 16 -1.2空间向量基本定理....................................................................................................... - 29 -1.3空间向量及其运算的坐标表示................................................................................... - 38 -1.3.1空间直角坐标系................................................................................................ - 38 -1.3.2空间运算的坐标表示........................................................................................ - 46 -1.4空间向量的应用 .......................................................................................................... - 59 -1.4.1用空间向量研究直线、平面的位置关系........................................................ - 59 -第1课时空间向量与平行关系........................................................................ - 59 -第2课时空间向量与垂直关系........................................................................ - 69 -1.4.2用空量研究距离、夹角问题............................................................................ - 79 -章末总结 ............................................................................................................................... - 97 - 第二章直线和圆的方程............................................................................................................ - 113 -2.1直线的倾斜角与斜率................................................................................................. - 113 -2.1.1倾斜角与斜率 ................................................................................................. - 113 -2.1.2两条直线平行和垂直的判定.......................................................................... - 121 -2.2直线的方程 ................................................................................................................ - 131 -2.2.1直线点斜式方程.............................................................................................. - 131 -2.2.2直线的两点式方程.......................................................................................... - 137 -2.2.3直线的一般式方程.......................................................................................... - 145 -2.3直线的交点坐标与距离公式..................................................................................... - 154 -2.3.1两条直线的交点坐标...................................................................................... - 154 -2.3.2两点间的距离公式.......................................................................................... - 154 -2.3.3点到直线的距离公式...................................................................................... - 163 -2.3.4两条平行直线间的距离.................................................................................. - 163 -2.4圆的方程 .................................................................................................................... - 171 -2.4.1圆的标准方程 ................................................................................................. - 171 -2.4.2圆的一般方程 ................................................................................................. - 180 -2.5直线与圆、圆与圆的位置关系................................................................................. - 188 -2.5.1直线与圆的位置关系...................................................................................... - 188 -2.5.2圆与圆的位置关系.......................................................................................... - 199 -章末复习 ............................................................................................................................. - 208 - 第三章圆锥曲线的方程............................................................................................................ - 222 -3.1椭圆 ............................................................................................................................ - 222 -3.1.1椭圆及其标准方程.......................................................................................... - 222 -3.1.2椭圆的简单几何性质...................................................................................... - 234 -第1课时椭圆的简单几何性质...................................................................... - 234 -第2课时椭圆的标准方程及性质的应用...................................................... - 244 -3.2双曲线 ........................................................................................................................ - 256 -3.2.1双曲线及其标准方程...................................................................................... - 256 -3.2.2双曲线的简单几何性质.................................................................................. - 267 -3.3抛物线 ........................................................................................................................ - 281 -3.3.1抛物线及其标准方程...................................................................................... - 281 -3.3.2抛物线的简单几何性质.................................................................................. - 291 -章末复习 ............................................................................................................................. - 303 - 全书复习 ..................................................................................................................................... - 316 -第一章空间向量与立体几何1.1空间向量及其运算1.1.1空间向量及其线性运算学习目标核心素养1.理解空间向量的概念.(难点)2.掌握空间向量的线性运算.(重点)3.掌握共线向量定理、共面向量定理及推论的应用.(重点、难点) 1.通过空间向量有关概念的学习,培养学生的数学抽象核心素养.2.借助向量的线性运算、共线向量及共面向量的学习,提升学生的直观想象和逻辑推理的核心素养.国庆期间,某游客从上海世博园(O)游览结束后乘车到外滩(A)观赏黄浦江,然后抵达东方明珠(B)游玩,如图1,游客的实际位移是什么?可以用什么数学概念来表示这个过程?图1图2如果游客还要登上东方明珠顶端(D)俯瞰上海美丽的夜景,如图2,那么他实际发生的位移是什么?又如何表示呢?1.空间向量(1)定义:在空间,具有大小和方向的量叫做空间向量. (2)长度或模:空间向量的大小. (3)表示方法:①几何表示法:空间向量用有向线段表示;②字母表示法:用字母a ,b ,c ,…表示;若向量a 的起点是A ,终点是B ,也可记作:AB →,其模记为|a |或|AB →|.2.几类常见的空间向量名称方向 模 记法 零向量任意 0 0 单位向量任意 1 相反向量相反 相等 a 的相反向量:-a AB →的相反向量:BA → 相等向量 相同 相等 a =b3.(1)向量的加法、减法空间向量的运算 加法 OB →=OA →+OC →=a +b减法 CA →=OA →-OC →=a -b 加法运算律 ①交换律:a +b =b +a②结合律:(a +b )+c =a +(b +c )①定义:实数λ与空间向量a 的乘积λa 仍然是一个向量,称为向量的数乘运算.当λ>0时,λa 与向量a 方向相同;当λ<0时,λa 与向量a 方向相反;当λ=0时,λa =0;λa 的长度是a 的长度的|λ|倍.②运算律a .结合律:λ(μa )=μ(λa )=(λμ)a .b .分配律:(λ+μ)a =λa +μa ,λ(a +b )=λa +λb .思考:向量运算的结果与向量起点的选择有关系吗?[提示] 没有关系.4.共线向量(1)定义:表示若干空间向量的有向线段所在的直线互相平行或重合,则这些向量叫做共线向量或平行向量. (2)方向向量:在直线l 上取非零向量a ,与向量a 平行的非零向量称为直线l 的方向向量.规定:零向量与任意向量平行,即对任意向量a ,都有0∥a .(3)共线向量定理:对于空间任意两个向量a ,b (b ≠0),a ∥b 的充要条件是存在实数λ使a =λb .(4)如图,O 是直线l 上一点,在直线l 上取非零向量a ,则对于直线l 上任意一点P ,由数乘向量定义及向量共线的充要条件可知,存在实数λ,使得OP →=λa .5.共面向量(1)定义:平行于同一个平面的向量叫做共面向量. (2)共面向量定理:若两个向量a ,b 不共线,则向量p 与向量a ,b 共面的充要条件是存在唯一的有序实数对(x ,y ),使p =x a +y b .(3)空间一点P 位于平面ABC 内的充要条件:存在有序实数对(x ,y ), 使AP →=xAB →+yAC →或对空间任意一点O ,有OP →=OA →+xAB →+yAC →.思考:(1)空间中任意两个向量一定是共面向量吗?(2)若空间任意一点O 和不共线的三点A ,B ,C ,满足OP →=13OA →+13OB →+13OC →,则点P 与点A ,B ,C 是否共面?[提示] (1)空间中任意两个向量都可以平移到同一个平面内,成为同一个平面的两个向量,因此一定是共面向量.(2)由OP →=13OA →+13OB →+13OC →得OP →-OA →=13(OB →-OA →)+13(OC →-OA →)即AP →=13AB →+13AC →,因此点P 与点A ,B ,C 共面.1.思考辨析(正确的打“√”,错误的打“×”)(1)空间向量a ,b ,c ,若a ∥b ,b ∥c ,则a ∥c .( ) (2)相等向量一定是共线向量.( ) (3)三个空间向量一定是共面向量.( ) (4)零向量没有方向.( )[提示] (1)× 若b =0时,a 与c 不一定平行.(2)√ 相等向量一定共线,但共线不一定相等.(3)× 空间两个向量一定是共面向量,但三个空间向量可能是共面的,也可以是不共面的.(4)× 零向量有方向,它的方向是任意的.2.如图所示,在四棱柱ABCD -A 1B 1C 1D 1所有的棱中,可作为直线A 1B 1的方向向量的有( )A .1个B .2个C .3个D .4个D [共四条AB ,A 1B 1,CD ,C 1D 1.]3.点C 在线段AB 上,且|AB |=5,|BC |=3,AB →=λBC →,则λ=________. -53 [因为C 在线段AB 上,所以AB →与BC →方向相反,又因|AB |=5,|BC |=3,故λ=-53.]4.在三棱锥A -BCD 中,若△BCD 是正三角形,E 为其中心,则AB →+12BC →-32DE →-AD →化简的结果为________.0 [延长DE 交边BC 于点F ,连接AF ,则有AB →+12BC →=AF →,32DE →+AD →=AD→+DF →=AF →,故AB →+12BC →-32DE →-AD →=0.]空间向量的有关概念①若|a |=|b |,则a =b 或a =-b ;②若向量a 是向量b 的相反向量,则|a |=|b |;③在正方体ABCD -A 1B 1C 1D 1中,AC →=A 1C 1→;④若空间向量m ,n ,p 满足m =n ,n =p ,则m =p .其中正确命题的序号是________.(2)如图所示,在平行六面体ABCD -A ′B ′C ′D ′中,顶点连接的向量中,与向量AA ′→相等的向量有________;与向量A ′B ′→相反的向量有________.(要求写出所有适合条件的向量)(1)②③④ (2)BB ′→,CC ′→,DD ′→ B ′A ′→,BA →,CD →,C ′D ′→ [(1)对于①,向量a 与b 的方向不一定相同或相反,故①错;对于②,根据相反向量的定义知|a |=|b |,故②正确;对于③,根据相等向量的定义知,AC →=A 1C 1→,故③正确;对于④,根据相等向量的定义知正确.(2)根据相等向量的定义知,与向量AA ′→相等的向量有BB ′→,CC ′→,DD ′→.与向量A ′B ′→相反的向量有B ′A ′→,BA →,CD →,C ′D ′→.]解答空间向量有关概念问题的关键点及注意点(1)关键点:紧紧抓住向量的两个要素,即大小和方向.(2)注意点:注意一些特殊向量的特性.①零向量不是没有方向,而是它的方向是任意的,且与任何向量都共线,这一点说明了共线向量不具备传递性.②单位向量方向虽然不一定相同,但它们的长度都是1.③两个向量模相等,不一定是相等向量;反之,若两个向量相等,则它们不仅模相等,方向也相同.若两个向量模相等,方向相反,则它们为相反向量. [跟进训练]1.下列关于空间向量的命题中,正确命题的个数是( )①长度相等、方向相同的两个向量是相等向量;②平行且模相等的两个向量是相等向量;③若a ≠b ,则|a |≠|b |;④两个向量相等,则它们的起点与终点相同.A .0B .1C .2D .3B [根据向量的定义,知长度相等、方向相同的两个向量是相等向量,①正确;平行且模相等的两个向量可能是相等向量,也可能是相反向量,②不正确;当a =-b 时,也有|a |=|b |,③不正确;只要模相等、方向相同,两个向量就是相等向量,与向量的起点与终点无关,④不正确.综上可知只有①正确,故选B.]空间向量的线性运算 1111为向量AC 1→的有( )①(AB →+BC →)+CC 1→;②(AA 1→+A 1D 1→)+D 1C 1→;③(AB →+BB 1→)+B 1C 1→;④(AA 1→+A 1B 1→)+B 1C 1→.A .1个B .2个C .3个D .4个(2)已知正四棱锥P -ABCD ,O 是正方形ABCD 的中心,Q 是CD 的中点,求下列各式中x ,y ,z 的值.①OQ →=PQ →+yPC →+zP A →;②P A →=xPO →+yPQ →+PD →.[思路探究] (1)合理根据向量的三角形和平行四边形法则,以及在平行六面体中,体对角线向量等于从同一起点出发的三条棱向量的和.如AC 1→=AB →+AD →+AA 1→.(2)根据数乘向量及三角形或平行四边形法则求解.(1)D [对于①,(AB →+BC →)+CC 1→=AC →+CC 1→=AC 1→;对于②,(AA 1→+A 1D 1→)+D 1C 1→=AD 1→+D 1C 1→=AC 1→;对于③,(AB →+BB 1→)+B 1C 1→=AB 1→+B 1C 1→=AC 1→;对于④,(AA 1→+A 1B 1→)+B 1C 1→=AB 1→+B 1C 1→=AC 1→.](2)[解] ①如图,∵OQ →=PQ →-PO →=PQ →-12(P A →+PC →)=PQ →-12PC →-12P A →,∴y =z =-12.②∵O 为AC 的中点,Q 为CD 的中点,∴P A →+PC →=2PO →,PC →+PD →=2PQ →,∴P A →=2PO →-PC →,PC →=2PQ →-PD →,∴P A →=2PO →-2PQ →+PD →,∴x =2,y =-2.1.空间向量加法、减法运算的两个技巧(1)巧用相反向量:向量减法的三角形法则是解决空间向量加法、减法的关键,灵活运用相反向量可使向量首尾相接.(2)巧用平移:利用三角形法则和平行四边形法则进行向量加、减法运算时,务必注意和向量、差向量的方向,必要时可采用空间向量的自由平移获得运算结果.2.利用数乘运算进行向量表示的技巧(1)数形结合:利用数乘运算解题时,要结合具体图形,利用三角形法则、平行四边形法则,将目标向量转化为已知向量.(2)明确目标:在化简过程中要有目标意识,巧妙运用中点性质. [跟进训练] 2.已知空间四边形ABCD ,连接AC ,BD ,设M ,G 分别是BC ,CD 的中点,则MG →-AB →+AD →等于( )A .32DB → B .3MG →C .3GM →D .2MG →B [MG →-AB →+AD →=MG →-(AB →-AD →)=MG →-DB →=MG →+BD →=MG →+2MG →=3MG →.]共线问题【例3】 (1)设e 1,e 2是空间两个不共线的向量,已知AB =e 1+k e 2,BC =5e 1+4e 2,DC →=-e 1-2e 2,且A ,B ,D 三点共线,实数k =________.(2)如图所示,已知四边形ABCD ,ABEF 都是平行四边形且不共面,M ,N 分别是AC ,BF 的中点,判断CE →与MN →是否共线.[思路探究] (1)根据向量共线的充要条件求解.(2)根据数乘向量及三角形法则,把MN →表示成λCE →的形式,再根据向量共线的充要条件求解.(1)1 [AD →=AB →+BC →+CD →=(e 1+k e 2)+(5e 1+4e 2)+(e 1+2e 2)=7e 1+(k +6)e 2. 设AD →=λAB →,则7e 1+(k +6)e 2=λ(e 1+k e 2),所以⎩⎨⎧ λ=7λk =k +6,解得k =1.] (2)[解] 法一:因为M ,N 分别是AC ,BF 的中点,且四边形ABCD ,四边形ABEF 都是平行四边形,所以MN →=MA →+AF →+FN →=12CA →+AF →+12FB →.又因为MN →=MC →+CE →+EB →+BN →=-12CA →+CE →-AF →-12FB →,以上两式相加得CE →=2MN →,所以CE →∥MN →,即CE →与MN →共线.法二:因为四边形ABEF 为平行四边形,所以连接AE 时,AE 必过点N . ∴CE →=AE →-AC →=2AN →-2AM →=2(AN →-AM →)=2MN →.所以CE →∥MN →,即CE →与MN →共线.证明空间三点共线的三种思路对于空间三点P ,A ,B 可通过证明下列结论来证明三点共线.(1)存在实数λ,使P A →=λPB →成立.(2)对空间任一点O ,有OP →=OA →+tAB →(t ∈R ).(3)对空间任一点O ,有OP →=xOA →+yOB →(x +y =1).[跟进训练]3.如图,在正方体ABCD -A 1B 1C 1D 1中,E 在A 1D 1上,且A 1E →=2ED 1→,F 在对角线A 1C 上,且A 1F →=23FC →.求证:E ,F ,B 三点共线.[证明] 设AB →=a ,AD →=b ,AA 1→=c , 因为A 1E →=2ED 1→,A 1F →=23FC →, 所以A 1E →=23A 1D 1→,A 1F →=25A 1C →, 所以A 1E →=23AD →=23b ,A 1F →=25(AC →-AA 1→)=25(AB →+AD →-AA 1→)=25a +25b -25c ,所以EF →=A 1F →-A 1E →=25a -415b -25c =25⎝ ⎛⎭⎪⎫a -23b -c .又EB →=EA 1→+A 1A →+AB →=-23b -c +a =a -23b -c , 所以EF →=25EB →,所以E ,F ,B 三点共线.向量共面问题1.什么样的向量算是共面向量?[提示] 能够平移到同一个平面内的向量称为共面向量. 2.能说明P ,A ,B ,C 四点共面的结论有哪些? [提示] (1)存在有序实数对(x ,y ),使得AP →=xAB →+yAC →.(2)空间一点P 在平面ABC 内的充要条件是存在有序实数组(x ,y ,z )使得OP →=xOA →+yOB →+zOC →(其中x +y +z =1).(3)四点中任意两点的方向向量与另外两点的方向向量共线,如P A →∥BC →.3.已知向量a ,b ,c 不共面,且p =3a +2b +c ,m =a -b +c ,n =a +b -c ,试判断p ,m ,n 是否共面.[提示] 设p =x m +y n ,即3a +2b +c =x (a -b +c )+ y (a +b -c )=(x +y )a +(-x +y )b +(x -y )c .因为a ,b ,c 不共面,所以⎩⎨⎧x +y =3,-x +y =2,x -y =1,而此方程组无解,所以p 不能用m ,n 表示,即p ,m ,n 不共面.【例4】 已知A ,B ,C 三点不共线,O 为平面ABC 外一点,若点M 满足OM →=13OA →+13OB →+13OC →.(1)判断MA →,MB →,MC →三个向量是否共面; (2)判断M 是否在平面ABC 内.[思路探究] (1)根据向量共面的充要条件,即判断是否MA →=xMB →+yMC →;(2)根据(1)的结论,也可以利用OM →=xOA →+yOB →+zOC →中x +y +z 是否等于1.[解] (1)∵OA →+OB →+OC →=3OM →, ∴OA →-OM →=(OM →-OB →)+(OM →-OC →), ∴MA →=BM →+CM →=-MB →-MC →, ∴向量MA →,MB →,MC →共面.(2)由(1)知向量MA →,MB →,MC →共面,而它们有共同的起点M ,且A ,B ,C 三点不共线,∴M ,A ,B ,C 共面,即M 在平面ABC 内.1.