供配电系统外文翻译

合集下载

电气供配电系统大学毕业论文英文文献翻译及原文

电气供配电系统大学毕业论文英文文献翻译及原文

毕业设计(论文)外文文献翻译文献、资料中文题目:供配电系统文献、资料英文题目:POWER SUPPLY AND DISTRIBUTIONSYSTEM文献、资料来源:文献、资料发表(出版)日期:院(部):专业:班级:姓名:学号:指导教师:翻译日期: 2017.02.14POWER SUPPLY AND DISTRIBUTION SYSTEMABSTRACTThe basic function of the electric power system is to transport the electric power towards customers. The l0kV electric distribution net is a key point that connects the power supply with the electricity using on the industry, business and daily-life. For the electric power, allcostumers expect to pay the lowest price for the highest reliability, but don't consider that it's self-contradictory in the co-existence of economy and reliable.To improve the reliability of the power supply network, we must increase the investment cost of the network construction But, if the cost that improve the reliability of the network construction, but the investment on this kind of construction would be worthless if the reducing loss is on the power-off is less than the increasing investment on improving the reliability .Thus we find out a balance point to make the most economic,between the investment and the loss by calculating the investment on power net and the loss brought from power-off.KEYWARDS:power supply and distribution,power distribution reliability,reactive compensation,load distributionTEXTThe revolution of electric power system has brought a new big round construction,which is pushing the greater revolution of electric power technique along with the application of new technique and advanced equipment. Especially, the combination of the information technique and electric power technique, to great ex- tent, has improved reliability on electric quality and electric supply. The technical development decreases the cost on electric construction and drives innovation of electric network. On the basis of national and internatio- nal advanced electric knowledge, the dissertation introduces the research hotspot for present electric power sy- etem as following.Firstly, This dissertation introduces the building condition of distribution automation(DA), and brings forward two typical construction modes on DA construction, integrative mode and fission mode .It emphasize the DA structure under the condition of the fission mode and presents the system configuration, the main station scheme, the feeder scheme, the optimized communication scheme etc., which is for DA research reference.Secondly, as for the (DA) trouble measurement, position, isolation and resume, This dissertation analyzes the changes of pressure and current for line problem, gets math equation by educing phase short circuit and problem position under the condition of single-phase and works out equation and several parameter s U& , s I& and e I& table on problem . It brings out optimized isolation and resume plan, realizes auto isolation and network reconstruction, reduces the power off range and time and improves the reliability of electric power supply through problem self- diagnoses and self-analysis. It also introduces software flow and use for problem judgement and sets a model on network reconstruction and computer flow.Thirdly, electricity system state is estimated to be one of the key techniques in DA realization. The dissertation recommends the resolvent of bad measurement data and structure mistake on the ground of describing state estimate way. It also advances a practical test and judging way on topology mistake in state estimate about bad data test and abnormity in state estimate as well as the problem and effect on bad data from state measure to state estimate .As for real time monitor and control problem, the dissertation introduces a new way to solve them by electricity break and exceptional analysis, and theway has been tested in Weifang DA.Fourthly, about the difficulty for building the model of load forecasting, big parameter scatter limit and something concerned, the dissertation introduces some parameters, eg. weather factor, date type and social environment effect based on analysis of routine load forecasting and means. It presents the way for electricity load forecasting founded on neural network(ANN),which has been tested it’s validity by example and made to be good practical effect.Fifthly, concerning the lack of concordant wave on preve nting concordant wave and non-power compensation and non-continuity on compensation, there is a topology structure of PWM main circuit and nonpower theory on active filter the waves technique and builds flat proof on the ground of Saber Designer and proves to be practical. Meanwhile, it analyzes and designs the way of non-power need of electric network tre- nds and decreasing line loss combined with DA, which have been tested its objective economic benefit throu- gh counting example.Sixthly, not only do the dissertation design a way founded on the magrginal electric price fitted to our present national electric power market with regards to future trends of electric power market in China and fair trade under the government surveillance, that is group competitio n in short-term trade under the way of grouped price and quantity harmony, but also puts forward combination arithmetic, math model of trading plan and safty economical restriction. It can solve the original contradiction between medium and long term contract price and short term competitive price with improvement on competitive percentage and cut down the unfair income difference of electric factory, at the same time, it can optimize the electric limit for all electric factories and reduce the total purchase charge of electric power from burthen curve of whole electric market network.The distribution network is an important link among the power system. Its neutral grounding mode and operation connects security and stability of the power system directly. At the same time, the problem about neutral grounding is associated with national conditions, natural environment, device fabrication and operation. For example, the activity situation of the thunder and lightning, insulating structure and the peripheral interference will influence the choice of neutral grounding mode Conversely, neutral grounding mode affects design, operation, debugs and developing. Generally in the system higher in grade in the voltage, the insulating expenses account for more sizable proportion at the total price of the equipment. It is very remarkable to bring the economic benefits by reducing the insulating level. Usually such system adopt the neutral directly grounding andadopt the autoreclosing to guarantee power supply reliability. On the contrary, the system which is lower in the voltage adopts neutral none grounding to raise power supply reliability. So it is an important subject to make use of new- type earth device to apply to the distribution network under considering the situation in such factors of various fields as power supply reliability, safety factor, over-voltage factor, the choice of relay protection, investment cost, etc.The main work of this paper is to research and choice the neutral grounding mode of the l0kV distribution network. The neutral grounding mode of the l0kV network mainly adopts none grounding, grounding by arc suppressing coil, grounding by reactance grounding and directly grounding. The best grounding mode is confirmed through the technology comparison. It can help the network run in safety and limit the earth electric arc by using auto-tracking compensate device and using the line protection with the detection of the sensitive small ground current. The paper introduces and analyzes the characteristic of all kind of grounding modes about l0kV network at first. With the comparison with technological and economy, the conclusion is drawn that the improved arc suppressing coil grounding mode shows a very big development potential.Then, this paper researches and introduces some operation characteristics of the arc suppressing coil grounding mode of the l0kV distribution network. And then the paper put emphasis on how to extinguish the earth electric arc effectively by utilizing the resonance principle. This paper combines the development of domestic and international technology and innovative achievement, and introduces the computer earth protection and autotracking compensate device. It proves that the improved arc suppressing coil grounding mode have better operation characteristics in power supply reliability, personal security, security of equipment and interference of communication. The application of the arc suppressing coil grounding mode is also researched in this paper.Finally, the paper summarizes this topic research. As a result of the domination of the arc suppressing coil grounding mode, it should be more popularized and applied in the distribution network in the future.The way of thinking, project and conclusions in this thesis have effect on the research to choose the neutral grounding mode not only in I0kV distribution network but also in other power system..The basic function of the electric power system is to transport the electric power towards customers. The l0kV electric distribution net is a key point that connects the power supply with the electricity using on the industry, business and daily-life. For the electric power, all costumers expect to pay the lowest price for the highest reliability, butdon't consider that it's self-contradictory in the co-existence of economy and reliable. To improve the reliability of the power supply network, we must increase the investment cost of the network con- struction But, if the cost that improve the reliability of the network construction, but the investment on this kind of construction would be worthless if the reducing loss is on the power-off is less than the increasing investment on improving the reliability .Thus we find out a balance point to make the most economic, between the investment and the loss by calculating the investment on power net and the loss brought from power-off. The thesis analyses on the economic and the reliable of the various line modes, according to the characteristics various line modes existed in the electric distribution net in foshan..First, the thesis introduces as the different line modes in the l0kV electric distribution net and in some foreign countries. Making it clear tow to conduct analyzing on the line mode of the electric distribution net, and telling us how important and necessary that analyses are.Second, it turns to the necessity of calculating the number of optimization subsection, elaborating how it influences on the economy and reliability. Then by building up the calculation mode of the number of optimization subsection it introduces different power supply projects on the different line modes in brief. Third, it carries on the calculation and analyses towards the reliability and economy of the different line modes of electric distribution net, describing drafts according by the calculation. Then it makes analysis and discussion on the number of optimization subsection.At last, the article make conclusion on the economy and reliability of different line modes, as well as, its application situation. Accordion to the actual circumstance, the thesis puts forward the beneficial suggestion on the programming and construction of the l0kV electric distribution net in all areas in foshan. Providing the basic theories and beneficial guideline for the programming design of the lOkV electric distribution net and building up a solid net, reasonable layout, qualified safe and efficiently-worked electric distribution net.。

英文文献及翻译:供配电系统(1800字)

英文文献及翻译:供配电系统(1800字)

供配电系统摘要:电力系统的基本功能是向用户输送电能。

lOkV配电网是连接供电电源与工业、商业及生活用电的枢纽,其网络庞大及复杂。

对于所有用户都期望以最低的价格买到具有高度可靠性的电能。

然而,经济性与可靠性这两个因素是互相矛盾的。

要提高供电网络的可靠性就必须增加网络建设投资成本。

但是,如果提高可靠性使用户停电损失的降低小于用于提高可靠性所增加的投资,那么这种建设投资就没有价值了。

通过计算电网的投资和用户停电的损失,最终可找到一个平衡点,使投资和损失的综合经济性最优。

关键词:供配电,供电可靠性,无功补偿,负荷分配1 引言电力体制的改革引发了新一轮大规模的电力建设热潮从而极大地推动了电力技术革命新技术新设备的开发与应用日新月异特别是信息技术与电力技术的结合在很大程度上提高了电能质量和电力供应的可靠性由于技术的发展又降低了电力建设的成本进而推动了电网设备的更新换代本文就是以此为契机以国内外配电自动化中一些前沿问题为内容以配电自动化建设为背景对当前电力系统的热点技术进行一些较深入的探讨和研究主要完成了如下工作.(1)提出了配电自动化建设的两个典型模式即―体化模式和分立化模式侧重分析了分立模式下的配电自动化系统体系结构给出了软硬件配置主站选择管理模式最佳通讯方式等是本文研究的前提和实现平台.(2)针对配电自动化中故障测量定位与隔离以及供电恢复这一关键问题分析了线路故障中电压电流等电量的变化导出了相间短路工况下故障定位的数学描述方程并给出了方程的解以及故障情况下几个重要参数s U& s I& e I& 选择表通过对故障的自动诊断与分析得出了优化的隔离和恢复供电方案自动实现故障快速隔离与网络重构减少了用户停电范围和时间有效提高配网供电可靠性文中还给出了故障分段判断以及网络快速重构的软件流程和使用方法.(3)状态估计是实现配电自动化中关键技术之一本文在阐述状态估计方法基础上给出了不良测量数据的识别和结构性错误的识别方法针对状态估计中数据对基于残差的坏数据检测和异常以及状态量中坏数据对状态估计的影响及存在的问题提出了状态估计中拓扑错误的一种实用化检测和辩识方法针对窃电漏计电费问题独创性提出一种通过电量突变和异常分析防止窃电的新方法并在潍坊城区配电得到验证.(4)针对配电网负荷预测建模困难参数离散度大以及相关因素多等问题本文在分析常规负荷预测模型及方法基础上引入了气象因素日期类型社会环境影响等参数给出了基于神经网络的电力负荷预测方法实例验证了方法的正确性.(5)针对无源滤波在抑制谐波和无功补偿方面的不足以及补偿度的不连续性本文提出了一种PWM 主电路拓朴结构和基于无功功率理论的有源滤波方案建立了基于Saber Designer 仿真平台仿真分析证明了方案的可行性同时结合配电自动化技术对配电网动态无功优化补偿和降低线损的方法进行了设计分析通过实例计算验证了其客观的经济效益.(6)针对中国电力市场未来的发展趋势以及政府监管下的电力市场公平交易设计了一种适合我国电力市场现状按照电价分组电量协调分组竞价的短期电力交易模式给出了基于边际电价的机组组合算法制订交易计划的数学模型以及安全经济约束等在竞争比例逐步提高的情况下能够较好地解决原有中长期合同电价和短期竞争电价的矛盾减少电厂不公平的收益差异同时也可在电力市场全网的负荷曲线上对所有电厂进行限量优化减少总的系统购电费用.2 配电网分析配电网是电力系统中的一个重要环节,配电网接地方式和安全运行直接关系到电力系统的安全和稳定。

