1 典型环节的电路模拟

合集下载

【自控原理实验】实验一 典型环节的电路模拟与软件仿真研究

【自控原理实验】实验一 典型环节的电路模拟与软件仿真研究

实验一典型环节的电路模拟与软件仿真研究一.实验目的1.通过实验熟悉并掌握实验装置和上位机软件的使用方法。

2.通过实验熟悉各种典型环节的传递函数及其特性,掌握电路模拟和软件仿真研究方法。

二.实验内容1.设计各种典型环节的模拟电路。

2.完成各种典型环节模拟电路的阶跃特性测试,并研究参数变化对典型环节阶跃特性的影响。

3.在MA TLAB软件上,填入各个环节的实际(非理想)传递函数参数,完成典型环节阶跃特性的软件仿真研究,并与电路模拟研究的结果作比较。

三.实验步骤1.熟悉实验箱,利用实验箱上的模拟电路单元,设计并连接各种典型环节(包括比例、积分、比例积分、比例微分、比例积分微分以及惯性环节)的模拟电路。

接线时要注意:先断电,再接线。

接线时要注意不同环节、不同测试信号对运放锁零的要求。

(U3单元的O1接被测对象的输入、G接G1、U3单元的I1接被测对象的输出)。

2.利用实验设备完成各典型环节模拟电路的阶跃特性测试,并研究参数变化对典型环节阶跃特性的影响。

首先必须在熟悉上位机界面的操作,充分利用上位机提供的虚拟示波器与信号发生器功能。

为了利用上位机提供的虚拟示波器与信号发生器功能。

接线完成,经检查无误,再给实验箱上电后,启动上位机程序,进入主界面。

软件界面上的操作步骤如下:①按通道接线情况:通过上位机界面中“通道选择”选择I1、I2路A/D通道作为被测环节的检测端口,选择D/A通道的O1(“测试信号1”)作为被测对象的信号发生端口.不同的通道,图形显示控件中波形的颜色将不同。

②硬件接线完毕后,检查USB口通讯连线和实验箱电源后,运行上位机软件程序,如果有问题请求指导教师帮助。

③进入实验模式后,先对显示模式进行设置:选择“X-t模式”;选择“T/DIV”为1s/1HZ。

④完成上述实验设置,然后设置实验参数,在界面的右边可以设置系统测试信号参数,选择“测试信号”为“周期阶跃信号”,选择“占空比”为50%,选择“T/DIV”为“1000ms”,选择“幅值”为“3V”,可以根据实验需要调整幅值,以得到较好的实验曲线,将“偏移”设为“0”。

典型环节

典型环节

典型环节的电路模拟1.比例环节当输入端输入一个单位阶跃信号,且比例系数为K时的响应曲线如下:K=1K=2 比例环节的特点是输出不失真、不延迟、成比例地复现输入信号的变化。

KSUiSUoSG==)()()(2.积分环节当输入端输入一个单位阶跃信号,积分系数为T时的输出响应曲线如下图:T=1T=0.1积分环的输出量对时间的积分成正比。

TsSUiSUosG1)()()(==当输入端输入一个单位阶跃信号,且比例系数为K,积分系数为T时的PI输出响应曲线如下图:K=1 T=1K=1 T=0.1这种环节能改善控制系统的稳态性能。

)11(1)()()(21212CSRRRCSRCSRSUiSUosG+=+==当输入端输入一个单位阶跃信号,且比例系数为K为2,微分系数为T时的PD输出响应曲线如下图:K=1 T=0.1K=1 T=1这种环节能预示输入信号的变化趋势,监测动态行为。

)1()1()(112CSRRRTSKsG+=+=5.比例积分微分(PID)环节当输入端输入一个单位阶跃信号,且比例系数为K,微分系数为TD、积分系数为TI时的PID输出响应曲线如下图:K=2 T=1K=1.1 T=0.1STSTKpsG D++=11)(6.惯性环节当输入端输入一个单位阶跃信号,且比例系数为K为1,时间常数为T时的输出响应曲线如下图:K=1 T=1K=1 T=0.1这种环节的响应特点是输出量延缓地反映输入量的变化规律。

1)()()(1+==STKSUiSUosG。

THBCC-1实验指导书(自控原理)

THBCC-1实验指导书(自控原理)

第二部分控制理论实验一典型环节的电路模拟与软件仿真一、实验目的1.熟悉并掌握THBCC-1型信号与系统·控制理论及计算机控制技术实验平台的结构组成及上位机软件的使用方法。

2.通过实验进一步了解熟悉各典型环节的模拟电路及其特性,并掌握典型环节的软件仿真研究。

3.测量各典型环节的阶跃响应曲线,了解相关参数的变化对其动态特性的影响。

二、实验设备1.THBCC-1型信号与系统·控制理论及计算机控制技术实验平台2.PC机1台(含上位机软件) 37针通信线1根3.双踪慢扫描示波器1台(可选)三、实验内容1.设计并构建各典型环节的模拟电路;2.测量各典型环节的阶跃响应,并研究参数的变化对其输出响应的影响;3.在上位机界面上,填入各典型环节数学模型的实际参数,据此完成它们对阶跃响应的软件仿真,并与模拟电路测试的结果相比较。

