溶胶。凝胶法的基本原理及应用
溶胶。凝胶法的基本原理及应用
溶胶.凝胶法的基本原理及应用现状溶胶.凝胶法(S01.Gel法,简称S.G法)就是以无机物或金属醇盐作前驱体,在液相将这些原料均匀混合,并进行水解、缩合化学反应,在溶液中形成稳定透明溶胶体系,溶胶经陈化,胶粒间缓慢聚合,形成三维空间网络结构的凝胶,凝胶网络间充满了失去流动性的溶剂,形成凝胶。
凝胶经过干燥、烧结固化制备出分子乃至纳米亚结构的材料。
溶胶.凝胶法就是将含高化学活性组分的化合物经过溶液、溶胶、凝胶而固化,再经热处理而成的氧化物或其它化合物固体的方法。
近年来,溶胶-凝胶技术在玻璃、氧化物涂层和功能陶瓷粉料,尤其是传统方法难以制备的复合氧化物材料、高临界温度(P)氧化物超导材料的合成中均得到成功的应1.基本原理S01.Gel法的基本反应步骤如下:1)溶剂化:金属阳离子M”吸引水分子形成溶剂单元M(H20):+,为保持其配位数,具有强烈释放H+的趋势。
2)水解反应:非电离式分子前驱物,如金属醇盐M(OR)。
与水反应。
3)缩聚反应:按其所脱去分子种类,可分为两类a)失水缩聚b)失醇缩聚2.应用由于溶胶.凝胶技术在控制产品的成分及均匀性方面具有独特的优越性,近年来已用该技术制成Li’ra02、“NbO,、PbTjO,、Pb(Zj孙)03和BaTjO,,等各种电子陶瓷材料。
特别是制备出形状各异的超导薄膜n0],高温超导纤维¨¨等。
在光学方面该技术已被用于制备各种光学膜如高反射膜、减反射膜等和光导纤维、折射率梯度材料、有机染料掺杂型非线性光学材料等以及波导光栅、稀土发光材料等。
在热学方面用该技术制备的SiO:一Ti0:玻璃非常均匀,热膨胀系数很小,化学稳定性也很好;已制成的InO,.SnO:(ITO)大面积透明导电薄膜具有很好的热镜性能;制成的si02气凝胶具有超绝热性能等特点。
4研究展望3.目前,对溶胶一凝胶法的研究主要集中在以下几个方面:1)在工艺方面值得进一步探索的问题:较长的制备周期;应力松弛,毛细管力的产生和消除,孔隙尺寸及其分布对凝胶干燥方法的影响;在凝胶干燥过程中加入化学添加剂的考察,非传统干燥方法探索;凝胶烧结理论与动力学以及对最佳工艺(干燥、烧结工艺)的探索。
溶胶凝胶法原理
溶胶凝胶法原理溶胶凝胶法又称悬浮液相或膜法,是一种生物膜制备和植入的技术,由于具有抗拉强度高,材料可视度好、损伤小、体积收缩率低,特别适合于联合骨组织修复等方面的应用,广泛应用于骨科、心胸外科、整形外科、普外科、肾外科等科室。
它可以有效地改善缺血性慢性创面和炎性软组织损伤的治疗效果。
溶胶凝胶法的基本原理是利用有机溶剂与凝胶物质混合制备出一种低粘性的悬浮液,即溶胶凝胶。
溶胶凝胶具有多种性质,如弹性稳定、具有抗拉强度,可保持其原有形状,从而更加适合于满足组织修复所需的特殊条件。
溶胶凝胶的制备方法分为两种:物理和化学方法。
物理方法是利用固体材料的细致加工制备出溶胶凝胶,其优点是成本低、制备简便;化学方法是利用有机溶剂和凝胶物质的反应制备的,其优点是制备出的溶胶凝胶具有更高的抗拉强度、更好的特性。
溶胶凝胶在骨科、外科手术中的应用有很多,如联合骨组织缝合术、骨缝合术、背板固定术、骨头螺钉固定术等。
它具有良好的抗拉强度,可以有效地改善缺血性慢性创面及炎性软组织损伤的治疗效果,对于特殊的创伤修复手术也有不可替代的作用。
此外,溶胶凝胶也可用于心血管内直接施加或心理治疗等疾病的治疗,并具有较高的抗炎消肿和抗菌性。
膜法还可以用于细胞/组织学实验,如:干细胞培养分离,动物模型研究,分子遗传学研究等。
溶胶凝胶法作为一种新型的技术已经在临床上发挥了独特的作用,具有抗拉强度高、材料可视度好、损伤小、体积收缩率低、抗炎消肿和抗菌性的特点,被广泛应用于骨科、心胸外科、整形外科、普外科、肾外科等科室。
另外,它也可以应用于细胞/组织学实验,如:干细胞培养分离,动物模型研究,分子遗传学研究等。
不过,由于高精密度材料,复杂情况下的溶胶凝胶制备需要专业知识和技术,因而也限制了其广泛应用。
因此,溶胶凝胶法这一制备方法仍然需要不断改进,提高抗拉强度、增加材料灵活性,以及改善其生物相容性,以更好地满足临床治疗的需要。
只有这样,溶胶凝胶法才能成为特殊创伤修复和再生医学领域的一种有效的技术,从而起到更好的治疗作用。
溶胶凝胶法
溶胶—凝胶法制备粉体溶胶-凝胶法就是用含高化学活性组分的化合物作前驱体,在液相下将这些原料均匀混合,并进行水解、缩合化学反应,在溶液中形成稳定的透明胶溶体系,溶胶经陈化,胶粒间缓慢聚合,形成三维空间网络结构的凝胶,凝胶网络间充满了失去流动性的溶剂,形成凝胶。
凝胶经过干燥、烧结固化制备出分子乃至纳米亚结构的材料。
此方法的化学过程首先是将原料分散在溶剂中,然后经过水解反应生成活性单体,活性单体进行聚合,开始成为溶胶,进而生成具有一定空间结构的凝胶,经过干燥和热处理制备出纳米粒子和所需要材料。
一、基本原理溶胶是指固体或胶体粒子均匀分散在溶液之中,固体粒子尺寸为1nm左右,含有103—109个原子,比表面积大。
