函数模型的应用实例PPT课件
合集下载
函数模型的应用实例 课件
所以 y=-0.15(x-4)2+2. B 种商品所获纯利润 y 与投资额 x 之间的变化规律是线 性的,可以用一次函数模型进行模拟,如图(2)所示. 设 y=kx+b,取点(1,0.25)和(4,1)代入, 得01.=254=k+k+b,b, 解得kb==00..25, 所以 y=0.25x.
即前六个月所获纯利润 y 关于月投资 A 种商品的金额 x 的函数关系式是 y=-0.15(x-4)2+2;前六个月所获纯利润 y 关于月投资 B 种商品的金额 x 的函数关系式是 y=0.25x.
根据函数自身的种类,常见函数模型可分为:
(1)直线模型:即一次函数模型,现实生活中很多事例可以用直线模型表示,例如匀速直线运动的时 间和位移的关系,弹簧的伸长与拉力的关系等,直线模型的增长特点是直线上升(x的系数k>1), 通过画图可以很直观地认识它.
(2)指数函数模型:能用指数型函数表达的函数模型叫做指数函数模型.指数函数增长的特点是随着 自变量的增大,函数值增大的速度越来越快(底数a>1),常形象地称之为“指数爆炸”.通过细胞 分裂增长实例以及函数图象的变化都可以清楚地看到“爆炸”的威力.
2.面临实际问题,自己建立函数模型的步骤 ( 1 ) _收_ _集_ _数_ _据_ ; ( 2 ) _ _描_ _点_ _ ; ( 3 ) _ _ _选_ _择_ _函_ 数_ _模_ _型_ ; ( 4 ) _求_ _函_ _数_ _模_ 型_ _ ; ( 5 ) _ _检_ 验_ _ ; ( 6 ) _用_ _函_ _数_ _模_ _型_ _解_ _决_实_ _际_ _问_ _题_ .
1.利用我们所得到的函数模型有什么用途?
【答案】利用所得函数模型可解释有关现象,对某些发展趋 势进行预测.
即前六个月所获纯利润 y 关于月投资 A 种商品的金额 x 的函数关系式是 y=-0.15(x-4)2+2;前六个月所获纯利润 y 关于月投资 B 种商品的金额 x 的函数关系式是 y=0.25x.
根据函数自身的种类,常见函数模型可分为:
(1)直线模型:即一次函数模型,现实生活中很多事例可以用直线模型表示,例如匀速直线运动的时 间和位移的关系,弹簧的伸长与拉力的关系等,直线模型的增长特点是直线上升(x的系数k>1), 通过画图可以很直观地认识它.
(2)指数函数模型:能用指数型函数表达的函数模型叫做指数函数模型.指数函数增长的特点是随着 自变量的增大,函数值增大的速度越来越快(底数a>1),常形象地称之为“指数爆炸”.通过细胞 分裂增长实例以及函数图象的变化都可以清楚地看到“爆炸”的威力.
2.面临实际问题,自己建立函数模型的步骤 ( 1 ) _收_ _集_ _数_ _据_ ; ( 2 ) _ _描_ _点_ _ ; ( 3 ) _ _ _选_ _择_ _函_ 数_ _模_ _型_ ; ( 4 ) _求_ _函_ _数_ _模_ 型_ _ ; ( 5 ) _ _检_ 验_ _ ; ( 6 ) _用_ _函_ _数_ _模_ _型_ _解_ _决_实_ _际_ _问_ _题_ .
1.利用我们所得到的函数模型有什么用途?
【答案】利用所得函数模型可解释有关现象,对某些发展趋 势进行预测.
高中数学人教版:3.2--数学模型及其应用(共73张PPT)
例3. 一辆汽车在某段路程中的行驶速度与时间的关系如图 所示.
(1) 求图中阴影部分的面积, 并说明所求面积的实际含义; (2) 假设这辆汽车的里程表在汽车行驶这段路程前的读数为 2004 km, 试建立汽车行驶这段路程时汽车里程表读数 s km与 时间 t h 的函数解析式, 并作出相应的图象.
所示.
(1) 求图中阴影部分的面积, 并说明所求面积的实际含义;
(2) 假设这辆汽车的里程表在汽车行驶这段路程前的读数为
2004 km, 试建立汽车行驶这段路程时汽车里程表读数 s km与
时间 t h 的函数解析式, 并作出相应的图象.
s/km
解: (2) 列表表示:
2350
2300
[0, 1)
s[1=, 2)
y4 5 2.3107 1.4295 1.1407 1.0461 1.0151 1.005
关于 x 呈指数型函数变化的变量是 y2 y4.