四、实验原理自控系统是由比例、积分、惯性环节等按一定的关系连接而成。

熟悉这些惯性环节对阶跃输入的响应,对分析线性系统将是十分有益的。

在附录中介绍了典型环节的传递函数、理论上的阶跃响应曲线和环节的模拟电路图,以供参考。

五、实验步骤1.熟悉实验台,利用实验台上的模拟电路单元,构建所设计 (可参考本实验附录)并各典型环节(包括比例、积分、比例积分、比例微分、比例积分微分以及惯性环节)的模拟电路。

待检查电路接线无误后,接通实验台的电源总开关,并开启±5V,±15V直流稳压电源。

2.对相关的实验单元的运放进行调零(令运放各输入端接地,调节调零电位器,使其输出端为0V )注意:积分、比例积分、比例积分微分实验中所用到的积分环节单元不需要锁零(令积分电容放电)时,需将锁零按钮弹开;使用锁零按扭时需要共地,只需要把信号发生器的地和电源地用导线相连。

3.测试各典型环节的阶跃响应,并研究参数的变化对输出响应的影响1) 不用上位机时,将实验平台上 “阶跃信号发生器”单元的输出端与相关电路的输入端相连,选择“正输出”然后按下按钮,产生一个阶跃信号(用万用表测试其输出电压,并调节电位器,使其输出电压为“1”V),用示波器x-t 显示模式观测该电路的输入与输出曲线。

自动控制原理实验一 典型环节的电路模拟与软件仿真

自动控制原理实验一  典型环节的电路模拟与软件仿真

实验一 典型环节的电路模拟与软件仿真一、实验目的1.熟悉THSSC-4型信号与系统·控制理论·计算机控制技术实验箱及上位机软件的使用;2.熟悉各典型环节的阶跃响应特性及其电路模拟;3.测量各典型环节的阶跃响应曲线,并了解参数变化对其动态特性的影响。

二、实验设备1.THSSC-4型信号与系统·控制理论·计算机控制技术实验箱;2.PC 机一台(含上位机软件)、USB 数据采集卡、37针通信线1根、16芯数据排线、USB 接口线;3.双踪慢扫描示波器一台(可选); 三、实验内容1.设计并组建各典型环节的模拟电路;2.测量各典型环节的阶跃响应,并研究参数变化对其输出响应的影响;3.在上位机仿真界面上,填入各典型环节数学模型的实际参数,据此完成它们对阶跃响应的软件仿真,并与模拟电路测试的结果相比较。

四、实验原理自控系统是由比例、积分、微分、惯性等环节按一定的关系组建而成。

熟悉这些典型环节的结构及其对阶跃输入的响应,将对系统的设计和分析是十分有益的。

本实验中的典型环节都是以运放为核心元件构成,其原理框图 如图1-1所示。

图中Z 1和Z 2表示由R 、C 构成的复数阻抗。

1.比例(P )环节 图1-1比例环节的特点是输出不失真、不延迟、成比例地复现输出信号的变化。

它的传递函数与方框图分别为:K S U S U S G i O ==)()()(当U i (S)输入端输入一个单位阶跃信号,且比例系数为K 时的响应曲线如图1-2所示。

图1-22.积分(I )环节积分环节的输出量与其输入量对时间的积分成正比。

它的传递函数与方框图分别为:TsS U S U s G i O 1)()()(==设U i (S)为一单位阶跃信号,当积分系数为T 时的响应曲线如图1-3所示。

图1-33.比例积分(PI)环节比例积分环节的传递函数与方框图分别为:)11(11)()()(21211212CSR R R CS R R R CS R CS R S U S U s G i O +=+=+==其中T=R 2C ,K=R 2/R 1设U i (S)为一单位阶跃信号,图1-4示出了比例系数(K)为1、积分系数为T 时的PI 输出响应曲线。

典型环节的电路模拟实验

典型环节的电路模拟实验

典型环节的电路模拟实验一、实验目的1.熟悉并掌握YTZKJ-2型 信号与系统·控制理论及计算机控制技术实验装置的结构组成及使用方法。

2.通过实验进一步了解熟悉各典型环节的模拟电路及其特性。

3.测量各典型环节的阶跃响应曲线,了解相关参数的变化对其动态特性的影响。

二、实验设备1.YTZKJ-2型 信号与系统·控制理论及计算机控制技术实验装置 2.双踪慢扫描示波器1台(可选) 三、实验内容1.设计并构建各典型环节的模拟电路;2.测量各典型环节的阶跃响应,并研究参数的变化对其输出响应的影响; 四、实验原理自控系统是由比例、积分、惯性环节等按一定的关系连接而成。

熟悉这些惯性环节对阶跃输入的响应,对分析线性系统将是十分有益的。

1.比例(P )环节比例环节的传递函数与方框图分别为K )s (u )s (u )s (G i o ==其模拟电路(后级为反相器)和单位阶跃响应曲线分别如图1-1所示。

其中K=12R R ,这里取 R 1=100K ,R 2=200K ,R 0=200K 。

通过改变电路中R1、R2的阻值,可改变放大系数。

图1-1 比例环节的模拟电路图和单位阶跃响应曲线 2.积分(I)环节积分环节的传递函数为 Ts1(s)u (s)u G(s)i o ==图1-2积分环节的方框图对应的方框图如图1-2所示。

它的模拟电路和单位阶跃响应分别如图1-3所示图1-3积分环节的模拟电路图和单位阶跃响应曲线其中 T=RC ,这里取 C=10uF,R=100K,R 0=200K 。