外文翻译--浅谈高层建筑供配电系统设计

外文翻译--浅谈高层建筑供配电系统设计

中文4323字外文资料翻译Power supply system of high-rise building design Abstract: with the continuous development of city size, more and more high-rise buildings, therefore high-rise building electrical design to the designers had to face. In this paper, an engineering example, describes the electrical design of high-rise buildings and some of the more typical issues of universal significance, combined with the actual practice of an engineering solution to the problem described.Key words: high-rise building; electrical design; distribution; load calculation1 Project OverviewThe commercial complex project,with a total construction area of 405570m2,on the ground floor area of 272330m2, underground construction area of 133240m2, the main height of 99m. Project components are: two office buildings, construction area is 70800m2, 28 layers, the standard story is 3.2m.2 Load Calculation1) Load characteristics: electric load, much larger than the "national civil engineering technical measures" Large 120W/m2 indicators, especially in the electricity load more food, and different types of food and beverage catering different cultural backgrounds also high.2) the uncertainty of a large load, because the commercial real estate rents are often based on market demand, and constantly adjust the nature of the shops, making the load in the dynamic changes.3) There is no specification and technical measures in the different types of commercial projects refer to the detailed parameters of the shops, engineering design load calculation in the lack of data, in most cases to rely on staff with previous experience in engineering design calculations.Load the selection of parameters: for the above problems, the load calculation, the first developer of sales and good communication, to determine the form of layers of the forms and nature of floor area, which is calculated on the basis of electrical load basis; followed to determine parameter index within the unit area of shops is also very important and complex because there is no clear indicator of the specification can refer to; and different levels of economic development between cities is not balanced, power indices are also different; will be in the same city, different regions have different consumer groups .3) the need to factor in the choice: parameters determined, the need for load calculation. Need to factor commonly used method, the calculation will not repeat them. Need to explore is the need for coefficient selection, which in the current specifications, manuals and the "unified technical measures" is also not clear requirements, based on years of design experience that most end shops in thedistribution or level within the household distribution box with case Kx generally take a while, in the calculation of the loop route to take 0.7 to 0.8, the distribution transformers in the substation calculations take 0.4 to 0.6.3 substations setLoad calculation based on the results of this project the total installed capacity of transformer 43400Kv.A, after repeated consultations with the power company, respectively, in the project in northern, central and southern three sections set the three buildings into three power substations, 1 # set 6 sets 2500Kv.A transformer substation, take the northern section of power supply; 2 # 4 1600Kv.A transformer substations located, plus 6 sets 2000Kv.A transformers, take the middle of the power supply, in addition to 5 Taiwan 10Kv.A high-pressure water chillers (total 4000Kv.A);3 # substation located 2 units plus 2 units 1000Kv.A 2000Kv.A transformers, take the southern section of A, B two office supply. 10Kv power configuration of this project into two points, each at the two 10Kv lines, the power company under the provisions of 10Kv power capacity: maximum load per channel is about to 11000Kv.A, two is the 22000Kv.A, design # 1 , 3 # combination of a substation 10Kv, power line, with a total capacity of 21000Kv.A; 2 # substation transformers and 10Kv, 10Kv chillers sharing a power line, with a total capacity of 22400Kv.A. The design of the substation layout, in addition to meeting regulatory requirements, it also need to consider the high-pressure cabinets, transformers and low voltage power supply cabinet by order of arrangement, especially in low voltage distribution cabinet to feed the cable smooth and easy inspection duty problems are not seriously consider the construction of the cable crossing will cause more long detour, a waste of floor space, and convenient inspections and other issues【8】.4 small fire load power supplyIn the design of large commercial projects often encounter small fire load of electrical equipment and more dispersed distribution, if fed by a substation, a substation will be fed a lot of low-voltage low-current counter circuit breaking capacity circuit breaker and conductor of the dynamic and thermal stability in a certain extent. According to GB50045-1995 "fire protection design of tall buildings," rule "should be used in Fire Equipment dedicated power supply circuit, the power distribution equipment shall be provided with clear signs." Interpretation of the provisions of the power supply circuit means "from the low-voltage main distribution room (including the distribution of electrical room) to last a distribution box, and the general distribution lines should be strictly separated." In this design, the use of methods to increase the level of distribution, that is different from the substation bus segments, respectively, a fire fed a special circuit, set in place two distribution cabinets, distribution cabinets and then the resulting radial allocated to the end of the dual power to vote each box, so that not only meets the specification requirements for dedicated power supply circuit, but also to avoid feeding the substation level of many small current loop.5, the choice of circuit breaker and conductorCommercial real estate projects use the room as the uncertainty in the choice of circuit breakers and conductors must be considered in a certain margin to meet theneeds caused by adjustment of the load changes. According to this characteristic, increased use in the design of the plug bus-powered, not only meet the requirements of large carrying capacity, and also allows the flexibility to increase supply and distribution, are reserved in each shaft in the plug-box backup in order to change, according to changes in upper and lower load, to adjust. For example: a bus is responsible for a shaft 1 to 3 layers of power, when a layer due to the change in capacity increases, while the 3-layer capacity is reduced, you can use a spare plug box layer off the 3-layer 1 layer capacity rationing . This level distribution in the substation, select the circuit breaker to choose the setting value when the circuit breaker to adjust to changes at the end to adjust the load setting value; in the bus and the transformer circuit breaker according to the choice of the general framework of values to select . For example: Route certain equipment capacity 530Kv, Kx take 0.7 to calculate current of 704A, select the frame circuit breaker is 1000A, tuning is 800A; current transformer for the 1000/50; bus carrying capacity for the 1000A, this road can meet the maximum 1000A current load requirements, even if there is adjustment, power distribution switches and circuit can not make big changes.6 layer distribution box setAccording to the division of layers of fire protection district, respectively numbered as A ~ K layers within the set level shaft for the retail lighting power distribution box, with one on one power supply shops in radial power. Should be noted that the forms of the complex layers of layers of fire partition, does not correspond to the lower, making some of shaft power in charge of the fire district at the same time, also responsible for the power supply adjacent to the fire district. At design time, using the principle of proximity, while also taking into account the burden of the whole trunk load conditions, so that each shaft as far as possible a more balanced load. PrerequisitesThe loop that you want to auto-tune must be in automatic mode. The loop output must be controlled by the execution of the PID instruction. Auto-tune will fail if the loop is in manual mode.Before initiating an auto-tune operation your process must be brought to a stable state which means that the PV has reached setpoint (or for a P type loop, a constant difference between PV and setpoint) and the output is not changing erratically.Ideally, the loop output value needs to be near the center of the control range when auto-tuning is started. The auto-tune procedure sets up an oscillation in the process by making small step changes in the loop output. If the loop output is close to either extreme of its control range, the step changes introduced in the auto-tune procedure may cause the output value to attempt to exceed the minimum or the maximum range limit.If this were to happen, it may result in the generation of an auto-tune error condition, and it will certainly result in the determination of less than near optimal suggested values.Auto-Hysteresis and Auto-DeviationThe hysteresis parameter specifies the excursion (plus or minus) from setpoint that thePV (process variable) is allowed to make without causing the relay controller to change the output. This value is used to minimize the effect of noise in the PV signal to more accurately determine the natural oscillation frequency of the process.If you select to automatically determine the hysteresis value, the PID Auto-Tuner will enter a hysteresis determination sequence. This sequence involves sampling the process variable for a period of time and then performing a standard deviation calculation on the sample results.In order to have a statistically meaningful sample, a set of at least 100 samples must be acquired. For a loop with a sample time of 200 msec, acquiring 100 samples takes 20 seconds. For loops with a longer sample time it will take longer. Even though 100 samples can be acquired in less than 20 seconds for loops with sample times less than 200 msec, the hysteresis determination sequence always acquires samples for at least 20 seconds.Once all the samples have been acquired, the standard deviation for the sample set is calculated. The hysteresis value is defined to be two times the standard deviation. The calculated hysteresis value is written into the actual hysteresis field (AHYS) of the loop table.TipWhile the auto-hysteresis sequence is in progress, the normal PID calculation is not performed. Therefore, it is imperative that the process be in a stable state prior to initiating an auto-tune sequence. This will yield a better result for the hysteresis value and it will ensure that the process does not go out of control during the auto-hysteresis determination sequence.The deviation parameter specifies the desired peak-to-peak swing of the PV around the set point. If you select to automatically determine this value, the desired deviation of the PV is computed by multiplying the hysteresis value by 4.5. The output will be driven proportionally to induce this magnitude of oscillation in the process during auto-tuning.Auto-Tune SequenceThe auto-tuning sequence begins after the hysteresis and deviation values have been determined. The tuning process begins when the initial output step is applied to the loop output.This change in output value should cause a corresponding change in the value of the process variable. When the output change drives the PV away from setpoint far enough to exceed the hysteresis boundary a zero-crossing event is detected by the auto-tuner. Upon each zero crossing event the auto-tuner drives the output in the opposite direction.The tuner continues to sample the PV and waits for the next zero crossing event. A total of twelve zero-crossings are required to complete the sequence. The magnitude of the observed peak-to-peak PV values (peak error) and the rate at which zero-crossings occur are directly related to the dynamics of the process.Early in the auto-tuning process, the output step value is proportionally adjusted once to induce subsequent peak-to-peak swings of the PV to more closely match the desired deviation amount. Once the adjustment is made, the new output step amountis written into the Actual Step Size field (ASTEP) of the loop table.The auto-tuning sequence will be terminated with an error, if the time between zero crossings exceeds the zero crossing watchdog interval time. The default value for the zero crossing watchdog interval time is two hours.Figure 1 shows the output and process variable behaviors during an auto-tuning sequence on a direct acting loop. The PID Tuning Control Panel was used to initiate and monitor the tuning sequence.Notice how the auto-tuner switches the output to cause the process (as evidenced by the PV value) to undergo small oscillations. The frequency and the amplitude of the PV oscillations are indicative of the process gain and natural frequency.7 public area distribution box setTaking into account the future needs of the business re-decoration of public areas must be reserved for power. Here the design needs to consider the following points:①question of how much reserve power, lighting and electricity, which according to GB50034-2004 "Architectural Lighting Design Standards" table of Article 6.1.3 and 6.1.8, commercial building lighting power density value, high-end supermarkets, business offices as 20W/m2, under the "decorative lighting included 50% of the total lighting power density calculation" requirements, using the reserved standard 40W/m2.②In order to facilitate the decoration in each partition set fire lighting in public areas and emergency lighting distribution box distribution box, in order to identify the electrical power distribution decoration cut-off point.③the staircase, storage rooms and other parts of the decoration does not need to do, set the power distribution circuit or a separate distribution box, try not to be reserved from the public area of electricity distribution board fed hardcover out.④control of lighting in public areas, the majority in two ways, namely, C-BUS control system or the BA system, the use of C-BUS has the advantage of more flexible control, each road can be fed out of control, adjustable light control; shortcomings is a higher cost. BA system control advantages of using low cost, simple control; disadvantage is that the exchanges and contacts for the three-phase, three-way control may be related both to open, or both, in the decoration of the contacts required to feed the power supply circuit diverge to avoid failure blackouts.Design of distribution box 8In the commercial real estate design, shop design is often only a meter box, and outlet route back to the needs of the user according to their second design, but the shops are difficult to resolve within the power supply fan coil units, air-conditioning system as a whole can not debug. The project approach is to add a circuit breaker in the meter box for the coil power supply, another way for users to use the second design, as shown below.User distribution box design9 distribution cabinet / box number and distribution circuitsLarge-scale projects are often low voltage distribution cabinet / box number, low-voltage circuits to feed the more often there will be cabinet / box number and line number duplication, resulting in the design and the future looks difficult maintenanceand overhaul. The project has three 10Kv substations, 20 transformer, hundreds of low-voltage fed out of the closet, fed the circuit more. Accordance with the International Electrotechnical Commission (IEC) and the Chinese national standard requirements:①All the distribution number to be simple and clear, not too box and line numbers are not repeated.②number to simple and clear, not too long.③distinction between nature and type of load.④law was easy to find, make viewer at a glance. Based on the above requirements and on the ground, fire district and the underground construction industry form the different conditions, using two slightly different ways. Essential for the underground garage, uses a single comparison, also relatively fire district neat, according to fire district number, such as AL-BL-1 / 1, AP and APE, the meaning of the letters and numbers: AL on behalf of lighting distribution (AP on behalf of Power distribution box, APE on behalf of the emergency power distribution box); BI on behalf of the basement; 1 / 1 for partition 1, I fire box. Above ground is more complex, more fire district, and on the fire district does not correspond to the lower, according to shaft number is better, such as AL-1-A1, AP, and APE, letters and numbers mean: 1 represents a layer; A1 on behalf of A, No. 1 shaft fed a distribution box. Fed a low-voltage circuits, such as the number of uses: W3-6-AL-1-A1, W3-6) indicates that the route back to power supply transformer 3, 6, feed the power distribution cabinet, AL-1-A1, said the then the first loop of the distribution box for the AL-1-A1 and so on, and so on.10 ConclusionWith more and more complex commercial design projects, designers need to continually improve the design level, designed to make fine. These are only bits of the design in the business lessons learned, and the majority of designers want to communicate浅谈高层建筑供配电系统设计摘要:随着城市规模的不断发展,高层建筑越来越多,因此,高层建筑电气设计就成为设计者不得不面对的问题。

外文翻译供电技术

外文翻译供电技术

外文原文Power Supplying Technology and Intelligent BuildingThe electric distribution system is a part of an electric power system that supplies electric energy to the individual user or consumer .The distribution substations that supply them, the distribution transformers, and appropriate protective and control devices the three general classes of individual user are industrial, residential, and ruralThe three-phase alternating-current (ac) system is practically universal, although a small amount of direct-current systems are in operation .Three-phase transformer and sub transmission lines require three wires, learned phase conductors. Most of the low-voltage three phase distribution systems consist of three phase conductions and a common or neutral conductor ,making a total of four wires .single-phase branches (consisting of two wires)supplied from the three-phase mains are used for single phase utilization in residences, small stores ,and farms, loads are connected in parallel to common supply circuits.The distribution substation is an assemblage of equipment for purpose of switching, changing and regulating the voltage from sub transmission to primary distribution .More important substations are designed so that the failure of a piece of equipment in the substation or one of the sub transmission lines to the substation will not cause an interruption of power to the loadThe primary system leaving the substation is most frequently in the 6-35kV range. A particular voltage used is Ilk line-to-line and fine to neutral (conventionally written 10/.some utilities use a lower voltage, such as 3/ use of voltage in the 35kV class is increasing for its lower electric loss.Secondary voltages are derived from distribution transformers connected to the primary system and they usually correspond to utilization voltages .Most loads are supplied by 380/220volt single-phase four-wire systems, some high power -rate motors require 3kV or 6kV.Good voltage means that the average voltage level is correct ,that variations do not exceed prescribed lima it ,and that sudden momentary changes in level do notcause objectionable light flicker .Utilization voltage varies with changing load on the system ,but a voltage variation of less than 5% at the consumer's meter is common .to achieve this result, distribution systems are designed for a plus and minus voltage spread from the nominal voltages .This is accomplished by proper wire size for the circuits, application of capacitors ,both permanently connected and switched, and the use of voltage regulationsThe electric power substation is an assembly of equipment man electric power system through which electrical energy is passed for transmission, distribution, interconnection ,transformation ,conversion ,or switching. A substation includes a variety of equipment .the principal items are listed and briefly described below.Transformers involve magnetic core and windings to transfer power from one side to the other side at different voltages .Substation transformers range from small size of 50kV·A to large size of several hundred MV﹒A most of transformers are insulated and cooled by oil, and adequate precautions have to be taken for fire hazard, These precautions include adequate distances from other equipment, firewalls fire extinguishing means, and pits and drains for containing leaked oilCircuit breakers,Circuit breakers are required for circuit interruption with the capability of interrupting the highest fault current, usually 20-50times over the normal current, and withstanding high voltage surges that appear after interruption. Switches with normal load-interruption capability are called load break switches.Disconnect witches. Disconnect witches have isolation and connection capability without interruption capability.Bus-bars Bus -bars arc connecting bars or conductors between equipment. Flexible conductor are stretched from insulator to insulator, where more common solid buses (commonly made of aluminum alloy) are installed on insulators in the air or in gas enclosed cylindrical pipesShunt reactors Shunt reactors are often required for compensation of line capacitance whereLong lines are involvedShunt capacitors Shunt capacitors are often required for compensation of inductive components of load currentCurrent transformers and potential transformers,Current transformers and potential transformers are for measuring currents and voltages and provide proportionately low-level currents and voltages for control and protection Control and protection,Control and protection include a) a variety of protectiverelays which can rapidly detect faults anywhere in the substation equipment and lines, determine which part of the systems is faulty ,and give appropriate commands for opening of circuit breakers ;(b) Control equipment for voltage and Current control and proper selection of the system conf gumption ;( c) fault-recording equipment ;( e) metering equipment; and (f) auxiliary power supplies.Many of the control and protection devices are solid-state electronic types, and there is a trend toward digital techniques using microprocessors. Most of the substations are fully automated locally with a provision for manual override .the minimum manual interface required, alone communications channels to the dispatcher in the central office.Good substation grounding is very important for effective relaying and insulation of equipment; the design of the personnel is of substation grounding .It usually consists the governing criterion in of a bare wire grid, laid in the ground; and all equipment groundings points ,tanks, support structures, fences ,shielding wires and poles ,and so forth ,are securely connected to it,the is reduced to be low enough that a fault from high voltage to ground does not create such high potential gradients on the ground, and from the structures to ground ,to present a safe hazard. Good overhead shielding is also essential for outdoor substations, soaps to eliminate the possibility of lighting directly striking the equipment. Shielding is provided by overhead ground wires stretched across the substation or tall grounded poles.中文译文供电技术供电系统是电力系统的一部分,它提供电能给消费者。