分析: y1, y2, y3 都是 增函数, 增长速度最快的 是 y2, 所以 y2 最有可能 是指数型函数.
y4 是减函数, 画出 图象如图: y4 也可能是 指数形函数.
y
2048
y=2x
幂函数 y = x3
对数函数 y = log2x
x
5
8 10 11 1231
2x 32 256 1024 2048 1024
1000
x3 125 512 1000 1231
log2x 2.32 3 3.32 3.46 512
随着 x 的增大, 2x 的图象 几乎垂直向上, 增速很大.
口人增数(长1)率5如95(61精果确以50到6各030年.0人508702口41)增, 5用9长867马率尔的660萨6平2斯均6人5值164口作增为62长2我88模国型6这643建5一立时69我5期49国的这人60772
函数的应用课件ppt课件ppt课件ppt
大数据与函数应用
随着大数据技术的不断发展,函 数应用将更多地涉及到大规模数 据的处理和分析,需要更加高效
和稳定的技术支持。
大数据技术将促进函数应用的个 性化发展,使得函数能够更好地 满足不同用户的需求,提升用户
体验。
大数据技术将提升函数应用的预 测能力和决策支持能力,使得函 数能够更好地服务于商业智能和
05
未来函数应用的发展趋势
深度学习与函数应用
深度学习技术将进一步拓展函数应用的领域,特别是在图像识别、语音识别、自然 语言处理等领域,将会有更多的函数应用出现。
深度学习技术将提升函数应用的精度和效率,使得函数能够更好地满足复杂场景的 需求。
深度学习技术将促进函数应用的自动化和智能化,使得函数能够更好地适应不断变 化的环境和需求。
成本与收益
经济增长
在经济增长研究中,函数可以描述国 民生产总值、人均收入等经济指标随 时间的变化规律,用于预测经济发展 趋势和制定经济政策。
在经济分析中,函数用于表示成本、 收益与产量或销售量之间的关系,用 于制定经济决策和评估经济效益。
03
函数的应用实例
三角函数在物理中的应用
总结词 正弦函数 余弦函数 正切函数 应用实例
运动学
在物理学中,函数可以描述物体运动的速度、加速度、位移等物理量随时间的变化规律。
波动
函数可以描述波动现象,如正弦波、余弦波、波动方程等。
热力学
在热力学中,函数可以描述温度、压力、体积等物理量之间的关系,用于研究热力学的性质和变 化规律。
工程领域
控制系统
在工程控制系统中,函数用于描 述系统的输入和输出之间的关系 ,通过调节系统参数实现控制目
解决周期性问题
描述简谐振动、交流电等周 期性现象。
函数模型的应用实例 课件
解:由题意,知将产量随时间变化的离散量分别抽 象为 A(1,1),B(2,1.2),C(3,1.3),D(4,1.37)这 4 个 数据.
(1)设模拟函数为 y=ax+b 时,将 B,C 两点的坐标 代入函数式,得32aa+ +bb= =11..32, ,解得ab==01..1,
所以有关系式 y=0.1x+1. 由此可得结论为:在不增加工人和设备的条件下, 产量会每月上升 1 000 双,这是不太可能的.
过筛选,以指数函数模型为最佳,一是误差小,二是由于 厂房新建,随着工人技术和管理效益逐渐提高,一段时间 内产量会明显上升,但经过一段时间之后,如果不更新设 备,产量必然趋于稳定,而该指数函数模拟恰好反映了这 种趋势.因此选用指数函数 y=-0.8×0.5x+1.4 比较接近 客观实际.
类型 3 建立拟合函数解决实际问题(规范解答) [典例 3] (本小题满分 12 分)某个体经营者把开始六 个月试销 A、B 两种商品的逐月投资金额与所获纯利润列 成下表:
(3)设模拟函数为 y=abx+c 时,
将 A,B,C 三点的坐标代入函数式,
得aabb2++cc==11,.2,
① ②
ab3+c=1.3. ③
由①,得 ab=1-c,代入②③,
得bb2((11--cc))++cc==11.2.3,.