通过改变R 、C 的值可改变响应曲线的上升斜率。

3.比例积分(PI)环节积分环节的传递函数与方框图分别为)CSR 1(1R R CSR 1R R CSR 1CS R ui(s)uo(s)G(s)21211212+=+=+==其模拟电路和单位阶跃响应分别如图1-4所示. 其中12R R K =,T=R 1C ,这里取C=10uF, R 1=100K ,R 2=100K ,R 0=200K 。

实验一--典型环节的电路模拟

实验一--典型环节的电路模拟

自动控制原理实验报告院(系):能源与环境学院专业:热能与动力工程姓名:周宇盛学号: 03010130 同组人员:王琪耀马晓飞实验时间: 2012 年 10 月 23 日实验名称:典型环节的电路模拟一、实验目的1. 熟悉THBDC-1型信号与系统·控制理论及计算机控制技术实验平台及上位机软件的使用;2. 熟悉各典型环节的阶跃响应特性及其电路模拟;3. 测量各典型环节的阶跃响应曲线,并了解参数变化对其动态特性的影响。

二、实验设备1. THBDC-1型控制理论·计算机控制技术实验平台;2. PC机一台(含上位机软件)、数据采集卡、37针通信线1根、16芯数据排线、采接卡接口线;三、实验内容1. 设计并组建各典型环节的模拟电路;2. 测量各典型环节的阶跃响应,并研究参数变化对其输出响应的影响;一、各典型环节电路图1. 比例(P )环节根据比例环节的方框图,选择实验台上的通用电路单元设计并组建相应的模拟电路,如下图所示。

图中后一个单元为反相器,其中R 0=200K 。

若比例系数K=1时,电路中的参数取:R 1=100K ,R 2=100K 。

若比例系数K=2时,电路中的参数取:R 1=100K ,R 2=200K 。

2. 积分(I )环节根据积分环节的方框图,选择实验台上的通用电路单元设计并组建相应的模拟电路,如下图所示。

图中后一个单元为反相器,其中R 0=200K 。

若积分时间常数T=1S 时,电路中的参数取:R=100K ,C=10uF(T=RC=100K ×10uF=1); 若积分时间常数T=时,电路中的参数取:R=100K ,C=1uF(T=RC=100K ×1uF=;3. 比例积分(PI)环节根据比例积分环节的方框图,选择实验台上的通用电路单元设计并组建相应的模拟电路,如下图所示。

图中后一个单元为反相器,其中R 0=200K 。

若取比例系数K=1、积分时间常数T=1S 时,电路中的参数取:R 1=100K ,R 2=100K ,C=10uF(K= R 2/ R 1=1,T=R 1C=100K ×10uF=1);若取比例系数K=1、积分时间常数T=时,电路中的参数取:R 1=100K ,R 2=100K ,C=1uF(K= R 2/ R 1=1,T=R 1C=100K ×1uF=。

自动控制原理实验(1)

自动控制原理实验(1)

实验一 典型环节的电路模拟一、实验目的1.熟悉THKKL-5型 控制理论·计算机控制技术实验箱及“THKKL-5”软件的使用; 2.熟悉各典型环节的阶跃响应特性及其电路模拟;3.测量各典型环节的阶跃响应曲线,并了解参数变化对其动态特性的影响。

二、实验设备1.THKKL-5型 控制理论·计算机控制技术实验箱;2.PC 机一台(含“THKKL-5”软件)、USB 数据采集卡、37针通信线1根、16芯数据排线、USB 接口线。

三、实验内容1.设计并组建各典型环节的模拟电路;2.测量各典型环节的阶跃响应,并研究参数变化对其输出响应的影响。

四、实验原理自控系统是由比例、积分、微分、惯性等环节按一定的关系组建而成。

熟悉这些典型环节的结构及其对阶跃输入的响应,将对系统的设计和分析十分有益。

本实验中的典型环节都是以运放为核心元件构成,其原理框图 如图1-1所示。

图中Z 1和Z 2表示由R 、C 构成的复数阻抗。

1.比例(P )环节比例环节的特点是输出不失真、不延迟、成比例地复现输出信号的变化。

图1-1 它的传递函数与方框图分别为:KS U S U S G i O ==)()()(当U i (S)输入端输入一个单位阶跃信号,且比例系数为K 时的响应曲线如图1-2所示。

2.积分(I )环节 图1-2积分环节的输出量与其输入量对时间的积分成正比。

它的传递函数与方框图分别为:设U i (S)为一单位阶跃信号,当积分系数为T 时的响应曲线如图1-3所示。

TsS U S Us G i O1)()()(==图1-33.比例积分(PI)环节比例积分环节的传递函数与方框图分别为:)11(11)()()(21211212CSR R R CSR R R CSR CS R S U S U s G i O +=+=+==其中T=R 2C ,K=R 2/R 1设U i (S)为一单位阶跃信号,图1-4示出了比例系数(K)为1、积分系数为T 时的PI 输出响应曲线。