[变条件]若把本例中条件“OM →=13OA →+13OB →+13OC →”改为“OA →+2OB →=6OP →-3OC →”,点P 是否与点A 、B 、C 共面.[解] ∵3OP →-3OC →=OA →+2OB →-3OP →=(OA →-OP →)+(2OB →-2OP →),∴3CP →=P A →+2PB →,即P A →=-2PB →-3PC →.根据共面向量定理的推论知:点P 与点A ,B ,C 共面.2.[变条件]若把本例条件变成“OP →+OC →=4OA →-OB →”,点P 是否与点A 、B 、C 共面.[解] 设OP →=OA →+xAB →+yAC →(x ,y ∈R ),则 OA →+xAB →+yAC →+OC →=4OA →-OB →,∴OA →+x (OB →-OA →)+y (OC →-OA →)+OC →=4OA →-OB →, ∴(1-x -y -4)OA →+(1+x )OB →+(1+y )OC →=0,由题意知OA →,OB →,OC →均为非零向量,所以x ,y 满足:⎩⎨⎧1-x -y -4=0,1+x =0,1+y =0,显然此方程组无解,故点P 与点A ,B ,C 不共面.3.[变解法]上面两个母题探究,还可以用什么方法判断? [解] (1)由题意知,OP →=16OA →+13OB →+12OC . ∵16+13+12=1,∴点P 与点A 、B 、C 共面. (2)∵OP →=4OA →-OB →-OC →,而4-1-1=2≠1. ∴点P 与点A 、B 、C 不共面.解决向量共面的策略(1)若已知点P 在平面ABC 内,则有AP →=xAB →+yAC →或OP →=xOA →+yOB →+zOC →(x +y +z =1),然后利用指定向量表示出已知向量,用待定系数法求出参数.(2)证明三个向量共面(或四点共面),需利用共面向量定理,证明过程中要灵活进行向量的分解与合成,将其中一个向量用另外两个向量来表示.1.一些特殊向量的特性(1)零向量不是没有方向,而是它的方向是任意的. (2)单位向量方向虽然不一定相同,但它们的长度都是1.(3)两个向量模相等,不一定是相等向量,反之,若两个向量相等,则它们不仅模相等,方向也相同.若两个向量模相等,方向相反,则它们为相反向量.2.OP →=OA →+xAB →+yAC →称为空间平面ABC 的向量表达式.由此可知空间中任意平面由空间一点及两个不共线向量唯一确定.3.证明(或判断)A ,B ,C 三点共线时,只需证明存在实数λ,使AB →=λBC →(或AB →=λAC →)即可,也可用“对空间任意一点O ,有OC →=tOA →+(1-t )OB →”来证明A ,B ,C 三点共线.4.空间一点P 位于平面MAB 内的充要条件是存在有序实数对(x ,y ),使MP →=xMA →+yMB →,满足这个关系式的点都在平面MAB 内;反之,平面MAB 内的任一点都满足这个关系式.这个充要条件常用于证明四点共面.5.直线的方向向量是指与直线平行或共线的非零向量,一条直线的方向向量有无穷多个,它们的方向相同或相反.6.向量p 与向量a ,b 共面的充要条件是在a 与b 不共线的前提下才成立的,若a 与b 共线,则不成立.1.下列条件中使M 与A ,B ,C 一定共面的是( ) A .OM →=2OA →-OB →-OC → B .OM →=15OA →+13OB →+12OC → C .MA →+MB →+MC →=0 D .OM →+OA →+OB →+OC →=0C [由MA →+MB →+MC →=0得MA →=-MB →-MC →,故M ,A ,B ,C 共面.] 2.已知正方体ABCD -A 1B 1C 1D 1,若点F 是侧面CD 1的中心,且AF →=AD →+mAB→-nAA 1→,则m ,n 的值分别为( )A .12,-12 B .-12,-12 C .-12,12D .12,12A [由于AF →=AD →+DF →=AD →+12(DC →+DD 1→)=AD →+12AB →+12AA 1→,所以m =12,n =-12,故答案为A.]3.化简:12(a +2b -3c )+5⎝ ⎛⎭⎪⎫23a -12b +23c -3(a -2b +c )=________. 56a +92b -76c [原式=12a +b -32c +103a -52b +103c -3a +6b -3c =⎝ ⎛⎭⎪⎫12+103-3a +⎝ ⎛⎭⎪⎫1-52+6b +⎝ ⎛⎭⎪⎫-32+103-3c =56a +92b -76c .] 4.给出下列四个命题:①方向相反的两个向量是相反向量;②若a ,b 满足|a |>|b |且a ,b 同向,则a >b ; ③不相等的两个空间向量的模必不相等; ④对于任何向量a ,b ,必有|a +b |≤|a |+|b |. 其中正确命题的序号为________.④ [对于①,长度相等且方向相反的两个向量是相反向量,故①错;对于②,向量是不能比较大小的,故不正确;对于③,不相等的两个空间向量的模也可以相等,故③错;只有④正确.]5.设两非零向量e 1,e 2不共线,且k e 1+e 2与e 1+k e 2共线,求k 的值. [解] ∵两非零向量e 1,e 2不共线,且k e 1+e 2与e 1+k e 2共线,∴k e 1+e 2=t (e 1+k e 2),则(k -t )e 1+(1-tk )e 2=0.∵非零向量e 1,e 2不共线,∴k -t =0,1-kt =0,解得k =±1.1.1.2 空间向量的数量积运算学习 目 标核心 素 养1.掌握空间向量夹角的概念及表示方法.2.掌握空间向量的数量积的定义、性质、运算律及计算方法.(重点)3.掌握投影向量的概念.(重点)4.能用向量的数量积解决立体几何问题.(难点)1.通过学习空间向量的数量积运算,培养学生数学运算的核心素养.2.借助投影向量概念的学习,培养学生直观想象和逻辑推理的核心素养.3.借助利用空间向量数量积证明垂直关系、求夹角和距离运算,提升学生的逻辑推理和数学运算核心素养.已知两个非零向量a 与b ,在空间任取一点O ,作OA →=a ,OB →=b ,则∠AOB =θ叫做向量a 与b 的夹角.如果a 与b 的夹角为90°,则称a 与b 垂直,记作a ⊥b .已知两个非零向量a 与b ,它们的夹角为θ,把a ·b =|a ||b |cos θ叫做a 与b 的数量积(或内积)类比探究一下:两个空间向量的夹角以及它们的数量积能否像平面向量那样来定义呢?1.空间向量的夹角 (1)夹角的定义已知两个非零向量a ,b ,在空间任取一点O ,作OA →=a ,OB →=b ,则∠AOB 叫做向量a ,b 的夹角,记作〈a ,b 〉.(2)夹角的范围空间任意两个向量的夹角θ的取值范围是[0,π].特别地,当θ=0时,两向量同向共线;当θ=π时,两向量反向共线,所以若a ∥b ,则〈a ,b 〉=0或π;当〈a ,b 〉=π2时,两向量垂直,记作a ⊥b .2.空间向量的数量积(1)定义:已知两个非零向量a ,b ,则|a ||b |cos 〈a ,b 〉叫做a ,b 的数量积,记作a ·b .即a ·b =|a ||b |cos 〈a ,b 〉.规定:零向量与任何向量的数量积为0. (2)常用结论(a ,b 为非零向量) ①a ⊥b ⇔a ·b =0.②a ·a =|a ||a |cos 〈a ,a 〉=|a |2. ③cos 〈a ,b 〉=a ·b|a ||b |. (3)数量积的运算律(2)若a ·b >0,则〈a ,b 〉一定是锐角吗?[提示] (1)若a ·b =0,则不一定有a ⊥b ,也可能a =0或b =0.(2)当〈a ,b 〉=0时,也有a ·b >0,故当a ·b >0时,〈a ·b 〉不一定是锐角. 3.投影向量 (1)投影向量在空间,向量a 向向量b 投影,可以先将它们平移到同一个平面内,进而利用平面上向量的投影,得到与向量b 共线的向量c ,c =|a |cos 〈a ,b 〉b|b |,则向量c 称为向量a 在向量b 上的投影向量,同理向量b 在向量a 上的投影向量是|b |cos 〈a ,b 〉a|a |.(2)向量a 在平面β上的投影向量向量a 向平面β投影,就是分别由向量a 的起点A 和终点B 作平面β的垂线,垂足分别为A ′,B ′,得到向量A ′B ′→,则向量A ′B ′→称为向量a 在平面β上的投影向量.这时,向量a,A ′B ′→的夹角就是向量a 所在直线与平面β所成的角.[提醒] (1)两个向量的数量积是数量,而不是向量,它可以是正数、负数或零; (2)向量数量积的运算不满足消去律、作商和乘法的结合律 ,即a ·b =a ·c ⇒b =c ,a ·b =k ⇒b =k a ,(a ·b )·c =a ·(b·c )都不成立.1.思考辨析(正确的打“√”,错误的打“×”) (1)对于非零向量a ,b ,〈a ,b 〉与〈a ,-b 〉相等. ( ) (2)对于任意向量a ,b ,c ,都有(a ·b )c =a (b ·c ). ( ) (3)若a ·b =b ·c ,且b ≠0,则a =c . ( ) (4)(3a +2b )·(3a -2b )=9|a |2-4|b |2. ( )[提示] (1)× (2)× (3)× (4)√2.(教材P 8练习T 1改编)在正三棱柱ABC -A 1B 1C 1中,若AB =BB 1,则AB 1与BC 1所成角的余弦值为( )A .38B .14C .34D .18B [令底面边长为1,则高也为1,AB 1→=AB →+BB 1→,BC 1→=B C →+CC 1→,∴AB 1→·BC 1→=(AB →+BB 1→)·(BC →+CC 1→)=AB →·BC →+BB 1→·CC 1→=1×1×cos 120°+12=12,又|AB 1→|=|BC 1→|= 2.∴cos 〈AB 1,BC 1〉=122×2=14.故选B.]3.已知a =3p -2q ,b =p +q ,p 和q 是相互垂直的单位向量,则a·b =( ) A .1 B .2 C .3 D .4 A [由题意知,p·q =0,p 2=q 2=1.所以a ·b =(3p -2q )·(p +q )=3p 2+p ·q -2q 2=3-2=1.]4.设a ⊥b ,〈a ,c 〉=π3,〈b ,c 〉=π6,且|a |=1,|b |=2,|c |=3,则向量a +b +c 的模是________.17+63 [因为|a +b +c |2=(a +b +c )2=|a |2+|b |2+|c |2+2(a ·b +a ·c +b ·c )=1+4+9+2⎝ ⎛⎭⎪⎫0+1×3×12+2×3×32=17+63,所以|a +b +c |=17+6 3.]空间向量数量积的运算【例1】 (1)如图,三棱锥A -BCD 中,AB =AC =AD =2,∠BAD =90°,∠BAC=60°,则AB →·CD →等于( )A .-2B .2C .-2 3D .2 3(2)在四面体OABC 中,棱OA ,OB ,OC 两两垂直,且OA =1,OB =2,OC =3,G 为△ABC 的重心,求OG →·(OA →+OB →+OC →)的值.(1)A [∵CD →=AD →-AC →,∴AB →·CD →=AB →·(AD →-AC →)=AB →·AD →-AB →·AC →=0-2×2×cos 60°=-2.](2)[解] OG →=OA →+AG →=OA →+13(AB →+AC →) =OA →+13[(OB →-OA →)+(OC →-OA →)] =13OB →+13OC →+13OA →.∴OG →·(OA →+OB →+OC →)=⎝ ⎛⎭⎪⎫13OB →+13OC →+13OA →·(OA →+OB →+OC →)=13OB →2+13OC →2+13OA →2 =13×22+13×32+13×12=143.在几何体中求空间向量的数量积的步骤(1)首先将各向量分解成已知模和夹角的向量的组合形式.(2)利用向量的运算律将数量积展开,转化成已知模和夹角的向量的数量积. (3)根据向量的方向,正确求出向量的夹角及向量的模. (4)代入公式a·b =|a ||b |cos 〈a ,b 〉求解.[跟进训练]1.在长方体ABCD -A 1B 1C 1D 1中,AB =AA 1=2,AD =4,E 为侧面AA 1B 1B 的中心,F 为A 1D 1的中点,求下列向量的数量积:(1)BC →·ED 1→;(2)BF →·AB 1→.[解] 如图,设AB →=a ,AD →=b ,AA 1→=c ,则|a |=|c |=2,|b |=4,a·b =b·c =c·a =0.(1)BC →·ED 1→=BC →·(EA 1→+A 1D 1→)=b ·12(c -a )+b =|b |2=42=16.(2)BF →·AB 1→=(BA 1→+A 1F →)·(AB →+AA 1→)=c -a +12b ·(a +c )=|c |2-|a |2=22-22=0.利用数量积证明空间垂直关系=OC ,M ,N 分别是OA ,BC 的中点,G 是MN 的中点,求证:OG ⊥BC .[思路探究] 首先把向量OG →和BC →均用OA →、OB →、OC →表示出来,通过证明OG →·BC →=0来证得OG ⊥BC .[证明] 连接ON ,设∠AOB =∠BOC =∠AOC =θ,又设OA →=a ,OB →=b ,OC →=c , 则|a |=|b |=|c |. 又OG →=12(OM →+ON →) =12⎣⎢⎡⎦⎥⎤12OA →+12(OB →+OC →) =14(a +b +c ),BC →=c -b . ∴OG →·BC →=14(a +b +c )·(c -b ) =14(a ·c -a ·b +b ·c -b 2+c 2-b ·c ) =14(|a |2·cos θ-|a |2·cos θ-|a |2+|a |2)=0. ∴OG →⊥BC →,即OG ⊥BC .用向量法证明垂直关系的步骤 (1)把几何问题转化为向量问题; (2)用已知向量表示所证向量;(3)结合数量积公式和运算律证明数量积为0; (4)将向量问题回归到几何问题.[跟进训练]2.如图,四棱锥P -ABCD 中,底面ABCD 为平行四边形,∠DAB =60°,AB =2AD ,PD ⊥底面ABCD .证明:P A ⊥BD .[证明] 由底面ABCD 为平行四边形,∠DAB =60°,AB =2AD 知,DA ⊥BD ,则BD →·DA →=0.由PD ⊥底面ABCD 知,PD ⊥BD ,则BD →·PD →=0.又P A →=PD →+DA →,∴P A →·BD →=(PD →+DA →)·BD →=PD →·BD →+DA →·BD →=0,即P A ⊥BD .夹角问题夹角〈a ,b 〉为( )A .30°B .45°C .60°D .以上都不对(2)如图,在空间四边形OABC 中,OA =8,AB =6,AC =4,BC =5,∠OAC =45°,∠OAB =60°,求异面直线OA 与BC 的夹角的余弦值.[思路探究] (1)根据题意,构造△ABC ,使AB →=c ,AC →=b ,BC →=a ,根据△ABC 三边之长,利用余弦定理求出向量a 与b 之间的夹角即可.(2)求异面直线OA 与BC 所成的角,首先来求OA →与BC →的夹角,但要注意异面直线所成角的范围是⎝ ⎛⎦⎥⎤0,π2,而向量夹角的取值范围为[0,π],注意角度的转化.(1)D [∵a +b +c =0,|a |=2,|b |=3,|c |=4, ∴以这三个向量首尾相连组成△ABC ;令AB →=c ,AC →=b ,BC →=a ,则△ABC 三边之长分别为BC =2,CA =3,AB =4; 由余弦定理,得:cos ∠BCA =BC 2+CA 2-AB 22BC ·CA =22+32-422×2×3=-14, 又向量BC →和CA →是首尾相连,∴这两个向量的夹角是180°-∠BCA , ∴cos 〈a ,b 〉=14,即向量a 与b 之间的夹角〈a ,b 〉不是特殊角.](2)[解] ∵BC →=AC →-AB →,∴OA →·BC →=OA →·AC →-OA →·AB →=|OA →|·|AC →|·cos 〈OA →,AC →〉-|OA →|·|AB →|·cos 〈OA →,AB →〉=8×4×cos 135°-8×6×cos 120° =24-16 2.∴cos 〈OA →,BC →〉=OA →·BC →|OA →|·|BC →|=24-1628×5=3-225,∴异面直线OA 与BC 的夹角的余弦值为3-225.利用向量数量积求夹角问题的思路(1)求两个向量的夹角有两种方法:①结合图形,平移向量,利用空间向量夹角的定义来求,但要注意向量夹角的范围;②先求a ·b ,再利用公式cos 〈a ,b 〉=a ·b|a ||b |求出cos 〈a ,b 〉的值,最后确定〈a ,b 〉的值.(2)求两条异面直线所成的角,步骤如下:①根据题设条件在所求的异面直线上取两个向量(即直线的方向向量); ②将异面直线所成角的问题转化为向量夹角问题; ③利用数量积求向量夹角的余弦值或角的大小;④异面直线所成的角为锐角或直角,利用向量数量积求向量夹角的余弦值时应将余弦值加上绝对值,从而求出异面直线所成的角的大小.[跟进训练]3.如图,在正方体ABCD -A 1B 1C 1D 1中,求BC 1→与AC →夹角的大小.[解] 不妨设正方体的棱长为1,则BC 1→·AC →=(BC →+CC 1→)·(AB →+BC →) =(AD →+AA 1→)·(AB →+AD →)=AD →·AB →+AD →2+AA 1→·AB →+AA 1→·AD → =0+AD 2→+0+0=AD 2→=1, 又∵|BC 1→|=2,|AC →|=2,∴cos 〈BC 1→,AC →〉=BC 1→·AC →|BC 1→||AC →|=12×2=12.∵〈BC 1→,AC →〉∈[0,π],∴〈BC 1→,AC →〉=π3. 即BC 1→与AC →夹角的大小为π3.距离问题1.用数量积解决的距离问题一般有哪几种? [提示] 线段长度即点点距、点线距、点面距. 2.求模的大小常用哪些公式?[提示] 由公式|a |=a ·a 可以推广为|a ±b |=(a ±b )2=a 2±2a ·b +b 2.3.如图,已知线段AB ⊥平面α,BC ⊂α,CD ⊥BC ,DF ⊥平面α,且∠DCF =30°,D 与A 在平面α的同侧,若AB =BC =CD =2,试求A ,D 两点间的距离.[提示] ∵AD →=AB →+BC →+CD →,∴|AD →|2=(AB →+BC →+CD →)2=|AB →|2+|BC →|2+|CD →|2+2AB →·BC →+2AB →·CD +2BC →·CD →=12+2(2·2·cos 90°+2·2·cos 120°+2·2·cos 90°)=8,∴|AD →|=22,即A ,D 两点间的距离为2 2.【例4】 如图所示,在平行四边形ABCD 中,AB =AC =1,∠ACD =90°,沿着它的对角线AC 将△ACD 折起,使AB 与CD 成60°角,求此时B ,D 间的距离.[思路探究] BD →=BA →+AC →+CD →―→|BD →|2 注意对〈BA →,CD →〉的讨论,再求出B ,D 间距离.[解] ∵∠ACD =90°,∴AC →·CD =0,同理可得AC →·BA →=0.∵AB 与CD 成60°角,∴〈BA →,CD →〉=60°或〈BA →,CD →〉=120°.又BD →=BA →+AC →+CD →,∴|BD →|2=|BA →|2+|AC →|2+|CD →|2+2BA →·AC →+2BA →·CD →+2AC →·CD →=3+2×1×1×cos 〈BA →,CD →〉.∴当〈BA →,CD →〉=60°时,|BD →|2=4,此时B ,D 间的距离为2;当〈BA →,CD →〉=120°时,|BD →|2=2,此时B ,D 间的距离为 2.求两点间的距离或线段长的方法(1)将相应线段用向量表示,通过向量运算来求对应向量的模.(2)因为a ·a =|a |2,所以|a |=a·a ,这是利用向量解决距离问题的基本公式.另外,该公式还可以推广为|a ±b |=(a ±b )2=a 2±2a ·b +b 2.(3)可用|a ·e |=|a ||cos θ|(e 为单位向量,θ为a ,e 的夹角)来求一个向量在另一个向量所在直线上的投影.[跟进训练]4.如图所示,在平面角为120°的二面角α-AB -β中,AC ⊂α,BD ⊂β,且AC ⊥AB ,BD ⊥AB ,垂足分别为A ,B .已知AC =AB =BD =6,求线段CD 的长.[解] ∵AC ⊥AB ,BD ⊥AB ,∴CA →·AB →=0,BD →·AB →=0.∵二面角α-AB -β的平面角为120°,∴〈CA →,BD →〉=180°-120°=60°. ∴CD →2=(CA →+AB →+BD →)2=CA →2+AB →2+BD →2+2CA →·AB →+2CA →·BD →+2BD →·AB →=3×62+2×62×cos 60°=144,∴CD =12.1.空间两向量的数量积与平面向量的数量积类似,由于数量积不满足结合律,因此在进行数量积运算时,一次、二次式与实数运算相同,运算公式也相同,三次及以上必须按式中的运算顺序依次进行运算.2.空间向量数量积运算的两种方法(1)利用定义:利用a ·b =|a ||b |cos 〈a ,b 〉并结合运算律进行计算.(2)利用图形:计算两个向量的数量积,可先将各向量移到同一顶点,利用图形寻找夹角,再代入数量积公式进行运算.3.在几何体中求空间向量数量积的步骤(1)首先将各向量分解成已知模和夹角的向量的组合形式.(2)利用向量的运算律将数量积展开,转化为已知模和夹角的向量的数量积. (3)代入a ·b =|a ||b |cos 〈a ,b 〉求解.4.空间向量中求两向量夹角与平面向量中的求法完全相同,都是应用公式cos 〈a ,b 〉=a·b |a |·|b |,解题的关键就是求a ·b 和|a |、|b |.求模时注意|a |2=a ·a 的应用.1.如图,空间四边形ABCD 的每条边和对角线的长都等于1,E ,F ,G 分别是AB ,AD ,DC 的中点,则FG →·AB →=( )A .34B .14C .12D .32B [由题意可得FG →=12AC →,∴FG →·AB →=12×1×1×cos 60°=14.]2.已知两异面直线的方向向量分别为a ,b ,且|a |=|b |=1,a·b =-12,则两直线的夹角为( )A .30°B .60°C .120°D .150°B [设向量a ,b 的夹角为θ,则cos θ=a·b|a ||b |=-12,所以θ=120°,则两个方向向量对应的直线的夹角为180°-120°=60°.]3.在空间四边形ABCD 中,AB →·CD →+BC →·AD →+CA →·BD →=________. 0 [原式=AB →·CD →+BC →·AD →+CA →·(AD →-AB →) =AB →·(CD →-CA →)+AD →·(BC →+CA →) =AB →·AD →+AD →·BA →=0.]4.如图所示,在一个直二面角α-AB -β的棱上有两点A ,B ,AC ,BD 分别是这个二面角的两个面内垂直于AB 的线段,且AB =4,AC =6,BD =8,则CD 的长为________.229 [∵CD →=CA →+AB →+BD →=AB →-AC →+BD →, ∴CD →2=(AB →-AC →+BD →)2=AB →2+AC →2+BD →2-2AB →·AC →+2AB →·BD →-2AC →·BD →=16+36+64=116, ∴|CD →|=229.]5.如图,已知空间四边形ABCD 的每条边和对角线的长都等于a ,点M ,N 分别是边AB ,CD 的中点.(1)求证:MN 为AB 和CD 的公垂线; (2)求MN 的长;(3)求异面直线AN 与MC 所成角的余弦值. [解] 设AB →=p ,AC →=q ,AD →=r .由题意,可知|p |=|q|=|r|=a ,且p ,q ,r 三向量两两夹角均为60°. (1)证明:MN →=AN →-AM →=12(AC →+AD →)-12AB → =12(q +r -p ), ∴MN →·AB →=12(q +r -p )·p =12(q ·p +r ·p -p 2)=12(a 2·cos 60°+a 2·cos 60°-a 2)=0 ∴MN ⊥AB ,同理可证MN ⊥CD . ∴MN 为AB 与CD 的公垂线. (2)由(1)可知MN →=12(q +r -p ),∴|MN →|2=(MN →)2=14(q +r -p )2=14[q 2+r 2+p 2+2(q ·r -q·p -r ·p )]=14(a 2+a 2+a 2+2⎝ ⎛⎭⎪⎫a 22-a 22-a 22]=14×2a 2=a 22.∴|MN →|=22a , ∴MN 的长度为22a .(3)设向量AN →与MC →的夹角为θ,∵AN →=12(AC →+AD →)=12(q +r ),MC →=AC →-AM →=q -12p , ∴AN →·MC →=12(q +r )·⎝ ⎛⎭⎪⎫q -12p =12⎝ ⎛⎭⎪⎫q 2-12q ·p +r·q -12r ·p =12⎝ ⎛⎭⎪⎫a 2-12a 2·cos 60°+a 2cos 60°-12a 2·cos 60° =12⎝ ⎛⎭⎪⎫a 2-a 24+a 22-a 24=a 22. 又∵|AN →|=|MC →|=32a ,∴AN →·MC →=|AN →|·|MC →|·cos θ=32a·32a ·cos θ=a 22. ∴cos θ=23.∴向量AN →与MC →的夹角的余弦值为23. 从而异面直线AN 与MC 所成角的余弦值为23.1.2 空间向量基本定理学 习 目 标核 心 素 养1.了解空间向量基本定理及其意义.2.掌握空间向量的正交分解.(难点)3.掌握在简单问题中运用空间三个不共面的向量作为基底表示其他向量的方法.(重点)1.通过基底概念的学习,培养学生数学抽象的核心素养.2.借助基底的判断及应用,提升逻辑推理、直观想象及数学运算的核心素养.(1)共面向量定理:如果两个向量a 、b 不共线,则向量p 与向量a 、b 共面的充要条件是存在实数对(x ,y ),使得p =x a +y b .(2)共面向量定理的推论:空间一点P 在平面MAB 内的充要条件是存在有序实数对(x ,y ),使得MP →=xMA →+yMB →,或对于空间任意一定点O ,有OP →=xOM →+yOA →+zOB →(x +y +z =1).今天我们将对平面向量基本定理加以推广,应用上面的几个公式我们可以解决与四点共面有关的问题,得出空间向量基本定理.1.空间向量基本定理如果三个向量a ,b ,c 不共面,那么对任意一个空间向量p ,存在唯一的有序实数组(x ,y ,z ),使得p =x a +y b +z c .。