则cc==1111..32- ---bbbb22,,解得bc==10..45., 则 a=1-b c=-0.8. 所以有关系式 y=-0.8×0.5x+1.4. 结论为:当把 x=4 代入得 y=-0.8×0.54+1.4=1.35. 比较上述三个模拟函数的优劣,既要考虑到误差最 小,又要考虑生产的实际,如:增产的趋势和可能性.经
设 y=kx+b,取点(1,0.30)和(4,1.20)代入, 得01..32= =k4+ k+b, b,解得kb==00..3,所以 y=0.3x.(8 分) 设第 7 个月投入 A,B 两种商品的资金分别为 x 万元、 (12-x)万元,总利润为 W 万元, 那么 W=yA+yB=-0.15(x-4)2+2+0.3(12-x). 所以 W=-0.15(x-3)2+0.15×9+3.2.(10 分) 当 x=3 时,W 取最大值,约为 4.55 万元,此时 B 商品的投资为 9 万元.(11 分)
函数的应用课件(共20张PPT)
解 设提高x个2元,则将有10x辆电瓶车空出,且租金 总收人为
y=(20+2x)(300-10x) =-20x2+600x-200x+6000 =-20(x2-20x+100-100)十6000 =-20(x-10)2+8000.(x∈N且x≤30)
调动思维,探究新知 在活初动中2,我们用过“自然数集”“有理数集”等表述,这里的“集”就是集合的简称,那么什么是集合呢?
2=a(0-6)2+5,
巩固练习,提升素养 在活初动中3,我们用过“自然数集”“有理数集”等表述,这里的“集”就是集合的简称,那么什么是集合呢?
调动思维,探究新知 在活初动中2,我们用过“自然数集”“有理数集”等表述,这里的“集”就是集合的简称,那么什么是集合呢?
解 如果x∈[0,180],则 f(x)=5x;如果x∈(180,260],
按照题意有
f(x)=5×180+7(x-180)=7x-360.
因此
f
x
7
x
5x , x 0 360 , x
2. 北京市自2014年5月1日起,居民用水实行阶梯水 价制度、其中年用水量不超过180m3的部分,综合用水 单价为5元/m3;超过180m3但不超过 260m3的部分,综合用水单价为7元/m3. 如果北京市一居民年用水量为xm3,其要 缴纳的水费为f(x)元。假设0≤x≤260, 试写出f(x)的解析式,并作出f(x)的图象.
由此得到,当x=10时,ymax=8000,即每辆电瓶车 的租金为
20+10×2=40 元时,毎天租金的总收人最高,为8000元.
ห้องสมุดไป่ตู้
巩固练习,提升素养 在活初动中3,我们用过“自然数集”“有理数集”等表述,这里的“集”就是集合的简称,那么什么是集合呢?
y=(20+2x)(300-10x) =-20x2+600x-200x+6000 =-20(x2-20x+100-100)十6000 =-20(x-10)2+8000.(x∈N且x≤30)
调动思维,探究新知 在活初动中2,我们用过“自然数集”“有理数集”等表述,这里的“集”就是集合的简称,那么什么是集合呢?
2=a(0-6)2+5,
巩固练习,提升素养 在活初动中3,我们用过“自然数集”“有理数集”等表述,这里的“集”就是集合的简称,那么什么是集合呢?
调动思维,探究新知 在活初动中2,我们用过“自然数集”“有理数集”等表述,这里的“集”就是集合的简称,那么什么是集合呢?
解 如果x∈[0,180],则 f(x)=5x;如果x∈(180,260],
按照题意有
f(x)=5×180+7(x-180)=7x-360.
因此
f
x
7
x
5x , x 0 360 , x
2. 北京市自2014年5月1日起,居民用水实行阶梯水 价制度、其中年用水量不超过180m3的部分,综合用水 单价为5元/m3;超过180m3但不超过 260m3的部分,综合用水单价为7元/m3. 如果北京市一居民年用水量为xm3,其要 缴纳的水费为f(x)元。假设0≤x≤260, 试写出f(x)的解析式,并作出f(x)的图象.
由此得到,当x=10时,ymax=8000,即每辆电瓶车 的租金为
20+10×2=40 元时,毎天租金的总收人最高,为8000元.
ห้องสมุดไป่ตู้
巩固练习,提升素养 在活初动中3,我们用过“自然数集”“有理数集”等表述,这里的“集”就是集合的简称,那么什么是集合呢?