胶体粒子受到布朗运动的作用可以稳定持久地悬浮在液相之中,此外粒子的表面电荷引起的双电荷层使固体粒子更加均匀的分布在溶液之中。
凝胶是随着水分的蒸发,溶胶中固体粒子间聚合能量加强,逐渐失去流动而变成的半固态物质。
分散在溶液中的固体粒子间吸引力与排斥力相当,使得凝胶中固态、液态都存在的高分散状态。
溶胶-凝胶法是以无机聚合反应为基础,以金属醇盐或无机金属盐作为前驱物,用水作为水解剂,有醇为溶剂来制备高分子化合物。
在溶液中前驱物进行水解、缩合反应,形成凝胶。
传统的溶胶-凝胶体系中,反应物通常是金属醇盐,通过醇盐缩水而得到溶胶。
但由于稀土金属的醇盐易水解、成本高等问题,限制了溶胶—凝胶法在更多领域的应用。
因此在很多领域中应用较多的是络合溶胶-凝胶法。
该法在制备前驱液时添加强络合剂,通过可溶性络合物的形成减少前驱液中的自由离子,控制一系列实验条件,移去溶剂后得到凝胶,最后再通过分解的方法除去有机配体而得到粉体颗粒。
溶胶-凝胶过程具体包括以下两个反应过程:1.水解反应是把阴离子取代成羟基,诱发综合反应,形成链状或网状交联的聚合物,金属盐类水解:ML + nH2O →M(OH2)z+n + L z-M(OH2)z+n→M(OH)(OH)(z-1)+n-1 + H+2.缩聚反应是把OR或L和OH换去,转换成氧化态:M-OH + M-OH →M-O-M + H2OM-OH + M-OH →M-O-M + ROH聚合程度决定于原颗粒的大小,而聚合速度取决于水解速率。
溶胶凝胶法
溶胶—凝胶法制备粉体溶胶-凝胶法就是用含高化学活性组分的化合物作前驱体,在液相下将这些原料均匀混合,并进行水解、缩合化学反应,在溶液中形成稳定的透明胶溶体系,溶胶经陈化,胶粒间缓慢聚合,形成三维空间网络结构的凝胶,凝胶网络间充满了失去流动性的溶剂,形成凝胶。
凝胶经过干燥、烧结固化制备出分子乃至纳米亚结构的材料。
此方法的化学过程首先是将原料分散在溶剂中,然后经过水解反应生成活性单体,活性单体进行聚合,开始成为溶胶,进而生成具有一定空间结构的凝胶,经过干燥和热处理制备出纳米粒子和所需要材料。
一、基本原理溶胶是指固体或胶体粒子均匀分散在溶液之中,固体粒子尺寸为1nm左右,含有103—109个原子,比表面积大。
胶体粒子受到布朗运动的作用可以稳定持久地悬浮在液相之中,此外粒子的表面电荷引起的双电荷层使固体粒子更加均匀的分布在溶液之中。
凝胶是随着水分的蒸发,溶胶中固体粒子间聚合能量加强,逐渐失去流动而变成的半固态物质。
分散在溶液中的固体粒子间吸引力与排斥力相当,使得凝胶中固态、液态都存在的高分散状态。
溶胶-凝胶法是以无机聚合反应为基础,以金属醇盐或无机金属盐作为前驱物,用水作为水解剂,有醇为溶剂来制备高分子化合物。
在溶液中前驱物进行水解、缩合反应,形成凝胶。
传统的溶胶-凝胶体系中,反应物通常是金属醇盐,通过醇盐缩水而得到溶胶。
但由于稀土金属的醇盐易水解、成本高等问题,限制了溶胶—凝胶法在更多领域的应用。
因此在很多领域中应用较多的是络合溶胶-凝胶法。
该法在制备前驱液时添加强络合剂,通过可溶性络合物的形成减少前驱液中的自由离子,控制一系列实验条件,移去溶剂后得到凝胶,最后再通过分解的方法除去有机配体而得到粉体颗粒。
溶胶-凝胶过程具体包括以下两个反应过程:1.水解反应是把阴离子取代成羟基,诱发综合反应,形成链状或网状交联的聚合物,金属盐类水解:ML + nH2O →M(OH2)z+n + L z-M(OH2)z+n→M(OH)(OH)(z-1)+n-1 + H+2.缩聚反应是把OR或L和OH换去,转换成氧化态:M-OH + M-OH →M-O-M + H2OM-OH + M-OH →M-O-M + ROH聚合程度决定于原颗粒的大小,而聚合速度取决于水解速率。
溶胶-凝胶法及其应用
沉降电势
分散相粒子在重力场或离心场作用下迅速移动
节溶胶-凝胶合成法
目录
基本概念 溶胶凝胶法发展历程 溶胶凝胶基本原理 溶胶凝胶合成方法的适用范围 溶胶凝胶工艺过程 溶胶凝胶合成方法应用举例
回顾:
一、分散系
、定义:一种或一种以上的物质分散到另一种物质中所得到 的混合物
分散质:被分散的物质 (其中分散成微粒的物质)
分散剂:能分散分散质的物质 (微粒分散在其中的物质)
、 电泳现象(电学性质)
在外加电场作用下, 胶体粒子在分散剂里 向电极 (阴极或阳极) 作定向移动的现象, 叫做电泳
-
+Hale Waihona Puke ()胶体向阴极阴极
阳极
移动——带正电荷
原因:粒子胶体微粒带同种电荷,当胶粒带正 电荷时向阴极运动,当胶粒带负电荷时 向阳极运动。
胶体的胶粒有的带电,有电泳现象;有的不带 电,没有电泳现象。
朗
胶体体系动力稳定的因素之一
运
动
使胶粒互相碰撞,促使它们聚结变大
胶体体系动力不稳定的因素之一
原因:溶剂分子不均匀地撞击胶体粒子,使其 发生不断改变方向、改变速率的布朗运动。
胶体微粒作布朗运动是胶体稳定的原因之一。
练习:胶体粒子能作布朗运动的原因是 ( ) ①水分子对胶体粒子的撞击 ②胶体粒子有 吸附能力 ③胶体粒子带电 ④胶体粒子质 量很小,所受重力小 、①② 、①③ 、①④ 、②④