武汉大学《自动控制原理》实验报告材料

武汉大学《自动控制原理》实验报告材料

2016~2017学年第一学期《自动控制原理》实验报告年级:2014级班号:姓名: He 学号:成绩:教师:实验设备及编号:实验同组人名单:实验地点:电气工程学院自动控制原理实验室实验时间:2016年 10月目录:实验一典型环节的电路模拟 (3)一、实验目的 (3)二、实验内容 (3)三、实验电路图及参数 (3)四、实验分析 (10)五、实验思考题 (10)实验二二阶系统的瞬态响应 (11)一、实验目的 (11)二、实验设备 (11)三、实验电路图及其传递函数 (11)四、实验结果及相应参数 (13)五、实验分析 (15)六、实验思考题 (15)实验五典型环节和系统频率特性的测量 (16)一、实验目的 (16)二、实验设备 (16)三、传递函数.模拟电路图及波特图 (16)四、实验思考题 (21)实验六线性定常系统的串联校正 (23)一、实验目的 (23)二、实验设备 (23)三、实验电路图及其实验结果 (23)四、实验分析 (27)五、实验思考题 (27)实验七单闭环直流调速系统 (28)一、实验目的 (28)二、实验设备 (28)三、PID参数记录表及其对应图像 (28)四、PID控制参数对直流电机运行的影响 (36)实验一典型环节的电路模拟一、实验目的1.熟悉 THKKL-B 型模块化自控原理实验系统及“自控原理软件”的使用;2.熟悉各典型环节的阶跃响应特性及其电路模拟;3.测量各典型环节的阶跃响应曲线,并了解参数变化对其动态特性的影响。

二、实验内容1.设计并组建各典型环节的模拟电路;2.测量各典型环节的阶跃响应,并研究参数变化对其输出响应的影响。

三、实验电路图及参数1.比例(P)环节比例环节的特点是输出不失真、不延迟、成比例地复现输出信号的变化。

它的传递函数与方框图分别为:图 1-1 比例环节的模拟电路图中后一个单元为反相器,其中 R0=200k。

当 U i(S)输入端输入一个单位阶跃信号,且比例系数为 K 时的响应曲线如图 1-2 所示。

典型环节的电路模拟与软件仿真研究实验结论

典型环节的电路模拟与软件仿真研究实验结论

典型环节的电路模拟与软件仿真研究实验结论本研究实验以典型环节的电路模拟与软件仿真为研究对象,通过理论推导与实验验证的方式,得出以下结论:
1.钳位电路是一种常用的电路保护装置,可以在控制电压范围内保护电路不被过压或过流损坏。

2.比例积分控制器在控制系统中具有广泛应用,能够实现稳态误差为零的控制效果,并能够对系统的超调量和响应速度进行调节。

3.串联型PID控制器在控制系统中也有着重要的应用,其控制效果优于传统的比例积分控制器,能够更加精确地控制系统的稳态误差和动态响应性能。

4.在软件仿真实验中,利用MATLAB/Simulink软件可以方便快捷地进行电路模拟和控制系统仿真,有效提高了研究效率和准确性。

综上所述,本研究实验对典型环节的电路模拟和控制系统仿真进行了深入研究,得到了有价值的结论,为相关领域的研究提供了参考和借鉴。

- 1 -。

典型环节的模拟电路

典型环节的模拟电路

1、比例环节的模拟电路及其传递函数如下图
()21/G s R R =-
图1-1 比例环节的模拟电路及其传递函数
2、惯性环节的模拟电路及其传递函数如下图
()1K
G s Ts =-+
212/,K R R T R C ==
图1-2 惯性环节的模拟电路及其传递函数
3、积分环节的模拟电路及传递函数如下图
()1
G s Ts = T R C =
图1-3 积分环节的模拟电路及其传递函数
4、微分环节的模拟电路及传递函数如下图
()G s Ts =- T R C = 图1-4 微分环节的模拟电路及其传递函数
5、比例+微分环节的模拟电路及传递函数如下图(未标明的C=0.01f )。

()()
2121/,G s K Ts K R R T R C =-+==
图1-5 比例+微分环节的模拟电路及其传递函数
6、比例+积分环节的模拟电路及传递函数如如下图
()()
2121/,G s K Ts K R R T R C =-+==
图1-6 比例+积分环节的模拟电路及其传递函数
7、重点:典型环节在阶跃输入信号作用下的输出特性测试。

8、难点:掌握典型环节的电模拟方法及其参数测试方法,测量典型环节的阶跃响应曲线,了解参数变化对动态特性的影响。

难点:参数变化对动态特性的影响。

自动控制原理实验一 典型环节的电路模拟与软件仿真

自动控制原理实验一  典型环节的电路模拟与软件仿真

实验一 典型环节的电路模拟与软件仿真一、实验目的1.熟悉THSSC-4型信号与系统·控制理论·计算机控制技术实验箱及上位机软件的使用;2.熟悉各典型环节的阶跃响应特性及其电路模拟;3.测量各典型环节的阶跃响应曲线,并了解参数变化对其动态特性的影响。

二、实验设备型信号与系统·控制理论·计算机控制技术实验箱;机一台(含上位机软件)、USB 数据采集卡、37针通信线1根、16芯数据排线、USB 接口线;3.双踪慢扫描示波器一台(可选); 三、实验内容1.设计并组建各典型环节的模拟电路;2.测量各典型环节的阶跃响应,并研究参数变化对其输出响应的影响;3.在上位机仿真界面上,填入各典型环节数学模型的实际参数,据此完成它们对阶跃响应的软件仿真,并与模拟电路测试的结果相比较。

四、实验原理自控系统是由比例、积分、微分、惯性等环节按一定的关系组建而成。

熟悉这些典型环节的结构及其对阶跃输入的响应,将对系统的设计和分析是十分有益的。

本实验中的典型环节都是以运放为核心元件构成,其原理框图 如图1-1所示。

图中Z 1和Z 2表示由R 、C 构成的复数阻抗。

1.比例(P )环节 图1-1比例环节的特点是输出不失真、不延迟、成比例地复现输出信号的变化。

它的传递函数与方框图分别为:K S U S U S G i O ==)()()(当U i (S)输入端输入一个单位阶跃信号,且比例系数为K 时的响应曲线如图1-2所示。