毕业论文外文翻译-高层建筑供配电系统设计

毕业论文外文翻译-高层建筑供配电系统设计

毕业论文外文翻译-高层建筑供配电系统设计Design of Power Supply and Distribution System for High-rise BuildingsAbstractPower supply and distribution system is the lifeline of high-rise buildings. The design of power supply and distribution system is based on the characteristics of high-rise buildings, which requires not only reliable supply of power, but also the safety of electricity utilization and efficient energy consumption. In this paper, the design of power supply and distribution system for high-rise buildings is discussed, focusing on the selection of power supply mode, the design of power distribution system, the design of grounding system, the selection of electrical equipment and the design of lightning protection system. The application of advanced technologies such as distributed power supply, energy management and control system, and intelligent electrical equipment can improve the energy efficiency and utilization of high-rise buildings, reduce energy consumption and carbon emissions, and promote the development of green buildings.Keywords: high-rise buildings; power supply and distribution system; energy efficiency; green buildingsIntroductionHigh-rise buildings are an important symbol of urban development and represent the trend of modern architecture. With the continuous improvement of people’s living standards, the demand for high-rise buildings is increasing. Power supply and distribution system is an essential part of high-rise buildings, which plays a crucial role in the operation and maintenance of buildings. The design of power supply and distribution system for high-rise buildings needs to consider many factors, such as technical performance, safety and reliability, energy efficiency, economic benefits and environmental protection, etc. In recent years, with the rapid development of new energy and advanced technology, the design of power supply and distribution system for high-rise buildings has undergone significant changes, which focus on improving energy efficiency and reducing emissions. This paper analyzes the design of power supply and distribution system for high-rise buildings, summarizes the selection principles and design methods of various systems, and explores the application of new technologies to improve energy efficiency and promote the development of green buildings.1. Selection of Power Supply ModeThe power supply mode is the basic foundation of power supply and distribution system of high-rise buildings. In the selection of power supply mode, it is necessary to consider the characteristics of the building and the surrounding environment, and ensure the reliability and safety of power supply. Currently, the main power supply modes for high-rise buildings are grid-connected power supply and distributed power supply.1.1 Grid-connected Power SupplyGrid-connected power supply is a traditional power supply mode, which is widely used in high-rise buildings. It has the advantages of reliable power supply, convenient operation and maintenance, and stable voltage and frequency. However, grid-connected power supply is vulnerable to natural disasters such as typhoons and earthquakes, and may cause power outages, which will affect the normal life and work of residents. Moreover, the development of distribution network is limited by the capacity of the grid, which may cause overloaded operation and reduce the energy efficiency of high-rise buildings.1.2 Distributed Power SupplyDistributed power supply is a new power supply mode, which can improve the energy efficiency of high-rise buildings and reduce the dependence on the grid. Distributed power supply includes combined heat and power (CHP), solar power, wind power and other renewable energy sources. CHP is a highly efficient power generation technology, which can generate electricity and heat at the same time, and utilize the waste heat for air conditioning and domestic hot water. Solar power and wind power are clean energy sources, which have the advantages of zero emissions and long service life. Distributed power supply can reduce the transmission and distribution losses of power supply, and improve the energy efficiency of high-rise buildings. However, the initial investment of distributed power supply is relatively high, and the technical level of electrical equipment and maintenance management is demanding.2. Design of Power Distribution SystemThe power distribution system is responsible for the power transmission and distribution of high-rise buildings, which should ensure the safety and reliability of the power supply. The design of power distribution system includes the selection of power distribution equipment, the layout of power distribution room, and the calculation of power load.2.1 Selection of Power Distribution EquipmentThe selection of power distribution equipment should meet the requirements of technical performance, safety and reliability, and energy efficiency. The main power distribution equipment includes switchgear, transformer, busbar, distribution panel, etc. The switchgear should have the function of over-current protection, short-circuit protection and earth leakage protection, and should have the advantages of small volume, low noise and high reliability. The transformer should be selected according to the capacity and voltage level, and should have the advantages of low loss, high efficiency and small size. The busbar should have the advantages of high strength, good conductivity and low resistance. The distribution panel should have the functions of metering, control, protection and communication, and should be easy to operate and maintain.2.2 Layout of Power Distribution RoomThe layout of power distribution room should be reasonable and convenient for operation and maintenance. The power distribution room should be located near the power supply entrance, and should have the advantages of good ventilation, dry, clean and spacious. The power distribution room should be equipped with the necessary security measures, such as fire prevention, explosion-proof, and lightning protection.2.3 Calculation of Power LoadThe calculation of power load is the key to the design of power distribution system. The power load includes lighting load, air conditioning load, power load and special load, etc. The calculation of power load should take into account the diversity of load, the possibility of peak load, and the capacity of power supply equipment. The primary consideration is to ensure the safety and reliability of power supply, and then to improve the energy efficiency of power utilization.3. Design of Grounding SystemThe grounding system is an important safety measure for high-rise buildings. The design of grounding system should meet the requirements of electrical safety and electrostatic discharge protection.3.1 Electrical SafetyThe grounding system should have the functions of lightning protection, over-voltage protection, over-current protection and earth leakage protection, etc. The grounding resistance should be less than the specified value, and the grounding wire should have good conductivity and corrosion resistance. The grounding system should be comprehensively tested and maintained regularly.3.2 Electrostatic Discharge ProtectionThe electrostatic discharge protection is to prevent the accumulation of static electricity and the damage of electrical equipment. The design of electrostatic discharge protection includes the selection of anti-static grounding material, the setting of anti-static floor, and the installation of anti-static equipment. The electrostatic discharge protection is especially important for data centers and sensitive electrical equipment.4. Selection of Electrical EquipmentThe selection of electrical equipment is an important part of the design of power supply and distribution system for high-rise buildings. The selection of electrical equipment should meet the requirements of technical performance, safety and reliability, environmental protection and energy efficiency.4.1 Technical PerformanceThe electrical equipment should meet the relevant national and international standards, and have the characteristics of high efficiency, low noise, long service life and easy maintenance. The electrical equipment should have the functions of protection, control, measurement and communication, and should be compatible with the automation system.4.2 Safety and ReliabilityThe electrical equipment should have the functions of over-current protection, short-circuit protection, ground connection protection and lightning protection, etc. The electrical equipment should be installed and maintained by qualified personnel, and should be tested and checked regularly to ensure the safety and reliability of power supply and distribution system.4.3 Environmental Protection and Energy EfficiencyThe electrical equipment should have the advantages of environmental protection and energy efficiency, and should meet the requirements of green building standards. The electrical equipment should have the functions of power monitoring, energy management and control, and should be able to optimize the energy utilization and reduce the energy consumption.5. Design of Lightning Protection SystemThe lightning protection system is an important safety measure for high-rise buildings, which can prevent the damage of lightning to electrical equipment and human life. The design of lightning protection system includes the selection of lightning protection device, the installation of lightning rod, the connection of grounding wire, and the calculation of lightning protection zone.5.1 Selection of Lightning Protection DeviceThe lightning protection device should have the functions of lightning protection, over-voltage protection, surge protection and electromagnetic pulse protection, etc. The lightning protection device should be reliable and durable, and should meet the relevant national and international standards.5.2 Installation of Lightning RodThe lightning rod should be installed on the roof of high-rise buildings, and should be connected with the grounding system. The lightning rod should be placed in a high position, and should be made of light and strong materials, such as aluminum alloy or stainless steel. The lightning rod should be inspected regularly to ensure its effectiveness.5.3 Connection of Grounding WireThe grounding wire should be connected with the lightning rod, the grounding system, and the electrical equipment. The grounding wire should have the advantages of low resistance, good conductivity and corrosion resistance. The grounding wire should be tested and checked regularly to ensure its effectiveness.5.4 Calculation of Lightning Protection ZoneThe calculation of lightning protection zone is the basis for the design of lightning protection system. The lightning protection zone includes the direct lightning strike zone and the induced lightning zone. The direct lightning strike zone is the area covered by the lightning rod, and the induced lightning zone is the area beyond the direct lightning strike zone. The calculation of lightning protection zone should consider the characteristics of lightning, such as the stroke current, the distance from the lightning source, and the soil resistivity.ConclusionThe design of power supply and distribution system for high-rise buildings is a complex and important work. The selection of power supply mode, the design of power distribution system, the design of grounding system, the selection of electrical equipment, and the design of lightning protection system are the main aspects of the design of power supply and distribution system. The application of advanced technologies such as distributed power supply, energy management and control system, and intelligent electrical equipment can improve the energy efficiency and utilization of high-rise buildings, reduce energy consumption and carbon emissions, and promote the development of green buildings. The design of power supply and distribution system for high-rise buildings should adhere to the principles of safety, reliability, energy efficiency, economic benefits and environmental protection, and strive to create a better living and working space for residents.。

(完整版)电力系统外文英语文献资料

(完整版)电力系统外文英语文献资料

Electric Power SystemElectrical power system refers to remove power and electric parts of the part,It includes substation, power station and distribution. The role of the power grid is connected power plants and users and with the minimum transmission and distribution network disturbance through transport power, with the highest efficiency and possibility will voltage and frequency of the power transmission to the user fixed .Grid can be divided into several levels based on the operating voltage transmission system, substructure, transmission system and distribution system, the highest level of voltage transmission system is ZhuWangJia or considered the high power grids. From the two aspects of function and operation, power can be roughly divided into two parts, the transmission system and substation. The farthest from the maximum output power and the power of the highest voltage grade usually through line to load. Secondary transmission usually refers to the transmission and distribution system is that part of the middle. If a plant is located in or near the load, it might have no power. It will be direct access to secondary transmission and distribution system. Secondary transmission system voltage grade transmission and distribution system between voltage level. Some systems only single second transmission voltage, but usually more than one. Distribution system is part of the power system and its retail service to users, commercial users and residents of some small industrial users. It is to maintain and in the correct voltage power to users responsible. In most of the system, Distribution system accounts for 35% of the total investment system President to 45%, and total loss of system of the half .More than 220kv voltage are usually referred to as Ultra high pressure, over 800kv called high pressure, ultra high voltage and high pressure have important advantages, For example, each route high capacity, reduce the power needed for the number of transmission. In as high voltage to transmission in order to save a conductor material seem desirable, however, must be aware that high voltage transmission can lead to transformer, switch equipment and other instruments of spending increases, so, for the voltage transmission to have certain restriction, allows it to specific circumstances in economic use. Although at present, power transmission most is through the exchange of HVDC transmission, and the growing interest in, mercury arc rectifier and brake flow pipe into the ac power generation and distribution that change for the high voltage dc transmission possible.Compared with the high-voltage dc high-voltage ac transmission has the following some advantages: (1) the communication with high energy; (2) substation of simple maintenance and communication cost is low; (3) ac voltage can easily and effectively raise or lower, it makes the power transmission and high pressure With safety voltage distributionHVDC transmission and high-voltage ac transmission has the following advantages: (1) it only need two phase conductors and ac transmission to three-phase conductors; (2) in the dc transmission impedance, no RongKang, phase shift and impact overvoltage; (3) due to the same load impedance, no dc voltage, and transfer of the transmission line voltage drop less communication lines, and for this reason dc transmission line voltage regulator has better properties; (4) in dc system without skin effect. Therefore, the entire section of route conductors are using; (5) for the same work, dc voltage potential stress than insulation. Therefore dc Wire need less insulation; (6) dc transmission line loss, corona to little interference lines of communication; (7) HVDC transmission without loss of dielectric, especially in cable transmission; (8) in dc system without stability and synchronization of trouble.A transmission and the second transmission lines terminated in substation or distribution substations, the substation and distribution substations, the equipment including power and instrument transformer and lightning arrester, with circuit breaker, isolating switch, capacitor set, bus and a substation control equipment, with relays for the control room of the equipment. Some of the equipment may include more transformer substations and some less, depending on their role in the operation. Some of the substation is manual and other is automatic. Power distribution system through the distribution substations. Some of them by many large capacity transformer feeders, large area to other minor power transformer capacity, only a near load control, sometimes only a doubly-fed wire feeders (single single variable substation)Now for economic concerns, three-phase three-wire type communication network is widely used, however, the power distribution, four lines using three-phase ac networks.Coal-fired power means of main power generating drive generators, if coal energy is used to produce is pushing the impeller, then generate steam force is called the fire. Use coal produces steam to promote the rotating impeller machine plant called coal-fired power plants. In the combustion process, the energy stored in the coal to heat released,then the energy can be transformed into the form within vapor. Steam into the impeller machine work transformed into electrical energy.Coal-fired power plants could fuel coal, oil and natural gas is. In coal-fired power plant, coal and coal into small pieces first through the break fast, and then put out. The coal conveyer from coal unloader point to crush, then break from coal, coal room to pile and thence to power. In most installations, according to the needs of coal is, Smash the coal storage place, no coal is through the adjustable coal to supply coal, the broken pieces of coal is according to the load changes to control needs. Through the broken into the chamber, the coal dust was in the second wind need enough air to ensure coal burning.In function, impeller machine is used to high temperature and high pressure steam energy into kinetic energy through the rotation, spin and convert electricity generator. Steam through and through a series of impeller machine parts, each of which consists of a set of stable blade, called the pipe mouth parts, even in the rotor blades of mobile Li called. In the mouth parts (channel by tube nozzle, the steam is accelerating formation) to high speed, and the fight in Li kinetic energy is transformed into the shaft. In fact, most of the steam generator is used for air is, there is spread into depression, steam turbine of low-pressure steam from the coagulation turbine, steam into the condenses into water, and finally the condensate water is to implement and circulation.In order to continuous cycle, these must be uninterrupted supply: (1) fuel; (2) the air (oxygen) to the fuel gas burning in the configuration is a must; (3) and condenser, condensed from the condensed water supply, sea and river to lake. Common cooling tower; (4) since water vapour in some places in circulation, will damage process of plenty Clean the supply.The steam power plant auxiliary system is running. For a thermal power plant, the main auxiliary system including water system, burning gas and exhaust systems, condensation system and fuel system. The main auxiliary system running in the water pump, condensation and booster pump, coal-fired power plants in the mill equipment. Other power plant auxiliary equipment including air compressors, water and cooling water system, lighting and heating systems, coal processing system. Auxiliary equipment operation is driven by motor, use some big output by mechanical drive pump and some of the impeller blades, machine drive out from the main use of water vaporimpeller machine. In coal-fired power plant auxiliary equipment, water supply pump and induced draft fan is the biggest need horsepower.Most of the auxiliary power generating unit volume increased significantly in recent years, the reason is required to reduce environment pollution equipment. Air quality control equipment, such as electrostatic precipitator, dust collection of flue gas desulfurization, often used in dust in the new coal-fired power plants, and in many already built in power plant, the natural drive or mechanical drive, fountain, cooling tower in a lake or cooling canal has been applied in coal-fired power plants and plants, where the heat release need to assist cooling system.In coal-fired power stations, some device is used to increase the thermal energy, they are (1) economizer and air preheater, they can reduce the heat loss; (2) water heater, he can increase the temperature of water into boiling water heaters; (3) they can increase and filter the thermal impeller.Coal-fired power plants usually requires a lot of coal and coal reservoirs, however the fuel system in power plant fuel handling equipment is very simple, and almost no fuel oil plants.The gas turbine power plants use gas turbine, where work is burning gas fluid. Although the gas turbine must burn more expensive oil or gas, but their low cost and time is short, and can quickly start, they are very applicable load power plant. The gas turbine burn gas can achieve 538 degrees Celsius in the condensing turbine, however, the temperature is lower, if gas turbine and condenser machine, can produce high thermal efficiency. In gas turbine turbine a combined cycle power plant. The gas through a gas turbine, steam generator heat recovery in there were used to generate vapor heat consumption. Water vapor and then through a heated turbine. Usually a steam turbine, and one to four gas turbine power plant, it must be rated output power.。

电力系统外文英语文献资料

电力系统外文英语文献资料

Electric Power SystemElectrical power system refers to remove power and electric parts of the part,It includes substation,power station and distribution. The role of the power grid is connected power plants and users and with the minimum transmission and distribution network disturbance through transport power,with the highest efficiency and possibility will voltage and frequency of the power transmission to the user fixed 。

Grid can be divided into several levels based on the operating voltage transmission system,substructure,transmission system and distribution system, the highest level of voltage transmission system is ZhuWangJia or considered the high power grids. From the two aspects of function and operation,power can be roughly divided into two parts,the transmission system and substation。

The farthest from the maximum output power and the power of the highest voltage grade usually through line to load。