溶液、悬(乳)浊液、胶体
、分散系的分类
本质依据——分散质微粒直径大小
分散系
分散质微 粒直径
溶液
< (< )
胶体 ()
浊液
> (> )
溶胶凝胶法的原理及应用
溶胶凝胶法的原理及应用一、溶胶凝胶法的概述溶胶凝胶法(Sol-Gel Method)是一种常用的合成材料的方法,通过将溶解的金属离子或有机小分子通过水解、聚合和凝胶化等反应途径,形成无机或有机凝胶材料的过程。
其原理主要涉及胶体、溶胶和凝胶等概念。
溶胶凝胶法具有简单、灵活、无污染等优点,因此被广泛应用于材料科学、化学工程等领域。
二、溶胶凝胶法的原理溶胶凝胶法的原理基于溶胶和凝胶之间的相变过程。
一般来说,溶胶是一个分散的微观颗粒体系,其中悬浮在连续相(通常是液体)中的固体颗粒称为胶体颗粒。
凝胶是由溶胶中的胶体颗粒所形成的三维网状结构。
溶胶凝胶法的基本步骤包括凝胶前体的合成、溶胶的形成、凝胶的生成和固化等。
2.1 凝胶前体的合成凝胶前体材料参与凝胶化反应的离子或分子形成的混合物。
凝胶前体的合成通常通过溶液混合、沉淀、配位等方法得到。
例如,将金属盐和络合剂溶解在溶剂中,通过相互反应形成凝胶前体材料。
2.2 溶胶的形成凝胶前体在溶液中进一步水解、聚合等反应,形成胶体粒子的过程称为溶胶形成。
在形成过程中,原子、离子或分子逐渐成为固体的胶体颗粒,并与溶剂中的液相形成分散体系。
2.3 凝胶的生成溶胶形成后,在适当的条件下,胶体颗粒开始聚集,形成凝胶结构。
这是因为胶体颗粒之间发生物理或化学相互作用的结果,例如凝胶颗粒表面的粒子间引力互相作用。
2.4 固化凝胶的固化是指将凝胶材料从液体状态转变为固体状态的过程。
这通常涉及热处理、化学反应或物理改变等方法。
固化后的凝胶形成坚硬的固体物质,具有一定的形状和结构。
三、溶胶凝胶法的应用溶胶凝胶法具有广泛的应用领域,以下是几个常见的应用方面:3.1 材料科学溶胶凝胶法被广泛应用于合成新型材料。
通过调控凝胶化条件和前体材料的组成,可以得到具有特殊结构和性能的材料。
例如,通过控制Silica凝胶中孔洞的大小和分布,可以制备具有高表面积和吸附性能的材料,可应用于催化剂、吸附剂等领域。
溶胶-凝胶法的原理和应用
溶胶-凝胶法的原理和应用1. 溶胶-凝胶法的概述溶胶-凝胶法是一种常用的制备纳米颗粒材料的方法。
它通过将溶胶转化为凝胶,再通过热处理或其他方式将凝胶转化为纳米颗粒材料。
这种方法可以制备出具有高比表面积和孔隙结构的材料,具有广泛的应用前景。
2. 溶胶-凝胶法的原理溶胶-凝胶法的制备过程一般包括四个步骤:溶胶的制备、凝胶的形成、凝胶的加工和热处理。
以下是具体的原理介绍:2.1 溶胶的制备溶胶是指由固体颗粒悬浮在液体中形成的胶体系统。
在溶胶制备过程中,需要选择合适的溶剂和溶质,并通过物理或化学方法将其混合均匀,形成胶体系统。
2.2 凝胶的形成凝胶是指溶胶中颗粒聚集形成的凝胶网状结构。
在凝胶形成过程中,需要调节溶胶中的各种参数,如pH值、温度、浓度等,以促使颗粒聚集并形成凝胶。
2.3 凝胶的加工凝胶形成后,需要对凝胶进行进一步的加工处理。
加工的方式可以是冷冻干燥、超临界流体萃取等,目的是去除溶剂,使凝胶更加稳定。
2.4 热处理经过凝胶加工后,需要将凝胶进行热处理,将凝胶转化为纳米颗粒材料。
热处理过程中,需要控制温度和时间等参数,以保证颗粒的形成和结构的稳定。
3. 溶胶-凝胶法的应用溶胶-凝胶法具有广泛的应用前景,以下是该方法在一些领域的应用示例:3.1 纳米材料制备溶胶-凝胶法可以用于制备各种纳米颗粒材料,如二氧化硅、氧化铁等。
这些纳米材料具有高比表面积和孔隙结构,广泛应用于催化、传感、光学等领域。
3.2 传感器制备利用溶胶-凝胶法可以制备出高灵敏度和高选择性的传感器。
通过调节溶胶-凝胶过程中的参数和材料组成,可以实现对特定物质的检测和识别。
3.3 催化剂制备溶胶-凝胶法制备的纳米颗粒材料具有较大的比表面积和孔隙结构,非常适合用作催化剂。
这些催化剂可以应用于化学反应、汽车尾气净化等领域,具有高效率和长寿命的特点。
3.4 能源存储材料制备溶胶-凝胶法可以制备出具有高比表面积和孔隙结构的能源存储材料,如超级电容器材料、锂离子电池材料等。
溶胶凝胶法的基本原理、发展及应用现状
溶胶凝胶法的基本原理、发展及应用现状一、本文概述溶胶凝胶法(Sol-Gel Method)是一种重要的材料制备技术,广泛应用于陶瓷、玻璃、金属氧化物、复合材料等多个领域。
本文旨在全面阐述溶胶凝胶法的基本原理、发展历程以及应用现状。
我们将深入探讨溶胶凝胶法的基本原理,包括溶胶的形成、凝胶化过程以及材料的微观结构和性能调控。
我们将回顾溶胶凝胶法的发展历程,从早期的探索阶段到如今的成熟应用,分析其技术进步和主要成就。
我们将重点关注溶胶凝胶法的应用现状,涉及领域广泛,如能源、环境、生物医学等,展望其未来的发展趋势和潜在应用。
通过本文的阐述,我们期望为读者提供一个全面、深入的溶胶凝胶法知识体系,为相关领域的研究和应用提供有益的参考。