新人教版高中数学必修一精品教案全册

新人教版高中数学必修一精品教案全册

新人教版高中数学必修一精品教案全册课题:1.1集合的含义及表示内容分析:1.集合是中学数学的一个重要的基本概念的初步概念,到了初中,更进一步应用集合的语言表述一些问题例如,在代数中用到的有数集、解集等;在几何中用到的有点集至于逻辑,可以说,从开始学习数学就离不开对逻辑知识的掌握和运用,基本的逻辑知识在日常生活、学习、工作中,也是认识问题、研究问题不可缺少的工具这些可以帮助学生认识学习本章的意义,也是本章学习的基础把集合的初步知识与简易逻辑知识安排在高中数学的最开始,是因为在高中数学中,这些知识与其他内容有着密切联系,它们是学习、掌握和使用数学语言的基础例如,下一章讲函数的概念与性质,就离不开集合与逻辑本节首先从初中代数与几何涉及的集合实例入手,引出集合与集合的元素的概念,并且结合实例对集合的概念作了说明然后,介绍了集合的常用表示方法,包括列举法、描述法,还给出了画图表示集合的例子这节课主要学习全章的引言和集合的基本概念习兴趣,使学生认识学习本章的意义本节课的教学重点是集合的基本概念集合是集合论中的原始的、不定义的概念在开始接触集合的概念时,主教科书给出的“一般地,某些指定”这句话,只是对集合概念的描述性说明教学过程:一、复习引入:1.简介数集的发展,复习最大公约数和最小公倍数,质数与和数;2.教材中的章头引言;3.集合论的创始人——康托尔(德国数学家)(见附录);4.“物以类聚”,“人以群分”;5.教材中例子(P4)二、讲解新课:阅读教材第一部分,问题如下:(1)有那些概念?是如何定义的?(2)有那些符号?是如何表示的?(3)集合中元素的特性是什么?(一)集合的有关概念:由一些数、一些点、一些图形、一些整式、一些物体、一些人组成的.我们说,每一组对象的全体形成一个集合,或者说,某些指定的对象集在一起就成为一个集合,也简称集.集合中的每个对象叫做这个集合的元素.定义:一般地,某些指定的对象集在一起就成为一个集合.1、集合的概念(1)集合:某些指定的对象集在一起就形成一个集合(简称集)(2)元素2、常用数集及记法(1)非负整数集(自然数集):全体非负整数的集合N,{}N=,2,1,0(2)正整数集:非负整数集内排除0的集记作N*或N+{} ,3,2,1*=N(3)整数集:全体整数的集合记作Z , {}0±±Z=1,2,,(4)有理数集:全体有理数的集合记作Q ,{}整数与分数Q=(5)实数集:全体实数的集合记作R{}数R=数轴上所有点所对应的注:(1)自然数集与非负整数集是相同的,也就是说,自然数集包括数(2)非负整数集内排除0的集N*或N+、Z、R等其它数集内排除0的集,也是这样表示,例如,整数集内排除0的集,表示成Z*3、元素对于集合的隶属关系(1)属于:如果a是集合A的元素,就说a属于A,记作a∈A(2)不属于:如果a不是集合A的元素,就说a不属于A,记作Aa∉4、集合中元素的特性(1)确定性:按照明确的判断标准给定一个元素或者在这个集合里,或者不在,不能模棱两可(2)互异性(3)无序性:集合中的元素没有一定的顺序(通常用正常的顺序写出)5、⑴集合通常用大写的拉丁字母表示,如A 、B 、C 、P 、Q ……元素通常用小写的拉丁字母表示,如a 、b 、c 、p 、q ……⑵“∈”的开口方向,不能把a ∈A 颠倒过来写(二)集合的表示方法1、列举法:把集合中的元素一一列举出来,写在大括号内表示集合 例如,由方程012=-x 的所有解组成的集合,可以表示为{-1,1}注:(1)有些集合亦可如下表示:从51到100的所有整数组成的集合:{51,52,53, (100)所有正奇数组成的集合:{1,3,5,7,…}(2)a 与{a}不同:a 表示一个元素,{a}表示一个集合,该集合只2、描述法:用确定的条件表示某些对象是否属于这个集合,并把这个条 件写在大括号内表示集合的方法格式:{x ∈A| P (x )}含义:在集合A 中满足条件P (x )的x 的集合例如,不等式23>-x 的解集可以表示为:}23|{>-∈x R x 或 23|{>-x x所有直角三角形的集合可以表示为:}|{是直角三角形x x注:(1)在不致混淆的情况下,可以省去竖线及左边部分如:{直角三角形};{大于104的实数}(2)错误表示法:{实数集};{全体实数}3、文氏图:用一条封闭的曲线的内部来表示一个集合的方法4、何时用列举法?何时用描述法?⑴有些集合的公共属性不明显,难以概括,不便用描述法表示,只如:集合},5,23,{2232y x x y x x +-+⑵有些集合的元素不能无遗漏地一一列举出来,或者不便于、不需如:集合}1|),{(2+=x y y x ;集合{1000以内的质数}例 集合}1|),{(2+=x y y x 与集合}1|{2+=x y y 是同一个集合吗?答:不是}1|),{(2+=x y y x 是抛物线12+=x y 上所有的点构成的集合,集合}1|{2+=x y y =}1|{≥y y 是函数12+=x y 的所有函数值(三) 有限集与无限集1、有限集2、无限集3、空集记作Φ,如:}01|{2=+∈x R x课 题:1.2子集 全集 补集内容分析在研究数的时候,通常都要考虑数与数之间的相等与不相等(大于或小于)关系,而对于集合而言,类似的关系就是“包含”与“相等”关系本节讲子集,先介绍集合与集合之间的“包含”与“相等”关系,并引出子集的概念,然后,对比集合的“包含”与“相等”关系,得出真子集的概念以及子集与真子集的有关性质 本节课讲重点是子集的概念,难点是弄清元素与子集、属于与包含之间的区别教学过程:一、复习引入:(1)回答概念:集合、元素、有限集、无限集、空集、列举法、描述法、(2)用列举法表示下列集合:①}022|{23=+--x x x x {-1,1,2}②数字和为5的两位数} {14,23,32,41,50} (3)用描述法表示集合:}51,41,31,21,1{ }5,1|{*≤∈=n N n n x x 且 (4)集合中元素的特性是什么?(5)用列举法和描述法分别表示:“与2相差3的所有整数所组成的集合”}3|2||{=-∈x Z x {-1,5}问题:观察下列两组集合,说出集合A 与集合B 的关系(共性)(1)A={1,2,3},B={1,2,3,4,5}(2)A=N ,B=Q(3)A={-2,4},}082|{2=--=x x x B(集合A 中的任何一个元素都是集合B 的元素)二、讲解新课:(一) 子集1 定义:(1)子集:一般地,对于两个集合A 与B ,如果集合A 的任何..一 个元素都是集合B 的元素,我们就说集合A 包含于集合B ,或集合B 包含集合A记作:A B B A ⊇⊆或 ,A ⊂B 或B ⊃A读作:A 包含于B 或B 包含AB A B x A x ⊆∈⇒∈,则若任意当集合A 不包含于集合B ,或集合B 不包含集合A 时,则记作A ⊆/B 或B ⊇/A注:B A ⊆有两种可能(1)A 是B 的一部分,;(2)A 与B 是同一集合(2)集合相等:一般地,对于两个集合A 与B ,如果集合A 的任何..一个元素都是集合B 的元素,同时集合B 的任何..一个元素都是集合A 的元素,我们就说集合A 等于集合B ,记作A=B(3)真子集:对于两个集合A 与B ,如果B A ⊆,并且B A ≠,我们就说集合A 是集合B 的真子集,记作:A B 或B A, 读作A真包含于B 或B 真包含A(4)子集与真子集符号的方向不同与同义;与如B A B A A B B A ⊇⊆⊇⊆(5)空集是任何集合的子集Φ⊆A 空集是任何非空集合的真子集Φ A 若A ≠Φ,则Φ A 任何一个集合是它本身的子集A A ⊆(6)易混符号①“∈”与“⊆”:元素与集合之间是属于关系;集合与集合之间是包含关系如,,1,1R N N N ⊆∉-∈Φ⊆R ,{1}⊆{1,2,3}②{0}与Φ:{0}是含有一个元素0的集合,Φ是不含任何元素的集合如 Φ⊆{0}不能写成Φ={0},Φ∈{0}全集与补集1 补集:一般地,设S 是一个集合,A 是S 的一个子集(即S A ⊆),由S 中所有不属于A 的元素组成的集合,叫做S 中子集A的补集(或余集),记作A C S ,即C S A=},|{A x S x x ∉∈且2、性质:C S (C S A )=A ,C S S=φ,C S φ3、全集:如果集合S 集合就可以看作一个全集,全集通常用U 表示课 题:1.3 交集、交集内容分析这小节研究集合的运算,即集合的交与并,本节课的重点是交集与并集的概念,难点是弄清交集与并集的概念,符号之间的区别与联系教学过程:一、复习引入:1.说出A C S2.填空:若全集U={x|0≤x <6,X ∈Z},A={1,3,5},B={1,4},那么=A C U {0,2,4} =B C U {0,2,3,5}3.已知B={1,2,5,10},2}) 4有什么关系?图1图2如上图,集合A 和B 的公共部分叫做集合A 和集合B 的交(图1的阴影部分),集合A 和B 合并在一起得到的集合叫做集合A 和集合B 的并(图2的阴影部分).观察问题3中A 、B 、C 三个集合的元素关系易知,集合C={1,2}是由所有属于集合A 且属于集合B 的元素所组成的,即集合C 的元素是集合A 、B 的公共元素,此时,我们就把集合C 叫做集合A 与B 的交集,这是今天我们要学习的一个重要概念.问题:观察下列两组集合,说出集合A 与集合B 的关系(共性)(1)A={1,2,3},B={1,2,3,4,5}(2)A=N ,B=Q(3)A={-2,4},}082|{2=--=x x x B(集合A 中的任何一个元素都是集合B 的元素)二、讲解新课:1.交集的定义一般地,由所有属于A 且属于B 的元素所组成的集合,叫做A,B 的交集. 记作A B (读作‘A 交B ’),即A B={x|x ∈A ,且x ∈B }.如:{1,2,3,6} {1,2,5,10}={1,2}.又如:A={a,b,c,d,e },B={c,d,e,f}.则A B={c,d,e}.2.并集的定义一般地,由所有属于集合A 或属于集合B 的元素所组成的集合,叫做A,B 的并集.记作:A B (读作‘A 并B ’),即A B ={x|x ∈A ,或x ∈B}).如:{1,2,3,6} {1,2,5,10}={1,2,3,5,6,10}.3、交集、并集的性质用文图表示(1)若A ⊇B,则A B=B, A B=B(2)若A ⊆B 则A B=A A B=A(3)若A=B,则A A=A A A=A (4)若A,B 相交,有公共元素,但不包含则A B A,A B BA B A, A B B (5) )若A,B 无公共元素,则A B=Φ(学生思考、讨论、分析:从图中你能看出那些结论?):从图中观察分析、思考、讨论,完全归纳以下性质,并用集合语言证明:1.交集的性质(1)A A=A A Φ=Φ,A B=B A (2)A B ⊆A, A B ⊆B .2.并集的性质(1)A A=A (2)A Φ=A (3)A B=B A (4)A B ⊇A,A B ⊇B B A (B)A BA联系交集的性质有结论:Φ⊆A B ⊆A ⊆A B .3. 德摩根律:(C u A) (C u B)= C u (A B),(C u A) (C u B)= C u (A B)(可以用韦恩图来理解).结合补集,还有①A (C u A)=U, ②A (C u A)= Φ.容斥原理一般地把有限集A 的元素个数记作card(A).对于两个有限集A ,B ,有card(A ∪B)= card(A)+card(B)- card(A ∩B).三、讲解范例:例1 设A={x|x>-2},B={x|x<3},求A B.解:A B={x|x>-2} {x|x<3}={x|-2<x<3}.例2 设A={x|x 是等腰三角形},B={x|x 是直角三角形},求A B. 解:A B={x|x 是等腰三角形} {x|x 是直角三角形}={x|x 是等腰直角三角形}.例3 A={4,5,6,8},B={3,5,7,8},求A B.解:A B={3,4,5,6,7,8}.例4设A={x|x 是锐角三角形},B={x|x 是钝角三角形},求A B.解:A B={x|x 是锐角三角形} {x|x 是钝角三角形}={x|x 是斜三角形}.例5设A={x|-1<x<2},B={x|1<x<3},求A ∪B.解:A B={x|-1<x<2} {x|1<x<3}={x|-1<x<3}.说明:求两个集合的交集、并集时,往往先将集合化简,两个数集的交集、并集,可通过数轴直观显示;利用韦恩图表示两个集合的交集,有助于解题例6(课本第12页)设A={(x,y)|y=-4x+6},B={(x,y)|y=5x-3},求A B. 解:A B={(x,y)|y=-4x+6} {(x,y)|y=5x-3}={(x,y)|⎩⎨⎧-=+-=3564x y x y }={(1,2)} 注:本题中,(x,y)可以看作是直线上的的坐标,也可以看作二元一次方程的一个解.形如2n (n ∈Z )的整数叫做偶数,形如2n+1(n ∈Z )的数叫做奇数,全体奇数的集合叫做奇数集全体偶数的集合叫做偶数集. 交集与并集性质例题例1(课本第12页)设U={1,2,3,4,5,6,7,8},A={3,4,5},B={4,7,8},求C u A, C u B, (C u A) (C u B), (C u A) (C u B), C u (A B) , C u (A B).解:C u A={1,2,6,7,8} C u B={1,2,3,5,6}(C u A) (C u B)= C u (A B)={1,2,6}(C u A) (C u B)= C u (A B)={1,2,3,5,6,7,8}例2 已知集合A={y |y=x 2-4x+5},B={x |y=x -5}求A ∩B,A ∪B .解:A ∩B= {x |1≤x ≤5}, A ∪B=R .例3 已知A={x |x 2≤4}, B={x |x>a },若A ∩B=Ф,求实数a 的取值范围. 解:a ≧2例4 集合M={(x,y) |∣xy ∣=1,x >0},N={(x,y) |xy=-1},求M ∪N . 解:M ∪N={(x,y) |xy=-1,或xy=1(x >0)}.例5 已知全集U={x |x 2-3x+2≥0},A={x ||x-2|>1},B=⎭⎬⎫⎩⎨⎧≥--021x x x , 求C U A ,C U B ,A ∩B ,A ∩(C U B ),(C U A )∩解:∵U={x |x 2-3x+2≥0}={x|x ≤1或x ≥2},A={x ||x-2|>1}={x|x<1或x>3}, B=⎭⎬⎫⎩⎨⎧≥--021x x x ={x| x ≤1或x>2} ∴C U A={}321≤≤=x x x 或C U B={}2=x xA ∩B=A={x|x<1或x>3},={x|x<1或x>3},A ∩(C UB )=φ(C U A )∩B={}3212≤<=x x x 或课 题:1.4 逻辑联结词内容分析:学生在初中数学中,学习过简单的命题(包括原命题与逆命题)知识,掌握了简单的推理方法(包括对反证法的了解).由此,这一大节首先给出含有“或”、“且”、“非”的复合命题的意义,介绍了判断含有“或”、“且”、“非”的复合命题的真假的方法.接下来,讲述四种命题及其相互关系,并且在初中的基础上,结合四种命题的知识,进一步讲解反证法.然后,通过若干实例,讲述了充分条件、必要条件和充要条件的有关知识.这一大节的重点是逻辑联结词“或”、“且”、“非”与充要条件.学习简易逻辑知识,主要是为了培养学生进行简单推理的技能,发展学生的思维能力,在这方面,逻辑联结词“或”、“且”、“非”与充要条件的有关内容是十分必要的.这一大节的难点是对一些代数命题真假的判断.初中阶段,学生只是对简单的推理方法有一定程度的熟悉,并且,相关的技能和能力,主要还是通过几何课的学习获得的,初中代数侧重的是运算的技能和能力,因此,像对代数命题的证明,学生还需要有一个逐步熟悉的过程.教学过程:一、复习引入:命题的概念:可以判断真假的语句叫命题正确的叫真命题,错误的叫假命题例如:①11>5 ②3是15的约数③0.7是整数①②是真命题,③是假命题反例:④3是15的约数吗?⑤x>8都不是命题,不涉及真假(问题) 无法判断真假“这是一棵大树”;“x<2”.都不能叫命题.由于“大树”没有界定,就不能判断“这是一棵大树”的真假.由于x是未知数,也不能判断“x<2”是否成立.注意:①初中教材中命题的定义是:判断一件事情的句子叫做命题;这里的定义是:可以判断真假的语句叫做命题.②判断命题的关键在于能不能判断其真假,即能不能判断其是否成立;不能判断真假的语句,就不是命题.③与命题相关的概念是开语句例如,x<2,x-5=3,(x+y)(x-y)=0.这些语句中含有变量x或y,在没有给定这些变量的值之前,是无法确定语句真假的.这种含有变量的语句叫做开语句(有的逻辑书也称之为条件命题).在教学时,不要在判断一个语句是不是命题上下功夫,因为这个工作过于复杂,要求学生能够从正面的例子了解命题的概念就可以了.二、讲解新课:1.逻辑连接词例⑥10可以被2或5整除;(10可以被2整除或10可以被5整除)⑦菱形的对角线互相垂直且平分;(菱形的对角线互相垂直且菱形的对角线互相平分)⑧ 0.5非整数 .( 非“0.5是整数”)逻辑联结词:“或”、“且”、“非”这些词叫做逻辑联结词2.简单命题与复合命题: 简单命题:不含有逻辑联结词的命题叫做简单命题复合命题:由简单命题再加上一些逻辑联结词构成的命题叫复合命题其实,有些概念前面已遇到过如:或:不等式 2x -x -6>0的解集 { x | x<-2或x>3 }且:不等式2x -x -6<0的解集 { x | -2< x<3 } 即 { x | x>-2且x<3 }3.复合命题的构成形式如果用 p, q, r, s ……表示命题,则复合命题的形式接触过的有以下三种:即:p 或q 记作 p ∨q p 且q 记作 p ∧q非p (命题的否定) 记作 ⌝p释义:“p 或q ”是指p,q 中的任何一个或两者.例如,“x ∈A 或x ∈B ”,是指x 可能属于A 但不属于B (这里的“但”等价于“且”),x 也可能不属于A 但属于B ,x 还可能既属于A 又属于B (即x ∈A B );又如在“p 真或q 真”中,可能只有p 真,也可能只有q 真,还可能p,q 都为真.“p 且q ”是指p,q 中的两者.例如,“x ∈A 且x ∈B ”,是指x 属于A ,同时x 也属于B (即x ∈A B ).“非p ”是指p 的否定,即不是p. 例如,p 是“x ∈A ”,则“非p ”表示x 不是集合A 的元素(即x ∈A C U ).开语句:语句中含有变量x 或y ,在没有给定这些变量的值之前,是无法确定语句真假的.这种含有变量的语句叫做开语句(有的逻辑书也称之为条件命题).也可以把简单的开语句用逻辑联结词“或”、“且”、“非”连结起来,构成复合的开语句(有的逻辑书也称之为复合条件命题),这里的“或”、“且”、“非”与复合命题中的“或”、“且”、“非”符号与意义相同.在进行命题教学时,要注意命题与开语句的区别,特别在举有关逻辑联结词“或”、“且”、“非”的例子时,容易把两者混淆.例1(课本第26页例1)分别指出下列复合命题的形式及构成它们的简单命题:⑴24既是8的倍数,也是6的被数;⑵李强是篮球运动员或跳高运动员;⑶平行线不相交.解:⑴这个命题是p且q的形式,其中p:24是8的倍数,q:24是6的倍数.⑵这个命题是p或q的形式,其中p:李强是篮球运动员,q:李强是跳高运动员.⑶这个命题是非p的形式,其中p:平行线相交.例 2 命题“方程|x|=1的解是x=±1”中,使用逻辑联结词的情况是()A:使用了逻辑联结词“或”B:使用了逻辑联结词“且”C:使用了逻辑联结词“非”D:没有使用逻辑联结词判断复合命题真假的方法1.“非p”形式的复合命题例1 (1)如果p表示“2是10的约数”,试判断非p的真假.(2) )如果p表示“3≤2”,那么非p表示什么?并判断其真假.解:(1)中p表示的复合命题为真,而非p“2不是10的约数”为假.(2)中p表示的命题“3≤2”为假,非p表示的命题为“3>2”,其显然为真.小结:非p复合命题判断真假的方法当p为真时,非p为假;当p为假时,非p为真,即“非p”形式的2.“p且q”形式的复合命题例2.如果p表示“5是10的约数”,q表示“5是15的约数”,r表示“5是8的约数”,试写出p且q,p且r的复合命题,并判断其真假,然后归纳出其规律.解:p且q即“5是10的约数且是15的约数”为真(p、q为真);p且r即“5是10的约数且是8的约数”为假(r为假)小结:“p且q”形式的复合命题真假判断当p、q为真时,p且q为真;当p、q中至少有一个为假时,p且q 为假可用下表表示3.“p或q”形式的复合命题:例3.如果p表示“5是12的约数”q表示“5是15的约数”,r表示“5是8的约数”,写出,p或r,q或s,p或q的复合命题,并判断其真假,归纳其规律.p或q即“5是12的约数或是15的约数”为真(p为假、q为真);p或r即“5是12的约数或是8的约数”为假(p、r为假)小结:“p或q”形式的复合命题真假判断当p,q中至少有一个为真时,“p或q”为真;当p,q都为假时,“p 或q”为假. 即“p或q”形式的复合命题,当p与q同为假时为假,其他情像上面三个表用来表示命题的真假的表叫做真值表.在真值表中,是根据简单命题的真假,判断由这些简单命题构成的复合命题的真假,而不涉及简单命题的具体内容.例4(课本第28页例2)分别指出由下列各组命题构成的“p或q”,“p且q”,“非p”形式的复合命题的真假:①p:2+2=5,q:3>2;②p:9是质数,q:8是12的约数;③p:1∈{1,2},q:{1}⊂{1,2};④p:φ⊂{0},q:φ={0}.解:①p或q:2+2=5或3>2 ;p且q:2+2=5且3>2 ;非p:2+2≠5.∵p假q真,∴“p或q”为真,“p且q”为假,“非p”为真.②p或q:9是质数或8是12的约数;p且q:9是质数且8是12的约数;非p:9不是质数.∵p假q假,∴“p或q”为假,“p且q”为假,“非p”为真.③p或q:1∈{1,2}或{1}⊂{1,2};p且q:1∈{1,2}且{1}⊂{1,2};非p:1∉{1,2}.∵p真q真,∴“p或q”为真,“p且q”为真,“非p”为假.④p或q:φ⊂{0}或φ={0};p且q:φ⊂{0}且φ={0} ;非p:φ⊄{0}.∵p真q假,∴“p或q”为真,“p且q”为假,“非p”为假.4.逻辑符号“或”的符号是“∨”,“且”的符号是“∧”,“非”的符号是“┐”.例如,“p或q”可记作“p∨q”;“p且q”可记作“p∧q”;“非p”可记作“┐p”.注意:数学中的“或”与日常生活用语中的“或”的区别“或”这个逻辑联结词的用法,一般有两种解释:一是“不可兼有”,即“a或b”是指a,b中的某一个,但不是两者.日常生活中有时采用这一解释.例如“你去或我去”,人们在理解上不会认为有你我都去这种可能.二是“可兼有”,即“a或b”是指a,b中的任何一个或两者.例如“x∈A 或x∈B”,是指x可能属于A但不属于B(这里的“但”等价于“且”),x 也可能不属于A但属于B,x还可能既属于A又属于B(即x∈A∩B);又如在“p真或q真”中,可能只有p真,也可能只有q真,还可能p,q都为真.数学书中一般采用这种解释,运用数学语言和解数学题时,都要遵守这一点.还要注意“可兼有”并不意味“一定兼有”.另外,“苹果是长在树上或长在地里”这一命题,按真值表判断,它是真命题,但在日常生活中,我们认为这句话是不妥的.课题:1.5 四种命题内容分析:学生在初中数学中,学习过简单的命题(包括原命题与逆命题)知识,掌握了简单的推理方法(包括对反证法的了解).由此,这一大节首先讲述四种命题及其相互关系,并且在初中的基础上,结合四种命题的知识,进一步讲解反证法.然后,通过若干实例,讲述了充分条件、必要条件和充要条件的有关知识.这一大节的重点是充要条件.学习简易逻辑知识,主要是为了培养学生进行简单推理的技能,发展学生的思维能力,在这方面,逻辑联结词“或”、“且”、“非”与充要条件的有关内容是十分必要的.这一大节的难点是对一些代数命题真假的判断.初中阶段,学生只是对简单的推理方法有一定程度的熟悉,并且,相关的技能和能力,主要还是通过几何课的学习获得的,初中代数侧重的是运算的技能和能力,因此,像对代数命题的证明,学生还需要有一个逐步熟悉的过程.教学过程:一、复习引入:复习初中学过的命题与逆命题,并举例说明(学生回答,教师整理补充)两个命题,如果第一个命题的条件(或题设)是第二个命题的结论,且第一个命题的结论是第二个命题的条件,那么这两个命题叫做互逆命题;如果把其中一个命题叫做原命题,那么另一个叫做原命题的逆命题.例如,(1)同位角相等,两直线平行;条件(题设):同位角相等;结论:两直线平行它的逆命题就是:(2)两直线平行,同位角相等二、讲解新课:1.引例(3)同位角不相等,两直线不平行;(4)两直线不平行,同位角不相等.比较命题(1)与(3)、(1)与(4)的条件与结论的异同(学生回答,教师整理原命题若p 则q 否命题逆命题若q 则p 逆否命题互为逆否互逆否互为逆否互否互补充)在命题(1)与命题(3)中,一个命题的条件和结论分别是另一个命题的条件的否定和结论的否定,我们称命题(1)与命题(3)互为否命题;在命题(1)与命题(4)中,一个命题的条件和结论分别是另一个命题的结论的否定和条件的否定,我们称命题(1)与命题(4)互为逆否命题;(让学生取名字)思考:由原命题怎么得到逆命题、否命题、逆否命题?(学生回答,教师整理补充)交换原命题的条件和结论,所得的命题是逆命题;同时否定原命题的条件和结论,所得的命题是否命题;交换原命题的条件和结论,并且同时否定,所得的命题是逆否命题.2.概括:(1)为原命题 (2)为逆命题(3)为否命题 (4)为逆否命题反问:若(2)为原命题,则(1)(3)(4)各为哪种命题?若(3)为原命题,则(1)(2)(4)各为哪种命题?若(4)为原命题,则(1)(2)(3)各为哪种命题?强调:“互为”的含义3.四中命题的形式若p 为原命题条件,q 为原命题结论(学生回答,教师整理补充)则:原命题:若 p 则 q逆命题:若 q 则 p否命题:若 ⌝p 则 ⌝q逆否命题:若 ⌝q 则 ⌝p4.四种命题的相互关系互逆命题、互否命题与互为逆否命题都是说两个命题的关系,若把其中一个命题叫做原命题时,另一个命题就叫做原命题的逆命题、否命题与逆否命题.因此,四种命题之间的相互关系,可用右下图表示:5.四种命题的真假关系一个命题的真假与其他三个命题的真假有如下三条关系:①、原命题为真,它的逆命题不一定为真②、原命题为真,它的否命题不一定为真③、原命题为真,它的逆否命题一定为真6.反证法:要证明某一结论A是正确的,但不直接证明,而是先去证明A的反面(非A)是错误的,从而断定A是正确的即反证法就是通过否定命题的结论而导出矛盾来达到肯定命题的结论,完成命题的论证的一种数学证明方法7.反证法的步骤:(1)假设命题的结论不成立,即假设结论的反面成立(2)从这个假设出发,通过推理论证,得出矛盾(3)由矛盾判定假设不正确,从而肯定命题的结论正确注意:可能出现矛盾四种情况:①与题设矛盾;②与反设矛盾;③与公理、定理矛盾④在证明过程中,推出自相矛盾的结论课题:1.6 充分条件与必要条件内容分析:这一大节通过若干实例,讲述充分条件、必要条件和充要条件的有关知识.这一大节的重点是充要条件.学习简易逻辑知识,主要是为了培养学生进行简单推理的技能,发展学生的思维能力,在这方面,逻辑联结词“或”、“且”、“非”与充要条件的有关内容是十分必要的.关于充分条件、必要条件与充要条件,本章对教学要求的尺度,还是控制在对初中代数、几何的有关问题的理解上为宜.教学过程:一、复习引入:同学们,当某一天你和你的妈妈在街上遇到老师的时候,你向老师介绍你的妈妈说:“这是我的妈妈”.那么,大家想一想这个时候你的妈妈还会不会补充说:“你是她的孩子”呢?不会了!为什么呢?因为前面你所介绍的她是你的妈妈就足于保证你是她的孩子.那么,这在数学中是一层什么样的关系呢?今天我们就来学习这个有意义的课题—充分条件与必要条件.二、讲解新课:⒈符号“⇒”的含义前面我们讨论了“若p则q”形式的命题,其中有的命题为真,有的命题为假.“若p则q”为真,是指由p经过推理可以得出q,也就是说,如果p成立,那么q一定成立,记作p⇒q,或者q⇐p;如果由p推不出q,命题为假,记作p q.简单地说,“若p则q”为真,记作p⇒q(或q⇐p);“若p则q”为假,记作p q(或q p).符号“⇒”叫做推断符号.例如,“若x>0,则x2>0”是一个真命题,可写成:x>0 ⇒x2>0;又如,“若两三角形全等,则两三角形的面积相等”是一个真命题,可写成:两三角形全等⇒两三角形面积相等.说明:⑴“p⇒q”表示“若p则q”为真;也表示“p蕴含q”.⑵“p⇒q”也可写为“q⇐p”,有时也用“p→q”.⒉什么是充分条件?什么是必要条件?如果已知p⇒q,那么我们就说,p是q的充分条件,q是p的必要条件.在上面是两个例子中,“x>0”是“x2>0”的充分条件,“x2>0”是“x>0”的必要条件;“两三角形全等”是“两三角形面积相等”的充分条件,“两三角形面积相等”是“两三角形全等”的必要条件.⒊充分条件与必要条件的判断1.直接利用定义判断:即“若p⇒q成立,则p是q的充分条件,q是p 的必要条件”.(条件与结论是相对的)例1指出下列各组命题中,p是q的什么条件,q是p的什么条件:⑴ p:x=y;q:x2=y2.⑵ p:三角形的三条边相等;q:三角形的三个角相等.分析:可根据“若p则q”与“若q则p”的真假进行判断.解:⑴由p⇒q,即x=y⇒x2=y2,知p是q的充分条件,q是p的必要条件.⑵由p⇒q,即三角形的三条边相等⇒三角形的三个角相等,知p是q的充分条件,q是p的必要条件;又由q⇒p,即三角形的三个角相等⇒三角形的三条边相等,知q也是p。