图1-22.积分(I )环节积分环节的输出量与其输入量对时间的积分成正比。

它的传递函数与方框图分别为:TsS U S U s G i O 1)()()(==设U i (S)为一单位阶跃信号,当积分系数为T 时的响应曲线如图1-3所示。

图1-33.比例积分(PI)环节比例积分环节的传递函数与方框图分别为:)11(11)()()(21211212CSR R R CS R R R CS R CS R S U S U s G i O +=+=+==其中T=R 2C ,K=R 2/R 1设U i (S)为一单位阶跃信号,图1-4示出了比例系数(K)为1、积分系数为T 时的PI 输出响应曲线。

实验一 典型环节的电路模拟

实验一  典型环节的电路模拟

实验一典型环节的电路模拟一、实验目的1. 熟悉THBDC-1型控制理论·计算机控制技术实验平台及上位机软件的使用;2. 熟悉各典型环节的阶跃响应特性及其电路模拟;3. 测量各典型环节的阶跃响应曲线,并了解参数变化对其动态特性的影响。

二、实验设备1. THBDC-1型控制理论·计算机控制技术实验平台;2. PC机一台(含上位机软件)、USB数据采集卡、37针通信线1根、16芯数据排线、USB接口线。

三、实验内容1. 设计并组建各典型环节的模拟电路;2. 测量各典型环节的阶跃响应,并研究参数变化对其输出响应的影响;四、实验原理及其步骤自控系统是由比例、积分、微分、惯性等环节按一定的关系组建而成。

熟悉这些典型环节的结构及其对阶跃输入的响应,将对系统的设计和分析是十分有益的。

本实验中的典型环节都是以运放为核心元件构成。

实验准备:①当u i为一单位阶跃信号时,用上位软件观测,选择“通道1-2”,其中通道AD1接电路的输出u O;通道AD2接电路的输入u。

i②为了更好的观测实验曲线,实验时可适当调节软件上的分频系数(一般调至刻度2以上)和“”按钮(时基自动)。

③如采集卡不能正常采集数据,请更新USB数据采集卡驱动。

具体操作步骤:右击“我的电脑”,点击“管理”-“设备管理器”-“通用串行总线控制器”,找到“UsbCard Device”,右击-“卸载”,确定。

卸载后再次点击“计算机管理”菜单中的“操作”-选择“扫描检测硬件改动”,打开硬件安装向导,选择“从列表或指定位置安装(高级)”,点击“下一步”,点击“浏览”,驱动在D盘THBDC软件文件夹中,选择安装即可。

④实验电路中如使用到电容时,每次试验中需要利用“锁零按钮”对电容进行放电复位处理。

⑤输入阶跃信号幅值调节在±2V 以内。

1. 比例(P )环节根据比例环节,选择实验台上的通用电路单元设计并组建相应的模拟电路,如图1-1所示。

实验一 典型环节的模拟研究

实验一 典型环节的模拟研究

实验一典型环节的模拟研究实验要求实验原理实验内容及步骤观察比例环节的阶跃响应曲线观察惯性环节的阶跃响应曲线观察积分环节的阶跃响应曲线观察比例积分环节的阶跃响应曲线观察比例微分环节的阶跃响应曲线观察PID(比例积分微分)环节的阶跃响应曲线表1-1-1一、实验要求了解和掌握各典型环节的传递函数及模拟电路图,观察和分析各典型环节的响应曲线。

二、实验原理(典型环节的方块图及传递函数)三.实验内容及步骤在实验中欲观测实验结果时,可用普通示波器,也可选用本实验机配套的虚拟示波器。

如果选用虚拟示波器,只要运行LCAACT程序,选择自动控制菜单下的典型环节的模拟研究实验项目,再选择开始实验,就会弹出虚拟示波器的界面,点击开始即可使用本实验机配套的虚拟示波器(B3)单元的CH1测孔测量波形。

具体用法参见用户手册中的示波器部分。

1.观察比例环节的阶跃响应曲线典型比例环节模似电路如图3-1-1所示。

该环节在A1单元中分别选取反馈电阻R1=100K、200K来改变比例参数。

图3-1-1 典型比例环节模似电路实验步骤:注:‘S ST’不能用“短路套”短接!(1)将信号发生器(B1)中的阶跃输出0/+5V作为系统的信号输入(Ui)。

(2)安置短路套、联线,构造模拟电路:(a)安置短路套(b)测孔联线(3)虚拟示波器(B3)的联接:示波器输入端CH1接到A6单元信号输出端OUT(Uo)。

注:CH1选‘X1’档,时间量程选‘X4’档。

(4)运行、观察、记录:按下信号发生器(B1)阶跃信号按钮时(0→+5V阶跃),用示波器观测A6输出端(Uo)的实际响应曲线Uo(t),且将结果记下。

改变比例参数(改变运算模拟单元A1的反馈电阻R1),重新观测结果,其实际阶跃响应曲线见表3-1-1。

2.观察惯性环节的阶跃响应曲线典型惯性环节模似电路如图3-1-2所示。

该环节在A1单元中分别选取反馈电容C =1uf、2uf来改变时间常数。

图3-1-2 典型惯性环节模似电路实验步骤:注:‘S ST’不能用“短路套”短接!(1)将信号发生器(B1)中的阶跃输出0/+5V作为系统的信号输入(Ui)。

自动控制实验指导

自动控制实验指导

实验一 控制系统典型环节的模拟一、实验目的1、熟悉超低频扫描示波器的使用方法;2、掌握用运放组成控制系统典型环节的电子模拟电路;3、测量典型环节的阶跃响应曲线;4、通过本实验了解典型环节中参数的变化对输出动态性能的影响。