二、溶胶凝胶法的基本原理溶胶凝胶法(Sol-Gel Method)是一种在湿化学领域广泛应用的材料制备技术,其基本原理涉及胶体化学和物理化学的基本原理。
该方法通过控制溶液中的化学反应,使溶液中的溶质原子或离子在液相中形成稳定的溶胶体系,随后经过凝胶化过程转化为固态凝胶,最后经过热处理等步骤得到所需材料。
在溶胶凝胶法的过程中,溶胶的形成是关键。
溶胶是由固体颗粒(通常为纳米尺度)分散在液体介质中形成的胶体分散体系。
这些固体颗粒可以通过水解和缩聚等化学反应从溶液中的前驱体(如金属盐或金属醇盐)中生成。
水解反应是指前驱体与水反应,生成相应的氢氧化物或氧化物,同时释放出水分子。
缩聚反应则是指这些氢氧化物或氧化物之间进一步发生化学反应,形成网络状的结构,从而使溶液转化为溶胶。
凝胶化过程是溶胶凝胶法的另一个重要阶段。
随着溶胶中固体颗粒的不断生成和长大,颗粒之间的相互作用逐渐增强,形成三维网络结构,使溶胶失去流动性,转变为固态的凝胶。
这一过程中,颗粒之间的相互作用力(如范德华力、氢键等)以及颗粒表面的电荷状态等因素起着重要作用。
通过热处理等步骤,可以去除凝胶中的残余水分和有机溶剂,同时使凝胶中的无机物发生结晶或相变,从而得到所需的材料。
溶胶凝胶法制备纳米氧化锌新工艺
如需进一步优化制备过程中的关键参数,提高产物的质量;还需要研究和开 发更高效、环保的溶剂体系;同时需要深入研究纳米材料的结构与其性能的关系, 以便实现对纳米材料性能的精确调控。
五、总结
溶胶凝胶法作为一种温和、环保的制备技术,在制备纳米氧化锌过程中展现 出显著的优势。通过对制备过程的精细控制,不仅可以获得高纯度、粒径小且分 布窄的纳米氧化锌,还可以实现大规模生产。这为纳米氧化锌在太阳能电池、光 催化等领域的广泛应用提供了可能。尽管溶胶凝胶法制备纳米氧化锌仍面临一些 挑战,但随着技术的不断进步和研究的深入开展,我们有理由相信这一新工艺将 在未来的材料科学领域中发挥更大的作用。
溶胶凝胶法制备纳米氧化锌新工艺
目录
01 一、溶胶凝胶法的基 本原理
02
二、纳米氧化锌的制 备过程
03 三、溶胶凝胶法制备 纳米氧化锌的优势
04 四、应用前景与挑战
05 五、总结
06 参考内容
溶胶凝胶法是一种广泛应用于材料科学和化学领域的制备技术,其具有制备 过程相对温和、产品纯度高、粒径小且分布窄等优点。近年来,采用溶胶凝胶法 制备纳米氧化锌作为一种高效、环保的新工艺,受到了科研人员和产业界的广泛。
2、调节剂的种类和加入量:调节剂可以调节溶液的pH值、粘度等性质,从 而影响纳米氧化锌的形貌和尺寸。例如,加入适量的氢氧化钠可以调节溶液的pH 值,促进氢氧化锌的形成;而加入适量的氨水则可以抑制氢氧化锌的生长,获得 更细小的纳米氧化锌。
3、热处理过程:热处理过程是溶胶凝胶法制备纳米氧化锌的重要环节之一。 通过控制热处理温度和时间,可以进一步调整纳米氧化锌的结构和性能。例如, 高温热处理可以促进纳米氧化锌的晶格发育,提高其结晶度;而低温热处理则可 以抑制晶格发育,获得具有非晶结构的纳米氧化锌。
溶胶凝胶法
溶胶—凝胶法制备粉体溶胶-凝胶法就是用含高化学活性组分的化合物作前驱体,在液相下将这些原料均匀混合,并进行水解、缩合化学反应,在溶液中形成稳定的透明胶溶体系,溶胶经陈化,胶粒间缓慢聚合,形成三维空间网络结构的凝胶,凝胶网络间充满了失去流动性的溶剂,形成凝胶。
凝胶经过干燥、烧结固化制备出分子乃至纳米亚结构的材料。
此方法的化学过程首先是将原料分散在溶剂中,然后经过水解反应生成活性单体,活性单体进行聚合,开始成为溶胶,进而生成具有一定空间结构的凝胶,经过干燥和热处理制备出纳米粒子和所需要材料。
一、基本原理溶胶是指固体或胶体粒子均匀分散在溶液之中,固体粒子尺寸为1nm左右,含有103—109个原子,比表面积大。
胶体粒子受到布朗运动的作用可以稳定持久地悬浮在液相之中,此外粒子的表面电荷引起的双电荷层使固体粒子更加均匀的分布在溶液之中。
凝胶是随着水分的蒸发,溶胶中固体粒子间聚合能量加强,逐渐失去流动而变成的半固态物质。
分散在溶液中的固体粒子间吸引力与排斥力相当,使得凝胶中固态、液态都存在的高分散状态。
溶胶-凝胶法是以无机聚合反应为基础,以金属醇盐或无机金属盐作为前驱物,用水作为水解剂,有醇为溶剂来制备高分子化合物。
在溶液中前驱物进行水解、缩合反应,形成凝胶。
传统的溶胶-凝胶体系中,反应物通常是金属醇盐,通过醇盐缩水而得到溶胶。
但由于稀土金属的醇盐易水解、成本高等问题,限制了溶胶—凝胶法在更多领域的应用。
因此在很多领域中应用较多的是络合溶胶-凝胶法。
该法在制备前驱液时添加强络合剂,通过可溶性络合物的形成减少前驱液中的自由离子,控制一系列实验条件,移去溶剂后得到凝胶,最后再通过分解的方法除去有机配体而得到粉体颗粒。
溶胶-凝胶过程具体包括以下两个反应过程:1.水解反应是把阴离子取代成羟基,诱发综合反应,形成链状或网状交联的聚合物,金属盐类水解:ML + nH2O → M(OH2)z+n+ L z-M(OH2)z+n→ M(OH)(OH)(z-1)+n-1+ H+2.缩聚反应是把OR或L和OH换去,转换成氧化态:M-OH + M-OH → M-O-M + H2OM-OH + M-OH → M-O-M + ROH聚合程度决定于原颗粒的大小,而聚合速度取决于水解速率。
