几何的三大问题

合集下载

几何的三大问题

几何的三大问题

几何的三大问题
几何的三大问题
平面几何作图限制只能用直尺、圆规,而这里所谓的直尺是指没有刻度只能画直线的尺。

用直尺与圆规当然可以做出许多种之图形,但有些图形如正七边形、正九边形就做不出来。

有些问题看起来好像很简单,但真正做出来却很困难,这些问题之中最有名的就是所谓的三大问题。

几何三大问题是 :
1.化圆为方-求作一正方形使其面积等於一已知圆;
2.三等分任意角;
3.倍立方-求作一立方体使其体积是一已知立方体的二倍。

圆与正方形都是常见的几何图形,但如何作一个正方形和已知圆等面积呢?若已知圆的半径为1则其面积为
π(1)2=π,所以化圆为方的问题等於去求一正方形其面积为π,也就是用尺规做出长度为π1/2的线段(或者是π的线段)。

三大问题的第二个是三等分一个角的问题。

对於某些角如90。

、180。

三等分并不难,但是否所有角都可以三等分呢?例如60。

,若能三等分则可以做出20。

的角,那麽正18边形及正九边形也都可以做出来了(注:圆内接一正十八边形每一边所对的圆周角为360。

/18=20。

)。

其实三等分角的问题是由求作正多边形这一类问题所引起来的。

第三个问题是倍立方。

埃拉托塞尼(公元前276年~公元前。

古典难题的挑战——几何三大难题及其解决

古典难题的挑战——几何三大难题及其解决

古典难题的挑战——几何三大难题及其解决位于欧洲南部的希腊,是著名的欧洲古国,几何学的故乡。

这里的古人提出的三大几何难题,在科学史上留下了浓浓的一笔。

这延续了两千多年才得到解决的世界性难题,也许是提出三大难题的古希腊人所不曾预料到的。

三大难题的提出传说大约在公元前400年,古希腊的雅典流行疫病,为了消除灾难,人们向太阳神阿波罗求助,阿波罗提出要求,说必须将他神殿前的立方体祭坛的体积扩大1倍,否则疫病会继续流行。

人们百思不得其解,不得不求教于当时最伟大的学者柏拉图,柏拉图也感到无能为力。

这就是古希腊三大几何问题之一的倍立方体问题。

另外两个著名问题是三等分任意角和化圆为方问题。

用数学语言表达就是:三等分角问题:将任一个给定的角三等分。

倍立方体问题:求作一个正方体的棱长,使这个正方体的体积是已知正方体体积的二倍。

化圆为方问题:求作一个正方形,使它的面积和已知圆的面积相等。

然而,一旦改变了作图的条件,问题则就会变成另外的样子。

比如直尺上如果有了刻度,则倍立方体和三等分任意角就都是可作的了。

这三大难题在《几何原本》问世之前就提出了,随着几何知识的传播,后来便广泛留传于世。

貌似简单其实难从表面看来,这三个问题都很简单,它们的作图似乎该是可能的,因此,2000多年来从事几何三大难题的研究颇不乏人。

也提出过各种各样的解决办法,例如阿基米德、帕普斯等人都发现过三等分角的好方法,解决立方倍积问题的勃洛特方法等等。

可是,所有这些方法,不是不符合尺规作图法,便是近似解答,都不能算作问题的解决。

其间,数学家还把问题作种种转化,发现了许多与三大难题密切相关的一些问题,比如求等于圆周的线段、等分圆周、作圆内接正多边形等等。

可是谁也想不出解决问题的办法。

三大作图难题就这样绞尽了不少人的脑汁,无数人做了无数次的尝试,均无一人成功。

后来有人悟及正面的结果既然无望,便转而从反面去怀疑这三个问题是不是根本就不能由尺规作出?数学家开始考虑哪些图形是尺规作图法能作出来的,哪些不能?标准是什么?界限在哪里?可这依然是十分困难的问题。