电力系统专业英语词汇

电力系统专业英语词汇

电力系统专业英语词汇1➢电力系统power system 发电机generator 电动机motor➢励磁excitation 励磁器excitor➢电压voltage 电流current 母线bus➢变压器transformer 升压变压器step-up transformer➢降压变压器step-down transformer 档位:tap position➢空载损耗:no-load loss 空载电流:no-load current➢有功损耗:active power loss 无功损耗:reactive power loss➢铁损iron loss 铜损copper loss➢输电系统power transmission system 输电线transmission line➢配电系统Power distribution system➢高压: high voltage 低压:low voltage 中压:middle voltage➢高压侧high side电力系统专业英语词汇2➢稳定stability 功角稳定angle stability 电压稳定voltage stability➢暂态稳定transient stability 静态稳定steady stability➢电厂power plant 能量输送power transfer➢交流AC (alternating current) 直流DC (direct current)电网power grid➢落点drop point 开关站switch station 调节regulation➢高压并联电抗器high voltage shunt reactor➢并列的:apposable 裕度margin➢故障fault 三相故障three phase fault 分接头:tap➢切机generator tripping 高顶值high limited value 静态static (state)➢动态dynamic (state) 机端电压控制A VR➢电抗reactance 电阻resistance➢功角power angle 有功(功率)active power电力系统专业英语词汇3➢电容器capacitor 电抗器reactor 断路器breaker➢电动机:motor 功率因数:power-factor 定子:stator➢功角power-angle 转子:rotor➢电压等级voltage grade➢有功负载: active load 无功负载:reactive load➢阻抗impedance电阻:resistor 电抗:reactance 电导:conductance 电纳:susceptance电力系统专业英语词汇4➢上限:upper limit 下限:lower limit➢正序阻抗:positive sequence impedance 负序阻抗:negative sequence impedance零序阻抗:zero sequence impedance➢无功(功率)reactive power 功率因数power factor 无功电流reactive current➢斜率slope 额定rating 变比ratio➢参考值reference value➢电压互感器PT电流互感器CT电力系统专业英语词汇5➢仿真分析simulation analysis➢传递函数transfer function➢框图block diagram➢受电端receive-side 送电端sending-side➢同步synchronization异步asynchronization➢摇摆swing 阻尼damping➢无刷直流电机:Brushless DC motor机端generator terminal➢断路器circuit breaker➢刀闸(隔离开关):Isolator(disconnector)接地刀闸earthing disconnector 电力系统专业英语词汇6➢变电站transformer substation➢永磁同步电机:Permanent-magnet Synchronism Motor➢异步电机:Asynchronous Motor➢三绕组变压器:three-column transformer➢双绕组变压器:double-column transformer➢固定串联电容补偿fixed series capacitor compensation➢双回同杆并架double-circuit lines on the same tower➢单机无穷大系统one machine - infinity bus system电力系统专业英语词汇7➢励磁电流:magnetizing current➢电磁场Electromagnetic fields➢失去同步loss of synchronization➢装机容量installed capacity➢无功补偿reactive power compensation➢并联电容器:shunt capacitor➢线路补偿器line drop compensation➢补偿度degree of compensation➢故障切除时间fault clearing time➢极限切除时间critical clearing time➢强行励磁reinforced excitation➢下降特性droop characteristics 下降率droop rate。

智能电网供配电系统中英文对照外文翻译文献

智能电网供配电系统中英文对照外文翻译文献

中英文对照资料外文翻译外文资料翻译Power supply system of high-rise building designAbstract: with the continuous development of city size, more and more high-rise buildings, therefore high-rise building electrical design to the designers had to face. In this paper, an engineering example, describes the electrical design of high-rise buildings and some of the more typical issues of universal significance, combined with the actual practice of an engineering solution to the problem described.Key words: high-rise building; electrical design; distribution; load calculation1 Project OverviewThe commercial complex project,with a total construction area of 405570m2,on the ground floor area of 272330m2, underground construction area of 133240m2, the main height of 99m. Project components are: two office buildings, construction area is 70800m2, 28 layers, the standard story is 3.2m.2 Load Calculation1) Load characteristics: electric load, much larger than the "national civil engineering technical measures" Large 120W/m2 indicators, especially in the electricity load more food, and different types of food and beverage catering different cultural backgrounds also high.2) the uncertainty of a large load, because the commercial real estate rents are often based on market demand, and constantly adjust the nature of the shops, making the load in the dynamic changes.3) There is no specification and technical measures in the different types of commercial projects refer to the detailed parameters of the shops, engineering design load calculation in the lack of data, in most cases to rely on staff with previous experience in engineering design calculations.Load the selection of parameters: for the above problems, the load calculation, the first developer of sales and good communication, to determine the form of layers of the forms and nature of floor area, which is calculated on the basis of electrical load basis; followed to determine parameter index within the unit area of shops is also very important and complex because there is no clear indicator of the specification can refer to; and different levels of economic development between cities is not balanced, power indices are also different; will be in the same city, different regions have different consumer groups .3) the need to factor in the choice: parameters determined, the need for load calculation. Need to factor commonly used method, the calculation will not repeat them. Need to explore is the need for coefficient selection, which in the current specifications, manuals and the "unified technical measures" is also not clear requirements, based on years of design experience that most end shops in the distribution or level within the household distribution box with case Kx generally take a while, in the calculation of the loop route to take 0.7 to 0.8, the distribution transformers in the substation calculations take 0.4 to 0.6.3 substations setLoad calculation based on the results of this project the total installed capacity of transformer 43400Kv.A, after repeated consultations with the power company, respectively, in the project in northern, central and southern three sections set the three buildings into three power substations, 1 # set 6 sets 2500Kv.A transformer substation, take the northern section of power supply; 2 # 4 1600Kv.A transformer substations located, plus 6 sets 2000Kv.A transformers, take the middle of the power supply, in addition to 5 Taiwan 10Kv.A high-pressure water chillers (total 4000Kv.A); 3 # substation located 2 units plus 2 units 1000Kv.A 2000Kv.A transformers, take the southern section of A, B twooffice supply. 10Kv power configuration of this project into two points, each at the two 10Kv lines, the power company under the provisions of 10Kv power capacity: maximum load per channel is about to 11000Kv.A, two is the 22000Kv.A, design # 1 , 3 # combination of a substation 10Kv, power line, with a total capacity of 21000Kv.A; 2 # substation transformers and 10Kv, 10Kv chillers sharing a power line, with a total capacity of 22400Kv.A. The design of the substation layout, in addition to meeting regulatory requirements, it also need to consider the high-pressure cabinets, transformers and low voltage power supply cabinet by order of arrangement, especially in low voltage distribution cabinet to feed the cable smooth and easy inspection duty problems are not seriously consider the construction of the cable crossing will cause more long detour, a waste of floor space, and convenient inspections and other issues【8】.4 small fire load power supplyIn the design of large commercial projects often encounter small fire load of electrical equipment and more dispersed distribution, if fed by a substation, a substation will be fed a lot of low-voltage low-current counter circuit breaking capacity circuit breaker and conductor of the dynamic and thermal stability in a certain extent. According to GB50045-1995 "fire protection design of tall buildings," rule "should be used in Fire Equipment dedicated power supply circuit, the power distribution equipment shall be provided with clear signs." Interpretation of the provisions of the power supply circuit means "from the low-voltage main distribution room (including the distribution of electrical room) to last a distribution box, and the general distribution lines should be strictly separated." In this design, the use of methods to increase the level of distribution, that is different from the substation bus segments, respectively, a fire fed a special circuit, set in place two distribution cabinets, distribution cabinets and then the resulting radial allocated to the end of the dual power to vote each box, so that not only meets the specification requirements for dedicated power supply circuit, but also to avoid feeding the substation level of many small current loop.5, the choice of circuit breaker and conductorCommercial real estate projects use the room as the uncertainty in the choice of circuit breakers and conductors must be considered in a certain margin to meet the needs caused by adjustment of the load changes. According to this characteristic, increased use in the design of the plug bus-powered, not only meet the requirements of large carrying capacity, and also allows the flexibility to increase supply and distribution, are reserved in each shaft in the plug-box backup in order to change, according to changes in upper and lower load, to adjust. For example: a bus is responsible for a shaft 1 to 3 layers of power, when a layer due to the change in capacity increases, while the 3-layer capacity is reduced, you can use a spare plug box layer off the 3-layer 1 layer capacity rationing . This level distribution in the substation, select the circuit breaker to choose the setting value when the circuit breaker to adjust to changes at the end to adjust the load setting value; in the bus and the transformer circuit breaker according to the choice of the general framework of values to select . For example: Route certain equipment capacity 530Kv, Kx take 0.7 to calculate current of 704A, select the frame circuit breaker is 1000A, tuning is 800A; current transformer for the 1000/50; bus carrying capacity for the 1000A, this road can meet the maximum 1000A current load requirements, even if there is adjustment, power distribution switches and circuit can not make big changes.6 layer distribution box setAccording to the division of layers of fire protection district, respectively numbered as A ~ K layers within the set level shaft for the retail lighting power distribution box, with one on one power supply shops in radial power. Should be noted that the forms of the complex layers of layers of fire partition, does not correspond to the lower, making some of shaft power in charge of the fire district at the same time, also responsible for the power supply adjacent to the fire district. At design time, using the principle of proximity, while also taking into account the burden of the whole trunk load conditions, so that each shaft as far as possible a more balanced load. PrerequisitesThe loop that you want to auto-tune must be in automatic mode. The loopoutput must be controlled by the execution of the PID instruction. Auto-tune will fail if the loop is in manual mode.Before initiating an auto-tune operation your process must be brought to a stable state which means that the PV has reached setpoint (or for a P type loop, a constant difference between PV and setpoint) and the output is not changing erratically.Ideally, the loop output value needs to be near the center of the control range when auto-tuning is started. The auto-tune procedure sets up an oscillation in the process by making small step changes in the loop output. If the loop output is close to either extreme of its control range, the step changes introduced in the auto-tune procedure may cause the output value to attempt to exceed the minimum or the maximum range limit.If this were to happen, it may result in the generation of an auto-tune error condition, and it will certainly result in the determination of less than near optimal suggested values.Auto-Hysteresis and Auto-DeviationThe hysteresis parameter specifies the excursion (plus or minus) from setpoint that the PV (process variable) is allowed to make without causing the relay controller to change the output. This value is used to minimize the effect of noise in the PV signal to more accurately determine the natural oscillation frequency of the process.If you select to automatically determine the hysteresis value, the PID Auto-Tuner will enter a hysteresis determination sequence. This sequence involves sampling the process variable for a period of time and then performing a standard deviation calculation on the sample results.In order to have a statistically meaningful sample, a set of at least 100 samples must be acquired. For a loop with a sample time of 200 msec, acquiring 100 samples takes 20 seconds. For loops with a longer sample time it will take longer. Even though 100 samples can be acquired in less than 20 seconds for loops with sample times less than 200 msec, the hysteresis determinationsequence always acquires samples for at least 20 seconds.Once all the samples have been acquired, the standard deviation for the sample set is calculated. The hysteresis value is defined to be two times the standard deviation. The calculated hysteresis value is written into the actual hysteresis field (AHYS) of the loop table.TipWhile the auto-hysteresis sequence is in progress, the normal PID calculation is not performed. Therefore, it is imperative that the process be in a stable state prior to initiating an auto-tune sequence. This will yield a better result for the hysteresis value and it will ensure that the process does not go out of control during the auto-hysteresis determination sequence.The deviation parameter specifies the desired peak-to-peak swing of the PV around the set point. If you select to automatically determine this value, the desired deviation of the PV is computed by multiplying the hysteresis value by 4.5. The output will be driven proportionally to induce this magnitude of oscillation in the process during auto-tuning.Auto-Tune SequenceThe auto-tuning sequence begins after the hysteresis and deviation values have been determined. The tuning process begins when the initial output step is applied to the loop output.This change in output value should cause a corresponding change in the value of the process variable. When the output change drives the PV away from setpoint far enough to exceed the hysteresis boundary a zero-crossing event is detected by the auto-tuner. Upon each zero crossing event the auto-tuner drives the output in the opposite direction.The tuner continues to sample the PV and waits for the next zero crossing event.A total of twelve zero-crossings are required to complete the sequence. The magnitude of the observed peak-to-peak PV values (peak error) and the rate at which zero-crossings occur are directly related to the dynamics of the process. Early in the auto-tuning process, the output step value is proportionally adjustedonce to induce subsequent peak-to-peak swings of the PV to more closely match the desired deviation amount. Once the adjustment is made, the new output step amount is written into the Actual Step Size field (ASTEP) of the loop table.The auto-tuning sequence will be terminated with an error, if the time between zero crossings exceeds the zero crossing watchdog interval time. The default value for the zero crossing watchdog interval time is two hours.Figure 1 shows the output and process variable behaviors during an auto-tuning sequence on a direct acting loop. The PID Tuning Control Panel was used to initiate and monitor the tuning sequence.Notice how the auto-tuner switches the output to cause the process (as evidenced by the PV value) to undergo small oscillations. The frequency and the amplitude of the PV oscillations are indicative of the process gain and natural frequency.7 public area distribution box setTaking into account the future needs of the business re-decoration of public areas must be reserved for power. Here the design needs to consider the following points:①question of how much reserve power, lighting and electricity, which according to GB50034-2004 "Architectural Lighting Design Standards" table of Article 6.1.3 and 6.1.8, commercial building lighting power density value, high-end supermarkets, business offices as 20W/m2, under the "decorative lighting included 50% of the total lighting power density calculation" requirements, using the reserved standard 40W/m2.②In order to facilitate the decoration in each partition set fire lighting in public areas and emergency lighting distribution box distribution box, in order to identify the electrical power distribution decoration cut-off point.③the staircase, storage rooms and other parts of the decoration does not need to do, set the power distribution circuit or a separate distribution box, try not to be reserved from the public area of electricity distribution board fed hardcover out.④control of lighting in public areas, the majority in two ways, namely,C-BUS control system or the BA system, the use of C-BUS has the advantage of more flexible control, each road can be fed out of control, adjustable light control; shortcomings is a higher cost. BA system control advantages of using low cost, simple control; disadvantage is that the exchanges and contacts for the three-phase, three-way control may be related both to open, or both, in the decoration of the contacts required to feed the power supply circuit diverge to avoid failure blackouts.Design of distribution box 8In the commercial real estate design, shop design is often only a meter box, and outlet route back to the needs of the user according to their second design, but the shops are difficult to resolve within the power supply fan coil units, air-conditioning system as a whole can not debug. The project approach is to add a circuit breaker in the meter box for the coil power supply, another way for users to use the second design, as shown below.User distribution box design9 distribution cabinet / box number and distribution circuitsLarge-scale projects are often low voltage distribution cabinet / box number, low-voltage circuits to feed the more often there will be cabinet / box number and line number duplication, resulting in the design and the future looks difficult maintenance and overhaul. The project has three 10Kv substations, 20 transformer, hundreds of low-voltage fed out of the closet, fed the circuit more. Accordance with the International Electrotechnical Commission (IEC) and the Chinese national standard requirements:①All the distribution number to be simple and clear, not too box and line numbers are not repeated.②number to simple and clear, not too long.③distinction between nature and type of load.④law was easy to find, make viewer at a glance. Based on the above requirements and on the ground, fire district and the underground construction industry form the different conditions, using two slightly different ways.Essential for the underground garage, uses a single comparison, also relatively fire district neat, according to fire district number, such as AL-BL-1 / 1, AP and APE, the meaning of the letters and numbers: AL on behalf of lighting distribution (AP on behalf of Power distribution box, APE on behalf of the emergency power distribution box); BI on behalf of the basement; 1 / 1 for partition 1, I fire box. Above ground is more complex, more fire district, and on the fire district does not correspond to the lower, according to shaft number is better, such as AL-1-A1, AP, and APE, letters and numbers mean: 1 represents a layer; A1 on behalf of A, No. 1 shaft fed a distribution box. Fed a low-voltage circuits, such as the number of uses: W3-6-AL-1-A1, W3-6) indicates that the route back to power supply transformer 3, 6, feed the power distribution cabinet, AL-1-A1, said the then the first loop of the distribution box for the AL-1-A1 and so on, and so on.10 ConclusionWith more and more complex commercial design projects, designers need to continually improve the design level, designed to make fine. These are only bits of the design in the business lessons learned, and the majority of designers want to communicate译文:浅谈高层建筑供配电系统设计摘要:随着城市规模的不断发展,高层建筑越来越多,因此,高层建筑电气设计就成为设计者不得不面对的问题。