新课标人教A版数学必修1全套教案

新课标人教A版数学必修1全套教案

新课标人教A版数学必修1全套教案课标要求:本章将集合作为一种语言来学习,使学生感受用集合表示数学内容时的简洁性、准确性,帮助学生学会用集合语言描述数学对象,发展学生运用数学语言进行交流的能力、函数是高中数学的核心概念,本章把函数作为描述客观世界变化规律的重要数学模型来学习,强调结合实际问题,使学生感受运用函数概念建立模型的过程与方法,从而发展学生对变量数学的认识、1、了解集合的含义,体会元素与集合的“属于”关系,掌握某些数集的专用符号、2、理解集合的表示法,能选择自然语言、图形语言、集合语言(列举法或描述法)描述不同的具体问题,感受集合语言的意义和作用、3、理解集合之间包含与相等的含义,能识别给定集合的子集,培养学生分析、比较、归纳的逻辑思维能力、4、能在具体情境中,了解全集与空集的含义、5、理解两个集合的并集与交集的含义,会求两个简单集合的交集与并集, 培养学生从具体到抽象的思维能力、6、理解在给定集合中,一个子集的补集的含义,会求给定子集的补集、7、能使用Venn图表达集合的关系及运算,体会直观图示对理解抽象概念的作用、8、学会用集合与对应的语言来刻画函数,理解函数符号y=f(x)的含义;了解函数构成的三要素,了解映射的概念;体会函数是一种刻画变量之间关系的重要数学模型,体会对应关系在刻画函数概念中的作用;会求一些简单函数的定义域和值域,并熟练使用区间表示法、9、了解函数的一些基本表示法(列表法、图象法、分析法),并能在实际情境中,恰当地进行选择;会用描点法画一些简单函数的图象、10、通过具体实例,了解简单的分段函数,并能简单应用、11、结合熟悉的具体函数,理解函数的单调性、最大(小)值及其几何意义,了解奇偶性和周期性的含义,通过具体函数的图象,初步了解中心对称图形和轴对称图形、12、学会运用函数的图象理解和研究函数的性质,体会数形结合的数学方法、13、通过实习作业,使学生初步了解对数学发展有过重大影响的重大历史事件和重要人物,了解生活中的函数实例、二、编写意图与教学建议1、教材不涉及集合论理论,只将集合作为一种语言来学习,要求学生能够使用最基本的集合语言表示有关的数学对象,从而体会集合语言的简洁性和准确性,发展运用数学语言进行交流的能力、教材力求紧密结合学生的生活经验和已有数学知识,通过列举丰富的实例,使学生了解集合的含义,理解并掌握集合间的基本关系及集合的基本运算、教材突出了函数概念的背景教学,强调从实例出发,让学生对函数概念有充分的感性基础,再用集合与对应语言抽象出函数概念,这样比较符合学生的认识规律,同时有利于培养学生的抽象概括的能力,增强学生应用数学的意识,教学中要高度重视数学概念的背景教学、2、教材尽量创设使学生运用集合语言进行表达和交流的情境和机会,并注意运用Venn图表达集合的关系及运算,帮助学生借助直观图示认识抽象概念、教学中,要充分体现这种直观的数学思想,发挥图形在子集以及集合运算教学中的直观作用。

新课标高中数学人教A版必修1全册导学案及答案(105页).pdf

新课标高中数学人教A版必修1全册导学案及答案(105页).pdf

课题:1.1.1集合的含义与表示(1)一、三维目标:知识与技能:了解集合的含义,体会元素与集合的属于关系;掌握常用数集及其记法、集合中元素的三个特征。

过程与方法:通过实例了解,体会元素与集合的属于关系。

情感态度与价值观:培养学生的应用意识。

二、学习重、难点:重点:掌握集合的基本概念。

难点:元素与集合的关系。

三、学法指导:认真阅读教材P 1-P 3,对照学习目标,完成导学案,适当总结。

四、知识链接:军训前学校通知:8月13日8点,高一年级在操场集合进行军训动员;试问这个通知的对象是全体的高一学生还是个别学生?初中时你听说过“集合”这一词吗?你在学习那些知识点中提到了“集合” 这一词?(试举几例)五、学习过程:1、阅读教材P 2 页8个例子问题1:总结出集合与元素的概念:问题2:集合中元素的三个特征:问题3:集合相等:问题4:课本P 3的思考题,并再列举一些集合例子和不能构成集合的例子。

2、集合与元素的字母表示: 集合通常用大写的拉丁字母A ,B ,C …表示,集合的元素用小写的拉丁字母a,b,c,…表示。

问题5:元素与集合之间的关系?A 例1:设A 表示“1----20以内的所有质数”组成的集合,则3、4与A 的关系?B 例2:若+∈N x ,则N x ∈,对吗?六、达标检测:A 1.判断以下元素的全体是否组成集合:(1)大于3小于11的偶数; ( ) (2)我国的小河流; ( ) (3)非负奇数; ( ) (4)本校2009级新生; ( ) (5)血压很高的人; ( ) (6)著名的数学家; ( ) (7)平面直角坐标系内所有第三象限的点 ( ) A 2.用“∈”或“∉”符号填空:(1)8 N ; (2)0 N ; (3)-3 Z ; (4; (5)设A 为所有亚洲国家组成的集合,则中国 A ,美国 A ,印度 A ,英国 A ;B 3.下面有四个语句:①集合N 中最小的数是1;②若N a ∉−,则N a ∈;③若N a ∈,N b ∈,则b a +的最小值是2;④x x 442=+的解集中含有2个元素;其中正确语句的个数是( )A.0B.1C.2D.3B 4.已知集合S 中的三个元素a,b,c 是∆ABC 的三边长,那么∆ABC 一定不是 ( )A 锐角三角形B 直角三角形C 钝角三角形D 等腰三角形B 5. 已知集合A 含有三个元素2,4,6,且当A a ∈,有6-a ∈A ,那么a 为 ( )A .2 B.2或4 C.4 D.0B 6. 设双元素集合A 是方程x 2-4x+m=0的解集,求实数m 的取值范围。