3.2.2函数模型应用实例
60266
61456
62828
64563
65994
67207
y y0e
n (1)如果以各年人口增长平均值l作为我国这一时期的人口增长 率(精确到0.0001),用马尔萨斯人口增长模型建立我国在 这一时期具体人口增长模型,并检验所得模型与实际人口数 据是否相符;
解:设1951~1959年的人口增长率分别为 r1 ,r 2 ,......,r 9 . 由
y 其中t表示经过的时间,y0表示t=0时的人口数, r表示人口 的年平均增长率。
0
y y0e
n
表3是1950~1959年我国的人口数据资料:
年份
1950 1951 1952 1953 1954 1955 1956 1957 1958 1959
人数/ 万人55196 Nhomakorabea56300
57482
58796
3.2.2 函数模型的应用实例
一辆汽车在某段路中的行驶速率与时间的关系 如图1所示,
(1)求图1中阴影部 分的面积,并说明所 求面积的实际含义; (2)假设这辆汽车的 里程表在汽车行行驶 这段路程前的读数为 2004km,试建立行 驶这段路程时汽车里 程表读数s km与时间t h的函数解析式,并作 出相应的图象。
由图4可以看出,所 得模型与 1950~1959年的实 际人口数据基本吻 合.
(2)如果按表3的增长趋势,大约在哪一年我国 的人口达到13亿?
将y=130000代入 y 55196e0.0221t .t N.
由计算可得
t 38.76
所以,如果按表3的增长趋势,那么大约在1950 年后的第39年(即1989年)我国的人口就已达到 13亿.由此可以看到,如果不实行计划生育,而是让 人口自然增长,今天我国将面临难以承受的人口压 力.
《用函数模型解决实际问题》课件1(北师大必修1)
当________时,一次函数在 ( ,) 上为增函数,当_______时, 一次函数在 (,) 上为减函数。
y ax bx c ( a 0 ) 2.二次函数的解析式为_______________________, 其图像是一条
2
4 ac b 4 ac b
2
高一新教材
函数模型的应用实例
教学任务分析 1.培养学生阅读图形、表格的能力。 2.引导学生利用题中的数据及其蕴涵的关系建立数学模型,解决 实际问题。 3.强化一次函数、二次函数在实际问题中的应用。 4.让学生充分体会解决实际问题中建立函数模型的过程。 教学重点与难点 重点:如何结合题意,利用函数模型解决实际问题 难点:如何才能准确提取题目的数据,建立相应的函数模型 教学方法:导学法
2 2
当 x 6 . 5时, y 有最大值
只需将销售单价定为11.5元,就可获得最大的利润。
1.一家旅社有100间相同的客房,经过一段时间的经营实践,旅社经理发现, 每间客房每天的价格与住房率之间有如下关系: 每间每天房价 20元 18元 16元 住房率 65% 75% 85% 14元 95%
复习一次函数与二次函数模型 学习例1,提高读图、建模能力 设计练习,加强读图、建模能力的培养
学习例2,提高读表、建模能力
设计练习,加强读表、建模能力的培养 小结方法,形成知识系统
布置作业
直 y kx b(k 0) 1.一次函数的解析式为__________________ , 其图像是一条____线,
480 40 ( x 1) 520 40 x (桶)
而 x 0 , 且 520 40 x 0 , 即 0 x 13
y ( 520 40 x ) x 200 40 x 520 x 200 40 ( x 6 . 5 ) 1490
函数模型的应用实例--优质获奖精品课件 (60)
1.用函数模型解应用题的四个步骤
审题
弄清题意,分清条件和结论,理顺数量关系, 初步选择模型.
建模
将自然语言转化为数学语言,将文字语言转化 为符号语言,利用数学知识,建立相应的数学 模型.
解模
求解数学模型,得出数学模型.
还原
将数学结论还原为实际问题的意义.
2.建立函数模型应把握的三个关口 (1)事理关:通过阅读、理解,明白问题讲什么,熟悉实际背 景,为解题打开突破口. (2)文理关:将实际问题的文字语言转化为数学的符号语言, 用数学式子表达数学关系. (3)数理关:在构建数学模型的过程中,对已有的数学知识进 行检验,从而认定或构建相应的数学问题.
【解析】1.设原来的生产总值为a,则12月底的生产总值为
a(1+P)12,故年平均增长率为a 1 P 12 a
a
=(1+P)12-1.