电力专业英语阅读与翻译

电力专业英语阅读与翻译

电力专业英语阅读与翻译第一课一、Summary of glossary 术语1.电力系统(electric) power systempower generation 发电transmission system(network) 输电系统(网络)distribution system 配电系统2.发电power generationpower plant 发电厂powerhouse 发电站hydropower plant 水力发电厂nuclear plant 核电厂thermal plant 热电厂fossil-power plant火电厂3.负荷分类load classificationindustrial loads 工业负荷residential loads 居民负荷commercial loads 商业负荷4.拓扑结构system topologyradial system 辐射状系统loop system 环状系统network system 网状系统二、Wording-buildingGeneral Introduction 专业英语词汇和构词方法简介专业词汇的形成主要有三种情况:1.借用日常英语词汇或其他学科的专业词汇,但是词义和词性可能发生了明显的变化。

例如:在日常英语中表示“力量、权力”和在机械专业表示“动力”的power,数学上表示“幂”,在电力专业领域可以仍作为名词,表示“电力、功率、电能”;也可以作为动词,表示“供以电能”。

在日常英语中表示“植物”的plant,在电力专业领域中用来表示“电厂”等。

2.由日常英语词汇或其他学科的专业词汇,直接合成新的词汇。

例如:over和head组合成overhead,表示“架空(输电线)”;super和conductor合成superconductor,表示“超导体”等。

3.由基本词根和前缀或后缀组成新的词汇。

大部分专业词汇属于这种情况。

弱电系统中英文对照

弱电系统中英文对照

弱电系统中英文对照1.综合布线系统(Premises Distribution System/ Structured Cabling System)➢工作区子系统The working area system➢水平子系统Horizontal system➢垂直子系统Vertical system➢设备间子系统The equipment room system➢管理子系统Management system➢建筑群子系统Construction ensemble system2.社区安防系统Security prevention system➢可视对讲系统A visible walky—talky system➢防盗报警Security alarm➢闭路监视CCTV (Closed-circuit television)➢巡更Night patrol➢周界防范Perimeter Precaution➢门禁控制Access control3.公共设施监控系统Public facility monitor system➢变配电Electric transformer and distribution➢给排水Water supply and drainage➢电梯Elevator➢公共照明Public lighting➢背景音乐及紧急广播Background music and emergency broadcast4.宽带多媒体服务系统Broadband multimedia service system➢卫星接收及有线电视Satellite reception and cable-TV broadband➢宽带接入Broadband access➢社区网络服务Community network service5.智能家居系统Intelligent home system➢多表远抄Remote CC for meters➢家电智能控制Intelligent home appliances control system➢家居远程控制Home remote control➢家居防盗报警Home anti-theft alarm6.BAS(楼宇自动化系统)➢楼宇设备监控系统Building automation control system➢安全防范子系统Security system➢火灾自动报警子系统Fire alarm system7.CAS(通信网络系统)➢卫星接收及有线电视系统Satellite reception and cable television system ➢公用通讯网络系统Communication system of nets for public use➢卫星及微波通讯系统Satellite and microwave communication system➢视频会议系统Video conference system➢无线对讲系统Wireless walky—talky system➢背景音乐及紧急广播系统Background music and emergency broadcasting 8.OAS(办公自动化系统)➢事务型办公系统Business office system➢管理型办公系统Administrative office system➢决策型办公系统Decision making office system9.安全防范子系统Security System➢防盗报警系统Intrusion Alarm System➢闭路监视系统CCTV System➢门禁系统Access Control System➢巡更系统Patrol System➢停车场管理系统Parking Administrative System10.环境系统Environment System➢冷水系统Cold water system➢热交换系统Heat exchange system➢通排风系统Ventilation system➢空调系统Air—conditioning system➢新风系统Make-up air system➢风机盘管加新风Renewal of the blower fan coil➢V A V变风量系统V A V system11.供配电系统Power Supply and Distribution➢高低压配电Distribution of high and low—voltage electricity➢变电Electricity transformation➢不间断电源Continuous current➢应急发电Emergency power12.照明系统Lighting System➢紧急照明Emergency lighting➢工作照明Lighting for work➢艺术照明Artistic lighting➢特殊照明(障碍灯)Special lighting(obstacle lights)13.给排水系统Water Supply and Drainage System➢给排水与饮用水Water supply,drainage and drinking water➢卫生设备Sanitary equipment➢污水及水处理Sewage and intermediary water division14.交通运输系统Transportation System➢电梯Elevators➢扶梯Escalators➢考勤系统(Time Attendance)➢影像识别系统(Video Identification System)➢电梯控制(Lift Access Control)15.IBMS (Intelligent Building Management System) 智能建筑管理系统➢BMS (Building Management System) 建筑物(建筑设备)(集成)管理系统➢BAS (Building Automation System)建筑物(建筑设备)自动化系统➢SCS (Security System) 安防系统➢CCTV (Closed Circuit Television)闭路电视监控系统➢ACS (Access Control System)出口入口管理系统➢PMS (Parking Management System) 停车场管理系统➢PAS (Public Address System) 公共广播系统➢PS (Patrol System)巡更管理系统➢FAS (Fire Alarm System) 火灾报警系统➢OAS (Office Automation System)办公自动化系统➢GCS (Generic Cabling System) 结构化布线➢PDS (Premises Distributed System) 建筑与建筑群综合布线系统➢CAS (Communication Automation System)通讯自动化系统➢CNS (Communication Network System)计算机网络系统➢PABX 程控交换机➢Centrex 虚拟网业务即集中式用户交换机➢SATV (Satellite Television)卫星电视➢CATV (Cable Television)有线电视➢(Community Antenna)公共天线➢(Wireless Communication System) 无线通讯系统➢(Inside Communication System)内部通讯系统➢PMS (Property Management System) 酒店管理系统A:Actuator 执行器A:Amplifier 放大器A:Attendance员工考勤A:Attenuation衰减AA:Antenna amplifier 开线放大器AA:Architectural Acoustics建筑声学AC:Analogue Controller 模拟控制器ACD:Automatic Call Distribution 自动分配话务ACS:Access Control System出入控制系统AD:Addressable Detector地址探测器ADM:Add/Drop Multiplexer分插复用器ADPCM:Adaptive Differential ulse Code Modulation 自适应差分脉冲编码调制AF:Acoustic Feedback 声反馈AFR:Amplitude /Frequency Response 幅频响应AGC:Automati Gain Control自动增益控制AHU:Air Handling Unit 空气处理机组A-I:Auto-iris自动光圈AIS:Alarm Indication Signal 告警指示信号AITS:Acknowledged Information Transfer Service确认操作ALC:Automati Level Control 自动平衡控制ALS:Alarm Seconds 告警秒ALU:Analogue Lines Unit 模拟用户线单元AM:Administration Module管理模块AN:Access Network 接入网ANSI:American National Standards Institute美国国家标准学会APS:Automatic Protectiontching 自动保护倒换ASC:Automati Slope Control 自动斜率控制ATH:Analogue Trunk Unit 模拟中继单元ATM:Asynchrous Transfer Mode 异步传送方式AU- PPJE:AU Pointer Positive Justification 管理单元正指针调整AU:Administration Unit 管理单元AU-AIS:Administrative Unit Alarm Indication SignalAU告警指示信号AUG:Administration Unit Group 管理单元组AU—LOP:Loss of Administrative Unit Pointer AU指针丢失AU—NPJE:AU Pointer Negative Justification管理单元负指针调整AUP:Administration Unit Pointer管理单元指针A VCD:Auchio &Video Control Device 音像控制装置AWG:American Wire Gauge美国线缆规格BA:Bridge Amplifier桥接放大器TOPBAC:Building Automation & Control net建筑物自动化和控制网络BAM:Background Administration Module后管理模块BBER:Background Block Error Ratio背景块误码比BCC:B—channel Connect ControlB通路连接控制BD:Building DistributorBEF:Buiding Entrance Facilities 建筑物入口设施BFOC:Bayonet Fibre Optic Connector大口式光纤连接器BGN:Background Noise背景噪声BGS:Background Sound 背景音响BIP-N:Bit Interleaved Parity N code 比特间插奇偶校验N位码B-ISDN:Brand band ISDN 宽带综合业务数字网B—ISDN:Broad band —Integrated Services Digital Network 宽带综合业务数字网BMC:Burst Mode Controller 突发模式控制器BMS:Building Management System 智能建筑管理系统BRI:Basic Rate ISDN 基本速率的综合业务数字网BS:Base Station基站BSC:Base Station Controller基站控制器BUL:Back up lighting备用照明C/S:Client/Server客户机/服务器TOPC:Combines 混合器C:Container 容器CA:Call Accounting电话自动计费系统CA TV:Cable Television 有线电视CC:Call Control 呼叫控制CC:Coax cable 同轴电缆CCD:Charge coupled devices 电荷耦合器件CCF:Cluster Contril Function 簇控制功能CD:Campus Distributor 建筑群配线架CD:Combination detector 感温,感烟复合探测器CDCA:Continuous Dynamic Channel Assign 连续的动态信道分配CDDI:Copper Distributed Data 合同缆分布式数据接口CDES:Carbon dioxide extinguisbing system 二氧化碳系统CDMA:Code Division Multiplex Access 码分多址CF:Core Function 核心功能CFM:Compounded Frequency Modulation 压扩调频繁CIS:Call Information System 呼叫信息系统CISPR:Internation Special Conmittee On Radio Interference 国际无线电干扰专门委员会CLNP:Connectionless Network Protocol 无连接模式网络层协议CLP:Cell Loss Priority信元丢失优先权CM:Communication Module 通信模块CM:Configuration Management 配置管理CM:Cross-connect Matrix交叉连接矩阵CMI:Coded Mark Inversion传号反转码CMISE:Common Management Information Service公用管理信息协议服务单元CPE:Convergence protocol entity 会聚协议实体CR/E:card reader /Encoder (Ticket reader )卡读写器/编码器CRC:Cyclic Redundancy Check 循环冗佘校验CRT:Cathode Ray Tabe 显示器,监视器,阴极射线管CS:Convergence service 会聚服务CS:Cableron Spectrum 旧纳档块化技术CS:Ceiling Screen 挡烟垂壁CS:Convergence Sublayer合聚子层CSC:Combined Speaker Cabinet 组合音响CSCW:Computer supported collaborative work 计算机支持的协同工作CSES:Continuius Severely Errored Second 连续严重误码秒CSF:Cell Site Function 单基站功能控制CTB:Composite Triple Beat 复合三价差拍CTD:Cable Thermal Detector 缆式线型感温探测器CTNR:carrier to noise ratio 载波比CW:Control Word 控制字D:Directional 指向性TOPD:Distortion 失真度D:Distributive 分布式DA:Distribution Amplifier 分配的大器DBA:Database Administrator数据库管理者DBCSN:Database Control System Nucleus数据库控制系统核心DBOS:Database Organizing System 数据库组织系统DBSS:Database Security System 数据库安全系统DC:Door Contacts大门传感器DCC:Digital Communication Channel数字通信通路DCN:Data Communication Network 数据通信网DCP-I:Distributed Control Panel —Intelligent智能型分散控制器DCS:Distributed Control System集散型控制系统DDN:Digital Data Network 数字数据网DDS:Direct Dignital Controller直接数字控制器DDW:Data Describing Word 数据描述字DECT:Digital Enhanced Cordless Telecommunication增强数字无绳通讯DFB:Distributed Feedback 分布反馈DID:Direct Inward Dialing 直接中继方式,呼入直拨到分机用户DLC:Data Link Control Layer 数据链路层DLI:DECT Line InterfaceDODI:Direct Outward Dialing One 一次拨号音DPH:DECT PhoneDRC:Directional Response Cahracteristics 指向性响应DS:Direct Sound 直正声DSP:Digital signal Processing 数字信号处理DSS:Deiision Support System 决策支持系统DTMF:Dual Tone Multi-Frequency 双音多频DTS:Dual —Technology Sensor 双鉴传感器DWDM:Dense Wave—length Division Multiplexing 密集波分复用DXC:Digital Cross-Connect 数字交叉连接E:Emergency lighting照明设备TOPE:Equalizer 均衡器E:Expander 扩展器EA—DFB:Electricity Absorb—Distributed Feedback 电吸收分布反馈ECC:Embedded Control Channel 嵌入或控制通道EDFA:Erbium—Doped Fiber Amplifier掺饵光纤放大器EDI:Electronic Data Interexchange 电子数据交换EIC:Electrical Impedance Characteristics 电阻抗特性EMC:Electro Magnetic Compatibiloty 电磁兼容性EMI:Electro Magnetic Interference 电磁干扰EMS:Electromagnetic Sensitibility 电磁敏感性EN:Equivalent Noise 等效噪声EP:Emergency Power 应急电源ES:Emergency Sooket 应急插座ES:Evacuation Sigvial疏散照明ESA:Error SecondA 误码秒类型AESB:ErrorSecondB 误码秒类型BESD:Electrostatic Discharge静电放电ESR:Errored Second Ratio 误码秒比率ETDM:Electrical Time Division Multiplexing电时分复用ETSI:European Telecommunication Standards Institute欧洲电信标准协会F:Filter 滤波器TOPFAB:Fire Alarm Bell 火警警铃FACU:Fire Alarm Contrlol Unit 火灾自动报警控制装置FC:Failure Count 失效次数FC:Frequency Converter 频率变换器FCC:Fire Alarm System 火灾报警系统FCS:Field Control System 现场总线FCU:Favn Coil Unit风机盘管FD:Fire Door 防火门FD:Flame Detector 火焰探测器FD:Floor DistributorFD:Frequency Dirsder 分频器FDD:Frequency Division Dual 频分双工FDDI:Fiberdistributed Data Interface光纤缆分布式数据接口。