二、实验仪器1、控制理论电子模拟试验箱一台;2、超低频慢扫描双踪示波器一台;3、万能表一只。

三、实验原理以运算放大器为核心元件,由其不同的输入R-C 网络和反馈R-C 网络构成控制系统的各种典型环节。

四、实验内容1、示波器的调节:打开双踪示波器,选CH1作为触发信号,DC/AC 档选择DC 档,y轴衰减细调和x 轴扫描时间细调均打到校正位置。

“+” “-”触发选择“-”触发位置,Y 1、Y 2探头在没特殊说明下均选⨯1档。

2、典型环节的测量 (a):比例环节(图1-1)1)(1=s G 2)(2=s G图1-1 比例环节原理图分别选择两组不同的R1,R2将所测量的结果填入下表1-1:表1-1分别画出K=1,K=2的阶跃响应波形,并比较二者的差别:(b): 积分环节(图1-2)s s G 1.0/1)(1= s s G 2.0/1)(2=图1-2 积分环节原理图分别选择R=100k Ω,R=200 k Ω作为参数,画出相应的阶跃响应波形图,并观察波形分析积分环节的特点。

(c):惯性环节(图1-3)11.01)(1+=s s G 101.01)(2+=s s G图1-3 惯性环节的原理图分别选择不同参数:C 1=1µF,C 2=0.1µF,画出相应的阶跃响应波形图,观察时间常数τ和上升时间s t 填入下表1-2,并和实际计算值比较是否吻合。

表1-2其阶跃响应的波形图:(d):微分环节(图1-4)21.0)(1+=s s G 101.0)(2+=s s G图1-4微分环节的原理图按照图1-4接好线路,示波器探头Y 2选⨯10档,y 轴衰减粗调打1V 位置,分别选择R=51 K Ω,C=1µF,Rf=100K Ω和R=100 K Ω,C=0.1µF,Rf=100K Ω两组参数,观察示波器画出阶跃响应波形并比较两组不同参数的差别。

实验1 典型线性环节的模拟共17页文档

实验1 典型线性环节的模拟共17页文档

Ri
R(t)
Ri
C(t)
Cf
C(t)
R R
G(s)
Kp
Rf Ri比例环节ຫໍສະໝຸດ G(s)Kp
1 Ti S
Ti RiC f
积分环节
3 典型环节的模拟实验线路
R(t)
Ri
Rf Cf
C(t)
R
Rf Cf
I
Ri
-
O
+
R
G(s) Kp TiS 1
Kp
Rf Ri
Ti Rf C f
一阶惯性环节
G(s)
Kp
Ti s 1 Ti s
END
虚拟示波器前面板
阶跃信号的产生
单节拍脉冲发生单元U13和电位器单元U14的组合可以产生 阶跃信号,在模拟箱上已经用导线接好。按下按钮SP直到系统 达到稳态,这就输入了一个完整的阶跃信号。
运算放大器单元
G 1.2K
W62
3DJ6
1 47K
10K
IN
OUT
2 47K
10K
3
W61
100K
4
2*IN148
比例微分环节
Ri=200K Rf=200K R1=100K R2=100K
c=1uf
u0Rf
R1
Rf
R1
t
e R2c
Ri
RiR2
4
3
2
1
0
0
0.5
1
1.5
2
单位阶跃响应
比例积分微分环节
G (s)KpT is1 T iT sds1
Kp
Rf R1R2R1 C
Ri
Ri Cf
I

实验一 典型环节的模拟研究

实验一 典型环节的模拟研究

实验一典型环节的模拟研究实验原理1、比例环节该环节的传递函数为(式1.1)图1.1 比例环节模拟电路图1.2 比例环节输出波形图比例环节的模拟电路如图1.1所示,其传递函数为(式1.2)比较(式1.1)和(式1.2)得(式1.3)当输入为单位阶跃信号时,即Ui(t)=1(t)时,Ui(s)=1/S。

则由(式1.1)得到所以输出响应为U0(t)=K (t≥0) (式1.4)其输出波形如图1.2所示。

2、积分环节该环节的传递函数为(式1.5)积分环节的模拟电路如图1.3所示。

图1.3 积分环节模拟电路图1.4 积分环节输出波形图积分环节模拟电路的传递函数为(式1.6)比较奥(式1.5)和(式1.6)得T=R0C(式1.7)当输入为单位阶跃信号时,即U i(t)=1(t)时,U i(S)=1/S.则由(式1.5)得到所以输出响应为(式1.8)其输出波形如图1.4所示3、惯性环节该环节的传递函数为(式1.9)惯性环节的模拟电路如图1.5所示。

图1.5 惯性环节模拟电路图1.6 惯性环节输出波形图惯性环节模拟电路的传递函数为(式1.10)比较(式1.9)和(式1.10)得(式1.11)当输入为单位阶跃信号时,即Ui(t)=1(t)时,Ui(S)=1/S,则由(式9)得到所以输出响应为(式1.12)其输出波形如图1.6所示。