几何三大问题

几何三大问题

几何三大问题亦称几何作图三大问题:(1)化圆为方,即求作一正方形,使其面积等于一已知圆的面积;(2)三等分任意角;(3)倍立方,即求作一立方体,使其体积是一已知立方体体积的二倍.三大问题的起源几何三大问题的起源有下列传说:化圆为方是基于人们以多边形的任意逼近圆的认识.用直尺和圆规可以作出两线段的比例中项,于是化矩形为正方形就成为可能;二等分三角形的高,能将三角形等积地化为矩形,从而也能化为正方形;任意凸多边形可分解为若干个三角形,所以凸多边形化为正方形也是可能的;既然圆可以由凸多边形任意逼近,那么自然想到用直尺和圆规来化圆为方.三等分任意角由求作多边形一类的问题引起的,也是人们广泛研究角的等分问题的结果.例如60°角,它的1/3是20°,如果用尺规可以作出,那么正18边形、正9边形也都可以作出来了.倍正方问题起源于建筑的需要.埃拉托塞尼记述了两个神话故事:一个是鼠疫蔓延提洛岛,一个先知者说已得到神的谕示,必须将立方形的阿波罗祭坛的体积加倍,瘟疫方能停息.建筑师很为难,不知怎样才能使体积加倍,于是去请教哲学家柏拉图,柏拉图对他们说:神的真正意图不在于神坛的加倍,而是想使希腊人为忽视几何学而感到羞愧.另一个故事说古代一位悲剧诗人描述克利特王弥诺斯为格劳科斯修坟,他嫌造的太小,命令说:必须将体积加倍,但要保持立方体的形状.这两个传说都表明倍立方问题起源于建筑的需要.还有人对倍立方问题的起源提出另一种说法,即古希腊数学家看到利用尺规作图很容易作一正方形,使其面积是已知正方形面积的两倍,从而就进一步提出了倍立方问题.探索历程 2000多年来,许多数学家为了解决三大问题投入大量的精力,但却一次一次地陷入困境,以至于三大问题成为举世公认的三大难题.例如化圆为方的著名研究者希波克拉底等人提出一种“穷竭法”,作圆内接正方形(或三角形),逐次将边数加倍,他们深信到“最后”,正多边形必与圆周重合,于是便可以化圆为方了.结论虽然是错误的,但却提供了一种求圆面积的近似方法.希波克拉底还设法将一个月牙形等积地化为一个三角形,获得了成功,这一成功,曾鼓舞人们去寻求化圆为方的方法.然而人们又一次失败了.古希腊巧辩学派的希比阿斯(约公元前425年)创设了一种所谓“割圆曲线”,用以解决三等分任意角,但由于割圆曲线是不可能用尺规作出的,因此希比阿斯也没有根本解决问题.倍立方问题的实质,是求作一个满足名的是希波克拉底.他的结果是倍立方问题可化为在一线段与另一双倍长的线段之x,就是满足倍立方问题的解.其实希波克拉底只是把一个立体问题化为一个平面问题加以研究,他并不可能用尺规把这样的x作出.三大问题的解决在多次尝试失败之后,启发了人们,开始怀疑三大问题用尺规作图的可能性.1637年笛卡儿创立解析几何学,尺规作图的可能性有了准则.1837年法国数学家旺策尔(Wantzel)证明了用尺规作图三等分任意角和倍立方问题是不可能的.化圆为方问题相当于用尺规作出π的值,也即单位圆的圆面积就是π.若能作出一个长度为π的线段,以这个线段为矩形的一边,单位线段为另一边,这个矩形的面积就和圆相等.再将矩形化为正方形,就达到了化圆为方的目的.1882年德国数学家林德曼(Lindemann)证明了π的超越性,同时证明了化圆为方问题用尺规作图的不可能性.1895年德国数学家克莱因总结了前人的研究结果,出版了《几何三大问题》一书,给出三大问题不可能用尺规作图的简明证法,彻底解决了两千多年的悬案.三大问题之所以不能解决,关键在于工具的限制.如果突破这一限制,那就根本不是什么难题.如化圆为方问题,曾被欧洲文艺复兴时代的大师达·芬奇用一种巧妙的方法给以解决.取一圆柱,使底和已知圆相等,高是半径的一半,将这圆柱滚动一周,产生一个矩形,其面积为2πr·r/2=πr2正好是圆的面积.再将矩形化为正方形,问题就解决了.三等分任意角,恐怕没有比阿基米德所创设的方法更简单了.在直尺OB边缘上添加一点P,命尺端为O,设所要三等分的角是∠ACB,以C为心,OP为半径作半圆交角边于A、B,使O点在CA延长线上移动,P点在圆周上移动,当尺通过B时,联OPB,由于OP=PC=CB,易知∠COB=1/3∠ACB,如图.希波克拉底已把倍立方题化为求两个比例中项的问题.在他用到的比例式a∶x=x∶y=y∶2a中得到方程x2=ay和y2=2ax后,可作出两条抛物线,如图2.其交点M在ox轴上的射影确定线段OP,如果a是已知立方体的梭,那么OP就是已知立方体两倍后立方体的棱.显然,这无法用一般的尺规作出.这种方法是由雅典派大几何家门奈赫莫斯(公元前4世纪)提出的.几何三大问题其他解法不但过去已有,现在人们寻求三大问题新方法的工作仍在进行.在探讨解决几何三大问题的过程中,人们虽然屡屡失败,但却因为这些努力取得意外的收获.例如为解决化圆为方问题,希波克拉底等人使用的穷竭法,导致一种求圆面积的近似方法,成为阿基米德计算圆周率方法的先导;对三等分角的深入研究导致许多作图方法的发现和作图工具的发明;倍立方问题的探讨促进了圆锥曲线理论的建立和发展.这或许是几何三大问题对数学家有经久不衰的魅力的原因之一.。

数学史上的三大几何问题

数学史上的三大几何问题

数学史上的三大几何问题一、立方倍积关于立方倍积的问题有一个神话流传:当年希腊提洛斯(Delos)岛上瘟疫流行,居民恐惧也向岛上的守护神阿波罗(Apollo)祈祷,神庙里的预言修女告诉他们神的指示:“把神殿前的正立方形祭坛加到二倍,瘟疫就可以停止。