配电系统无功补偿装置中英文对照外文翻译文献

配电系统无功补偿装置中英文对照外文翻译文献

中英文对照外文翻译(文档含英文原文和中文翻译)Optimization of reactive power compensation indistribution systemThe reactive power compensation for distribution network,as the supplement of substation compensation can effectively improve the power factor, reduce line loss, improve the end voltage, ensure the quality of power supply, also bring good economic benefits for enterprise, has received extensive attention. The distributed reactive compensation, installing power capacitors on feeders, is the main distribution network compensation mode at home and abroad [1], but different installed location and different installed capacity, the benefit is different. With the application of reactive power compensation distribution increase gradually, how to choose appropriate reactive compensation location and compensation capacity to make the maximum benefit with less cost become people's research target. And the optimization of distributed reactive compensation of distribution network was raised .At present, the decision of the best compensation capacity and the best position in actual distribution reactive compensation, usually in accordance with ideal situations, such as, the reactive load along the road distributed uniformly, increasing, diminishing distribution or as isosceles distribution, and so on [2], [9]. This method has clear results, simple calculation, and has a certain engineering practical value. But the actual reactive load distribution is more complex, which is different from the ideal situation. So, in accordance with ideal situations to premise reactive compensation configuration optimization formula may be not satisfied. To study a more general distributed reactive compensation configuration optimized method is needed.This paper studies several kinds of typical optimal allocation of reactive compensation configuration with ideal load distribution. Then it details the distributed reactive compensation optimized mathematical model,- 11 -which is applied to any load distribution or distribution network structure, and gives the effective algorithm. At last, the paper introduces the practical application of the research of the model and the algorithm.The ideal load distribution is refers to the reactive power load distributed along the line meet a kind of ideal regular distribution, for example, in any point the road reactive load is equal, named uniform distribution, the reactive load from the first end increasing or decreasing, named increasing or decreasing distribution, and so on. This is an abstract of the actual load distribution, and in such a hypothesis premise the analytical expressions of the optimal location and capacity can be deduced, which can get the best reduce loss effect. And the results are showed in Table I and Fig 1, which can be chose in practical projects [3], [4], [6].When the actual power distribution is different from the ideal situation, using the results to guide the reactive compensation configuration, the effect may be not beautiful. It needs to study a more general reactive compensation configuration optimized method.The optimization of distribution network distributed reactive compensation is distributed as a mixed integer nonlinear optimization problems, which is to determine the reactive compensation position and capacity with some constraints [5]. Therefore, the compensation position and capacity are the two decision variables. Its mathematical model is a two layers optimized problem with constraint. First is the capacity optimization at determined location, second is the distribution optimization. Based on the optimization mathematical model and algorithm, the corresponding graphical calculation software has been developed. With the optimization results, some power capacitors are installed on ten lOkV rural feederswhich had lower power factor and higher line loss. And the actual operation showed good effect. As shown in Fig 3 and Table II, it is the optimization of a feeder named CHANG 7.the total length is 22.35 km, the conductor type of trunk line is LGJ-120,with a distribution capacity of 4760 kVA. The active power- 12 -was 1904 kW, and the power factor was 0.83. The objective power factor was set at 0.9, so the reactive compensation total capacity was 358 kvar. The parameters including length and conductor type of each section, nameplate parameters of transformers, and the reactive compensation total capacity were set in the graphical software. Yet, the graph of the feeder had been drawn too. Then the results were marked on the feeder graph automatically, such as Fig. 3.As shown in Table II, theory line loss rate got an obvious 0.4149 percents decrement, if reactive compensation devices were installed. Also, under the condition of total capacity, two installations made 0.007 percent lower than one, and three points installation made 0.0003 percent lower than two. Then more compensation installations got more decrement of theory line loss rate, but the decreasing rate become inconspicuous, In contrast, equipment maintenance cost increased a lot. Therefore, two installations were selected onCHANG 7 feeder at last.This work provides scientific and reasonable theory for reactive power optimization of distribution network, and gives a reference for the distribution network loss calculation. Also, it provides the convenience for improving the quality of voltage, energy saving and improving line loss management level.1) For solving distribution network reactive power optimization problem, this paper puts forward the double optimization mathematical model of distribution network distributed reactive compensation, the inner is compensation capacity optimization, the outer layer is the reactive compensation distribution optimization. The model can do distribution reactive compensation optimization with any load distribution and arbitrary distribution network structure forms.2) By introducing Lagrange multiplier and the necessary condition of extreme, the mixed integer nonlinear optimization problem is deduced to a linear one that can be easily solved by Gaussian elimination method. It is- 13 -very imple and efficient for computer programming.3) The model and the algorithm can give different optimized results and loss reduction for different number of capacitor installation. Engineering practice showed that optimized capacitors installation can make line loss rate get an obvious decrement. This research plays an important role in the actual reactive compensation equipment installation of distribution network and line loss management.Reasonable reactive power sources compensation of rural substations h as been becoming a hot issue since Chinese rural electric network alteration. The principal reactive power compensation mode of rural substations is still using fixed compensation capacitor to control voltage and reactive power at present in China. This compensation mode has some problems. such as capacity adjustment requires manual intervention under power outage, the phenomenon of over and under compensation may always happen, the rate of putting into operation of reactive power compensation is relatively low, and so on . At the same time, there is no sampling function at the primary side of the main transformer because of the special devices in rural substations. In order to realize the objectives that the power factor is not less than 0.95 at primary side and not less than 0.9 at secondary side at the highest load, in this paper,some optimal reactive power control strategies for rural substation were proposed. In accordance with the reactive power flow conditions of the rural distribution network , the pros and cons of two control strategies were analyzed. One of the strategies was sampling at the primary side of the main transformer , the other was sampling at the s econdary side and switching control by power factor of secondary side. After comparison of such analysis, an optimal control strategy was p roposed. The data were sampledin the substation secondary side, then t he sampled data were evaluated in equivalence to the primaryside, and then the power factor assessment criteria of primary side were used t o control capacitor switching . The compensation capacity should be c- 14 -alculatedafter electric motor compensation , transformer compensation an d distributed compensation on distribution line.The sampled values at se condary side and active loss and reactive loss of themaintransformer w ere used to calculate compensation capacity to meet the power factor o bjectives of primary side. Through the example calculation and analysiby Applying actual substation data a result were obtained.The result met ap praisal standards and the power factor of main transformer primary sid e was above 0.95 at the highest load . If the power factor of main tran sformer secondary side was above 0.98 , there was no need to co mpensate for substation . If the power factor of main transformer secondaryside was under 0.97,after the compensation by using the p roposed optimal compensation capacity and the primary side power f actor control method, the power facto r of the main transformer se condary side was not less than0.98 and the primary side reaches 0.95. T hese results show that the proposed optimal control strategy and compe nsation capacity calculation method are feasible, and the research haspra ctical significance of making full use of reactive power supply in rural di stribution network.Optimal allocation of reactive power compensation plays an important role in power system planning and design. However, as a non-linear, larg e scale combinatorial . optimization problem, Conventional methods are not normally appropriate for it.A mathematical model is firstly presented in this paper for comprehensive optimal configuration in distribution feeders based on the analysis of engineering factors of reactive power compensation, whose objective is to minimize the annual expenditure involving the devices investment and the income of energy saving, and satisfy all sorts of operation ,fixing and maintenance constrains . The control variable include the capacitor banks’number and capacity of various compensation schemes. RARW-GA algorithm is adopted to solve this problem.The result of calculation and analysis of BenXi Steel group c orporation power system shows that the proposed method is feasible- 15 -and effective.An improved TS algorithm is put forward on the condition that reactive power compensation location and capacity have been identified in rural distribution lines. The Algorithm is based on capacitor optimal on-off model aimed at a minimum network loss, it can control the capacitor on-off according to the load changing and the system operation status and keep real-time voltage qualified and network loss minimum. A distributed control system is designed by using the algorithm to realize reactive power optimization, which is composed of reactive power optimal terminals and background control center. The terminal is in charge of data collection and transmission, on-off instruction receiving and executing. The control center in in charge of receiving data from every compensation point, calling control algorithm to process data, forming and sending instructions. GPRS technology is adopted to realize the system’s foreground-background communication. The actual application in some experimental networks has proved that the system can realize global optimal control for distribution lines, and is suitable to be widely used in rural distribution network.In order to solve the optimization of distribution reactive compensation point and capacity, a double optimized model is proposed, which is sui able for reactive compensation optimizationwith random load distribution or random network structure. For the compensation position and capacity decision variables, the optimized model is described as two layers of optimization with constraint . The outer one is the capacity optimization at determined location , and the inlayer is the location optimization . By introducing Lagrange multiplier, the mixed integer nonlinear optimization is deduced to a linearone that can be easily solve by Gaussian elimination method. For illustration, an application of ten 10kV rural feeders is utilized to show the feasibility of the double optimized model in solving the optimization of distribution reactive compensation point and capacity. Empirical results show that the model can give the optimized result for different number of capacitor installa-- 16 -tion, and the result with highest line loss decrementwill be used as thefi nal decision.The research provides scientific theoretical basis for Reactive compensation and plays a vital role in reactive compensation equipment installation and line loss management.Taking account of the mutual impacts of distributed generation and reactive power , to determine the optimal position and capacity of the compensation device to be installed , the paper proposed an improved Tabu search algorithm for reactive power optimiza-tion . The voltage q uality is considered of the model using minimum network active power l oss as objective Function . It is achieved by maintaining the whole s ystem power lossa minimum thereby reducing cost allocation. On the ba sis of general Tabu search algorithm , the algorithm used memory gu idance search strategy to focus on searching for a local optimum va lue, avoid a global search blindness . To deal with the neighborhood so lution set properly or save algorithm storage space,some corresponding i mprovments are made, thus, it is easily to stop the iteration of partial optimization and it is more probable to achieve the global optimizationb y use of the improved algorithm.Simulations are carried out on standard IEEE 33 test system and results are presented.SupSuperconducting Magnetic Energy Storage SMES) can inject or absorb real and reactive power to or from a power system at a very fast rate on a repetitive basis. These characteristics make the application of SMES ideal for transmission grid control and stability enhancement. Superconducting Magnetic Energy Storage SMES) is an attractive apparatus for some power system applications because it is capable of leveling load demand with high efficiency, compensating for load changes, maintaining a bus voltage, and stabilizing power swings. Power system stability problems have attracted the attention of power system engineers for several decades. Considerable progress has been made on excitation control, governor control, control by static var compensator, etc. Modern power systems, which are growing in size and complexity, are characterized by long distance bulk power transmissions and- 17 -wide area interconnections.In such power systems, undamped power swings of low frequency can occur. This can be a serious problem since the instability often decreases the power transmission capacity. As a result, the power that can be transmitted in steady state and transient situations is limited. If the limit is exceeded, the generator loses synchronous operation and system instabilities occur. SMES may be an effective means of preventing these instabilities, thereby maximizing power transfer to meet increased load demand. A SMES system can be represented in dynamic simulations as a continuous controllable real and reactive power source. In steady-state simulations, SMES can be represented as a continuous controllable reactive power source since it can continuously operate throughout its range of reactive power. However, the output of real power from a SMES device is limited to the amount of energy stored in the coil. The first objective of this research is to determine the optimal internal control scheme needed to decide the controllable active and reactive power based on active and reactive power demanded by the power system. The second objective is to design and simulate SMES external control models which are dependent on the network configuration. The third objective is to determine how the optimal size of a SMES device varies for a given transient stability disturbance when alternative internal control models and external control models are used.With a big number of electric energy consumers and different characters electric energy quality depends on many factors in the modern power networks. It includes: power networks and working condition factors of consumers. One of them is the possibility of reactive power balances with an important reserve providing after emergency modes on the basic knots of the power system and voltage regulation on all networks.As the length of networks of a power system increases in modern conditions, we can reduce the reactive power streams, as well as operational and capital expenses. Rational voltage mode brings to the front plan the- 18 -technical一economic aspects of the power transmission EFFICIENCY. Analyses and economic calculations show that transferring the reactive power by short length lines means of a high voltage justifies. Therefore in most cases reduction of reactive power to the minimum is very effective for economically when the sources of reactive power settle down near the consumption centers.The increase of consumer loading and its structure qualitative causes considerable increase of reactive power and constant reduction of a power factor in distributed power networks [ 1」.Thus, the tendency of modern power systems development is characterized by one side with the increase of reactive power consumption (in some systems to 1 kVAR/kVt), on the other side with decrease of power plant generators usage expediency and possibility for the reactive power compensation purpose [2-5]. In such conditions reactive power compensation attains a specialurgency. Here the optimization's primary goal is optimum placing of reactive power sources andsupport of a necessary reserve of capacity QreZ for voltage regulation on loading knot. For example, Polish power engineers consider that capacity of compensators should be 50% of the established capacity of generators in power plants. In France, Sweden and Germany the capacity of compensators is 35% of active peak loading, in the USA and Japan this volume is 70%. In different power systems of the USA the established capacity of compensators is 100% of generators capacities [6-11].Reactive power compensation problem is a multidimensional problem on the technical andeconomic aspects and consequently it is resulted with the finding of a global extremum of criterion function with the set of local extreme. In this article the voltage support within the technical restrictions and definition of optimal placing of the reactive power sources with a technique of multi-purpose- 19 -optimization of reactive power in the power system is considered. By the problem consideration as one-target optimization within restrictions the criterion function is a linear combination from several factors. The problem decision is a unique optimum version and has lacks of alternative versions, and there is not dependency of an end result from the initial data.Thus, the purpose of reactive power sources optimal placing in a power system consists ofincrease the quality of voltage in all central points of a network, control the stability of the system, reduce the power losses and capacities in networks. As a result these will increase the economic efficiency in the power system. From the economic efficiency point of view the new compensating units intended for installation should be proved and given corresponding optimum recommendations.1 .Methods and multi-purpose optimization compensations algorithms have been developed with support of a necessary reserve for preservation of normal level of voltage taking into account technical restrictions in knots of an electric network of a power system. Results of computerization to realization have shown speed and high efficiency the developed algorithm providing minimization of losses of active capacity in a net.2. Based on genetic algorithm the power and installation locations of the static capacitor banks with the multicriteria optimization technique has given. In this case, as a criterion of optimality the minimum expenses for the installation and exploitation, the minimization of power losses during the required values of voltage and power factor and maximum saving and the minimum self-payment term are accepted.3. The report of the real electricity network is given for two cases: operation without the CB;with optimal placement of CB. The application of the proposed method can reduce the averagepower losses approximately 13一14% in the electric network.- 20 -配电系统无功补偿装置容量优化配电网无功补偿,作为补充的变电站补偿可以有效地提高功率因数,减少线路损耗,提高末端电压,保证供电质量,也能带来良好的企业的经济效益,已得到泛的注意。

楼宇供配电系统(英文)

楼宇供配电系统(英文)

500kV
10kV 35kV
2.1 Introduction
Automation in Power Distribution
◆ How does Power reach us? ◆ Bottlenecks in Power Reliability ◆ The Technology Development Mission
(a) One main + one spare single bus
S1
Main
主供
S2
Spare
备用
10kV Bus
(a) ◆ Two inputs Single bus bar ◆ Save (area and finance )
◆ Service interruption or blackout ( bus failure ) ◆ Building with low reliability requirement or low load
2.1 Introduction
10kV
10kV 0.4kV
110kV
Power station Transformer Distribution substations
110kV User
10kV
2.2 Typical system inside the building
Main Electrical Connection
2.2 Typical system inside the building
(c) Two inputs with generator
S1 Power1
S2 Power2
Self-provided
generator
emergency