第二章 溶胶-凝胶法
二、溶胶与凝胶的联系
1)溶胶-凝胶转变;
2)凝胶具有触变性; (凝胶能转化为溶胶) 3)凝胶和溶胶可共存,组成复杂的胶态体系。
10
三、溶胶稳定理论
3.1 溶胶体系的相互作用力
范德华力
库伦力
空间阻力 溶胶的相对稳定性或聚沉取决于斥力势能和引 力势能的相对大小 11
3.2 DLVO理论(静电稳定理论、双电层排斥理论)
光源 凸透镜 光锥 丁达尔效应示意图
2
Fe(OH)3胶体
2. 溶胶(sol)
具有液体特征的胶体体系,在液体介质中分散了 1~100nm粒子(基本单元)。
溶胶的特点:
(1)溶胶不是物质而是一种“状态”
3
(2)溶胶与溶液的相似之处 溶质+溶剂→溶液 分散相+分散介质→溶胶(分散系)
分散相 液体 固体 气体 液体 固体 液体 气体 分散介质 气体 气体 液体 液体 液体 固体 固体 示例 雾 烟 泡沫 牛乳 胶态石墨 矿石中的液态夹杂物 矿石中的气态夹杂物
(1)微粒间的吸引能(ΦA)
(2)微粒间的排斥作用能( ΦR)
(3)微粒间总相互作用能( ΦT)
14
+
ΦT
微粒的物理稳定性取决于 总势能曲线上势垒的大小
第二极小值
-
第一极小值
特点: 粒子间存在阻止粒子接触的势垒 存在第一极小值(键合的团聚粒子) 存在第二极小值(可逆絮凝)
15
3.3 提高溶胶稳定性的途径:
第二章 溶胶-凝胶法
溶胶-凝胶法基本概念 溶胶稳定理论 溶胶-凝胶合成原理 溶胶-凝胶合成工艺 溶胶-凝胶合成法的应用
1
第一节
溶胶-凝胶法基本概念
一、溶胶-凝胶法基本名词术语
溶胶-凝胶原理及应用
(1)溶胶-凝胶技术制备金属-氧化ห้องสมุดไป่ตู้催化剂
(2)溶胶-凝胶技术在包容均相催化剂方面的 应用 3、溶胶-凝胶技术分析化学方面应用 (1)色谱分析中的应用 1)制备色谱填料
2)制备开管柱和电色谱固定相
3)在电分析中的应用
4)在光分析中的应用 (2)在生物化学方面的应用 4、其它方面
四、溶胶-凝胶法的基本过程 1.醇盐水解方法
金属醇盐、溶 剂(甲醇、乙 醇等)、水和 催化剂(酸或 弱碱) 水 解 聚 缩 陈 化 溶胶 涂层、成纤、成 型 湿凝胶
干 燥 热 处 理
成品
干凝胶
图1-1 醇盐溶胶-凝胶法基本工艺过程示意 图
(1)首先制取含金属醇盐和水的均相溶液,以保证 醇盐的水解反应在分子的水平上进行。由于金属醇盐 在水中的溶解度不大,一般选用醇作为溶剂,醇和水 的加入应适量,习惯上以水/醇盐的摩尔比计量。催化 剂对水解速率、缩聚速率、溶胶凝胶在陈化过程中的 结构演变都有重要影响,常用的酸性和碱性催化剂分 别为HCl和NH4OH,催化剂加入量也常以催化剂/醇 盐的摩尔比计量。为保证前驱溶液的均相性,在配制 过程中需施以强烈搅拌。
3.分散系
分散体系: 一种或几种物质以大小不等的粒子形态分 散在另一种物质中所形成的体系。
分散 体系 分散相(dispersed phase) 分散介质(dispersing medium) 被分散的物质
分散相所处的介质
分
散
相
水
乳脂 水
水 蛋白质
分散介质
空气
3.溶胶(sol):又称胶体溶液。指在液体介质(主要是液 体)中分散了1~100nm粒子(基本单元),且在分散体系 中保持固体物质不沉淀的胶体体系。溶胶也是指微小 的固体颗粒悬浮分散在液相中,并且不停地进行布朗 运动的体系。
溶胶凝胶法
一、溶胶---凝胶法的发展 二、溶胶一凝胶法的基本原理 三、溶胶一凝胶法工艺过程 四、在制备材料方面的应用 五、展望
二、溶胶一凝胶法的基本原理
sol-gel法制备薄膜涂层的基本原理是:将金属醇 盐或无机盐作为前驱体,溶于溶剂(水或有机溶 剂)中形成均匀的溶液,溶质与溶剂产生水解或 醇解反应,反应生成物聚集成几个纳米左右的粒 子并形成溶胶,再以溶胶为原料对各种基材进行 涂膜处理,溶胶膜经凝胶化及干燥处理后得到干 凝胶膜,最后在一定的温度下烧结即得到所需的 涂层。
按照溶胶制备的途径不同:
1、金属有机醇盐的溶胶-凝胶 2、无机盐为原料的溶胶-凝胶
(1)有机醇盐Sol-gel原理: 通过水解与一定程度的缩聚反应形成溶胶,再经进一步 缩聚得到凝胶。
水解反应: 缩聚反应:
M(OR)n+xH2O ⇒ M(OH)x+nROH (完全水解) M(OR)n+xH2O ⇒ M(OH)x(OR)n-x+xROH (部分水解)
三、溶胶一凝胶法工艺过程
1.溶胶的制备 2. 基材预处理 3. 薄膜涂覆工艺 4. 干燥及热处理
三、溶胶一凝胶法工艺过程 1.溶胶的制备
(1)有机醇盐水解法 (2)无机盐水解法
此外还有:
(3)熔融-淬冷法 熔融-淬冷法是以无机氧化物作为前驱物,加 热至完全熔融状态,然后迅速将其急淬于冷 水中并快速搅拌均匀,通过无机氧化物粒子 迅速溶解并进而聚集成胶体粒子溶胶化而形 成溶胶。 (4)离子交换法 该方法通常可分为3个步骤:活性硅酸制备, 胶粒增长和稀硅溶胶浓缩。 广泛用于电致变色材料溶胶的制备。