4、振荡环节(二阶系统)图1.7是典型二阶系统方框图,其中T0=1s,T1=0.1s。

图1.7 典型二阶系统方框图该环节的传递函数为(式1.13)式中,①欠阻尼情况(即0<ξ<1)时,二阶系统的阶跃响应为衰减振荡,如图1.8中曲线①所示。

(t≥0)(式1.14)式中,峰值时间可由(式1.14)对时间求导数,并会它等于零得到(式1.15)超调量Mp:由Mp=C(t p)-1求得(式1.16)调节时间t s,采用2%允许误差范围时,近似地等于系统时间常数的四倍,即(式1.17)②临界阻尼情况(即ξ=1)时,系统的阶跃响应为单调的指数曲线,如图1.8中曲线②所示。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验报告课程名称: 控制理论(乙) 指导老师: 韦巍老师的助教 成绩:_________________ 实验名称: 典型环节的电路模拟 实验类型: 控制理论实验 同组学生姓名: 无第一次课 典型环节的电路模拟一、实验目的1.1熟悉THBDC-2型实验平台及“THBDC-2”软件的使用; 1.2熟悉各典型环节的阶跃响应特性及其电路模拟;1.3测量各典型环节的阶跃响应曲线,并了解参数变化对其动态特性的影响。

二、实验内容2.1设计并组建各典型环节的模拟电路;2.2测量各典型环节的阶跃响应,并研究参数变化对其输出响应的影响。

三、实验原理自控系统是由比例、积分、微分、惯性等环节按一定的关系组建而成。

熟悉这些典型环节的结构及其对阶跃输入的响应,将对系统的设计和分析十分有益。

本实验中的典型环节都是以运放为核心元件构成,其原理框图如图3-1所示。

图中Z 1和Z 2表示由R 、C 构成的复数阻抗。

图3-1 3.1 积分环节积分环节的输出量与其输入量对时间的积分成正比。

它的传递函数与方框图分别为:设U i (S)为一单位阶跃信号,当积分系数为T 时的响应曲线如图3-2所示。

图3-23.2比例积分(PI)环节比例积分环节的传递函数与方框图分别为:)11(11)()()(21211212CS R R R CS R R R CS R CS R S U S U s G i O +=+=+==其中T=R 2C ,K=R 2/R 1设U i (S)为一单位阶跃信号,图3-3示出了比例系数(K)为1、积分系数为T 时的PI 输出响应曲线。

图3-3TsS U S U s G i O 1)()()(==3.3 比例积分微分(PID)环节比例积分微分(PID)环节的传递函数与方框图分别为:S T ST Kp s G D I ++=1)(其中212211C R C R C R Kp +=,21C R T I =,12C R T D =SC R S C R S C R 211122)1)(1(++=S C R SC R C R C R C R 12212111221+++=设U i (S)为一单位阶跃信号,图3-4示出了比例系数(K)为1、微分系数为T D 、积分系数为 T I 时PID 的输出。

图3-43.4 惯性环节惯性环节的传递函数与方框图分别为: 1)()()(+==TS KS U S U s G i O 当U i (S)输入端输入一个单位阶跃信号,且放大系数(K)为1、时间常数为T 时响应曲线如图3-5所示。

图3-5四、实验设备THBDC-2型 控制理论·计算机控制技术实验平台;PC 机一台(含“THBDC-2”软件)、USB 数据采集卡、37针通信线1根、16芯数据排线、USB 接口线。

五、实验步骤(具体数据请见第六节) 5.1 积分环节根据积分环节的方框图,选择实验台上的通用电路单元(U12、U6)设计并组建相应的模拟电路,如下图所示。

图中后一个单元为反相器,其中R0=200K。

若积分时间常数T=1s时,电路中的参数取:R=100K,C=10uF(T=RC=100K×10uF=1s);若积分时间常数T=0.1s时,电路中的参数取:R=100K,C=1uF(T=RC=100K×1uF=0.1s);5.2 比例积分环节根据比例积分环节的方框图,选择实验台上的通用电路单元(U12、U6)设计并组建相应的模拟电路,如下图所示。

图中后一个单元为反相器,其中R0=200K。

若取比例系数K=1、积分时间常数T=1s时,电路中的参数取:R1=100K,R2=100K,C=10uF(K= R2/ R1=1,T=R2C=100K×10uF=1s);若取比例系数K=1、积分时间常数T=0.1s时,电路中的参数取:R1=100K,R2=100K,C=1uF(K= R2/ R1=1,T=R2C=100K×1uF=0.1s)。

5.3 比例积分微分环节根据比例积分微分环节的方框图,选择实验台上的通用电路单元(U12、U6)设计并组建其相应的模拟电路,如下图所示。

图中后一个单元为反相器,其中R0=200K。

若比例系数K=2、积分时间常数T I=0.1s、微分时间常数T D=0.1s时,电路中的参数取:R1=100K,R2=100K,C1=1uF、C2=1uF (K= (R1C1+ R2C2)/ R1C2=2,T I=R1C2=100K×1uF=0.1s,T D=R2C1=100K×1uF=0.1s);若比例系数K=1.1、积分时间常数T I =1s、微分时间常数T D=0.1s时,电路中的参数取:R1=100K,R2=100K,C1=1uF、C2=10uF (K= (R1C1+ R2C2)/ R1C2=1.1,T I=R1C2=100K×10uF=1s,T D=R2C1=100K×1uF=0.1s);5.4 惯性环节根据惯性环节的方框图,选择实验台上的通用电路单元(U12、U6)设计并组建其相应的模拟电路,如下图所示。

图中后一个单元为反相器,其中R0=200K。

若比例系数K=1、时间常数T=1s时,电路中的参数取:R1=100K,R2=100K,C=10uF(K= R2/ R1=1,T=R2C=100K×10uF=1s)。