”由此可见这神是很喜欢数学的。

居民得到了这个指示后非常高兴,立刻动工做了一个新祭坛,使每一稜的长度都是旧祭坛棱长的二倍,但是瘟疫不但没停止,反而更形猖獗,使他们都又惊奇又惧怕。

结果被一个学者指出了错误:「稜二倍起来体积就成了八倍,神所要的是二倍而不是八倍。

」大家都觉得这个说法很对,於是改在神前并摆了与旧祭坛同形状同大小的两个祭坛,可是瘟疫仍不见消灭。

人们困扰地再去问神,这次神回答说:「你们所做的祭坛体积确是原来的二倍,但形状却并不是正方体了,我所希望的是体积二倍,而形状仍是正方体。

」居民们恍然大悟,就去找当时大学者柏拉图(Plato)请教。

由柏拉图和他的弟子们热心研究,但不曾得到解决,并且耗费了後代许多数学家们的脑汁。

而由于这一个传说,立方倍积问题也就被称为提洛斯问题。

数学史上的三大几何问题二、化圆为方方圆的问题与提洛斯问题是同时代的,由希腊人开始研究。

有名的阿基米得把这问题化成下述的形式:已知一圆的半径是r,圆周就是2πr,面积是πr2。

由此若能作一个直角三角形,其夹直角的两边长分别为已知圆的周长2πr及半径r,则这三角形的面积就是(1/2)(2πr)(r)=πr2与已知圆的面积相等。

由这个直角三角形不难作出同面积的正方形来。

但是如何作这直角三角形的边。

即如何作一线段使其长等于一已知圆的周长,这问题阿基米德可就解不出了。

我们都知道化圆为方是由古希腊著名学者阿纳克萨戈勒斯提出的,但是阿纳克萨戈勒斯一生也未能解决自己提出的问题。

实际上,这个化圆为方问题中的正方形的边长是圆面积的算数平方根。

我们假设圆的半径为单位1,那么正方形的边长就是根号π。

直到1882年,化圆为方的问题才最终有了合理的答案。

辨士学派与几何三大作图问题

辨士学派与几何三大作图问题

辩士学派(sophists)也称智者学派、诡辩学派,是公元前5世纪-公元前4世纪希腊的一批“收徒取酬”的教师、哲学家的统称.辩士学派在文法、修辞、哲学、科学等方面都有建树.在数学方面提出了“几何三大作图问题”:(1)三等分任意角;(2)利用尺规作一个立方体,使其体积等于已知立方体的2倍(立方倍积);(3)作一个正方形,使其与给定的圆的面积相等(化圆为方).并要求只能用圆规和无刻度的直尺来解决这三个问题.直到19世纪,这些问题都以否定有解作为最终定论.历经两千多年,数学家们对之作出多方探索并提出过不少解决方案,但都违反了用尺规作图的规定.正因为这三个问题不能用尺规来解决,常常使人进入新的领域中,促进了数学的发展,如激发了圆锥曲线、割圆曲线以及三、四次代数曲线的出现.这些“副产品”对数学的发展起到了无可估量的作用.下面谈一谈辩士学派内部学者或其同代人对三个问题的研究.一、三等分任意角希庇亚斯(Hippias,约公元前400年前后)曾尝试用割圆曲线将任意角分成三等份.设角∠BAD′为给定的任意角.以定长AB(AB⊥AD)为半径作圆弧,当动径AB(AB⊥AD)绕A点顺时匀速转动到AD′(图1),直线BC(BC∥AD)在同样的时间内以匀速平移到B′C′.在AB、BC运动时,瞬时交点如B′C′,AD′的交点E(x,y)的轨迹就是圆积曲线.角∠BAD′的一条边AD′交曲线于E.作EH⊥AD,作HH′,使HH′=EH.过H′引B′C′,使B′C′∥AD并交曲线于L,那么∠LAD=13∠DAD′.设AB=a,AB转π/2到AD需T秒.又设AD′转动角φ需t T秒,则B′C′平移到AD也需t T秒.从曲线的形成条件知φπ2=y a,又φ=arccot y x,于是割圆曲线BELG的方程是y=x tanπy2a.由割圆曲线的方程可知,等式∠LADπ2=HH′BA,∠DAD′π2 =EH BA成立.但EH=3H H′,显然,不是尺规所能做到的.图1二、立方倍积希波克拉底(Hipocrates,约公元前5世纪下半叶)最先提出立方倍积问题.该问题实质上是要在a与2a之间插入两个比例中项x、y,使得a:x=x:y=y:2a,x就是所求的解x=23a.这就是说以x为边的立方体的体积是以a为边的立方体的体积的2倍.这一理论为后来数学家们的有关工作提供了重要的根据,例如,门内玛斯(Menaechmus,约公元前375-公元前325)设两条抛物线的共顶点为O(原点),使其对称轴正交.二者的正焦弦分别为a、2a,那么它们交点的坐标是a与2a的比例中项.若两条抛物线的方程是x2=ay、y2=2ax,它们异于O(0,0)的交点是(23a,43a),其横坐标就是问题的解.门内玛斯还用抛物线和双曲线来研究立方倍积问题.设抛物线和双曲线的方程为y2=ax、xy=2a2,它们异于原点的交点为(43a,23a),就是2a与a的两个比例中项,其纵坐标就是问题的解.高尔吉亚(Achytas,公元前4世纪)没有把平面曲线的交点作为立方倍积问题的解,而是将问题归结为三种空间曲面:圆柱、圆锥和圆环面的交点.在图2中,取AB=a,AC=b,在平面xAy上作以AC为直径的圆,AB为其中的一条弦.其解法为:(i)让以AC为直径的半圆垂直于平面xAy,并绕吴文俊66图2我们还可以用解析几何方法求证.设锥面的方程为x2+y2+z2=b2x2,柱面的方程为图3辩士学派成员安蒂丰(Antiphon,公元前认为可以不断增加内接多边形的边数来逼近圆。

关于几何的三大问题概述

关于几何的三大问题概述

关于几何的三大问题概述
195年)曾经记述一个神话提到说有一个先知者得到神谕必须将立方形的祭坛的体积加倍,有人主张将每边长加倍,但我们都知道那是错误的,因为体积已经变成原来的8倍。

这些问题困扰数学家一千多年都不得其解,而实际上这三大问题都不可能用直尺圆规经有限步骤可解决的。

1637年笛卡儿创建解析几何以後,许多几何问题都可以转化为代数问题来研究。

1837年旺策尔(Wantzel)给出三等分任一角及倍立方不可能用尺规作图的证明。

1882年林得曼(Linderman)也证明了π的超越性(即π不为任何整数系数多次式的根),化圆为方的不可能性也得以确立。

古典难题的挑战——几何三大难题及其解决

古典难题的挑战——几何三大难题及其解决

古典难题的挑战——几何三大难题及其解决位于欧洲南部的希腊,是著名的欧洲古国,几何学的故乡。

这里的古人提出的三大几何难题,在科学史上留下了浓浓的一笔。

这延续了两千多年才得到解决的世界性难题,也许是提出三大难题的古希腊人所不曾预料到的。

三大难题的提出传说大约在公元前400年,古希腊的雅典流行疫病,为了消除灾难,人们向太阳神阿波罗求助,阿波罗提出要求,说必须将他神殿前的立方体祭坛的体积扩大1倍,否则疫病会继续流行。