高中数学人教A版(2019新教材) 必修(第一册)全册分章节分课时教学案

高中数学人教A版(2019新教材) 必修(第一册)全册分章节分课时教学案

第一章集合与函数概念1.1集合1.1.1集合的含义与表示第1课时集合的含义[目标] 1.通过实例,能说出集合的含义,体会元素与集合的“属于”关系;2.记住集合元素的特性以及常用数集;3.会用集合元素的特性解决相关问题.[重点] 用元素与集合的“属于”关系判断元素与集合的关系;用集合元素的特性解答相关问题.[难点] 集合元素特性的应用.知识点一元素与集合的含义[填一填]1.定义(1)元素:一般地,把所研究的对象统称为元素,常用小写的拉丁字母a,b,c,…表示.(2)集合:把一些元素组成的总体叫做集合(简称为集),常用大写拉丁字母A,B,C,…表示.2.集合相等:指构成两个集合的元素是一样的.3.集合中元素的特性:确定性、互异性和无序性.[答一答]1.以下对象的全体能否构成集合?(1)河北《红对勾》书业的员工;(2)平昌冬奥会速滑比赛中滑得很快的选手;(3)一次函数y=kx+b(k≠0)的图象上的若干个点;(4)不超过2 019的非负数.提示:(1)能构成集合.河北《红对勾》书业的员工是确定的,因此有一个明确的标准,可以确定出来.所以能构成一个集合.(2)“滑得很快”无明确的标准,对于某位选手是否“滑得很快”无法客观地判断,因此,“平昌冬奥会速滑比赛中滑得很快的选手”不能构成一个集合.(3)“若干个点”是模糊的概念,因此与之对应的对象都是不确定的,自然它们不能构成集合,故“一次函数y=kx+b(k≠0)的图象上的若干个点”不能构成一个集合.(4)任给一个实数x,可以明确地判断x是不是“不超过 2 019的非负数”,即“0≤x≤2 019”与“x<0或x>2 019”,两者必居其一,且仅居其一,故“不超过2 019的非负数”能构成一个集合.2.若集合A由0,1与x三个元素组成,则x的取值有限制吗?为什么?提示:有限制,x≠0且x≠1.因为集合中的任意两个元素必须是互异的.知识点二元素与集合的关系[填一填]如果a是集合A中的元素,就说a属于(belong to)集合A,记作a∈A;如果a不是集合A中的元素,就说a不属于(not belong to)集合A,记作a∉A.[答一答]3.若集合A是由元素1,2,3,4所组成的集合,问1与A,5与A有什么关系?提示:1∈A,5∉A.知识点三常用数集及表示[填一填][答一答]4.常用的数集符号N,N*,N+有什么区别?提示:(1)N为非负整数集(即自然数集),而N*或N+表示正整数集,不同之处就是N 包括元素0,而N*或N+不包括元素0.(2)N*和N+的含义是一样的,初学者往往误记为N*或N+,为避免出错,对于N*和N 可形象地记为“星星(*)在天上,十字架(+)在地下”.+5.用符号“∈”或“∉”填空. (1)1∈N *;(2)-3∉N ;(3)13∈Q ;; (5)-12∈R.类型一 集合的概念[例1] 下列所给的对象能构成集合的是________. (1)所有的正三角形;(2)高一数学必修1课本上的所有难题; (3)比较接近1的正数全体;(4)某校高一年级的16岁以下的学生;(5)平面直角坐标系内到原点距离等于1的点的集合; (6)参加里约奥运会的年轻运动员. [答案] (1)(4)(5)[解析] (1)能构成集合.其中的元素需满足三条边相等;(2)不能构成集合.因“难题”的标准是模糊的,不确定的,故不能构成集合; (3)不能构成集合.因“比较接近1”的标准不明确,所以元素不确定,故不能构成集合;(4)能构成集合.其中的元素是“16岁以下的学生”;(5)能构成集合.其中的元素是“到坐标原点的距离等于1的点”;(6)不能构成集合.因为“年轻”的标准是模糊的,不确定的,故而不能构成集合.判断元素能否构成集合,关键是集合中元素的确定性,即能否找到一个明确的评判标准来衡量元素是否为集合中的元素,若标准明确则可以构成集合,否则不可以.[变式训练1] 下列对象能组成集合的是( D ) A .3的所有近似值B .某个班级中学习好的所有同学C .2018年全国高考数学试卷中所有难题D.屠呦呦实验室的全体工作人员解析:D中的对象都是确定的,而且是不同的.A中的“近似值”,B中的“学习好”,C中的“难题”标准不明确,不满足确定性,因此A,B,C都不能构成集合.类型二集合中元素的特性命题视角1:集合元素的互异性[例2]已知集合A中含有两个元素a和a2,若1∈A,求实数a的值.[分析]本题中已知集合A中有两个元素且1∈A,根据集合中元素的特点需分a=1或a2=1两种情况,另外还要注意集合中元素的互异性.根据集合中元素的确定性,可以解出字母的所有可能值,再根据集合中元素的互异性对集合中的元素进行检验.另外,利用集合中元素的特性解题时,要注意分类讨论思想的应用.[解]若1∈A,则a=1或a2=1,即a=±1.当a=1时,a=a2,集合A有一个元素,∴a≠1.当a=-1时,集合A含有两个元素1,-1,符合互异性.∴a=-1.当一个集合中的元素含字母时,可根据题意结合集合中元素的确定性求出集合中字母的所有取值,再根据集合中元素的互异性进行检验.[变式训练2](1)若集合M中的三个元素是△ABC的三边长,则△ABC一定不是(D)A.锐角三角形B.直角三角形C.钝角三角形D.等腰三角形(2)由a2,2-a,4组成一个集合A,且集合A中含有3个元素,则实数a的取值可以是(C)A.1B.-2C.6D.2解析:(1)集合中任何两个元素不相同.(2)由题意知a2≠4,2-a≠4,a2≠2-a,解得a≠±2,且a≠1.结合选项知C正确.故选C.命题视角2:集合元素的无序性[例3] 集合A 中含有三个元素0,ba ,b ,集合B 中含有三个元素1,a +b ,a ,若A ,B 两个集合相等,求a 2 019+b 2 019的值.[分析] 由两个集合相等,所含元素相同列出a ,b 的关系式,解出a 与b ,再求a 2 019+b 2 019的值.[解] 由两个集合相等易知a ≠0,a ≠1,故a +b =0,且b =1或ba =1.若b =1,由a +b =0得a =-1,经验证,符合题意;若ba =1,则a =b ,结合a +b =0,可知a =b =0,不符合题意.综上知a =-1,b =1. 所以a 2 019+b 2 019=(-1)2 019+12 019=0.两个集合相等,元素相同,因为集合元素无序,所以要进行讨论.同时还需要对集合求值问题代入验证,注意集合中元素的互异性.[变式训练3] 集合A 由1,3,5,7四个元素组成,已知实数a ,b ∈A ,那么ab 的不同值有( B )A .12个B .13个C .16个D .17个解析:a ,b 是集合A 的元素,ab 的值会因a ,b 的顺序不同而不同.a ,b 所取的值按顺序分别为:1,1;3,3;5,5;7,7;1,3;3,1;1,5;5,1;1,7;7,1;3,5;5,3;3,7;7,3;5,7;7,5,其对应的ab 有13个不同的值.类型三 元素与集合的关系[例4] (1)给出下列关系:①12∈R ;②2∉Q ;③|-3|∉N ;④|-3|∈Q ;⑤0∉N . 其中正确的个数为( ) A .1 B .2 C .3D .4(2)集合A 中的元素x 满足63-x ∈N ,x ∈N ,则集合A 中的元素为________.[答案] (1)B (2)0,1,2[解析] (1)12是实数;2是无理数;|-3|=3是自然数;|-3|=3是无理数;0是自然数.故①②正确,③④⑤不正确.(2)由63-x ∈N ,x ∈N 知x ≥0,63-x≥0,且x ≠3,故0≤x <3.又x ∈N ,故x =0,1,2. 当x =0时,63-0=2∈N ,当x =1时,63-1=3∈N ,当x =2时,63-2=6∈N .故集合A 中的元素为0,1,2.判断一个元素是否属于某一集合,就是判断这个元素是否满足该集合元素的条件.若满足,就是“属于”关系;若不满足,就是“不属于”关系.特别注意,符号“∈”与“∉”只表示元素与集合的关系.[变式训练4] 已知不等式3x +2>0的解集为M . (1)试判断元素-1,0与集合M 的关系;(2)若a -1是集合M 中的元素,求a 的取值范围. 解:(1)∵3×(-1)+2=-1<0, ∴-1不是集合M 中的元素,∴-1∉M . 又3×0+2=2>0,∴0是集合M 中的元素,∴0∈M . (2)∵a -1∈M ,∴3(a -1)+2>0. ∴3a >1,∴a >13.1.下列各组对象不能构成集合的是( B ) A .某中学所有身高超过1.8米的大个子 B .约等于0的实数 C .某市全体中学生D .北京大学建校以来的所有毕业生解析:由于“约等于0”没有一个明确的标准,因此B 中对象不能构成集合.2.下列命题中,正确命题的个数是( C )①集合N *中最小的数是1;②若-a ∉N *,则a ∈N *;③若a ∈N *,b ∈N *,则a +b 的最小值是2;④x 2+4=4x 的解集是{2,2}. A .0 B .1 C .2 D .3解析:N *是正整数集,最小的正整数是1,故①正确;当a =0时,-a ∉N *,a ∉N *,故②错误;若a ∈N *,则a 的最小值是1,同理,b ∈N *,b 的最小值也是1,∴当a 和b 都取最小值时,a +b 取最小值2,故③正确;由集合中元素的互异性,知④是错误的.3.已知a ,b 是非零实数,代数式|a |a +|b |b +|ab |ab 的值组成的集合是M ,则下列判断正确的是( B )A .0∈MB .-1∈MC .3∉MD .1∈M解析:当a ,b 全为正数时,代数式的值是3;当a ,b 全是负数时,代数式的值是-1;当a ,b 是一正一负时,代数式的值是-1.综上可知B 正确.4.集合A 由元素-1和2构成,集合B 是方程x 2+ax +b =0的解,若A =B ,则a +b =-3.解析:∵A =B ,∴方程x 2+ax +b =0的解是-1或2. ∴a =-1,b =-2,∴a +b =-3.5.已知集合A 由a 2-a +1,|a +1|两个元素构成,若3∈A ,求a 的值. 解:∵3∈A ,∴a 2-a +1=3或|a +1|=3. ①若a 2-a +1=3,则a =2或a =-1.当a =2时,|a +1|=3,此时集合A 中含有两个3,因此应舍去. 当a =-1时,|a +1|=0≠3,满足题意. ②若|a +1|=3,则a =-4或a =2(舍去). 当a =-4时,a 2-a +1=21≠3,满足题意. 综上可知a =-1或a =-4.——本课须掌握的三大问题1.理解集合的概念,关键是抓住集合中元素的三个特性:确定性、互异性和无序性.特别是处理含有参数的集合问题时,一定要注意集合中元素的互异性,即在求出参数的取值或取值范围后,一定要检验集合中元素的互异性.2.关于特定集合N ,N *(N +),Z ,Q ,R 等的意义是约定俗成的,解题时作为已知使用,不必重述它们的意义.3.对于一个元素a与一个集合A而言,只有“a∈A”与“a∉A”这两种结果,“∈”与“∉”具有方向性,左边是元素,右边是集合.学习至此,请完成课时作业1第2课时集合的表示[目标] 1.掌握集合的两种表示方法(列举法和描述法);2.能够运用集合的两种表示方法表示一些简单集合.[重点] 集合的两种表示方法及其运用.[难点] 对描述法表示集合的理解.知识点一列举法[填一填]把集合的元素一一列举出来,并用花括号“{__}”括起来表示集合的方法叫做列举法.{}表示“所有”的含义,不能省略,元素之间用“,”隔开,而不能用“、”;书写时不需要考虑元素的顺序.[答一答]1.实数集也可以写成{实数},那么能写成{实数集}或{全体实数}吗?提示:不能,因为花括号“{}”表示“所有、全部”的意思.2.列举法能表示元素个数很少的有限集,那么可以用列举法表示无限集吗?提示:对于所含元素有规律的无限集也可以用列举法表示,如正自然数集可以用列举法表示为{1,2,3,4,5,…}.3.集合{(1,2)}与{(2,1)}是否为相等集合?提示:不是.知识点二 描述法[填一填]1.用集合所含元素的共同特征表示集合的方法称为描述法. 2.具体方法在花括号内先写上表示这个集合元素的一般符号及取值(或变化)范围,再画一条竖线,在竖线后写出这个集合中元素所具有的共同特征.[答一答]4.集合{x |x >3}与集合{t |t >3}表示同一个集合吗?提示:虽然两个集合的代表元素的符号(字母)不同,但实质上它们均表示大于3的所有实数,故表示同一个集合.类型一 用列举法表示集合[例1] (1)若集合A ={(1,2),(3,4)},则集合A 中元素的个数是( ) A .1 B .2 C .3D .4(2)用列举法表示下列集合.①不大于10的非负偶数组成的集合; ②方程x 2=x 的所有实数解组成的集合; ③直线y =2x +1与y 轴的交点所组成的集合;④方程组⎩⎪⎨⎪⎧x +y =1,x -y =-1的解.[答案] (1)B (2)见解析[解析] (1)集合A ={(1,2),(3,4)}中有两个元素(1,2)和(3,4).(2)解:①因为不大于10是指小于或等于10,非负是大于或等于0的意思,所以不大于10的非负偶数集是{0,2,4,6,8,10}.②方程x 2=x 的解是x =0或x =1,所以方程的解组成的集合为{0,1}.③将x =0代入y =2x +1,得y =1,即交点是(0,1),故两直线的交点组成的集合是{(0,1)}.④解方程组⎩⎪⎨⎪⎧ x +y =1,x -y =-1,得⎩⎪⎨⎪⎧x =0,y =1.∴用列举法表示方程组⎩⎪⎨⎪⎧x +y =1,x -y =-1的解集为{(0,1)}.用列举法表示集合应注意的三点,(1)应先弄清集合中的元素是什么,是数还是点,还是其他元素;(2)集合中的元素一定要写全,但不能重复;(3)若集合中的元素是点时,则应将有序实数对用小括号括起来表示一个元素.[变式训练1] 用列举法表示下列集合: (1)15的正约数组成的集合; (2)所有正整数组成的集合;(3)直线y =x 与y =2x -1的交点组成的集合. 解:(1){1,3,5,15}.(2)正整数有1,2,3,…,所求集合用列举法表示为{1,2,3,…}.(3)方程组⎩⎪⎨⎪⎧ y =x ,y =2x -1的解是⎩⎪⎨⎪⎧x =1,y =1,所求集合用列举法表示为{(1,1)}.类型二 用描述法表示集合[例2] 用描述法表示下列集合: (1)不等式2x -7<3的解集A ;(2)二次函数y =x 2+1的函数值组成的集合B ; (3)被3除余2的正整数的集合C ;(4)平面直角坐标系内坐标轴上的点组成的集合D .[分析] 先确定集合元素的符号,再把元素的共同特征通过提炼加工后写在竖线后面. [解] (1)解2x -7<3得x <5, 所以A ={x |x <5}.(2)函数值组成的集合就是y 的取值集合,所以B ={y |y =x 2+1,x ∈R }.(3)被3除余2的正整数可以表示为3n +2(n ∈N ),所以集合C ={x |x =3n +2,n ∈N }. (4)平面直角坐标系中坐标轴上的点的共同特征是至少有一个坐标为0, 所以D ={(x ,y )|x ·y =0,x ∈R ,y ∈R }.(1)用描述法表示集合,应先弄清集合的属性,是数集、点集还是其他的类型.一般地,数集用一个字母代表其元素,而点集则用一个有序实数对来代表其元素.(2)若描述部分出现元素记号以外的字母时,要对新字母说明其含义或指出其取值范围.[变式训练2] 用描述法表示下列集合: (1)函数y =-x 的图象上所有点组成的集合; (2)方程x 2+22x +121=0的解集;(3)数轴上离原点的距离大于3的点组成的集合;(4)⎩⎨⎧⎭⎬⎫13,12,35,23,57,…. 解:(1){(x ,y )|y =-x ,x ∈R ,y ∈R }. (2){x |x =-11}.(3)数轴上离原点的距离大于3的点组成的集合等于绝对值大于3的实数组成的集合,则数轴上离原点的距离大于3的点组成的集合可表示为{x ∈R ||x |>3}.(4)先统一形式13,24,35,46,57,…,找出规律,集合表示为⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x =n n +2,n ∈N *.类型三 两种方法的灵活应用[例3] 用适当的方法表示下列集合:(1)方程组⎩⎪⎨⎪⎧2x -3y =14,3x +2y =8的解组成的集合;(2)1 000以内被3除余2的正整数组成的集合; (3)所有的正方形组成的集合;(4)抛物线y =x 2上的所有点组成的集合.