失水缩聚:-M-OH+HO-M- ⇒ -M-O-M-+H2O (完全水解) 失醇缩聚:-M-OR+HO-M- ⇒ -M-O-M-+ROH (部分水解)
溶胶-凝胶法及其应用[知识浅析]
行业学习
7
溶胶-凝胶法的基本原理
溶剂化: M(H2O)nz+=M(H2O)n-1(OH)(z-1)+H+ 水解反应: M(OR)n+xH2O=M(OH)x(OR)n-x+xROH------
M(OH)n 缩聚反应 失水缩聚:-M-OH+HO-M-=-M-O-M-+H2O 失醇缩聚:-M-OR+HO-M-=-M-O-M-+ROH
凝胶(Gel)是具有固体特征的胶体体系, 被分散的物质形成连续的网状骨架,骨架 空隙中充有液体或气体,凝胶中分散相的 含量很低,一般在1%~3%之间。
行业学习
4
溶胶-凝胶法的基本概念
-溶胶与凝胶的结构比较
溶胶 凝胶
无固定形状 固定形状
固相粒子自由运动
固相粒子按一定网 架结构固定不能自 由移动
这种特殊的网架结构赋予凝胶很高的比表面
超临界干燥是在干燥介质临界温度和临界压力的 条件下进行干燥,它可以避免物料在干燥过程中的收 缩和碎裂,从而保持物料原有的结构与状态,防止初 级纳米粒子的团聚,这对于各种纳米材料的制备极具 意义。
行业学习
11
传统干燥方法存在的问题
传统的干燥方法如室温或加热条件下让溶剂自然挥发或通 过减压使溶剂挥发,都不可避免地造成气凝胶的体积逐步收缩, 以致开裂碎化,这是因为气凝胶中毛细孔内的流体在气液相交 界面上存在着表面张力的缘故。
若对于半径为r的圆柱形孔洞,流体表面张力引起的毛细管 收缩压强(capillary pressure)△p为:
2con
p pr r
(1)
(1)式中的 为液体的表面张力, 为弯曲液面与固体壁间
的湿润角。若考虑弯曲液面为球面,则:
第4章-溶胶凝胶法及其应用
超临界干燥技术
在超临界状态下的流体,气-液界面消失,表面张力不复存在, 凝胶毛细孔中不存在由表面张力产生的附加压力
超临界流体干燥 保持凝胶原先的分散结构 避免粒子的团聚 防止材料基础粒子变粗 防止比表面急剧下降 防止孔隙大量减少
冻结干燥法
冻结干燥法适于制备活性高、反应性强的微粉。 该法用途广泛, 以大规模成套设备来制备微粉其成 本也十分经济, 实用性好。
5. 磁力搅拌器加热板 6. 温度 调节器 7. 转速调节器
溶胶-凝胶法的基本原理
➢ 溶剂化:金属阳离子Mz+ 吸引水分子形成溶剂单元
M(H2O)nz+, 为保持其配位数, 具有强烈释放H+的趋势。 M(H2O)nz+=M(H2O)n-1(OH)(z-1)+H+
➢ 水解反应:非电离式分子前驱物, 如金属醇盐 M(OR)n 与水反应 M(OR)n+xH2O=M(OH)x(OR)n-x+xROH------M(OH)n
二、溶胶-凝胶法的基本原理
醇盐溶胶-凝胶法基本工艺过程示意:
溶胶-凝胶合成生产设备
2
1
1
3பைடு நூலகம்
4 5
5
6
2 3
4
7
机械搅拌溶胶-凝胶 合成反应示意图
1.回流装置 2. 机械 搅拌器 3.温度计
4.容器 5. 水热装置
磁力搅拌溶胶-凝胶合成反应示 意图
1.容器 2. 密封盖板 3.反应 溶液 4.转动磁子
➢ 凝胶(Gel)是具有固体特征的胶体体系,被分散的 物质形成连续的网状骨架,骨架空隙中充有液体或气 体,凝胶中分散相的含量很低,一般在1%~3%之 间。
➢ 分散介质可以是气体(气溶胶)、水(水溶胶)、 乙醇(醇溶胶)等,分散介质也可以是固体。
溶胶凝胶法的基本原理、发展及应用现状
溶胶凝胶法的基本原理、发展及应用现状一、本文概述1、溶胶凝胶法的定义溶胶凝胶法(Sol-Gel Method)是一种广泛应用于材料科学领域的湿化学合成方法。
该方法基于溶胶(sol)和凝胶(gel)两个关键阶段的转换,通过控制化学反应条件,使前驱体在溶液中发生水解和缩聚反应,形成稳定的溶胶体系。
随着反应的进行,溶胶粒子逐渐增大并相互连接,形成三维网络结构的凝胶。
最终,通过热处理等后处理手段,凝胶转化为所需的纳米材料或涂层。
溶胶凝胶法的基本原理在于利用前驱体在溶液中的化学反应活性,通过控制反应条件如温度、pH值、浓度等,使前驱体在分子或离子水平上均匀混合,并发生水解和缩聚反应。
这些反应使得前驱体之间形成化学键合,进而形成稳定的溶胶体系。
随着反应的进行,溶胶粒子逐渐增大并相互连接,形成三维网络结构的凝胶。
这种凝胶具有高度的多孔性和比表面积,为后续的材料处理和应用提供了良好的基础。
溶胶凝胶法的发展可以追溯到20世纪初,但直到近年来,随着纳米科技的兴起和人们对材料性能要求的不断提高,溶胶凝胶法才得到了广泛的应用和研究。
目前,溶胶凝胶法已经成为制备纳米材料、薄膜、涂层和复合材料等的重要方法之一。
同时,随着科学技术的不断进步,溶胶凝胶法在反应机理、材料设计、工艺优化等方面也取得了显著的进展。
在应用方面,溶胶凝胶法已经广泛应用于陶瓷、玻璃、金属氧化物、复合材料等多个领域。
例如,在陶瓷领域,溶胶凝胶法被用于制备高性能的陶瓷材料,如氧化铝、氧化锆等。