人们百思不得其解,不得不求教于当时最伟大的学者柏拉图,柏拉图也感到无能为力。

这就是古希腊三大几何问题之一的倍立方体问题。

另外两个著名问题是三等分任意角和化圆为方问题。

用数学语言表达就是:三等分角问题:将任一个给定的角三等分。

倍立方体问题:求作一个正方体的棱长,使这个正方体的体积是已知正方体体积的二倍。

化圆为方问题:求作一个正方形,使它的面积和已知圆的面积相等。

然而,一旦改变了作图的条件,问题则就会变成另外的样子。

比如直尺上如果有了刻度,则倍立方体和三等分任意角就都是可作的了。

这三大难题在《几何原本》问世之前就提出了,随着几何知识的传播,后来便广泛留传于世。

貌似简单其实难从表面看来,这三个问题都很简单,它们的作图似乎该是可能的,因此,2000多年来从事几何三大难题的研究颇不乏人。

也提出过各种各样的解决办法,例如阿基米德、帕普斯等人都发现过三等分角的好方法,解决立方倍积问题的勃洛特方法等等。

可是,所有这些方法,不是不符合尺规作图法,便是近似解答,都不能算作问题的解决。

其间,数学家还把问题作种种转化,发现了许多与三大难题密切相关的一些问题,比如求等于圆周的线段、等分圆周、作圆内接正多边形等等。

可是谁也想不出解决问题的办法。

三大作图难题就这样绞尽了不少人的脑汁,无数人做了无数次的尝试,均无一人成功。

后来有人悟及正面的结果既然无望,便转而从反面去怀疑这三个问题是不是根本就不能由尺规作出?数学家开始考虑哪些图形是尺规作图法能作出来的,哪些不能?标准是什么?界限在哪里?可这依然是十分困难的问题。

几何三大问题为尺规作图不能问题的证明

几何三大问题为尺规作图不能问题的证明

1.立方倍积问题假设已知立方体的棱长为c,所求立方体的棱长为x.按给定的条件,应有x3=2a3.令a=1,则上述方程取更简单的形式x3-2=0.根据初等代数知识,如果上述的有理系数三次方程含有有理根,不外是±1,±2.但经逐一代入试验,均不符合.可见方程x3-2=0必不能用尺规作出,这就证明了立方倍积问题是尺规作图不能问题.2.三等分任意角问题对于已知的锐角∠O=θ,设OP、OS是它的三等分角线.以O为圆心,单位长为半径画弧,交∠O的两边于点A、B,交三等分角线OS于点C.过点C作CD⊥OA,交OA于点D.这样,OS能否用尺规来作出,就等价于点C能否用尺规作出,也就是点D能否用尺规来作出.令OD=x,则有4x3-3x-cosθ=0.如果能证明上述三次方程的根一般不能仅用尺规作出,则点D不可得,于是射线OS也就不能作出.欲证明此事,可选一特例考察之.8x3-6x-1=0.以2x=y代入此方程,可得较简单的形式y3-3y-1=0.根据代数的知识,如果有理系数一元三次方程y3-3y-1=0含有有理根,不外是±1.但经逐一代入试验后,均不符合,可见此方程没有有理根.于是,根据本书第14页定理2可知,方程y3-3y-1=0的任何实根不能用尺规作图来完成,即60°角不能用尺规三等分.三等分60°角尚且不能,这就表明了三等分任意角属于尺规作图不能问题.当然,这个结论是对一般情形而言的,假如θ等于某些特殊值,则作图未必就不可能.例如,当θ=90°时,便有cos90°=0,此时方程4x3-3x-cosθ=0就变为4x3-3x=0.解之,得(见图6).注意,当cosθ取值为无理数时,如θ=30°、45°等,则我们所用的定理2就不再适用了.3.化圆为方问题假设已知圆的半径为r,求作的正方形的边长为x(图7).按条件,应有x2=πr2.令r=1,即得不可作.但π是超越数,自然不是有理系数的代数方程的根,更不是从1出发通过有限次加、减、乘、除及正实数开平方所能表示,即π不能仅用尺规作图来完成,所以化圆为方问题属尺规作图不能问题.4.正七边形和正九边形的作图问题正多边形的作图,亦即等分圆周问题,自古以来就一直吸引着人们.古希腊时期,人们已会运用尺规作出3,4,5,6.10,15边数的正多边形,但是企图作正七边形或正九边形却终归失败.现在来证明正七边形和正九边形都属尺规作图不能问题.(图8).∵7θ=2π,∴3θ=2π-4θ,∴ cos3θ=cos(2π-4θ)=cos4θ.根据三角恒等式,有cos3θ=4cos3θ-3cosθ,cos4θ=8cos4θ-8cos2θ+1,所以4cos3θ-3cosθ=8cos4θ-8cos2θ+1.即8cos4θ-4cos3θ-8cos2θ+3cosθ+1=x4-x3-4x2+3x+2=0.分解因式,得(x-2)(x3+x2-2x-1)=0.x3+x2-2x-1=0.由试验,知±1均不能满足这方程,可见上述三次方程无有理根.于是,运用本书第14页的定理2,可知上述三次方程的任何实根均不能用尺规作图来完成,因而正七边形属于尺规作图不能问题.的作图,而θ=40°角属于尺规作图不能问题(否则,利用作角平分线的办法,可作出20°角,将导致三等分60°角成为可能).所以正九边形也属尺规作图不能问题.由正七边形和正九边形是尺规作图不能问题,可直接推得边数为2n×7和2n×9(n为正整数)的正多边形也是尺规作图不能问题.对于尺规作图不能问题,除了直接应用本书第14页的定理来判断外,通常还有两种间接判断方法:1°有的作图问题,经过分析后发现可以归结为已知的作图不能问题,则可断定该问题也属尺规作图不能问题.例如正九边形属尺规作图不能问题的上述证明所采用的方法就是.2°有时,对问题的一般情形进行讨论既繁且难,而取其特例考察,则简易得多.因此欲决定某题属作图不能问题时,不妨相机证明它的特例不能作图,特例既经证实,一般情形的不能作图便不言而喻了(但特例可行则不等于这问题可作).例如解决三等分角问题时所采用的方法即是.。