[分析] (1)中的元素个数很少,用列举法表示;(2)是有限集,但个数较多,用描述法;(3)(4)是无限集,用描述法表示.[解] (1)解方程组⎩⎪⎨⎪⎧ 2x -3y =14,3x +2y =8,得⎩⎪⎨⎪⎧x =4,y =-2,故该集合用列举法可表示为{(4,-2)}.该集合也可用描述法表示为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫(x ,y )⎪⎪⎪⎪⎩⎪⎨⎪⎧ 2x -3y =14,3x +2y =8.(2)设集合的代表元素是x ,则该集合用描述法可表示为{x |x =3k +2,k ∈N ,且k ≤332}.(3)集合用描述法表示为{x |x 是正方形}或{正方形}. (4)集合用描述法表示为{(x ,y )|y =x 2}.当集合的元素个数很少(很容易写出全部元素)时,常用列举法表示集合;当集合的元素个数较多(不易写出全部元素)时,常用描述法表示集合.对一些元素有规律的无限集,也可用列举法表示.如正奇数集也可写为{1,3,5,7,9,…}.但值得注意的是,并不是每一个集合都可以用两种方法表示出来.[变式训练3] 用适当的方法表示下列集合: (1)大于2且小于5的有理数组成的集合; (2)24的所有正因数组成的集合;(3)平面直角坐标系内与坐标轴距离相等的点的集合. 解:(1)用描述法表示为{x |2<x <5,且x ∈Q }. (2)用列举法表示为{1,2,3,4,6,8,12,24}.(3)在平面直角坐标系内,点(x ,y )到x 轴的距离为|y |,到y 轴的距离为|x |,所以该集合用描述法表示为{(x ,y )||y |=|x |}.1.集合{x ∈N |x <5}的另一种表示方法是( A ) A .{0,1,2,3,4} B .{1,2,3,4} C .{0,1,2,3,4,5}D .{1,2,3,4,5}解析:由题x ∈N ,且x <5,∴x 的值为0,1,2,3,4,用列举法表示为{0,1,2,3,4}.2.方程组⎩⎪⎨⎪⎧x +y =2,x -2y =-1的解集是( C )A .{x =1,y =1}B .{1}C .{(1,1)}D .{(x ,y )|(1,1)}解析:方程组的解集中元素应是有序数对形式,排除A ,B ,而D 中的条件是点(1,1),不含x ,y ,排除D.3.集合{x |x =a ,a <36,x ∈N },用列举法表示为{0,1,2,3,4,5}. 解析:由a <36,可得a <6,即x <6,又x ∈N ,故x 只能取0,1,2,3,4,5. 4.能被2整除的正整数的集合,用描述法可表示为{x |x =2n ,n ∈N +}. 解析:正整数中所有的偶数均能被2整除. 5.用适当的方法表示下列集合:(1)已知集合P ={x |x =2n,0≤n ≤2,且n ∈N }; (2)能被3整除且大于4小于15的自然数组成的集合; (3)x 2-4的一次因式组成的集合;(4)由方程组⎩⎪⎨⎪⎧x +y =3,x -y =-1的解所组成的集合.解:(1)用列举法表示为P ={0,2,4}.(2)可用列举法表示为{6,9,12};也可用描述法表示为{x |x =3n ,4<x <15,且n ∈N }. (3)用列举法表示为{x +2,x -2}.(4)可用列举法表示为{(1,2)},也可用描述法表示为{(x ,y )|x =1,y =2}.——本课须掌握的两大问题1.表示集合的要求:(1)根据要表示的集合元素的特点,选择适当方法表示集合,一般要符合最简原则. (2)一般情况下,元素个数无限的集合不宜用列举法表示,描述法既可以表示元素个数无限的集合,也可以表示元素个数有限的集合.2.在用描述法表示集合时应注意:(1)弄清元素所具有的形式(即代表元素是什么),是数、还是有序实数对(点)、还是集合或其他形式.(2)元素具有怎样的属性.当题目中用了其他字母来描述元素所具有的属性时,要去伪存真,而不能被表面的字母形式所迷惑.学习至此,请完成课时作业2 学科素养培优精品微课堂 “形似异质”的集合的表示开讲啦 集合的类型有多种形式,可以是数集、点集、图形集或是其他类型的集合,判断它是哪种类型的集合主要根据代表元素的类型来判断.[典例] 有下面三个集合:①A ={x ∈R |y =x 2+1};②B ={y ∈R |y =x 2+1};③C ={(x ,y )|y =x 2+1,x ∈R ,y ∈R }.它们是不是相同集合,为什么?[分析] 分析各集合中代表元素是哪种类型以及对各元素所具有的属性作出判断. [解] 对于集合A ,其代表元素为x ,x 属于实数,因此它表示数集,又元素所满足的条件为y =x 2+1,它表示函数y =x 2+1中自变量x 的取值范围,因为函数y =x 2+1中自变量x 的取值范围是R ,故A =R ;对于集合B ,其代表元素为y ,y 属于实数,因此它表示数集,又元素所满足的条件为y =x 2+1,它表示函数y =x 2+1的函数值y ,故B ={y |y ≥1};对于集合C ,其代表元素为(x ,y ),它表示坐标平面中的点的坐标,又元素所满足的条件为y =x 2+1,它表示函数y =x 2+1图象上的点.综上所述,集合A 、B 、C 是不同的集合.[名师点评] 理解描述法表示的集合,关键是对符号语言所表达的含义要正确理解.认识它时,一要看集合的代表元素是什么,它反映了集合元素的类型,以此确定集合的类型;二要看代表元素所具有的属性,即它要满足什么条件,以此确定集合中元素的组成部分.[对应训练] 判断下列说法是否正确,正确的打“√”,错误的打“×”. (1)整数集Z ={x |x =n +1,n ∈Z }.( √ ) (2){y |y =x 2}≠{x |y =x }.( × )(3)两条直线y =2x 与y =x -1的交点构成集合M ,集合N =⎩⎨⎧⎭⎬⎫(x ,y )⎪⎪⎪⎩⎪⎨⎪⎧ y =2xy =x -1,则M =N .( √ )(4)M ={(x ,y )|x +y =4,x ,y ∈N *}={(0,4),(1,3),(2,2)}.( × )解析:(1)整数集是个无限集,x =n +1,n ∈Z 能表示任意一个整数,所有的整数也能写成这种形式,故(1)正确.{y |y =x 2}表示通过计算y =x 2得到的所有y 值的集合,也可以理解为二次函数y =x 2图象上所有点的纵坐标的取值集合,即{y |y =x 2}表示非负实数集;{x |y =x }表示满足y =x 的所有x 的取值集合,因此x 可以取任意非负实数,即{x |y =x }表示非负实数集.两者表示的数集完全一样,故(2)错误.集合N 是一个点集,描述集合M 采用的是自然语言,二者含义一样,故(3)正确.集合M 是由满足x +y =4,且x ,y 均为正整数的x ,y 构成的点集,易知M ={(1,3),(2,2),(3,1)},故(4)错误.1.1.2 集合间的基本关系[目标] 1.记住集合间的包含关系,会判断两个简单集合的关系;2.能写出给定集合的子集;3.记住集合相等与空集的含义以及空集与其他集合的关系.[重点] 集合间关系及集合间关系的判断;写出给定集合的子集;空集与其他集合的关系.[难点] 集合间的关系及应用.知识点一子集的有关概念[填一填]1.Venn图通常用平面上封闭曲线的内部代表集合.用Venn图表示集合的优点:形象直观.2.子集(1)自然语言:一般地,对于两个集合A,B,如果集合A的任何一个元素都是集合B 中的元素,我们就说这两个集合有包含关系,称集合A为集合B的子集.(2)符号语言:记作A⊆B(或B⊇A),读作“A含于B”(或“B包含A”).(3)图形语言:用Venn图表示.3.真子集如果集合A⊆B,但存在元素x∈B,且x∉A,我们称集合A是集合B的真子集,记作A B(B A).4.集合相等如果集合A是集合B的子集(A⊆B),且集合B是集合A的子集(B⊆A),此时,集合A 与集合B中的元素是一样的,因此集合A和集合B相等,记作A=B.[答一答]1.若A⊆B,则A中的元素是B中的元素的一部分,对吗?提示:不对,A中的元素是B的一部分或是B的全部.2.“∈”与“⊆”有什么区别?提示:“∈”表示元素与集合之间的关系,而“⊆”表示集合与集合之间的关系.3.“”与“<”一样吗?提示:不一样,“”表示集合与集合之间的关系;“<”表示两实数间的关系.4.如何判断两个集合是否相等?提示:方法一:根据两个集合中的元素是否完全相同进行判断;方法二:根据集合相等的定义,即是否同时满足A⊆B且B⊆A.知识点二空集[填一填]不含任何元素的集合叫做空集,记为∅,并规定:空集是任何集合的子集.[答一答]5.0,{0},∅,{∅}有何区别?提示:知识点三子集、真子集的性质[填一填]由子集、真子集和空集的概念可得:(1)空集是任何集合的子集,即∅⊆A;(2)任何一个集合是它自身的子集,即A⊆A;(3)空集只有一个子集,即它自身;(4)对于集合A,B,C,由A⊆B,B⊆C可得A⊆C;(5)对于集合A,B,C,由A B,B C可得A C.[答一答]6.(1)对于集合A、B、C,如果A⊆B,B⊆C,则A⊆C,若A B,B⊆C呢?(2)若∅A,则A≠∅对吗?提示:(1)A C.(2)对.类型一确定集合的子集、真子集[例1](1)已知集合M满足{1,2}M⊆{1,2,3,4,5},求所有满足条件的集合M.(2)填写下表,并回答问题:12n数及非空真子集的个数呢?[解](1)由题意可以确定集合M必含有元素1,2,且至少含有元素3,4,5中的一个,因此依据集合M的元素个数分类如下:含有3个元素:{1,2,3},{1,2,4},{1,2,5};含有4个元素:{1,2,3,4},{1,2,3,5},{1,2,4,5};含有5个元素:{1,2,3,4,5}.故满足条件的集合M为{1,2,3},{1,2,4},{1,2,5},{1,2,3,4},{1,2,3,5},{1,2,4,5},{1,2,3,4,5}.(2)}的所有子集的个数是212n是2n-1,非空真子集的个数是2n-2.1.有限集子集的确定问题,求解关键有三点:(1)确定所求集合;(2)合理分类,按照子集所含元素的个数依次写出,一般按元素从少到多的顺序逐个写出满足条件的集合;,(3)注意两个特殊的集合,即空集和集合本身.2.若集合A中有n个元素,则集合A有2n个子集,(2n-1)个真子集,(2n-1)个非空子集,(2n-2)个非空真子集,该结论可在选择题或填空题中直接使用.[变式训练1]试写出满足条件∅M{0,1,2}的所有集合M.解:因为∅M{0,1,2}.所以M为{0,1,2}的非空真子集.所以M中的元素个数为1或2,当M中只有1个元素时,M可以是{0},{1},{2};当M中有2个元素时,M可以是{0,1},{0,2},{1,2};所以M可以是{0},{1},{2},{0,1},{0,2},{1,2}.类型二集合间关系的判断及应用命题视角1:利用子集的定义判断集合间的关系[例2](1)已知集合M={x|x2-3x+2=0},N={0,1,2},则集合M与N的关系是() A.M=N B.N MC.M N D.N⊆M(2)已知集合A={x|x=3k,k∈Z},B={x|x=6k,k∈Z},则A与B之间最适合的关系是()A.A⊆B B.A⊇BC.A B D.A B[答案](1)C(2)D[解析](1)由已知得集合M={1,2}.由真子集的定义可知M N.(2)因为A中元素是3的整数倍,而B中的元素是3的偶数倍,所以集合B是集合A的真子集.判断两集合关系的步骤:(1)先对所给集合进行化简.(2)搞清两集合中元素的组成,也就是弄清楚集合由哪些元素组成,即把集合间关系的判断转化为相应集合元素之间的关系来判断.[变式训练2]指出下列各组集合之间的关系:(1)A={-1,1},B={(-1,-1),(-1,1),(1,-1),(1,1)};(2)A={x|x是等边三角形},B={x|x是等腰三角形};(3)M={x|x=2n-1,n∈N*},N={x|x=2n+1,n∈N*}.解:(1)集合A的代表元素是数,集合B的代表元素是有序实数对,故A与B之间无包含关系.(2)等边三角形是三边相等的三角形,等腰三角形是两边相等的三角形,故A B.(3)法1:两个集合都表示正奇数组成的集合,但由于n∈N*,因此集合M含有元素“1”,而集合N不含元素“1”,故N M.法2:由列举法知M={1,3,5,7,…},N={3,5,7,9,…},所以N M.命题视角2:利用Venn图理解集合间的关系[例3]能正确表示集合M={x|0≤x≤2}和集合N={x|x2-x=0}关系的Venn图是下图中的()[答案] B[解析]N={0,1}M.用封闭的曲线的内部表示集合,这种图形称为Venn图,是描述集合关系的图形语言,它可以是圆、矩形、椭圆等.通过图形可直观看出两个集合是否有公共元素,甚至还可以解决集合内元素的个数问题,在后续课的学习中Venn图的图解功能再进一步体会.[变式训练3] 已知集合A ={x |x 2=x ,x ∈R },集合A 与非空集合B 的关系如图所示,则满足条件的集合B 的个数为( B )A .1B .2C .3D .4 解析:∵A ={x |x 2=x ,x ∈R }={0,1},又B A ,且B 为非空集合,∴B 可以为{0}或{1}.故选B.命题视角3:利用数轴理解集合间的关系[例4] 已知A ={x |x <-2或x >3},B ={x |4x +m <0},当A ⊇B 时,求实数m 的取值范围.[分析] 解决本题可用数形结合的方法画出数轴来分析. [解] 集合A 在数轴上表示如图.要使A ⊇B ,则集合B 中的元素必须都是A 中的元素, 即B 中元素必须都位于阴影部分内,那么由4x +m <0,即x <-m 4知,-m4≤-2,即m ≥8,故实数m 的取值范围是m ≥8.在数轴上表示集合A 与B 时要注意,端点处都是空心点,所以当-m4=-2时,集合B 为{x |x <-2},仍满足A ⊇B .这种利用子集关系求参数的问题,借助数轴分析时,要验证参数能否取到端点值.[变式训练4] 已知集合A ={x |1≤x ≤2},B ={x |1≤x ≤a ,a ≥1}. (1)若AB ,求a 的取值范围;(2)若B ⊆A ,求a 的取值范围. 解:(1)若A B ,则集合A 中的元素都在集合B 中,且B 中有不在A 中的元素,则a >2.(2)若B ⊆A ,则集合B 中的元素都在集合A 中,则a ≤2.因为a ≥1,所以1≤a ≤2.1.已知集合A ={x |x 是平行四边形},B ={x |x 是矩形},C ={x |x 是正方形},D ={x |x 是菱形},则有( B )A .A ⊆B B .C ⊆B C .D ⊆CD .A ⊆D解析:正方形是邻边相等的矩形.2.已知集合M ={-1,0,1},N ={y |y =x 2,x ∈M },则( B ) A .MNB .NMC .M =ND .M ,N 的关系不确定解析:由题意,得N ={0,1},故N M .3.已知集合A {1,2,3},且A 中至少含有一个奇数,则这样的集合A 有5个.解析:∵A{1,2,3},∴A 中至多含有2个元素.∵A 中至少有一个奇数,∴A 可能为{1},{3},{1,2},{1,3},{2,3},共5个.4.已知∅{x |x 2-x +a =0},则实数a 的取值范围是a ≤14.解析:∵∅{x |x 2-x +a =0}.∴{x |x 2-x +a =0}≠∅,即方程x 2-x +a =0有解,∴Δ=1-4a ≥0,∴a ≤14.5.已知集合B ={-1,0,1},若A ⊆B ,试写出所有满足条件的集合A . 解:当A =∅时,满足条件;当A 是单元素集合时,满足条件的集合A 有{-1},{0},{1};当A 是含两个元素的集合时,满足条件的集合A 有{-1,0},{-1,1},{0,1}; 当A 是含三个元素的集合时,满足条件的集合A 为{-1,0,1}.故满足条件的集合A 有∅,{-1},{0},{1},{-1,0},{-1,1},{0,1},{-1,0,1}.——本课须掌握的三大问题1.写出一个集合的所有子集,首先要注意两个特殊子集:∅和自身;其次依次按含有一个元素的子集、含有两个元素的子集、含有三个元素的子集……写出子集.2.空集是任何集合的子集,是任何非空集合的真子集,在解决形如A ⊆B 类问题时, 需分类讨论A =∅与A ≠∅两种情况.3.要证明A =B ,只需要证明A ⊆B 且B ⊆A 成立即可.即可设任意x 0∈A ,证明x 0∈B 从而得出A ⊆B .又设任意y 0∈B ,证明y 0∈A ,从而得到B ⊆A ,进而证明得到A =B .。