在金属氧化物领域,该方法被用于制备纳米金属氧化物颗粒,如二氧化钛、氧化铁等,这些颗粒在光催化、气敏传感器等领域具有广泛的应用前景。
溶胶凝胶法还在涂层和复合材料的制备中发挥着重要作用,如制备防腐涂层、功能薄膜等。
溶胶凝胶法作为一种重要的湿化学合成方法,在材料科学领域具有广泛的应用前景。
随着科学技术的不断进步和人们对材料性能要求的不断提高,溶胶凝胶法将在更多领域发挥重要作用。
溶胶-凝胶法
成混合溶液,经凝胶化、热处理后,一般都能
获得性能指标较好的粉末。这是由于凝胶中含
有大量液相或气孔,使得在热处理过程中不易
使粉末颗粒产生严重团聚,同时此法易在制备
过程中控制粉末颗粒度。
溶胶-凝胶法制 备氧化铝纤维
实验方法
通过混合铝三异丙醇 和蒸馏水在酸性催化 剂存在的条件下回流 制备溶胶。
在溶胶中添加不同量的粘 结剂可获得可纺性,在适 当的粘度下,将溶胶装入 注射器中,在氨溶液的条 件下可制得纤维。
气氛炉合成
微波合成
烧结方式
超细ZrB2粉体
超细ZrB2粉体合成工艺流程图
使用溶胶-凝胶法 制备ZrB2粉体, 不但样品的粒径 达到了纳米级的 要求,而且样品 的纯度也比其他 方法要高的多。
样 品
粒径(nm) 纯度(%)
Zr:4B:25C
34.76 91.17
• 运用溶胶—凝胶法,将所需成分的前驱物配制
等离子体扫描烧结铝酸盐前驱体, 可得到适当厚度的无裂纹的薄膜, 而且等离子体扫描烧结所需的热量 要显著低于常规炉烧结的热量。
• 制备涂层和薄膜材料是溶胶—凝胶法最
有前途的应用方向。其制备过程为: 将溶 液或溶胶通过浸渍法或转盘法在基板上 形成液膜,经凝胶化后通过热处理可转 变成无定形态(或多晶态)的膜或涂层。 膜层与基体的适当结合可获得基体材料 原来没有的电学、光学、化学和力学等 方面的特殊性能。
互连接的坚实的网络。
原理
• 不论所用的前驱物(起始原料) 为无机盐或金属
醇盐,其主要反应步骤都是前驱物溶于溶剂(
水或有机溶剂) 中形成均匀的溶液,溶质与溶
剂产生水解或醇解反应,反应生成物聚集成1
nm 左右的粒子并组成溶胶,溶胶经蒸发干燥
溶胶凝胶法
溶胶凝胶法溶胶凝胶法1 溶胶,凝胶法溶胶,凝胶(Sol-Gel)技术是指金属有机或无机化合物经过溶胶,凝胶化和热处理形成氧化物或其他固体化合物的方法。
其过程:用液体化学试剂(或粉状试剂溶于溶剂)或溶胶为原料,而不是用传统的粉状物为反应物,在液相中均匀混合并进行反应,生成稳定且无沉淀的溶胶体系,放置一定时间后转变为凝胶,经脱水处理,在溶胶或凝胶状态下成型为制品,再在略低于传统的温度下烧结。
2 溶胶凝胶法基本原理溶胶,凝胶法的主要步骤为将酯类化合物或金属醇盐溶于有机溶剂中,形成均匀的溶液,然后加入其他组分,在一定温度下反应形成凝胶,最后经干燥处理制成产品。
2.1 水解反应金属盐在水中的性质受金属离子半径,电负性,配位数等因素影响,如Si、Al 盐,它们溶解于纯水中常电离出Mn+,并溶剂化[3]。
水解反应平衡关系随溶液的酸度,相应的电荷转移量等条件的不同而不同。
有时电离析出的Mn+又可以形成氢氧桥键合。
水解反应是可逆反应,如果在反应时排除掉水和醇的共沸物,则可以阻止逆反应进行,如果溶剂的烷基不同于醇盐的烷剂,则会产生转移酯化反应,这些反应对合成多组分氧化物是非常重要的。
2.2 聚合反应硅、磷、硼以及许多金属元素,如铝、钛、铁等的醇盐或无机盐在水解的同时均会发生聚合反应,如失水、失醇、缩聚、醇氧化、氧化、氢氧桥键合等都属于聚合反应,性质上都属于取代反应或加成反应。
主要反应:,M,OH ,HO,M, ? ,M,O,M,+H2O ;,M,OR + HO,M, ? ,M,O,M,+ROH 等。
Okkerse等提出硅酸在碱性条件聚合成六配位过渡态,Swain等则提出形成稳定的五配位的过渡态,由于硅酸盐的水解和聚合作用几乎同时进行,它的总反应过程动力学将决定于3个反应速率常数,使得在最临近的尺度范围内,中心Si原子可以有15种不同的化学环境,R.A.Assink等曾描述了这15种配位方式的关系。
可见聚合后的状态是很复杂的[4-6]。
溶胶凝胶法原理
溶胶凝胶法原理溶胶凝胶法是一种分离技术,用于分离相关物质中的不同组分。
该技术可以被广泛应用于化学、制药、食品等领域,并可用于提取物质,纯化混合物以及测定和分离物质。
溶胶凝胶法是一种常用的态熔技术,可用于处理有机和无机物质。
溶胶凝胶法是一种强有效的分离技术,它的基本原理是将混合物溶解在溶胶中,在溶胶的表面,游离的溶质向凝胶吸附,从而构成溶胶凝胶结构。
溶胶凝胶法包括固定相柱、活性相柱、膜柱和池柱四种柱形,其中溶胶柱是最常用的。
溶胶柱包括固定相柱和活性相柱。
固定相柱一般由石英砂、硅胶或粉状固体物质等构成,其物理性质和表面特性决定了固定相柱的吸附性和解吸性,因此可以将混合物中的不同组分分离出来。
通常,活性相柱利用活性特性吸附或解吸混合物中的不同组分,从而将不同组分分离出来。
溶胶凝胶法中用于分离的溶胶溶剂一般有甘油、水、乙醇、乙醚和其他溶剂等,它们的性质决定了溶胶凝胶法的应用以及混合物分离效果。