几何的三大问题

几何的三大问题

几何的三大问题平面几何作图限制只能用直尺、圆规,而这里所谓的直尺是指没有刻度只能画直线的尺。

用直尺与圆规当然可以做出许多种之图形,但有些图形如正七边形、正九边形就做不出来。

有些效果看起来似乎很复杂,但真正做出来却很困难,这些效果之中最有名的就是所谓的三大效果。

几何三大效果是 :1.化圆为方-求作一正方形使其面积等於一圆;2.三等分恣意角;3.倍立方-求作一立方体使其体积是一立方体的二倍。

圆与正方形都是罕见的几何图形,但如何作一个正方形和圆等面积呢?假定圆的半径为1那么其面积为π(1)2=π,所以化圆为方的效果等於去求一正方形其面积为π,也就是用尺规做出长度为π1/2的线段〔或许是π的线段〕。

三大效果的第二个是三等分一个角的效果。

对於某些角如90。

、180。

三等分并不难,但能否一切角都可以三等分呢?例如60。

,假定能三等分那么可以做出20。

的角,那麽正18边形及正九边形也都可以做出来了〔注:圆内接一正十八边形每一边所对的圆周角为360。

/18=20。

〕。

其实三等分角的效果是由求作正多边形这一类效果所惹起来的。

第三个效果是倍立方。

埃拉托塞尼〔公元前276年~公元前195年〕曾经记叙一个神话提到说有一个先知者失掉神谕必需将立方形的祭坛的体积加倍,有人主张将每边长加倍,但我们都知道那是错误的,由于体积曾经变成原来的8倍。

这些效果困扰数学家一千多年都不得其解,而实践上这三大效果都不能够用直尺圆规经有限步骤可处置的。

1637年笛卡儿创立解析几何以後,许多几何效果都可以转化为代数效果来研讨。

1837年旺策尔(Wantzel)给出三等分任一角及倍立方不能够用尺规作图的证明。

1882年林得曼〔Linderman〕也证明了π的逾越性〔即π不为任何整数系数屡次式的根〕,化圆为方的不能够性也得以确立。

初中几何的三大难题

初中几何的三大难题

初中几何的三大难题今天小编给大家整理了一篇有关暑假作业的相关内容,以供大家阅读参考,更多信息请关注学习方法网!数学是研究数量、结构、变化、空间等领域的一门学科。

数学在人类历史发展和社会生活中发挥着不可替代的作用,也是学习和研究现代科学技术必不可少的基本工具。

数学在历史长河发展中并不是一帆风顺,如经历数学史上三次数学危机,总的来说,和平年代数学发展相比战乱年代要快。

文明程度越高,数学发展速度和重要性日益体现出来。

在平面几何作图发展过程曾出现了三大几何难题,它们分别是:一、三等分任意角;二、化圆为方:求作一正方形,使其面积等于一已知园的面积;三、立方倍积:求作一立方体,使其体积是已知立方体体积的两倍。

这三个几何问题为何会成为三大几何难题?其中有一个限制条件是只能用直尺、圆规,而这里所谓的直尺是指没有刻度只能画直线的尺。

这种作图方式我们称之为尺规作图。

下面我一起来简单分析这三个问题为什么不能用尺规作图来解决。

一、三等分任意角问题:尺规作图对于所有角进行二等分并不难,可以说轻而易举。

如二等分360度、180度等,依照二等分这个原理我们就可以画出正2n边行(圆内接正多边形原理)。

同理所有角都可以三等分吗?例如90度角进行三等分,若能用尺规作图三等分则可以做出30度的角,答案显然是不行。

二、化圆为方:求作一正方形,使其面积等于一已知园的面积;圆与正方形都是常见的几何图形,我们设圆的半径为1,那么我们一起来看:显示只是用尺规作图是无法做出含π的线段。

三、立方倍积:求作一立方体,使其体积是已知立方体体积的两倍;这个问题刚出现时候,很多人主张将每边长加倍,经过计算发现是错的,因为体积已经变成原来的8倍。

如体积为1的立方体边长为1,边长加倍后就变成2,相应体积变成了8。

我们可以进一步这么研究:从这里我们就可以看出新立方体的边长无法用尺规作图进行作图。

曾经过去相当长一段时间里,这些问题困扰很多数学家都不得其解,从现代数学角度我们去看,实际上这三大问题都不可能用尺规作图经有限步骤可解决的。

高考数学经典问题汇总几何的三大问题

高考数学经典问题汇总几何的三大问题

高考数学经典问题汇总——几何的三大问题平面几何作图限制只能用直尺、圆规,而这里所谓的直尺是指没有刻度只能画直线的尺。

用直尺与圆规当然可以做出许多种之图形,但有些图形如正七边形、正九边形就做不出来。

有些问题看起来好像很简单,但真正做出来却很困难,这些问题之中最有名的就是所谓的三大问题。

几何三大问题是:1.化圆为方-求作一正方形使其面积等於一已知圆;2.三等分任意角;3.倍立方-求作一立方体使其体积是一已知立方体的二倍。

圆与正方形都是常见的几何图形,但如何作一个正方形和已知圆等面积呢?若已知圆的半径为1则其面积为(1)2=,所以化圆为方的问题等於去求一正方形其面积为,也就是用尺规做出长度为1/2的线段(或者是的线段)。