供配电系统中英文对照外文翻译文献

供配电系统中英文对照外文翻译文献

中英文对照外文翻译文献(文档含英文原文和中文翻译)POWER SUPPLY AND DISTRIBUTION SYSTEMABSTRACTThe basic function of the electric power system is to transport the electric power towards customers. The l0kV electric distribution net is a key point that connects the power supply with the electricity using on the industry, business and daily-life. For the electric power, allcostumers expect to pay the lowest price for the highest reliability, but don't consider that it's self-contradictory in the co-existence of economy and reliable.To improve the reliability of the power supply network, we must increase the investment cost of the network construction But, if the cost that improve the reliability of the network construction, but the investment on this kind of construction would be worthless if the reducing loss is on the power-off is less than the increasing investment on improving the reliability .Thus we find out a balancepoint to make the most economic,between the investment and the loss by calculating the investment on power net and the loss brought from power-off.KEYWARDS:power supply and distribution,power distribution reliability,reactive compensation,load distributionTEXTThe revolution of electric power system has brought a new big round construction,which is pushing the greater revolution of electric power technique along with the application of new technique and advanced equipment. Especially, the combination of the information technique and electric power technique, to great ex- tent, has improved reliability on electric quality and electric supply. The technical development decreases the cost on electric construction and drives innovation of electric network. On the basis of national and internatio- nal advanced electric knowledge, the dissertation introduces the research hotspot for present electric power sy- etem as following.Firstly, This dissertation introduces the building condition of distribution automation(DA), and brings forward two typical construction modes on DA construction, integrative mode and fission mode .It emphasize the DA structure under the condition of the fission mode and presents the system configuration, the main station scheme, the feeder scheme, the optimized communication scheme etc., which is for DA research reference.Secondly, as for the (DA) trouble measurement, position, isolation and resume, This dissertation analyzes the changes of pressure and current for line problem, gets math equation by educing phase short circuit and problem position under the condition of single-phase and works out equation and several parameter s U& , s I& and e I& table on problem . It brings out optimized isolation and resume plan, realizes auto isolation and network reconstruction, reduces the power off range and time and improves the reliability of electric power supply through problem self- diagnoses and self-analysis. It also introduces software flow and use for problem judgement and sets a model on network reconstruction and computer flow.Thirdly, electricity system state is estimated to be one of the key techniques in DA realization. The dissertation recommends the resolvent of bad measurement data and structure mistake on the ground of describing state estimate way. It also advances a practical test and judging way on topology mistake in state estimate about bad data test and abnormity in state estimate as well as the problem and effect on bad data from state measure to state estimate .As for real time monitor and control problem, the dissertation introduces a new way to solve them by electricity break and exceptional analysis, and the way has been tested in Weifang DA.Fourthly, about the difficulty for building the model of load forecasting, big parameter scatter limit and something concerned, the dissertation introduces some parameters, eg. weather factor, date type and social environment effect based on analysis of routine load forecasting and means. It presents the way for electricity load forecasting founded on neural network(ANN),which has been tested it’s validity by examp le and made to be good practical effect.Fifthly, concerning the lack of concordant wave on preve nting concordant wave and non-power compensation and non-continuity on compensation, there is a topology structure of PWM main circuit and nonpower theory on active filter the waves technique and builds flat proof on the ground of Saber Designer and proves to be practical. Meanwhile, it analyzes and designs the way of non-power need of electric network tre- nds and decreasing line loss combined with DA, which have been tested its objective economic benefit throu- gh counting example.Sixthly, not only do the dissertation design a way founded on the magrginal electric price fitted to our present national electric power market with regards to future trends of electric power market in China and fair trade under the government surveillance, that is group competitio n in short-term trade under the way of grouped price and quantityharmony, but also puts forward combination arithmetic, math model of trading plan and safty economical restriction. It can solve the original contradiction between medium and long term contract price and short term competitive price with improvement on competitive percentage and cut down the unfair income difference of electric factory, at the same time, it can optimize the electric limit for all electric factories and reduce the total purchase charge of electric power from burthen curve of whole electric market network.The distribution network is an important link among the power system. Its neutral grounding mode and operation connects security and stability of the power system directly. At the same time, the problem about neutral grounding is associated with national conditions, natural environment, device fabrication and operation. For example, the activity situation of the thunder and lightning, insulating structure and the peripheral interference will influence the choice of neutral grounding mode Conversely, neutral grounding mode affects design, operation, debugs and developing. Generally in the system higher in grade in the voltage, the insulating expenses account for more sizable proportion at the total price of the equipment. It is very remarkable to bring the economic benefits by reducing the insulating level. Usually such system adopt the neutral directly grounding and adopt the autoreclosing to guarantee power supply reliability. On the contrary, the system which is lower in the voltage adopts neutral none grounding to raise power supply reliability. So it is an important subject to make use of new- type earth device to apply to the distribution network under considering the situation in such factors of various fields as power supply reliability, safety factor, over-voltage factor, the choice of relay protection, investment cost, etc.The main work of this paper is to research and choice the neutral grounding mode of the l0kV distribution network. The neutral grounding mode of the l0kV network mainly adopts none grounding, grounding by arc suppressing coil, grounding by reactance grounding and directly grounding. The best grounding mode is confirmed through the technology comparison. It can help the network run in safety and limit the earth electric arc by using auto-tracking compensate device and using the line protection with the detection of the sensitive small ground current. The paper introduces and analyzes the characteristic of all kind of grounding modes about l0kV network at first. With the comparison with technological and economy, the conclusion is drawn that the improved arc suppressing coil grounding mode shows a very big development potential.Then, this paper researches and introduces some operation characteristics of the arc suppressing coil grounding mode of the l0kV distribution network. And then the paper putemphasis on how to extinguish the earth electric arc effectively by utilizing the resonance principle. This paper combines the development of domestic and international technology and innovative achievement, and introduces the computer earth protection and autotracking compensate device. It proves that the improved arc suppressing coil grounding mode have better operation characteristics in power supply reliability, personal security, security of equipment and interference of communication. The application of the arc suppressing coil grounding mode is also researched in this paper.Finally, the paper summarizes this topic research. As a result of the domination of the arc suppressing coil grounding mode, it should be more popularized and applied in the distribution network in the future.The way of thinking, project and conclusions in this thesis have effect on the research to choose the neutral grounding mode not only in I0kV distribution network but also in other power system..The basic function of the electric power system is to transport the electric power towards customers. The l0kV electric distribution net is a key point that connects the power supply with the electricity using on the industry, business and daily-life. For the electric power, all costumers expect to pay the lowest price for the highest reliability, but don't consider that it's self-contradictory in the co-existence of economy and reliable. To improve the reliability of the power supply network, we must increase the investment cost of the network con- struction But, if the cost that improve the reliability of the network construction, but the investment on this kind of construction would be worthless if the reducing loss is on the power-off is less than the increasing investment on improving the reliability .Thus we find out a balance point to make the most economic, between the investment and the loss by calculating the investment on power net and the loss brought from power-off. The thesis analyses on the economic and the reliable of the various line modes, according to the characteristics various line modes existed in the electric distribution net in foshan..First, the thesis introduces as the different line modes in the l0kV electric distribution net and in some foreign countries. Making it clear tow to conduct analyzing on the line mode of the electric distribution net, and telling us how important and necessary that analyses are.Second, it turns to the necessity of calculating the number of optimization subsection, elaborating how it influences on the economy and reliability. Then by building up the calculation mode of the number of optimization subsection it introduces different power supply projects on the different line modes in brief. Third, it carries on the calculation andanalyses towards the reliability and economy of the different line modes of electric distribution net, describing drafts according by the calculation. Then it makes analysis and discussion on the number of optimization subsection.At last, the article make conclusion on the economy and reliability of different line modes, as well as, its application situation. Accordion to the actual circumstance, the thesis puts forward the beneficial suggestion on the programming and construction of the l0kV electric distribution net in all areas in foshan. Providing the basic theories and beneficial guideline for the programming design of the lOkV electric distribution net and building up a solid net, reasonable layout, qualified safe and efficiently-worked electric distribution net.References[1] Wencheng Su. Factories power supply [M]. Machinery Industry Publishing House. 1999.9[2] Jiecai Liu. Factories power supply design guidance [M]. Machinery Industry Publishing House.1999.12[3] Power supply and distribution system design specifications[S].China plans Press. 1996[4] Low-voltage distribution design specifications [S].China plans Press. 1996.6供配电系统摘要电力系统的基本功能是向用户输送电能。

电气外文文献及翻译---高层建筑供配电系统设计 精品

电气外文文献及翻译---高层建筑供配电系统设计 精品

Power supply system of high-rise building designAbstract: With the continuous development of city size, more and more high-rise buildings, therefore, high-rise building electrical design to the designers had to face. In this paper, an engineering example, describes the electrical design of high-rise buildings and some of the more typical issues of universal significance, combined with the actual practice of an engineering solution to the problem described.Key words: high-rise building; electrical design; distribution; load calculation1 Project OverviewThe commercial complex project, with a total construction area of 405570m2, on the ground floor area of 272330m2, underground construction area of 133240m2, the main height of 99m. Project components are: two office buildings, construction area is 70800m2, 28 layers, the standard story is 3.2m.2 Load Calculation1) Load characteristics: electric load, much larger than the "national civil engineering technical measures" Large 120W/m2 indicators, especially in the electricity load more food, and different types of food and beverage catering different cultural backgrounds also high.2) the uncertainty of a large load, because the commercial real estate rents are often based on market demand, and constantly adjust the nature of the shops, making the load in the dynamic changes.3) There is no specification and technical measures in the different types of commercial projects refer to the detailed parameters of the shops, engineering design load calculation in the lack of data, in most cases to rely on staff with previous experience in engineering design calculations. Load the selection of parameters: for the above problems, the load calculation, the first developer of sales and good communication, to determine the form of layers of the forms and nature of floor area, which is calculated on the basis of electrical load basis; followed to determine parameter index within the unit area of shops is also very important and complex because there is no clear indicator of the specification can refer to; and different levels of economic development between cities is not balanced, power indices are also different; will be in the same city, different regions have different consumer groups .3) the need to factor in the choice: parameters determined, the need for load calculation. Need to factor commonly used method, the calculation will not repeat them. Need to explore is the need for coefficient selection, which in the current specifications, manuals and the "unified technical measures" is also not clear requirements, based on years of design experience that most end shops in the distribution or level within the household distribution box with case Kx generally take a while, in the calculation of the loop route to take 0.7 to 0.8, the distribution transformers in the substation calculations take 0.4 to 0.6.3 substations setLoad calculation based on the results of this project the total installed capacity of transformer 43400Kv.A, after repeated consultations with the power company, respectively, in the project innorthern, central and southern three sections set the three buildings into three power substations, 1 # set 6 sets 2500Kv.A transformer substation, take the northern section of power supply; 2 # 4 1600Kv.A transformer substations located, plus 6 sets 2000Kv.A transformers, take the middle of the power supply, in addition to 5 Taiwan 10Kv.A high-pressure water chillers (total 4000Kv.A); 3 # substation located 2 units plus 2 units 1000Kv.A 2000Kv.A transformers, take the southern section of A, B two office supply. 10Kv power configuration of this project into two points, each at the two 10Kv lines, the power company under the provisions of 10Kv power capacity: maximum load per channel is about to 11000Kv.A, two is the 22000Kv.A, design # 1 , 3 # combination of a substation 10Kv, power line, with a total capacity of 21000Kv.A; 2 # substation transformers and 10Kv, 10Kv chillers sharing a power line, with a total capacity of 22400Kv.A. The design of the substation layout, in addition to meeting regulatory requirements, it also need to consider the high-pressure cabinets, transformers and low voltage power supply cabinet by order of arrangement, especially in low voltage distribution cabinet to feed the cable smooth and easy inspection duty problems are not seriously consider the construction of the cable crossing will cause more long detour, a waste of floor space, and convenient inspections and other issues.4 small fire load power supplyIn the design of large commercial projects often encounter small fire load of electrical equipment and more dispersed distribution, if fed by a substation, a substation will be fed a lot of low-voltage low-current counter circuit breaking capacity circuit breaker and conductor of the dynamic and thermal stability in a certain extent. According to GB50045-1995 "fire protection design of tall buildings," rule "should be used in Fire Equipment dedicated power supply circuit, the power distribution equipment shall be provided with clear signs." Interpretation of the provisions of the power supply circuit means "from the low-voltage main distribution room (including the distribution of electrical room) to last a distribution box, and the general distribution lines should be strictly separated." In this design, the use of methods to increase the level of distribution, that is different from the substation bus segments, respectively, a fire fed a special circuit, set in place two distribution cabinets, distribution cabinets and then the resulting radial allocated to the end of the dual power to vote each box, so that not only meets the specification requirements for dedicated power supply circuit, but also to avoid feeding the substation level of many small current loop.5, the choice of circuit breaker and conductorCommercial real estate projects use the room as the uncertainty in the choice of circuit breakers and conductors must be considered in a certain margin to meet the needs caused by adjustment of the load changes. According to this characteristic, increased use in the design of the plug bus-powered, not only meet the requirements of large carrying capacity, and also allows the flexibility to increase supply and distribution, are reserved in each shaft in the plug-box backup in order to change, according to changes in upper and lower load, to adjust. For example: a bus is responsible for a shaft 1 to 3 layers of power, when a layer due to the change in capacity increases, while the 3-layer capacity is reduced, you can use a spare plug box layer off the 3-layer 1 layer capacity rationing . This level distribution in the substation, select the circuit breaker to choose the setting value when the circuit breaker to adjust to changes at the end to adjust the load setting value; in the bus and the transformer circuit breaker according to the choice of the general framework of values to select . For example: Route certain equipment capacity 530Kv, Kx take 0.7 to calculate current of 704A, select the frame circuit breaker is 1000A, tuning is 800A; currenttransformer for the 1000/50; bus carrying capacity for the 1000A, this road can meet the maximum 1000A current load requirements, even if there is adjustment, power distribution switches and circuit can not make big changes.6 layer distribution box setAccording to the division of layers of fire protection district, respectively numbered as A ~ K layers within the set level shaft for the retail lighting power distribution box, with one on one power supply shops in radial power. Should be noted that the forms of the complex layers of layers of fire partition, does not correspond to the lower, making some of shaft power in charge of the fire district at the same time, also responsible for the power supply adjacent to the fire district. At design time, using the principle of proximity, while also taking into account the burden of the whole trunk load conditions, so that each shaft as far as possible a more balanced load.7 public area distribution box setTaking into account the future needs of the business re-decoration of public areas must be reserved for power. Here the design needs to consider the following points: ①question of how much reserve power, lighting and electricity, which according to GB50034-2004"Architectural Lighting Design Standards" table of Article 6.1.3 and 6.1.8, commercial building lighting power density value, high-end supermarkets, business offices as 20W/m2, under the "decorative lighting included 50% of the total lighting power density calculation" requirements, using the reserved standard 40W/m2. ②In order to facilitate the decoration in each partition set fire lighting in public areas and emergency lighting distribution box distribution box, in order to identify the electrical power distribution decoration cut-off point.③the staircase, storage rooms and other parts of the decoration does not need to do, set the power distribution circuit or a separate distribution box, try not to be reserved from the public area of electricity distribution board fed hardcover out.④control of lighting in public areas, the majority in two ways, namely, C-BUS control system or the BA system, the use of C-BUS has the advantage of more flexible control, each road can be fed out of control, adjustable light control; shortcomings is a higher cost. BA system control advantages of using low cost, simple control; disadvantage is that the exchanges and contacts for the three-phase, three-way control may be related both to open, or both, in the decoration of the contacts required to feed the power supply circuit diverge to avoid failure blackouts.Design of distribution box 8In the commercial real estate design, shop design is often only a meter box, and outlet route back to the needs of the user according to their second design, but the shops are difficult to resolve within the power supply fan coil units, air-conditioning system as a whole can not debug. The project approach is to add a circuit breaker in the meter box for the coil power supply, another way for users to use the second design, as shown below.User distribution box design9 distribution cabinet / box number and distribution circuitsLarge-scale projects are often low voltage distribution cabinet / box number, low-voltage circuits to feed the more often there will be cabinet / box number and line number duplication, resulting in the design and the future looks difficult maintenance and overhaul. The project has three 10Kv substations, 20 transformer, hundreds of low-voltage fed out of the closet, fed the circuit more. Accordance with the International Electrotechnical Commission (IEC) and the Chinese nationalstandard requirements: ①All the distribution number to be simple and clear, not too box and line numbers are not repeated. ②number to simple and clear, not too long. ③distinction between nature and type of load. ④law was easy to find, make viewer at a glance. Based on the above requirements and on the ground, fire district and the underground construction industry form the different conditions, using two slightly different ways. Essential for the underground garage, uses a single comparison, also relatively fire district neat, according to fire district number, such as AL-BL-1 / 1, AP and APE, the meaning of the letters and numbers: AL on behalf of lighting distribution (AP on behalf of Power distribution box, APE on behalf of the emergency power distribution box); BI on behalf of the basement; 1 / 1 for partition 1, I fire box. Above ground is more complex, more fire district, and on the fire district does not correspond to the lower, according to shaft number is better, such as AL-1-A1, AP, and APE, letters and numbers mean: 1 represents a layer; A1 on behalf of A, No. 1 shaft fed a distribution box. Fed a low-voltage circuits, such as the number of uses: W3-6-AL-1-A1, W3-6) indicates that the route back to power supply transformer 3, 6, feed the power distribution cabinet, AL-1-A1, said the then the first loop of the distribution box for the AL-1-A1 and so on, and so on.10 ConclusionWith more and more complex commercial design projects, designers need to continually improve the design level, designed to make fine. These are only bits of the design in the business lessons learned, and the majority of designers want to communicate高层建筑供配电系统设计摘要:随着城市规模的不断发展,高层建筑越来越多,因此,高层建筑电气设计就成为设计者不得不面对的问题。