膜柱通常由纤维素、玻璃、聚酯等材料构成,它们具有良好的耐热性和防腐性,可以用来过滤含有大分子物质的混合物。
池柱由多层的不连续材料构成,它可以有效地改变混合物中残留物的性质,从而提高混合物中物质的分离效果。
溶胶凝胶法还可以用于提取物质、纯化混合物以及测定物质。
提取物质是指将有机物从一种溶剂中转移到另一种溶剂中,使其分离,从而获得物质。
纯化混合物是指在绝热条件下液化混合物,将组分以不同比例分离出来,从而达到纯化的目的。
测定物质指的是在恒定温度和压力下,测定溶胶的组分的折射率和比重,从而得到其纯度。
溶胶凝胶法是一种有效的分离技术,可以用来分离特定的有机和无机物质。
它的分离效果取决于混合物组成、溶胶溶剂种类和强度、温度和柱形等因素,因此能够很好地控制分离过程,从而获得更精确的结果。
此外,溶胶凝胶法还可以用来提取物质、纯化混合物以及测定混合物中的物质,从而满足许多不同领域的应用需求。
材料化学:溶胶-凝胶法及其应用
Ti(OC4H9)4含有活泼的丁氧基反应基团,遇水会发生强烈的水解反 应,继而发生聚合反应:
水解反应 ≡Ti-OR + H2O → ≡Ti-OH + ROH
Ti (O-iC3H7)4 Ti(OC4H9)4 Ti(OC5H7)4
B(OCH3)3
阳离子
Ge Zr Y Ca
M(OR)n
Ge(OC2H5)4 Zr(O-iC3H7)4 Y(OC2H5)3
(OC2H5)2
金属 醇盐
族
单金 属醇
盐
ІA
ІB ⅡA ⅡB ⅢA ⅢB ⅣA ⅣB ⅤA ⅤB Ⅵ
稀土
金属
溶胶-凝胶法及其应用
溶胶-凝胶法在湿化学合成中占有重要地位。在制备 玻璃、陶瓷、薄膜、纤维、复合材料等方面获得重要应用, 更广泛用于制备纳米粒子。
金属醇盐
简单讲,溶胶-凝胶法就是用含高化学活性组分的化合物
作前驱体(precursor),在液相下将这些原料均匀混合,
并进行水解、缩合化学反应,在溶液中形成稳定的透明溶 胶体系,溶胶经陈化胶粒间缓慢聚合,形成三维空间网络 结构的凝胶,凝胶网络间充满了失去流动性的溶剂。凝胶 经干燥、烧结固化制备出分子乃至纳米级结构的材料。
金属醇盐(metal alkoxide):有机醇-OH上的H为金 属所取代的有机化合物。它与一般金属有机化合物 的差别在于金属醇盐是以M-O-C键的形式结合, 金属有机化合物则是M-C键结合。
溶胶凝胶合成中常用的醇盐
阳离子
Si Al Ti B
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
溶胶.凝胶法的基本原理及应用现状
溶胶.凝胶法(S01.Gel法,简称S.G法)就是以无机物或金属醇盐作前驱体,在液相将这些原料均匀混合,并进行水解、缩合化学反应,在溶液中形成稳定透明溶胶体系,溶胶经陈化,胶粒间缓慢聚合,形成三维空间网络结构的凝胶,凝胶网络间充满了失去流动性的溶剂,形成凝胶。
凝胶经过干燥、烧结固化制备出分子乃至纳米亚结构的材料。
溶胶.凝胶法就是将含高化学活性组分的化合物经过溶液、溶胶、凝胶而固化,再经热处理而成的氧化物或其它化合物固体的方法。
近年来,溶胶-凝胶技术在玻璃、氧化物涂层和功能陶瓷粉料,尤其是传统方法难以制备的复合氧化物材料、高临界温度(P)氧化物超导材料的合成中均得到成功的应
1.基本原理
S01.Gel法的基本反应步骤如下:
1)溶剂化:金属阳离子M”吸引水分子形成溶
剂单元M(H20):+,为保持其配位数,具有强烈释放
H+的趋势。
2)水解反应:非电离式分子前驱物,如金属醇盐
M(OR)。
与水反应。
3)缩聚反应:按其所脱去分子种类,可分为两类
a)失水缩聚
b)失醇缩聚
2.应用
由于溶胶.凝胶技术在控制产品的成分及均匀性方面具有独特的优越性,近年来已用该技术制成Li’ra02、“NbO,、PbTjO,、Pb(Zj孙)03和BaTjO,,
等各种电子陶瓷材料。
特别是制备出形状各异的超导薄膜n0],高温超导纤维¨¨等。
在光学方面该技术已被用于制备各种光学膜如高反射膜、减反射膜等和光导纤维、折射率梯度材料、有机染料掺杂型非线性光学材料等以及波导光栅、稀土发光材料等。
在热学方面用该技术制备的SiO:一Ti0:玻璃非常均匀,热膨胀系数很小,化学稳定性也很好;已制成的InO,.SnO:(ITO)大面积透明导电薄膜具有很好
的热镜性能;制成的si02气凝胶具有超绝热性能等特点。
4研究展望
3.目前,对溶胶一凝胶法的研究主要集中在以下几
个方面:
1)在工艺方面值得进一步探索的问题:较长的制备周期;应力松弛,毛细管力的产生和消除,孔隙尺寸及其分布对凝胶干燥方法的影响;在凝胶干燥过程中加入化学添加剂的考察,非传统干燥方法探索;凝胶烧结理论与动力学以及对最佳工艺(干燥、烧结工艺)的探索。
2)和自蔓延法连用制备常规方法较难制备的新型纳米材料。
例如
S01.GeI.EIsA(evaporati彻.induced
se堆鹬sembly)制备一些具有纳米结构的功能性材料㈦。
随着人们对溶胶.凝胶法的迸一步研究,溶胶.凝胶法一定能得到更为广泛的应用,在各个方面取得更大的进展。