答案:(1+P)12-1
2.(1)由题意知第一次注射药物前病毒细胞个数y关于天数 n(n∈N*)的函数关系式为y=2n-1(n∈N*).为了使小白鼠在试验 过程中不死亡,则2n-1≤108,两边取对数,解得n≤27,即第 一次最迟应在第27天注射该种药物.源自对数函数模型 【技法点拨】
对数函数应用题的解题思路 有关对数函数的应用题一般都会给出函数关系式,要求根据实 际情况求出函数关系式中的参数,或给出具体情境,从中提炼 出数据,代入关系式求值,然后根据值回答其实际意义.
【典例训练】
1.大西洋鲑鱼每年都要逆流而上,游回产地产卵,经研究发现
鲑鱼的游速可以表示为函数v=
第2课时 指数型、对数型函数 模型的应用举例
1.了解指数函数模型、对数函数模型的广泛应用. 2.掌握求解函数应用题的基本步骤. 3.能够根据已有的数据建立拟合函数解决实际问题.
人教A版必修一3.2.2函数模型的应用实例
类型一:难题,需要55的接受能力以及13 min时间,老师能否及时在学生一直达到 所需接受能力的状态下讲授完这个难题?. 思路点拨:利用所给函数关系式解决有关问题
规律方法:本题是常数函数、一次函数、二次函数混合在一起的分段函数,自变量的取值 不同函数解析式可能不一样,这一点要特别注意.另外,函数的最值也是通过先求每一段 的最值,然后再作比较而求得. 变式训练1-1:某工厂今年1月、2月、3月生产某产品分别为1万件、1.2万件、1.3万件.为 了估测以后每个月的产量,以这三个月的产品数量为依据,用一个函数模拟该产品的月产 量y与月份数x的关系,模拟函数可以选用二次函数或指数型函数,已知4月份该产品的产 量为1.37万件,请问用以上哪个函数作为模拟函数较好,并说明理由.
思路点拨:解答本题可首先根据表中数据作出散点图,然后通过观 察图象判断问题所适用的函数模型.
这样,我们得到一个函数模型:y=2.2+1.8x.作出函数图象如图(乙),可以发现,这 个函数模型与已知数据的拟合程度较好,这说明它能较好地反映积雪深度与灌溉面积的关 系. (3)由y=2.2+1.8×25,求得y=47.2,即当积雪深度为25 cm时,可以灌溉土地47.2公顷. 规律方法:对于此类实际应用问题,关键是建立适当的函数关系式,再解决数学问题 ,最后验证并结合问题的实际意义作出回答,这个过程就是先拟合函数再利用函数解题. 函数拟合与预测的一般步骤是:
类型二:自建函数模型解应用题 【例2】 某市原来民用电价为0.52元/kW·h.换装分时电表后,峰时段(早上八点到晚上 九点)的电价为0.55元/kW·h,谷时段(晚上九点到次日早上八点)的电价为0.35元 /kW·h.对于一个平均每月用电量为200 kW·h的家庭,要使节省的电费不少于原来电费的 10%,则这个家庭每月在峰时段的平均用电量至多为多少kW·h?
高中数学人教A版必修1课件:3.2.2函数模型的应用实例
设甲项目投资 x 亿元,投资这两个项目所获得的总利润为 y 亿元.
(1)写出 y 关于 x 的函数表达式;
(2)求总利润 y 的最大值.
分析:(1)总利润=投资甲项目利润+投资乙项目利润=M+N;(2)
转化为求(1)中函数的最大值.
-12-
3.2.2
题型一
函数模型的应用实例
题型二
题型三
M 目标导航
-3-
3.2.2
函数模型的应用实例
M 目标导航
UBIAODAOHANG
Z 知识梳理
HISHI SHULI
Z 重难聚焦
HONGNAN JVJIAO
D典例透析
IANLI TOUXI
名师点拨巧记函数建模过程:
收集数据,画图提出假设;
依托图表,理顺数量关系;
抓住关键,建立函数模型;
精确计算,求解数学问题;
Z 重难聚焦
HONGNAN JVJIAO
D典例透析
IANLI TOUXI
题型四
【变式训练 2】 大西洋鲑鱼每年都要逆流而上,游回产地产卵.
记鲑鱼的游速为 v(单位:m/s),鲑鱼的耗氧量的单位数为 Q,研究中发
现 v 与 log3
成正比, 且当Q=900 时,v=1.
100
(1)求出 v 关于 Q 的函数解析式;
米)的关系式为 p=1 000·
7
100
ℎ
3 000
, 则海拔6 000 米处的大气压强为
百帕.