三大问题的第二个是三等分一个角的问题。

对於某些角如90.、180.三等分并不难,但是否所有角都可以三等分呢?例如60.,若能三等分则可以做出20.的角,那麽正18边形及正九边形也都可以做出来了(注:圆内接一正十八边形每一边所对的圆周角为360./18=20.)。

其实三等分角的问题是由求作正多边形这一类问题所引起来的。

第三个问题是倍立方。

埃拉托塞尼(公元前276年~公元前195年)曾经记述一个神话提到说有一个先知者得到神谕必须将立方形的祭坛的体积加倍,有人主张将每边长加倍,但我们都知道那是错误的,因为体积已经变成原来的8倍。

这些问题困扰数学家一千多年都不得其解,而实际上这三大问题都不可能用直尺圆规经有限步骤可解决的。

1637年笛卡儿创建解析几何以後,许多几何问题都可以转化为代数问题来研究。

1837年旺策尔(Wantzel)给出三等分任一角及倍立方不可能用尺规作图的证明。

1882年林得曼(Linderman)也证明了的超越性(即不为任何整数系数多次式的根),化圆为方的不可能性也得以确立。

一般说来,“教师”概念之形成经历了十分漫长的历史。

杨士勋(唐初学者,四门博士)《春秋谷梁传疏》曰:“师者教人以不及,故谓师为师资也”。

简述三大几何难题

简述三大几何难题

三大几何难题古希腊是世界数学史上浓墨重彩的一笔,希腊数学的成就是辉煌的,它为人类创造了巨大的精神财富。

其中,几何是希腊数学研究的重心,柏拉图在他的柏拉图学院的大门上就写着“不懂几何的人,勿入此门”。

历史上第一个公理化的演绎体系《几何原本》阐述的也基本上为几何内容。

古希腊的几何发展得如此繁荣,但有一个问题一直没有得到解决,那就是著名的尺规作图三大难题。

它们分别是化圆为方、三等分任意角以及倍立方问题。

这三个问题首先是“巧辨学派”提出并且研究的,但看上去很简单的三个问题,却困扰了数学家们两千多年之久。

这些问题的难处,是作图只能用直尺和圆规这两种工具,其中直尺是指只能画直线,而没有刻度的尺。

在欧几里得的《几何原本》中对作图作了规定,只有圆和直线才被承认是可几何作图的,因此在这本书的巨大影响下,尺规作图便成为希腊几何学的金科玉律。

并且,古代希腊人较重视规、矩在数学中训练思维和智力的作用,而忽视规矩的实用价值。

因此,在作图中对规、矩的使用方法加以很多限制,在这里,就是要在有限的次数中解决这三个问题。

1.化圆为方圆和正方形都是常见的几何图形,人们自然会联想到可否作一个正方形和已知圆等积,这就是化圆为方问题。

2.三等分任意角用尺规二等分一个角很容易就可以作出来,那么三等分角呢?三等分180,90角也很容易,但是60,45等这些一般角可以用尺规作出来吗?3.倍立方关于倍立方问题是起源于一个祭祀问题,第罗斯岛上流行着一种可怕的传染病,一时人心惶惶,不可终日.人们来到阿波罗神前,请求阿波罗神像的指示.阿波罗神给了祈求人这样一个指示:“神殿前有一个正方体祭坛,如果能不改变它的形状而把它的体积增加1倍,那么就能消灭传染病.”人们连夜赶造了一个长、宽、高都比正方体祭坛大一倍的祭坛,可是,那传染病传播得更加厉害了.人们又来到阿波罗神像前祈求.神说:“我要你们增加一倍的是祭坛的体积,你们把长、宽、高都增加1倍,祭坛的体积不是要比原来体积大7倍了吗?”人们绞尽脑汁想找出一个答案,可是始终没有人能解答这个难题.由三大问题的起源,可以看出,化圆为方和三等分角是人们在已有知识的基础上,向更深层次,更一般的方向去思考、探索,这也是希腊数学的理论性的演绎推理与抽象性的表现。

什么是“几何三大问题”

什么是“几何三大问题”

什么是“几何三大问题”大约在二千四百多年前,古希腊流传下列三个几何作图题:1.立方倍积问题:就是作一个立方体,使它的体积等于一个已知体积的2倍。

2.三等分角问题:就是把一个已知角三等分。

3.化圆为方问题:就是求作一个正方形,使它的面积等于一个已知圆的面积。

这三个几何作图题如果用先进的工具或曲线可以轻易地作出答案,然后只需用圆规和直尺来完成,而且还有一些限制:①直尺是没有刻度的;②不能把直尺和圆规同时在一起合并使用;③在作图时,直尺和圆规是不能无限使用多次的。