人教A版新课标高中数学必修一教案 《基本不等式》

人教A版新课标高中数学必修一教案 《基本不等式》

《2.2基本不等式2a b +≤》 教材分析:“基本不等式” 是必修1的重点内容,它是在系统学习了不等关系和不等式性质,掌握了不等式性质的基础上对不等式的进一步研究,同时也是为了以后学习选修教材中关于不等式及其证明方法等内容作铺垫,起着承上启下的作用.利用基本不等式求最值在实际问题中应用广泛.同时本节知识又渗透了数形结合、化归等重要数学思想,有利于培养学生良好的思维品质.教学目标【知识与技能】1.学会推导并掌握基本不等式,理解这个基本不等式的几何意义,并掌握定理中的不等号“≥”取等号的条件是:当且仅当这两个数相等;2.2a b+≤;会应用此不等式求某些函数的最值;能够解决一些简单的实际问题 【过程与方法】通过实例探究抽象基本不等式; 【情感、态度与价值观】通过本节的学习,体会数学来源于生活,提高学习数学的兴趣.教学重难点【教学重点】2a b+的证明过程; 【教学难点】 1.2a b+≤等号成立条件; 2.2a b+≤求最大值、最小值.教学过程1.课题导入前面我们利用完全平方公式得出了一类重要不等式:一般地,∀a,b ∈R ,有a 2+b 2≥2ab ,当且仅当a =b 时,等号成立特别地,如果a >0,b >0,我们用√a ,√b 分别代替上式中的a ,b ,可得√ab ≤a+b 2①当且仅当a =b 时,等号成立.通常称不等式(1)为基本不等式(basic inequality ).其中,a+b 2叫做正数a ,b 的算术平均数,√ab 叫做正数a ,b 的几何平均数.基本不等式表明:两个正数的算术平均数不小于它们的几何平均数.思考: 上面通过考察a 2+b 2=2ab 的特殊情形获得了基本不等式,能否直接利用不等式的性质推导出基本不等式呢?下面我们来分析一下.2.讲授新课1)2a b+≤特别的,如果a >0,b >0,我们用分别代替a 、b ,可得a b +≥,(a>0,b>0)2a b+≤2)2a b+≤ 用分析法证明:要证2a b+≥ (1) 只要证 a +b ≥ (2) 要证(2),只要证 a +b - ≥0 (3)要证(3),只要证 ( - )2≥0 (4) 显然,(4)是成立的.当且仅当a =b 时,(4)中的等号成立.探究1: 在右图中,AB 是圆的直径,点C 是AB 上的一点,AC =a ,BC =b .过点C 作垂直于AB 的弦DE ,连接AD 、BD .你能利用这个图形得出基本不等式2a bab +≤的几何解释吗? 易证Rt △A CD ∽Rt △D CB ,那么CD 2=CA ·CB 即CD =ab .这个圆的半径为2ba +,显然,它大于或等于CD ,即ab ba ≥+2,其中当且仅当点C 与圆心重合,即a =b 时,等号成立. 因此:基本不等式2a bab +≤几何意义是“半径不小于半弦” 评述:1.如果把2ba +看作是正数a 、b 的等差中项,ab 看作是正数a 、b 的等比中项,那么该定理可以叙述为:两个正数的等差中项不小于它们的等比中项.2. 在数学中,我们称2ba +为a 、b 的算术平均数,称ab 为a 、b 的几何平均数.本节定理还可叙述为:两个正数的算术平均数不小于它们的几何平均数.【设计意图】老师引导,学生自主探究得到结论并证明,锻炼了学生的自主研究能力和研究问题的逻辑分析能力.例1 已知x >0,求x +1x 的最小值.分析:求x +1x 的最小值,就是要求一个y 0(=x 0+1x ),使∀x >0,都有x +1x ≥y .观察x +1x ,发现x ∙1x =1.联系基本不等式,可以利用正数x 和1x 的算术平均数与几何平均数的关系得到y 0=2. 解:因为x >0,所以x +1x ≥2√x ∙1x =2当且仅当x = 1x,即x 2=1,x =1时,等号成立,因此所求的最小值为2.在本题的解答中,我们不仅明确了∀x >0,有x +1x ≥2,而且给出了“当且仅当x =1x ,即=1,x =1时,等号成立”,这是为了说明2是x +1x(x >0)的一个取值,想一想,当y 0<2时,x +1x=y 0成立吗?这时能说y .是x +1x (x >0)的最小值吗?例2 已知x ,y 都是正数,求证:(1)如果积xy 等于定值P ,那么当x =y 时,和x +y 有最小值2√P ; (2)如果和x +y 等于定值S ,那么当x =y 时,积xy 有最大值14S 2.证明:因为x ,y 都是正数,所以x+y 2≥√xy .(1)当积xy 等于定值P 时,x+y 2≥√P ,所以x +y ≥2√P ,当且仅当x =y 时,上式等号成立.于是,当x =y 时,和x +y 有最小值2√P . (2)当和x +y 等于定值S 时,√xy ≤S2,所以xy ≤14S 2,当且仅当x =y 时,上式等号成立.于是,当x =y 时,积xy 有最大值14S 2.例3 (1)用篱笆围一个面积为100m 2的矩形菜园,当这个矩形的边长为多少时,所用篱笆最短?最短篱笆的长度是多少?(2)用一段长为36m 的篱笆围成一个矩形菜园,当这个矩形的边长为多少时,菜园的面积最大?最大面积是多少?分析:(1)矩形菜园的面积是矩形的两邻边之积,于是问题转化为:矩形的邻边之积为定值,边长多大时周长最短.(2)矩形菜园的周长是矩形两邻边之和的2倍,于是问题转化为:矩形的邻边之和为定值,边长多大时面积最大.解:设矩形菜园的相邻两条边的长分别为xm,ym,篱笆的长度为2(x+y)m.(1)由已知得xy=100.由x+y2≥√xy,可得x+y≥2√xy=20,所以2(x+y)≥40,当且仅当x=y=10时,上式等号成立因此,当这个矩形菜园是边长为10m的正方形时,所用篱笆最短,最短篱笆的长度为40m.(2)由已知得2(x+y)=36,矩形菜园的面积为xy m2.由√xy≤x+y2=182=9,可得xy≤81,当且仅当x=y=9时,上式等号成立.因此,当这个矩形菜园是边长为9m的正方形时,菜园的面积最大,最大面积是81m2. 例4某工厂要建造一个长方体形无盖贮水池,其容积为4800m2,深为3m.如果池底每平方米的造价为150元,池壁每平方米的造价为120元,那么怎样设计水池能使总造价最低?最低总造价是多少?分析:贮水池呈长方体形,它的高是3m,池底的边长没有确定.如果池底的边长确定了,那么水池的总造价也就确定了.因此,应当考察池底的边长取什么值时,水池的总造价最低.解:设贮水池池底的相邻两条边的边长分别为xm ,ym ,水池的总造价为2元.根据题意,有z =150×48003+120(2×3x +2×3y )=240000+720(x +y ).由容积为4800m 3,可得3xy =4800,因此xy =1600.所以z ≥240000+720×2√xy ,当x =y =40时,上式等号成立,此时z =297600.所以,将贮水池的池底设计成边长为40m 的正方形时总造价最低,最低总造价是297600元. 【设计意图】例题讲解,学以致用. 3.随堂练习1.已知a 、b 、c 都是正数,求证:(a +b )(b +c )(c +a )≥8abc 分析:对于此类题目,选择定理:ab ba ≥+2(a >0,b >0)灵活变形,可求得结果. 解:∵a ,b ,c 都是正数 ∴a +b ≥2√ab >0 b +c ≥2√bc >0 c +a ≥2√ca >0∴(a +b )(b +c )(c +a )≥2√ab ·2√bc ·2√ca =8abc 即(a +b )(b +c )(c +a )≥8abc . 【设计意图】讲练结合,熟悉新知. 4.课时小结本节课,我们学习了重要不等式a 2+b 2≥2ab ;两正数a 、b 的算术平均数(a+b 2),几何平均数(√ab )及它们的关系(a+b 2≥√ab ).它们成立的条件不同,前者只要求a 、b 都是实数,而后者要求a 、b 都是正数.它们既是不等式变形的基本工具,又是求函数最值的重要工具(下一节我们将学习它们的应用).我们还可以用它们下面的等价变形来解决问题:ab ≤a2+b22,ab≤(a+b2)2.我们用两个正数的算术平均数与几何平均数的关系顺利解决了函数的一些最值问题.在用均值不等式求函数的最值,是值得重视的一种方法,但在具体求解时,应注意考查下列三个条件:(1)函数的解析式中,各项均为正数;(2)函数的解析式中,含变数的各项的和或积必须有一个为定值;(3)函数的解析式中,含变数的各项均相等,取得最值即用均值不等式求某些函数的最值时,应具备三个条件:一正二定三取等.教学反思:略。

新课标人教版A版数学必修1全套教案

新课标人教版A版数学必修1全套教案

人教版高中数学必修1精品教案课题:集合的含义与表示(1)课型:新授课教学目标:(1)了解集合、元素的概念,体会集合中元素的三个特征;(2)理解元素与集合的“属于”和“不属于”关系;(3)掌握常用数集及其记法;教学重点:掌握集合的基本概念;教学难点:元素与集合的关系;教学过程:一、引入课题军训前学校通知:8月15日8点,高一年级在体育馆集合进行军训动员;试问这个通知的对象是全体的高一学生还是个别学生?在这里,集合是我们常用的一个词语,我们感兴趣的是问题中某些特定(是高一而不是高二、高三)对象的总体,而不是个别的对象,为此,我们将学习一个新的概念——集合(宣布课题),即是一些研究对象的总体。

阅读课本P2-P3内容二、新课教学(一)集合的有关概念1.集合理论创始人康托尔称集合为一些确定的、不同的东西的全体,人们能意识到这些东西,并且能判断一个给定的东西是否属于这个总体。

2.一般地,我们把研究对象统称为元素(element),一些元素组成的总体叫集合(set),也简称集。

3.思考1:判断以下元素的全体是否组成集合,并说明理由:(1)大于3小于11的偶数;(2)我国的小河流;(3)非负奇数;(4)方程210x+=的解;(5)某校2007级新生;(6)血压很高的人;(7)著名的数学家;(8)平面直角坐标系内所有第三象限的点(9)全班成绩好的学生。

对学生的解答予以讨论、点评,进而讲解下面的问题。

4.关于集合的元素的特征(1)确定性:设A是一个给定的集合,x是某一个具体对象,则或者是A 的元素,或者不是A的元素,两种情况必有一种且只有一种成立。

(2)互异性:一个给定集合中的元素,指属于这个集合的互不相同的个体(对象),因此,同一集合中不应重复出现同一元素。

(3)无序性:给定一个集合与集合里面元素的顺序无关。

(4)集合相等:构成两个集合的元素完全一样。

5.元素与集合的关系;(1)如果a是集合A的元素,就说a属于(belong to)A,记作:a∈A(2)如果a 不是集合A 的元素,就说a 不属于(not belong to )A ,记作:a ∉A例如,我们A 表示“1~20以内的所有质数”组成的集合,则有3∈A4∉A ,等等。