解析:当 h=6 000 米时,p=1 000·
7
100
6 000
3 000
= 4.9(百帕).
答案:4.9
推荐-高中数学人教A版必修1课件3.2.2函数模型的应用实例
当 x>400 时,f(x)=60 000-100x 是减函数.
f(x)<60 000-100×400<25 000(元).
∴当 x=300 时,f(x)的最大值为 25 000 元.
故每月生产 300 台仪器时,利润最大,最大利润为 25 000 元.
探究一
探究二
探究三
思维辨 析
合作学习
反思感悟应用一次函数与二次函数的有关知识,可解决生产、生 活实际中的最大(小)值的问题.解答时需遵循的基本步骤是:(1)反 复阅读理解,认真审清题意;(2)依据数量关系,建立数学模型;(3)利 用数学方法,求解数学问题;(4)检验所得结果,译成实际答案.
合作学习
探究一
探究二
探究三
思维辨 析
解(1)已知仪器的月产量为 x 台,则总成本为 20 000+100x,
从而
f(x)=
-
1 2
������
2
+
300������-20
000,0
≤
������
≤
400,
60 000-100������,������ > 400.
(2)当 0≤x≤400 时,
f(x)=-12(x-300)2+25 000, ∴当 x=300 时,f(x)有最大值 25 000 元;
y=a+bx(a,b 为常数,b≠0).
取其中的两组数据(10.4,21.1),(24.0,45.8),
代入
y=a+bx,得
21.1 45.8
= =
������ ������
+ +
10.4������, 24.0������,
高中数学 第三章 §3.2.2函数模型的应用实例课件 新人教A版必修1
所以,火车运行总路程 S 与匀速行驶时间 t 之间的关系是 S=13+120t(0≤t≤151). 2 h 内火车行驶的路程 S=13+120×161=233 (km).
第五页,共22页。
小结 在实际问题中,有很多问题的两变量之间的关系是一次 函数模型,其增长特点是直线上升(自变量的系数大于 0)或直 线下降(自变量的系数小于 0),构建一次函数模型,利用一次 函数模型,利用一次函数的图象与单调性求解.
年份
1950 1951 1952 1953 1954 1955 1956 1957 1958 1959
人数/万人 55 196 56 300 57 482 58 796 60 266 61 456 62 828 64 563 65 994 67 207
(1)如果以各年人口增长率的平均值作为我国这一时期的人口增
第十一页,共22页。
跟踪训练 2 某游乐场每天的盈利额 y 元 与售出的门票数 x 张之间的关系如图所示, 试问盈利额为 750 元时,当天售出的门票 数为多少? 解 根据题意,每天的盈利额 y 元与售出的门 票数 x 张之间的函数关系是:y=31..7255xx+0≤1 0x0≤0440000<x≤600 . ①当 0≤x≤400 时,由 3.75x=750,得 x=200. ②当 400<x≤600 时,由 1.25x+1 000=750,得 x=- 200(舍去). 综合①和②,盈利额为 750 元时,当天售出的门票数为 200 张. 答 当天售出的门票数为 200 张时盈利额为 750 元.
第十七页,共22页。
当 y=10 时,解得 t≈231. 所以,1881 年世界人口约为 10 年的 2 倍.
(2)由此看出,此模型不太适宜估计跨度时间非常大的人口增长 情况.
第五页,共22页。
小结 在实际问题中,有很多问题的两变量之间的关系是一次 函数模型,其增长特点是直线上升(自变量的系数大于 0)或直 线下降(自变量的系数小于 0),构建一次函数模型,利用一次 函数模型,利用一次函数的图象与单调性求解.
年份
1950 1951 1952 1953 1954 1955 1956 1957 1958 1959
人数/万人 55 196 56 300 57 482 58 796 60 266 61 456 62 828 64 563 65 994 67 207
(1)如果以各年人口增长率的平均值作为我国这一时期的人口增
第十一页,共22页。
跟踪训练 2 某游乐场每天的盈利额 y 元 与售出的门票数 x 张之间的关系如图所示, 试问盈利额为 750 元时,当天售出的门票 数为多少? 解 根据题意,每天的盈利额 y 元与售出的门 票数 x 张之间的函数关系是:y=31..7255xx+0≤1 0x0≤0440000<x≤600 . ①当 0≤x≤400 时,由 3.75x=750,得 x=200. ②当 400<x≤600 时,由 1.25x+1 000=750,得 x=- 200(舍去). 综合①和②,盈利额为 750 元时,当天售出的门票数为 200 张. 答 当天售出的门票数为 200 张时盈利额为 750 元.