两千多年来,许多著名的数学家和学者都曾经对这三题进行过无数次的探讨、尝试,但连当时负有盛誉的学者柏拉图,也觉得茫无头绪,都始终没有成功。

于是,三个几何作图题成为著名的古典难题,一向被人们称为“几何三大问题”。

关于第一个问题,还流传着一个美丽的神话:大约在两千三百年前,雅典城流行了可怕的伤寒病。

人们为了消除这个灾难,便向“太阳神阿波罗”求助。

太阳神告诉人们说:必须把我殿前神坛上香案的体积扩大一倍,才能使瘟疫不再流行。

他的香案是一个立方体形状的,人们便觉得这个条件并不苛刻,于是人们马上做了一个新的香案。

然而,瘟疫依旧非常猖獗。

雅典人再去祈祷太阳神,才知道这个新的香案体积并不等于原来的两倍。

同学们也算一算,人们新做香案的每条棱长是原来棱长的2倍,这怎能符合要求呢?那么究竟怎么做呢?可把当时的人们难住了。

这虽是个神话,但经过人们的努力,在1973年,万芝尔首先证明这个立方倍积问题是不能用直尺和圆规来解决的,而且第二个问题也得到了同样的证明。

最难的是第三个化圆为方的问题因为它牵涉到π是超越数的证明。

什么叫超越数呢?通俗地说,是不可由某种具有有理系数的方程算出来的数。

证明一个数是超越数的方法,首先由数学家阿基米德创立的,后来德国数学家林德曼在1882年证明了π是一个超越数。

从此,这三个古典难题的公案便宣告结束。

这三个问题在生产生活中却有一定的实用性。

如果允许使用工具,或有刻度的直尺冲破原来的那些限制,三等分一个角是可能的,阿基米德就做了成功的尝试。

三大几何作图问题

三大几何作图问题

三大几何作图问题三大几何作图问题是:倍立方、化圆为方和三等分任意角.由于限制了只能使用直尺和圆规,使问题变得难以解决并富有理论魁力,刺激了许多学者投身研究.早期对化圆为方作出贡献的有安纳萨戈拉斯(Anaxagoras,约500B.C.~428B.C.),希波克拉底(Hippocrates of chios,前5世纪下半叶)、安蒂丰(Antiphon,约480B.C.~411B.C.)和希比亚斯(Hippias of Elis,400B.C.左右)等人;从事倍立方问题研究的学者也很多,欧托基奥斯(Eutocius,约480~?)曾记载了柏拉图、埃拉托塞尼(Eratosthenes,约276B.C.~195B.C.)、阿波罗尼奥斯(Apollonius,约262B.C.~190B.C.)和帕波斯(Pappus,约300~350)等人共12种作图方法:尼科米迪斯(Nicomedes,约250B.C.左右)、帕波斯等人则给出了三等分角的方法.当然所有这些研究都无法严格遵守尺规作图的限制,但它们却引出了大量的新发现(如圆锥曲线、许多三、四次曲线和某些超越曲线等),对整个希腊几何产生巨大影响.三大作图问题自智人学派提出之时起,历经二千余年,最终被证明不可能只用直尺、圆规求解(1837年旺策尔「P.L.Wantze1」首先证明了倍立方和三等分任意角不可能只用尺规作图;1882年林德曼[C.L.F.Lindemann]证明了π的超越性,从而确立了尺规化圆为方的不可能).关于三大几何作图问题的起源和古代探讨,在智人学派之后一些希腊学者的著述中留有记载,这些分散片断的记载,成为了解早期希腊数学的珍贵资料.以下选录部分内容,各节作者与出处将随文注明.倍立方A.赛翁论倍立方问题的可能起源于埃拉托塞尼在其题为《柏拉图》的著作中写道:当先知得到神的谕示向提洛岛的人们宣布,为了止息瘟疫,他们必须建造一个祭坛,体积是现有那个祭坛的两倍时,工匠们试图弄清怎样才能造成一个立体,使其体积为另一个立体的两倍,为此他们陷入深深的困惑之中,于是他们就这个问题去请教柏拉图.柏拉图告诉他们,先知发布这个谕示,并不是因为他想得到一个体积加倍的祭坛,而是因为他希望通过派给他们这项工作,来责罚希腊人对于数学的忽视和对几何学的轻视.B.普罗克洛斯论希波克拉底对这一问题的简化.“简化”是将一个问题或定理转化成另一个已知的或已构造出的问题或定理,使得原命题清晰明了.例如,为解决倍立方问题,几何学家们转而探究另一问题,即依赖于找到两个比例中项.从那以后,他们致力于如何找到两条已知线段间连比例中的两个中项的探索.据说最先有效地简化这些困难作图的是希俄斯的希波克拉底民他还化月牙形为方,并作出许多几何学上的其他发现.说到作图,如果曾经有过这方面的天才的话,这个人就是希波克拉底.历史上传说,古代的一位悲剧诗人描述了弥诺斯为格劳科斯修坟,当弥诺斯发现坟墓的每一边都是一百尺时,他说:“你们设计显然这是一个错误.因为如果边长加倍,表面积变成原来的四倍,体积变成八倍.当今的几何学家们也在探索将已知立方体的体积加倍而不改变其形状的途径.这个问题以二倍立方体著称,即已知一个立方体,他们想办法将其变为两倍”.当长期以来所有的探索都徒劳无功时,希俄斯的希波克拉底最先发现,如果能找到一个方法,作出已知的两条线段间连比例中的两个比例中项,其中长线段是短线段的两倍,立方体就变成两倍.这样他的难点被分解成另一个不太复杂的问题.“后来传说,某些提洛岛的人为遵循先知的谕示,想办法将一个祭坛加倍,他们陷入了同样的困境.于是他们派代表去请求学园中柏拉图学派的几何学家帮他们找到解法.这些几何学家们积极地着手解决这个问题,求两条已知线段间顺个比例中项.据说塔林敦的阿尔希塔斯应用半圆柱体得到一种解法,而欧多克索斯用了所谓的“曲线”所有解决这一问题的人在寻找演绎的证明方面是成功的,但除门奈赫莫斯①(尽管他只是很勉强地做到),他们都不能用行之有效的方法证明这个作图小现在我发现了一种简单方法,通过应用一种器具,不仅能得到两线段问的两个比例中项,而且能得到所需要的许多比例中项.应用这一发现,我们能够将任何表面是平行四边形的已知立体化成立方体,或者将其从一种形状变成另一种形状,而且也可以作出一个与已知立体形状相同,但体积大一些的立体,也就是保持相似性.……化圆为方A.安蒂丰化圆为方安蒂丰画了一个圆,并作一个能够内接于它的多边形.我们假设这个内接图形是正方形.然后他将正方形的每边分成两部分,从分点向圆周作垂线,显然这些垂线平分圆周上的相应弧段.接着他从垂线与圆周的交点向正方形边的端点连线,于是得到四个以线段(即正方形的边)为底的三角形,整个内接的图形现在成为八边形.他以同样的方法重复这一过程,得到的内接图形为十六边形.他一再地重复这一过程,随着圆面积的逐渐穷竭,一个多边形将内接于圆,由于其边极微小,将与圆重合.正如我们从《原本》中所知,既然通常我们能够作出一个等于任何已知多边形的正方形,那么注意到与圆重合的多边形与圆相等,事实上我们就作出了等于一个圆的正方形.B.布里松化圆为方他作一个正方形外切于圆,作另一个正方形内接于圆,在这两个正方形之间作第三个正方形.然后他说这两个正方形(即内接和外切正方形)之间的圆及中间的正方形都小于外部的正方形且大于内部的正方形,他认为分别比相同的量大和小的两个量相等.因此他说圆被化成正方形.三等分角帕波斯论三等分一个角的方法当早期的几何学家们用平面方法探究上述关于角的问题时他们无法解决它,因为这个问题从性质来看是一个立体问题,由于他们还不熟悉圆锥曲线,因此陷于困惑.但是他们后来借助于圆锥曲线用以下描述的斜伸法将角三等分.用斜伸法解已知一个直角平行四边形ABΓΔ,延长BΓ,使之满足作出AE,使得线段EZ等于已知线段.假设已经作出这些,并作ΔH,HZ平行于EZ,EΔ.由于ZE已知且等于ΔH,所以ΔH 也已知.Δ已知,所以H位于在适当位置给定的圆周上.由于BΓ,ΓΔ包含的矩形已知且等于BZ,EΔ包含的矩形已知,即BZ,ZH包含的矩形已知,故H位于一双曲线上.但它也位于在适当位置给定的圆周上,所以H已知.证明了这一点后,用下述方法三等分已知直线角.首先设ABΓ是一个锐角,从直线AB上任一点作垂线AΓ,并作平行四边形ΓZ,延长ZA至E,由于Γz是一个直角的平行四边形,在EA,AΓ间作线段EΔ,使之趋于B且等于AB 的两倍——上面已经证明这是可能的,我认为EBΓ是已知角ABΓ的三分之一.因为设EΔ被H平分,连接AH,则三条线段ΔH,HA,HE相等,所以ΔE是AH的两倍.但它也是AB的两倍,所以BA等于AH,角ABΔ等于角AHΔ.由于AHΔ等于AEΔ,即ΓBΔ的两倍,所以ABΔ等于ΔBΓ的两倍.如果我们平分角ABΔ,那么就三等分了角ABΓ.用圆锥曲线的直接解法这种立体轨迹提供了另一种三分已知弧的方法,不必用到斜线.设过A,Γ的直线在适当的位置给定,从已知点A,Γ作折线ABΓ,使得角AΓB是角ΓAB 的2倍,我认为B位于一双曲线上.因为设BΔ垂直于AΓ并且截取ΔE等于ΓΔ,当连接BE时,它将与AE相等.设EZ等于ΔE,所以ΓZ=3ΓΔ.现在置ΓH等于AF/3,所以点H将给定,剩下部分AZ等于3*HΔ.由于BE*BE-EZ*EZ=BΔ*BΔ,且BE*BE一EZ*EZ=ΔA*AZ,所以ΔA*AZ=BΔ*BΔ,即3*A Δ*ΔH=BΔ*BΔ,所以B位于以AH为横轴,AH为共轭轴的双曲线上.显然Γ点在圆锥曲线顶点H截取的线段ΓH是横轴AH的二分之一.综合也是清晰的.因为要求分割AΓ使得AH是HΓ的2倍 ,就要过H以AH为轴画共轭轴为AH的双曲线,并且证明它将使我们作出上面提到的具有2倍之比的角度.如果A,Γ两点是弧的端点,那么以这种方法画的双曲线截得已知圆上的一段弧的三分之一就易于理解了.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