[数学]新课程人教A版必修1全部教案

[数学]新课程人教A版必修1全部教案

[数学]新课程人教A版必修1全部教案第一章集合与函数概念§1.1集合1.1.1集合的含义与表示(第一课时)教学时间:2021年8月26日星期四教学班级:高一(11、12)班教学目标:1.认知子集的含义。

2.了解元素与集合的表示方法及相互关系。

3.熟记有关数集的专用符号。

4.培养学生认识事物的能力。

教学重点:子集含义教学难点:集合含义的理解教学方法:尝试指导法教学过程:引入问题(i)明确提出问题问题1:班级存有20名男生,16名女生,问班级一共多少人?问题2:某次运动会上,班级有20人参加田赛,16人参加径赛,问一共多少人参加比赛?讨论问题:按小组讨论。

概括总结:问题2已无法用段小宇的科学知识予以表述,这就是与子集有关的问题,因此需以子集的语言予以叙述(板书标题)。

复习问题问题3:在小学和初中我们学过哪些集合?(数集,点集)(如自然数的集合,有理数的集合,不等式x?7?3的解的集合,到一个定点的距离等于定长的点的集合,到一条线段的两个端点距离相等的点的集合等等)。

(ii)讲授新课1.子集含义观测以下实例(1)1~20以内的所有质数;(2)我国从1991~2021年的13年内所升空的所有人造卫星;(3)金星汽车厂2021年生产的所有汽车;(4)2021年1月1日之前与我国创建外交关系的所有国家;(5)所有的正方形;(6)至直线l的距离等同于定长d的所有的点;(7)方程x?3x?2?0的所有实数根;(8)银川九中2021年8月入学的高一学生全体。

通过以上实例,表示:(1)含义:通常地,我们把研究对象泛称为元素(element),把一些元素共同组成的总体叫作子集(set)(缩写为集)。

说明:在初中几何中,点,线,面都是原始的,不定义的概念,同样集合也是原始的,不定义的概念,只可描述,不可定义。

(2)则表示方法:子集通常用大括号{}或大写的拉丁字母a,b,c?则表示,而元素用小写的拉丁字母a,b,c?则表示。

新课标人教A版高中数学必修1教案完整版

新课标人教A版高中数学必修1教案完整版

第一章 集合与函数概念§1.1.1集合的含义与表示一. 教学目标:l.知识与技能(1)通过实例,了解集合的含义,体会元素与集合的属于关系;(2)知道常用数集及其专用记号;(3)了解集合中元素的确定性.互异性.无序性;(4)会用集合语言表示有关数学对象;(5)培养学生抽象概括的能力.2. 过程与方法(1)让学生经历从集合实例中抽象概括出集合共同特征的过程,感知集合的含义.(2)让学生归纳整理本节所学知识.3. 情感.态度与价值观使学生感受到学习集合的必要性,增强学习的积极性.二. 教学重点.难点重点:集合的含义与表示方法.难点:表示法的恰当选择.三. 学法与教学用具1. 学法:学生通过阅读教材,自主学习.思考.交流.讨论和概括,从而更好地完成本节课的教学目标.2. 教学用具:投影仪.四. 教学思路(一)创设情景,揭示课题1.教师首先提出问题:在初中,我们已经接触过一些集合,你能举出一些集合的例子吗?引导学生回忆.举例和互相交流. 与此同时,教师对学生的活动给予评价.2.接着教师指出:那么,集合的含义是什么呢?这就是我们这一堂课所要学习的内容.(二)研探新知1.教师利用多媒体设备向学生投影出下面9个实例:(1)1—20以内的所有质数;(2)我国古代的四大发明;(3)所有的安理会常任理事国;(4)所有的正方形;(5)海南省在2004年9月之前建成的所有立交桥;(6)到一个角的两边距离相等的所有的点;(7)方程2560x x -+=的所有实数根;(8)不等式30x ->的所有解;(9)国兴中学2004年9月入学的高一学生的全体.2.教师组织学生分组讨论:这9个实例的共同特征是什么?3.每个小组选出——位同学发表本组的讨论结果,在此基础上,师生共同概括出9个实例的特征,并给出集合的含义.一般地,指定的某些对象的全体称为集合(简称为集).集合中的每个对象叫作这个集合的元素.4.教师指出:集合常用大写字母A ,B ,C ,D ,…表示,元素常用小写字母,,,a b c d …表示.(三)质疑答辩,排难解惑,发展思维1.教师引导学生阅读教材中的相关内容,思考:集合中元素有什么特点?并注意个别辅导,解答学生疑难.使学生明确集合元素的三大特性,即:确定性.互异性和无序性.只要构成两个集合的元素是一样的,我们就称这两个集合相等.2.教师组织引导学生思考以下问题:判断以下元素的全体是否组成集合,并说明理由:(1)大于3小于11的偶数;(2)我国的小河流.让学生充分发表自己的建解.3. 让学生自己举出一些能够构成集合的例子以及不能构成集合的例子,并说明理由.教师对学生的学习活动给予及时的评价.4.教师提出问题,让学生思考(1)如果用A 表示高—(3)班全体学生组成的集合,用a 表示高一(3)班的一位同学,b 是高一(4)班的一位同学,那么,a b 与集合A 分别有什么关系?由此引导学生得出元素与集合的关系有两种:属于和不属于.如果a 是集合A 的元素,就说a 属于集合A ,记作a A ∈.如果a 不是集合A 的元素,就说a 不属于集合A ,记作a A ∉.(2)如果用A 表示“所有的安理会常任理事国”组成的集合,则中国.日本与集合A 的关系分别是什么?请用数学符号分别表示.(3)让学生完成教材第6页练习第1题.5.教师引导学生回忆数集扩充过程,然后阅读教材中的相交内容,写出常用数集的记号.并让学生完成习题1.1A 组第1题.6.教师引导学生阅读教材中的相关内容,并思考.讨论下列问题:(1)要表示一个集合共有几种方式?(2)试比较自然语言.列举法和描述法在表示集合时,各自有什么特点?适用的对象是什么?(3)如何根据问题选择适当的集合表示法?使学生弄清楚三种表示方式的优缺点和体会它们存在的必要性和适用对象。

人教版高中数学a版必修一教案

人教版高中数学a版必修一教案

人教版高中数学a版必修一教案教案标题:人教版高中数学A版必修一教案教案概述:本教案旨在帮助高中数学教师设计一堂关于必修一内容的教学活动。

根据人教版高中数学A版教材的要求,本教案将围绕以下主题进行教学:二次函数与一元二次方程。

通过引导学生探索、实践和互动,培养学生的数学思维能力和解决问题的能力。

教学目标:1. 理解二次函数的定义、性质和图像特征;2. 掌握二次函数的基本变换;3. 熟练运用一元二次方程求解实际问题;4. 培养学生的数学建模能力和解决问题的能力。

教学重点:1. 理解二次函数的定义和性质;2. 掌握二次函数的基本变换;3. 运用一元二次方程解决实际问题。

教学难点:1. 理解二次函数的图像特征和性质;2. 运用一元二次方程解决实际问题。

教学准备:1. 人教版高中数学A版教材及教辅资料;2. 教学投影仪和计算机;3. 准备相关的教学示例和练习题;4. 准备学生小组合作的活动材料。

教学过程:一、导入(5分钟)1. 利用教学投影仪展示一幅二次函数的图像,引起学生的兴趣和好奇心;2. 提问:你们对二次函数有什么了解?你们知道二次函数的定义是什么吗?二、知识讲解与示例演示(20分钟)1. 利用教学投影仪展示二次函数的定义和性质,讲解二次函数的图像特征;2. 通过几个具体的示例,演示二次函数的基本变换;3. 引导学生思考并回答问题,巩固他们对二次函数的理解。

三、小组合作活动(30分钟)1. 将学生分成小组,每个小组由3-4名学生组成;2. 每个小组选择一个实际问题,设计一个与二次函数和一元二次方程相关的数学建模问题;3. 学生小组合作解决问题,并准备展示他们的解决方案;4. 学生小组轮流展示他们的解决方案,其他小组提出问题和建议。

四、课堂讨论与总结(15分钟)1. 学生小组展示结束后,进行全班讨论,让学生分享他们的观点和收获;2. 教师总结本节课的重点和难点,强调学生需要继续巩固和拓展的知识点;3. 布置相关的作业,巩固学生对二次函数和一元二次方程的理解和应用。

新课标人教A版高中数学必修1全册教案完整版

新课标人教A版高中数学必修1全册教案完整版

第一章集合与函数概念一. 课标要求:本章将集合作为一种语言来学习,使学生感受用集合表示数学内容时的简洁性、准确性,帮助学生学会用集合语言描述数学对象,发展学生运用数学语言进行交流的能力.函数是高中数学的核心概念,本章把函数作为描述客观世界变化规律的重要数学模型来学习,强调结合实际问题,使学生感受运用函数概念建立模型的过程与方法,从而发展学生对变量数学的认识.1. 了解集合的含义,体会元素与集合的“属于”关系,掌握某些数集的专用符号.2. 理解集合的表示法,能选择自然语言、图形语言、集合语言(列举法或描述法)描述不同的具体问题,感受集合语言的意义和作用.3、理解集合之间包含与相等的含义,能识别给定集合的子集,培养学生分析、比较、归纳的逻辑思维能力.4、能在具体情境中,了解全集与空集的含义.5、理解两个集合的并集与交集的含义,会求两个简单集合的交集与并集, 培养学生从具体到抽象的思维能力.6. 理解在给定集合中,一个子集的补集的含义,会求给定子集的补集.7. 能使用Venn图表达集合的关系及运算,体会直观图示对理解抽象概念的作用.8. 学会用集合与对应的语言来刻画函数,理解函数符号y=f(x)的含义;了解函数构成的三要素,了解映射的概念;体会函数是一种刻画变量之间关系的重要数学模型,体会对应关系在刻画函数概念中的作用;会求一些简单函数的定义域和值域,并熟练使用区间表示法.9. 了解函数的一些基本表示法(列表法、图象法、分析法),并能在实际情境中,恰当地进行选择;会用描点法画一些简单函数的图象.10. 通过具体实例,了解简单的分段函数,并能简单应用.11. 结合熟悉的具体函数,理解函数的单调性、最大(小)值及其几何意义,了解奇偶性和周期性的含义,通过具体函数的图象,初步了解中心对称图形和轴对称图形.12. 学会运用函数的图象理解和研究函数的性质,体会数形结合的数学方法.13. 通过实习作业,使学生初步了解对数学发展有过重大影响的重大历史事件和重要人物,了解生活中的函数实例.二. 编写意图与教学建议1. 教材不涉及集合论理论,只将集合作为一种语言来学习,要求学生能够使用最基本的集合语言表示有关的数学对象,从而体会集合语言的简洁性和准确性,发展运用数学语言进行交流的能力. 教材力求紧密结合学生的生活经验和已有数学知识,通过列举丰富的实例,使学生了解集合的含义,理解并掌握集合间的基本关系及集合的基本运算.教材突出了函数概念的背景教学,强调从实例出发,让学生对函数概念有充分的感性基础,再用集合与对应语言抽象出函数概念,这样比较符合学生的认识规律,同时有利于培养学生的抽象概括的能力,增强学生应用数学的意识,教学中要高度重视数学概念的背景教学.2. 教材尽量创设使学生运用集合语言进行表达和交流的情境和机会,并注意运用Venn图表达集合的关系及运算,帮助学生借助直观图示认识抽象概念. 教学中,要充分体现这种直观的数学思想,发挥图形在子集以及集合运算教学中的直观作用。

高中数学必修1教案 最新人教版高一数学必修一教案(大全(优秀11篇)

高中数学必修1教案 最新人教版高一数学必修一教案(大全(优秀11篇)

高中数学必修1教案最新人教版高一数学必修一教案(大全(优秀11篇)高中数学必修一教案全套篇一本节课力的合成,是在学生了解力的基本性质和常见几种力的基础上,通过等效替代思想,研究多个力的合成方法,是对前几节内容的深化。

本节重点介绍力的合成法则——平行四边形定则,但实际这是所有矢量运算的共同工具,为学习其他矢量的运算奠定了基础。

更重要的是,力的合成是解决力学问题的基础,对今后牛顿运动定律、平衡问题、动量与能量问题的理解和应用都会产生重要影响。

因此,这节课承前启后,在整个高中物理学习中占据着非常重要的地位。

二、教学目标定位为了让学生充分进行实验探究,体验获取知识的过程,本节内容分两课时来完成,今天我说课的内容为本节内容的第一课时。

根据上述教材分析,考虑到学生的实际情况,在本节课的教学过程中,我制定了如下教学目标:一、知识与技能.理解合力、分力、力的合成的概念。

理解力的合成本质上是从等效的角度进行力的替代。

.探究求合力的方法——力的平行四边形定则,会用平行四边形定则求合力。

二、过程与方法.通过学习合力和分力的概念,了解物理学常用的方法——等效替代法。

.通过实验探究方案的设计与实施,体验科学探究的过程。

三、情感态度与价值观.培养学生的合作精神,激发学生学习兴趣,形成良好的学习方法和习惯。

.培养认真细致、实事求是的实验态度。

根据以上分析确定本节课的重点与难点如下:一、重点.合力和分力的概念以及它们的关系。

.实验探究力的合成所遵循的法则。

二、难点平行四边形定则的理解和运用。

三、重、难点突破方法——教法简介本堂课的重、难点为实验探究力的合成所遵循的法则——平行四边形定则,为了实现重难点的突破,让学生真正理解平行四边形定则,就要让学生亲自体验规律获得的过程。

因此,本堂课在学法上采用学生自主探究的实验归纳法——通过重现获取知识和方法的思维过程,让学生亲自去体验、探究、归纳总结。

体现学生主体性。

实验归纳法的步骤如下。

新课标人教A版高中数学必修一课程标准细化

新课标人教A版高中数学必修一课程标准细化

第一章集合与函数概念1.1.1集合的含义与表示一. 教学目标:1、通过九个实例,了解集合的含义,体会元素与集合的属于关系;2、知道实数、整数、自然数等数集及其专用记号即R、 Z、 N等;3、质疑答辩,排难解惑环节使了解集合中元素的确定性.互异性.无序性;4、通过巩固深化,反馈矫正环节使学生会用集合语言表示有关数学对象;培养学生抽象概括的能力.二. 教学重点.难点:1、集合的含义与表示方法.2、表示法的恰当选择.1.1.2集合间的基本关系一. 教学目标:1、通过实例使学生了解集合之间包含与相等的含义,能识别给定集合的子集。

2、通过具体实例使学生理解子集、真子集、空集的概念。

3、会用集合符号表示集合之间的关系。

二.教学重点.难点1、集合间的包含与相等关系,子集与其子集的概念.2、难点是属于关系与包含关系的区别.1.1.3 集合的基本运算一. 教学目标:1、通过实例使学生理解两个集合的并集与交集的含义,会求两个简单集合的交集与并集.2、通过实例使学生理解全集、补集的含义,会求给定子集的补集.3、通过本节课的学习使学生进一步树立数形结合的思想、培养学生用对立的方法分析问题解决问题。

二.教学重点.难点1、交集与并集,全集与补集的概念.2、理解交集与并集的概念.符号之间的区别与联系.1.2.1函数的概念一、教学目标1、通过实例,进一步体会函数是描述变量之间的依赖关系的重要数学模型,在此基础上学习用集合与对应的语言来刻画函数,体会对应关系在刻画函数概念中的作用;2、了解构成函数的要素;3、会求一次函数、二次函数、反比例函数等简单函数的定义域和值域;4、能够正确使用“区间”的符号表示集合。

如函数的定义域等。

二、教学重点与难点:1、理解函数的模型化思想,用集合与对应的语言来刻画函数;2、符号“y=f(x)”的含义,函数定义域和值域的区间表示;1.2.2函数的表示法一.教学目标1、通过实例明确函数的三种表示方法:图像法、图表法、解析法。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

教学过程及方法
教学内容教学环节与活动设计例2、已知A={d
d2
1,
1,1+
+},B={2
,
,1q
q},若A=B,则集合
C={q
d,}= .
例3、已知},
3
2
1
|
{
},
3
1|
{-


-
=


=a
x
a
x
B
x
x
A
若A
B⊆,求实数a的范围.
课堂练习:
1.满足条件{1,2}M⊆{1,2,3,4,5}的集合M有几个?
2、课本第7页练习




子集、真子集的概念




备课人授课时间
学设计课堂练习:
1.已知A={}3<x x,B={}a
x
x<.(1)若B⊆A,求a的取值范围;(2)若A
C
R
B
C
R
,求a的取值范围




全集以及补集的概念




备课人授课时间

学设计(三)质疑答辩,发展思维。

根据函数图象说明函数的单调性.
例1 如图是定义在区间[-5,5]上的函数y=f(x),根据
图象说出函数的单调区间,以及在每一单调区间上,它
是增函数还是减函数?
例2 物理学中的玻意耳定律P=
V
k
(k为正常数)告诉
我们,对于一定量的气体,当其体积V减少时,压强P
将增大。

试用函数的单调性证明之。

分析:按题意,只要证明函数P=
V
k
在区间(0,+∞)
上是减函数即可。

师:判断函数单调性的方法步

利用定义证明函数f(x)在给定
的区间D上的单调性的一般
步骤:
①任取x1,x2∈D,且x1<x2;
②作差f(x1)-f(x2);
③变形(通常是因式分解和配
方);
教学小结
函数的单调性一般是先根据图象判断,再利用定义证明.画函数图象通常借助计算机,求函数的单调区间时必须要注意函数的定义域,单调性的证明一般分五步:取值→作差→变形→定号→下结论




备课人授课时间
()1
f x x =
-
1
01,
=
a a ∵a>0,且。

相关文档
最新文档