第十七页,共22页。
当 y=10 时,解得 t≈231. 所以,1881 年世界人口约为 10 年的 2 倍.
(2)由此看出,此模型不太适宜估计跨度时间非常大的人口增长 情况.
高中数学-函数模型的应用实例
y0 55196,则我国在1951~1959年期间的人 口增长模型为
y 55196e0.0221t,t N
从该图可以看出,所得模型与1950~1959 年的实际人口数据基本吻合。
y
70000 65000 60000 55000 50000
0
2
4
6
8
t
(2)将y=130 000代入
y 55196e0.0221t
(1)如果以各年人口增长率的平均值作为我国这 一时期的人口增长率(精确到0.0001),用马尔萨 斯人口增长模型建立我国在这一时期的具体人口 增长模型,并检验所得模型与实际人口数据是否 相符;
(2)如果按表中数据的增长趋势,大约在哪一年 我国的人口达到13亿?
因为 Байду номын сангаасi
ai ai 1 ,所以可以得出 ai 1
路程前的读数为2004km,试建立汽车行
驶这段路程时汽车里程表读数 s km与时
间 t h的函y数解析式,并作出相应的图像。
90 80 70
60
50
40
30
20
10
t
123 45
y
2400 2300
2200
2100
2000
x
123 45
2:人口问题是当今世界各国普遍关注 的问题。认识人口数量的变化规律,可以 为有效控制人口增长提供依据。早在1798 年,英国经济学家马尔萨斯就提出了自然 状态下的人口增长模型:
函数模型的应用实例
1:一辆汽车在某段路程中的行驶速
度与时间的关系如图:
y (Km/h)
90
90
80
80
75
70
65
60 50 50
y 55196e0.0221t,t N
从该图可以看出,所得模型与1950~1959 年的实际人口数据基本吻合。
y
70000 65000 60000 55000 50000
0
2
4
6
8
t
(2)将y=130 000代入
y 55196e0.0221t
(1)如果以各年人口增长率的平均值作为我国这 一时期的人口增长率(精确到0.0001),用马尔萨 斯人口增长模型建立我国在这一时期的具体人口 增长模型,并检验所得模型与实际人口数据是否 相符;
(2)如果按表中数据的增长趋势,大约在哪一年 我国的人口达到13亿?
因为 Байду номын сангаасi
ai ai 1 ,所以可以得出 ai 1
路程前的读数为2004km,试建立汽车行
驶这段路程时汽车里程表读数 s km与时
间 t h的函y数解析式,并作出相应的图像。
90 80 70
60
50
40
30
20
10
t
123 45
y
2400 2300
2200
2100
2000
x
123 45
2:人口问题是当今世界各国普遍关注 的问题。认识人口数量的变化规律,可以 为有效控制人口增长提供依据。早在1798 年,英国经济学家马尔萨斯就提出了自然 状态下的人口增长模型:
函数模型的应用实例
1:一辆汽车在某段路程中的行驶速
度与时间的关系如图:
y (Km/h)
90
90
80
80
75
70
65
60 50 50
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
0
t
(B)
(C)
(D)
课本例3 一辆汽车在某段路程中的行驶速度与时间关系如图所示: (1)求图中阴影部分的面积,并说明所求面积的实际含义; (2)假设这辆汽车的里程表在汽车行驶这段路程前的读数为 2004 km,试建立汽车行驶这段路程时汽车里程表读数s km与时间t h 的函数解析式,并作出相应的图象.