几何的三大问题
平面几何作图限制只能用直尺、圆规,而这里所谓的直尺是指没有刻度只能画直线的尺。

用直尺与圆规当然可以做出许多种之图形,但有些图形如正七边形、正九边形就做不出来。

有些问题看起来好像很简单,但真正做出来却很困难,这些问题之中最有名的就是所谓的三大问题。

几何三大问题是:
1.化圆为方-求作一正方形使其面积等於一已知圆;
2.三等分任意角;
3.倍立方-求作一立方体使其体积是一已知立方体的二倍。

圆与正方形都是常见的几何图形,但如何作一个正方形和已知圆等面积呢?若已知圆的半径为1则其面积为π(1)2=π,所以化圆为方的问题等於去求一正方形其面积为π,也就是用尺规做出长度为π1/2的线段(或者是π的线段)。

三大问题的第二个是三等分一个角的问题。

对於某些角如90。

、180。

三等分并不难,但是否所有角都可以三等分呢?例如60。

,若能三等分则可以做出20。

的角,那麽正18边形及正九边形也都可以做出来了(注:圆内接一正十八边形每一边所对的圆周角为360。

/18=20。

)。

其实三等分角的问题是由求作正多边形这一类问题所引起来的。

第三个问题是倍立方。

埃拉托塞尼(公元前276年~公元前195年)曾经记述一个神话提到说有一个先知者得到神谕必须将立方形的祭坛的体积加倍,有人主张将每边长加倍,但我们都知道那是错误的,因为体积已经变成原来的8倍。

这些问题困扰数学家一千多年都不得其解,而实际上这三大问题都不可能用直尺圆规经有限步骤可解决的。

1637年笛卡儿创建解析几何以後,许多几何问题都可以转化为代数问题来研究。

1837年旺策尔(Wantzel)给出三等分任一角及倍立方不可能用尺规作图的证明。

1882年林得曼(Linderman)也证明了π的超越性(即π不为任何整数系数多次式的根),化圆为方的不可能性也得以确立。

相关文档
最新文档