若比例系数K=1、时间常数T=0.1s时,电路中的参数取:R1=100K,R2=100K,C=1uF(K= R2/ R1=1,T=R2C=100K×1uF=0.1s)。

通过改变R2、R1、C的值可改变惯性环节的放大系数K和时间常数T。

5.5实验报告要求5.1 画出各典型环节的实验电路图,并注明参数(请见第5.1~5.4节);5.2 写出各典型环节的传递函数(请见第6.1~6.4节);5.3 根据测得的典型环节单位阶跃响应曲线,分析参数变化对动态特性的影响(请见6.1~6.4节)。

六、数据分析与处理6.1 积分环节(实验电路图,请见5.1节)时间常数T= 1 s时,R=100K,C=10uF 时间常数T= 0.1 s时,R=100K,C=1uF现场实测T约为1.2 s,比理论值稍长现场实测T约为0.1 s,与理论值相差不大图6-1 积分环节(上方:输入信号,下方:输出信号,下同)①传递函数为:RCsTssUsUsGi11)()()(0===分析:由图可知,实验中的电容C改变了时间常数,而时间常数T越大,则上升时间越长,T越小,则上升时间越短。

(请见下页)①无法精确调整软件界面上的滑块使两条曲线的起始位置(0V)完全重合,索性不让它们重合,用各自曲线起点与终点的位置差来表示纵向幅度。

下同。

6.2 比例积分环节(实验电路图,请见5.2节) 比例K=1,时间常数T = 0.1 s 时 比例K=1,时间常数T = 1 s 时 R 1=100K ,R 2=100K ,C=10uF R 1=100K ,R 2=100K ,C=1uF现场实测K 约为1,T 约0.12 s ,与理论相差不大 现场实测K 约为1,T 约0.9 s ,与理论相差不大图6-2 比例积分环节,请注意:左图横坐标上,一格代表的时间跨度较短传递函数为:)11(11)()()(212112120Cs R R R Cs R R R Cs R Cs R s U s U s G i +=+=+==,其中C R T R R K 212,== 分析:由图可知,比例K 不变,放大系数不变,而实验中的电容C 改变了时间常数T ,T 越大,则上升时间越长,T 越小,则上升时间越短。

6.3 比例微分积分环节(实验电路图,请见5.3节) 比例K=2 比例K=1.1 积分时间常数T I =0.1S 微分时间常数T D =0.1S 积分时间常数T I =1S 、微分时间常数T D =0.1S R 1=100K ,R 2=100K ,C 1=1uF 、C 2=1uF R 1=100K ,R 2=100K ,C 1=1uF 、C 2=10uF图6-3 比例积分微分环节,请注意:左图横坐标上,一格代表的时间跨度较短传递函数为:s C R s C R C R C R C R s U s U s G i 122121221101)()()(+++==,其中122112,,C R T C R T R RK D I === 分析:由图可知,比例K 越大,则响应中比例环节的放大系数越大,而实验中的电容C 1改变了积分时间常数T I ,T I 越大,则积分环节上升时间越长,T I 越小,则上升时间越短。

6.4 惯性环节(实验电路图,请见5.4节) 比例K=1,时间常数T = 1 s 时 比例K=1,时间常数T = 0.1 s 时R 1=100K ,R 2=100K ,C=10uF R 1=100K ,R 2=100K ,C=1uF现场实测K 约为1,T 约1.2 s ,与理论相差不大 现场实测K 约为1,T 约0.1 s ,与理论相差不大图6-4 积分环节(上方:输入信号,下方:输出信号)传递函数为:1)()()(0+==Ts K s U s U s G i ,其中C R T R RK 212,== 分析:由图可知,实验中的电容C 改变了时间常数,而时间常数T 越大,则需耗费更多的时间趋于稳定,T 越小,则需耗费更少的时间趋于稳定。

七、实验思考题7.1用运放模拟典型环节时,其传递函数是在什么假设条件下近似导出的?答:假定运放具有理想特性,即输入电阻无穷大,输出电阻为零,开环放大系数无穷大,在运放输入端满足“虚短”、“虚断”特性;并且运放的静态输入为零,输入、输出与反馈均可用瞬时值表示。

7.2积分环节和惯性环节主要差别是什么?在什么条件下,惯性环节可以近似地视为积分环节?而又在什么条件下,惯性环节可以近似地视为比例环节?答:(1)对于积分环节,输出信号为输入信号对时间的积分,当输入阶跃信号时,输出会呈线性,直至饱和;对于惯性环节,当输入阶跃信号时,输出会沿指数规律变化;(2)当时间常数T 充分大,惯性环节可视为积分环节;(3)当时间常数T 充分趋于零,惯性环节可视为比例环节。

7.3在积分环节和惯性环节实验中,如何根据单位阶跃响应曲线的波形,确定积分环节和惯性环节的时间常数?答:在积分环节中,单位阶跃响应曲线最高与最低两个拐点对应的横坐标差,即为时间常数T ;在惯性环节中,上升到最终上升幅度63.2%(即1-1/e )的点对应的横坐标与上升起点横坐标的差,即时间常数T 。

7.4为什么实验中实际曲线与理论曲线有一定误差?答:因为电阻、电容实际上并不严格是线性的,而且受工艺、环境温度等影响,元件的电阻值、电容值与标称值都存在误差;另外,运放也不是理想运放。

相关文档
最新文档