0 t 1
1 t 2 2t 3 3t4 4t 5
这个函数的图像如下图所示:
课本例4 人口问题是当今世界各国普遍关注的问题.认识人口数的变化,可以 为有效的控制人口增长提供依据.早在1789年,英国经济学家马尔萨斯就提出 了自然状态下的人口增长模型: y y 0 en 其中 t 表示经过的时间, y0 表示 t=0 时的人口数, r 表示人口的年平均增长率. 下表是1950-1959年 我过人口数据资料: 年份 1950
每间每天房价 20元 18元 16元 住房率 65% 75% 85% 14元 95%
要使每天收入达到最高,每间定价应为( C ) A.20元 B.18元 C.16元 D.14元
2.将进货单价为80元的商品按90元一个售出时,能卖出400个,已知这种商品 每个涨价1元,其销售量就减少20个,为了取得最大利润,每个售价应定为 ( A) A.95元 B.100元 C.105元 D.110元
v
90 80 70
60 50 40 30 20 10
1 2 3 4 5
解(1)阴影部分的面积为 50 1 80 1 90 1 75 1 65 1 360
阴影部分的面积表示汽车在这5小时内行驶的路程为360km (2)根据图形可得:
t
50t 2004 80( t 1) 2054 S 90( t 2) 2134 75( t 3) 2224 65( t 4) 2299
3.2.2 函数模型的应用实例
第一课时 桂东一中 张尹
y kx b(k 0) , 其图像是一条 ____ 直 线, 1.一次函数的解析式为__________________
当________时,一次函数在 一次函数在 (,)
( ,) 上为增函数,当_______时,
问题 某学生早上起床太晚,为避免迟到,不得不跑步到教室 , 但由于平时不注意锻炼身体,结果跑了一段就累了,不得不走 完余下的路程。 如果用纵轴表示家到教室的距离,横轴表示出发后的时间, 则下列四个图象比较符合此人走法的是 ( ) D
d d
0
d d
0
d d
0
d d
0
0
t
(A)
0
t
0
t
0
t
0
t
0
t
0
t
上为减函数。 其图像是一条
2 y ax bx c(a 0) 2.二次函数的解析式为_______________________,
4ac b 2 a0 抛物 线,当______ a 0 时,函数有最小值为___________ 4a ________ ,当______
4ac b 2 4a 时,函数有最大值为____________ 。
r6≈0.0223, r7≈0.0276, r8≈0.0222, r9≈0.0184. 可得,1951-1959年期间我国人口的平均增长率分为
r (r1 r2 r9 ) 9 0.0221 .
t 令y0=55196,则我国在 1950-1959 年期间我国的人口增长模型为 y 55196 e 0.0221 , t N.
y=(90+x-80)(400-20x)
布置作业 1 . (必做)课本第107页 习题1,2
2.(选做)甲乙两人连续6年对某县农村甲鱼养殖业的规模(产量)进行调查, 提供了两个方面的信息,如下图:
甲调查表明:每个甲鱼池平均产量从第1年1万只甲鱼上升到第6年2万只 乙调查表明:甲鱼池个数由第1年30个减少到第6年10个 请你根据提供的信息说明: ①第2年甲鱼池的个数及全县甲鱼总数 ②到第6年这个县的甲鱼养殖业的规模比第1年是扩大了还是缩小了?说明理由。
由计数器可得 t ≈38.76. 也即是在39年后的1989年人口达到13亿.
o
1 2 3 4 5 6 7 8 9 10
t
实际问题
抽象概括
数学模型 推理 演算
实际问题 的解
还原说明
数学模型的 解
1.一家旅社有100间相同的客房,经过一段时间的经营实践,旅社经理发现, 每间客房每天的价格与住房率之间有如下关系:
人数 /万人
55196
1951
56300
1952
57482
1953
58796
1954
60266
1955
61456
1956
62828
1957
64563
1958
65994
1959
67207
(1) 如果以各年人口增长率的平均值作为我国这一时期的人口增长率 ( 精 确到 0.0001 ) 用马尔萨斯人口增长模型建立我国这一时期的人口增 长模型, 并检验所得模型与实际人数是否相符.
由图可以看出,所得模型与 19501959年的实际人口数据基本吻合. (2) 将y=130000代人
y 55196 e , t N. 根据上表的数据作出散点 图,并作出函数 的图象 y
70000 65000
t
0.0221 t
.
y 55196 e 0.0221
60000 55000 50000
(2) 如果按上表的增长趋势,大约在哪一年我国的人口达到13亿?
解:(1)设1951-1959年的人口增长率分别为 r1, r2,r3 ------ r9. 由 55196(1+r1)=56300,可得1951年的人口增长率为 r1≈0.0200
同理可得: r2≈0.0210, r3≈0.0229, r4≈0.0250, r5≈0.0197,
例2: 一家报刊推销员从报社买进报纸的价格是每份0.20元,卖出的价格 是每份0.30元,卖不完的还可以以每份0.08元的价格退回报社.在一个月 (以30天计算)有20天每天可卖出400份,其余10天只能卖250份,但每 天ห้องสมุดไป่ตู้报社买进报纸的份数都相同,问应该从报社买多少份才能使每月所 获得的利润最大?并计算每月最多能赚多少钱?