电气系统专业英语词汇翻译

电气系统专业英语词汇翻译

电气系统专业英语词汇翻译电气系统专业英语词汇翻译a fraction of 若干分之一a matter of 大约,大概account for 说明account for占(比重)acquisition 获得active power 有功功率admittance 导纳agricultural loads 农业负荷Air-blast空中爆炸angular difference 角差异apparent power 视在功率approach 方法as a matter of routine按常规as well as 也asynchronous 异步的at a rate以...比率autotransformer 自耦变压器bring back使恢复burden 负载by virtue of 依靠cable 电缆capacitance 电容capacitor bank 电容器组carrier line 载波线cascading 级联category 种类circulating current 环流clearance 间距coincide with 与...一致combustion 燃烧commercial loads 商业负荷complex power 复数功率component based approach 合成法compressors 压缩机conductance 电导configuration 构造constant current 恒电流constant impedance 恒阻抗constant power 恒功率consume 消耗contact 接触器contactor 电流接触器contingency 意外事故corona 电晕critical clearing time 临界切除时间cross section 横截面cyclic 交变的damping torque 阻尼转矩dead tank固定箱体deprive sb of sth 剥夺某人的某物distribution feeders 配电馈线distribution system 配电系统distribution transformer配电变压器disturbance 扰动dynamic stability 动态稳定性eddy-current loss 涡流损耗efficiency 效率equal-area criterion 等面积法则equilibrium 平衡equivalent circuit 等效电路evolve into 发展成exciting current 励磁电流exponential model 指数模型expose to 使易受facility 设备fast breeder reactors快速中子反应堆fluctuation 波动起伏flux linkage 磁链fossil fuel plant 化石燃料电厂fuse cutout 保险器gas-turbine plants燃气轮机电厂generating unit 发电机组hermetically sealed 密封hydropower水力发出的电力hysteresis loss 磁滞损耗imbalance 阻抗impedance 阻抗in parallel with 与...并联in phase 同相地in step同步in the regard在这点上in turn 随后inductance 电感industrial loads 工业负荷infinite bus 无穷大母线input winding 输入绕组installation 装置装配instrument 仪表insulator string 绝缘子串insulator绝缘体intact 完好无缺的interconnecting transformer 联络变压器intervention干预iron core 铁心isolating switches 隔离开关kirchoff's current law基尔霍夫电流定律large mode 大方式laws of motion 运行法则lead sheath 铅皮leakage reactance 漏电抗leakage漏,泄漏least square 最小2乘方live tank活动箱体load shedding甩负荷loop system 环状系统magnetizing current 磁化电流measurement based approach 测辨法mechanical strength 机械强度megavoltampere兆伏安mining loads 矿业负荷monitor 监控nameplate 铭牌negative sequence 负序neutral 中性点noise suppression 噪声抑制nonsynchronous 异步的nuclear fission 核裂变nuclear fusion 核聚变nuclear reaction 核反应on the order to 属于...一类的oscillograph 示波器out of step 失步output winding输出绕组peak load 峰荷permanent fault 永久故障perturbation 动摇phase sequence 相序phase-angle error 相角误差phasor 向量polynomial model多项式模型porcelain bushing 陶瓷套管positive sequence 正序post disturbance 扰动后的power factor 功率因子pre-disturbance 扰动前primary feeders 一次馈线primary winding一次绕组prime mover 原动机put into service 投入运行radial system 辐射状系统ratio error 比率误差reactive power 无功功率reading读数recovery 恢复refer to...as 称...为regulator 调整器residential loads 居民负荷resistance 电阻resort of 诉诸于restore 恢复restoring torque 回复力矩rotor angle 转子角度saturation 饱和secondary winding 二次绕组sectionalizer 分段隔离开关series 串联service disruption 供电中断shunt admittance 并联导纳shunt 并联,旁路simulation仿真模拟skin effect 集肤效应small mode 小方式stability margin 稳定边际stability 稳定性steam-turbine plants蒸汽轮机电厂step up/down 升/降压substation 变电所subtransmission feeders中高压馈线subtransmission system中压输电系统superimpose 迭加supervisory control 监控susceptance 电纳switches 开关symmetrical components 对称分量synchronism 同步性synchronize 同步synchronizing torque 同步转矩synchronous 同步的synchroscope 同步示波器take into account 考虑temporary fault 临时故障tertiary winding 第三绕组thermal limit 发热极限thermal plants 热电厂to the point of 达到…程度torques转矩transducer 传感器transient response 瞬时反应transient 瞬时transmission subsystem 输电子系统trip 断开tripping coil 跳闸线圈turbine 涡轮机turn ratio 变比unsymmetrical 非对称的unwind 解开utility 公用事业公司variable 变数voltage collapse 电压崩溃voltampere 伏安数win over 战胜;争取过来windings 绕组with respect to 由于with respect to 至于关于zero-sequence 零序。

工厂供电系统外文翻译

工厂供电系统外文翻译

附录四英文文献及译文Analysis of the reasons for the low power factor of the factory power supply system, and to improve power factor and to take effective idle work compensation measure is discussed. To saved the electrical energy, raised enterpriseps economic efficiency has important effect。

Large and medium-sized enterprises PeiDianJian with responsibility for the whole enterprise management and distribution of electricity. At present, most of the enterprise management mode PeiDianJian obsolete, low automatization, difficult to adapt to the requirements of the development of enterprises. In view of this situation, we have developed PeiDianJian monitoring and management system. This system in the computer as the core, real-time monitoring of electric parameters, PeiDianJian all the data processing, dynamic display of statements and output. This system can be used in the PeiDianJian enterprise technical renewal and the transformation of enterprise to do well planned, save electricity, improve economic benefit has important significance.We use the mains by huge power supply system is provided, all the network supply circuit is only for each of the power supply system, network, a tiny branches output. Metal wires connected by good conductors of power supply circuit, each of its source power substation, and then from that power to client to substation and its level in scale, thousands of kilometers and hundreds of kilometers of kilometers. Bare wire in the air in the vertical distribution of atmospheric mountain while high and low, in accordance with the Qing, from dozens of rice to thousands of meters and hundreds of meters above all common. 2 km In such a large scope, the vertical distribution and wide for substation online, due to weather, no matter where or by direct discharge, clouds cloud in discharging, in the air and good conductors of bare wire easily inductive or direct lightning introduction to. This is the power system and power equipment to be struck by lightning external environment.Power supply system and electric defense methods of lightningAnalysis of the power supply system and electric easily be struck by lightning, can draw on electrical equipment, defense lightning damage, should be perfected in the power supply system, and avoid thunder lightning protection measures, the core problem is how to maximize effectively or truncate the high voltage and the thunder and lightning, strong flow under the frequency of more than 10 KHz seitching invasion.transformer segregation lawsTo effectively cut from the high voltage power and strong currents, currently use transformer isolation method. So-called isolation method, is based on transformer transformer equation:EM = 4144fNBMSType of EM for transformer original (vice), unit V; potential edge F for power source) frequency, unit (speed, N the original (vice) side of coil, The intensity of magnetic core materials BM, unit Wb/M2, S for the core area, unit M2.This equation, powerful lightning invade the transformer, due to transformer voltage electric ray than the normal supply of high pressure many times, make incentive magnetic induction than the maximum allowed by magnetic core transformer core strength BM, thus the magnetic saturation, transformer -- electricity failure, GaoLei voltage transform temporarily cannot transfer to the transformer, a deputy side of transformer protection lightning channel, the deputy of electrical equipment load. While there are usually installed transformer power valve can be powerful lightning and the lightning flow into the earth, and in the safe, high voltage, current, powerFlow, fuses will fuse off. Stop So, always packed transformer electrical equipment configuration of transformer, than by lightning bad probability is greatly reduced.Why in the fall after the power supply, sluice stop there will still be struck by lightning disasters. This happened because lightning, invading transformer connected by vice and load of electrical equipment based on low, still can exist, these induction lightning induction lightning electronics products will cause of lightning. This problem is often neglected, many lightning disasters, the event is not solved theproblem. The successful development of lightning power, for we solve this problem.Lightning arrester powerFor truncated or stop high-pressure seitching in metal wires to load caused by lightning, electric 1890 invented the clearance of the way after the lightning series fuse, 1922 made us Westinghouse carbonized silicon arresters. To use the 1972 Japan dielectric properties research into fell seconds with no gaps (ZnO) service. Current power supply system is widely used in such power lightning.Zno arrester by zinc oxide thermistors, each thermistors according to need to have it made in certain switching voltage (psa). When in the lower voltage arresters ends switching voltage (psa), high resistance thermistors present state, arrester doesn't work. When lightning arrester ends when, in the voltages above switching voltage (psa), thermistors, low resistance by breakdown, even close circuit state, in a very short time (50ns ´ s, 10-9) arrester is high, the work of a lightning through introducing the earth grounding safety. When, after the lightning arrester stabilised, voltage on both ends of the lower voltage switching voltage (psa), thermistors and present state of high value, lightning arrester stop working, electric conduction normal power.FenLiuXing avoid thunderFenLiuXing avoid thunder, is the core of wire cable in transmission series on two capacitor, input shunt capacitor in an inductance coil. So, when the capacitance and inductance coil capactance C L reasonable choice of inductance, make through two more than 10 frequency capacitor, much like KHz TV signal frequency speed to sign for dozens of hundreds of megabytes speed signals through the capacitance, and lightning frequency circuit reactance small majority in 100 KHz, when lightning through the capacitance, will produce larger pressure drop. And through the situation, high capacitance signals through the inductance greater pressure drop when L, much lower frequency of lightning, through the low impedance, large discharge by lightning, XieRu grounding. Television antenna lightning current share this line shunt principle and method.Production of equipment, such as mechanical processing machine, with various kinds of crane, with induction motor, etc, these large and electric power load isperceptual load, make the power factor of power supply system, the influence of distribution transformer lines and economic operation of power sector, reach the power factor, thus must adopt the reactive power compensation measures to improve the power factor, and can save energy and reduce consumption.The power factor of system of power supply is an important technical and economic indexes, the power factor of electric equipment is reflected the active power and the ratio of power nai. Relevant procedure: high voltage power supply power plant, the maximum load of power factor may not be less than 0.9, Other factories, power factor may not be less than 0.85.The main factors that affect the power factorThe power factor of ac electric equipment, mainly because in its working process, in addition to generate power loss, also produce reactive power loss. Therefore improving power factor the essence of the problem is to reduce the electric equipment of reactive power consumption. Asynchronous motor and power transformer is reactive power loss of the main equipment and power lines of reactive power loss, it is current through the lines. Circuit reactance.Parallel compensation in power capacitors supply system of factory installed position, have high concentrated compensation, low-pressure concentrated compensation and separate compensation on-spot three modes, etc.Theoretically speaking, the reactive power compensation is the best way of reactive power, where is produced, the whole system where compensation will not reactive current flow, but in actual power supply system in this is impossible. We currently have a 10 kv power supply system, and has three switch power transformer substation, three workshops 800kV A respectively, 560kV A capacity, 630kV A. Dynamic load hundreds of machine tools and machining, electric welding machine, etc. Combined with practical, electricity load during load fluctuation change is big, the characteristics of small load after midnight, in order to avoid over compensation, and meet after midnight on all load cases are adopted to improve the low voltage offset, automatic reactive compensation devices.分析了工厂供电系统功率因数偏低的原因,探讨了提高功率因数的方法及采取的有效无功补偿措施,对节约电能,提高企业的经济效益有重要意义。

外文翻译--电力系统介绍

外文翻译--电力系统介绍

外文翻译Electric Power SystemElectric Power System, components that transform other types of energy into electrical energy and transmit this energy to a consumer. The production and transmission of electricity is relatively efficient and inexpensive, although unlike other forms of energy, electricity is not easily stored ad thus must generally be used as it is being produced.Components of an Electric Power SystemA modern electric power system consists of six main components: (1) the power station, (2)a set of transformers to raise the generated power to the high voltages used on the transmission lines, (3) the transmission lines, (4) the substations at which the power is stepped down to the voltage on the distribution lines, (5) the distribution lines, and (6) the transformers that lower the distribution voltage to the level used by the consumer’s equipment.Power Station, the power station of a power system consists of a prime mover, such as a tribune driven by water, steam, or combustion gases that operat e a system of electric motors and generators. Most of the world’s electric power is generated in steam plants driven by hydroelectric (water power), diesel, and internal-combustion plants.Transformers, Modern electric power systems use transformers to convert electricity into different voltages. With transformers, each stage of the system can be operated at an appropriate voltage. In a typical system, the generators at the power station deliver a voltage of from 1,000 to 26,000volts (v). Transformers step this voltage up to values ranging from 138,000 to 765,000 V for torture transfer on the distribution system. Another set of transformers step the voltage down again to a distribution level such as 2,400 or 4,160 V or 15, 27, or 33 kilovolts (kV). Finally the voltage is transformed once again the distribution transformed near the point of use to 240 or 120 V.Transmission Lines, The lines of high voltage transmission system areusually composed of wires of copper, aluminum-clad steel, which are suspended form tall latticework towers of steel by strings of porcelain insulators. By the use of clad steel wires and high towers, the distance between towers can be increased, and the cost of the transmission line thus reduced. In modern installations with essentially straight paths, high-voltage lines may be built with as few as six towers to the kilometer. In some areas high-voltage lines are suspended from tall wooden poles spaced more closely together.For lower voltage distribution lines, wooden poles are generally used rather than steel towers. In cites and other areas where open lines create a safety hazard or are considered unattractive, insulated underground cables are used for distribution. Some of these cables have a hollow core through which oil circulates under low pressure. The oil provides temporary protection from water damage to the enclosed wires should the cable develop a leak. Pipe-type cables in which three cables are enclosed in a pipe filled with oil under high pressure (14 kg per sq cm/200psi) are frequently used. These cables are used for transmission of current at voltage as high as 345,000V (or 345 kV).Supplementary Equipment Any electric-distribution system involves a large amount of supplementary equipment to protect the generators, transformers, and the transmission lines themselves. The system often includes devices designed to regulate the voltage or other characteristics of power delivered to consumers.To protect all elements of a power system from short circuits and overloads, and for normal switching operations, circuit breakers are employed. These breakers are large switches that are activated automatically in the event of a short circuit or other condition that produces a sudden rise of current. Because a current forms across the terminals of the circuit breaker at the moment where the current is interrupted, some large breakers (such as those used to protect a generator or a section of primary transmission line) are immersed in a liquid that is a poor conductor of electricity, such as oil, to quench the current. In large air-type circuit breakers, as well as in oil breakers, magnetic fields are used to break up the current. Small air-circuit breakers areused for protection in shops, factories, and in modern home installations. In residential electric wiring, fuses were once commonly employed for the same purpose. A fuse consists of piece of alloy with a low melting point, inserted in the circuit, which melts, breaking the circuit if current rises above a certain value. Most residences now use air-circuit breakers.Power FailuresIn most parts of the world, local or national electric utilities have joined in grid systems. The linking grids allow electricity generated in one area to be shared with others. Each utility that agrees to share gains an increased reserve capacity, use of larger, more efficient generators, and the ability to respond to local power failures by obtaining energy from a linking grid.These interconnected grids are large, complex systems that contain elements operated by different groups. These systems offer the opportunity for economic saving and improve overall reliability but can create a risk of widespread failure. For example, the worst blackout in the history of the United States and Canada occurred august 14, 2003, when 61,800 megawatts of electrical power was lost in an area covering 50 million people. (One megawatts of electricity is roughly the amount needed to power 750 residential homes.) The blackout prompted calls to replace aging equipment and raised questions about the reliability of the national power grid.Despite the potential for rare widespread problems, the interconnected grid system provides necessary backup and alternate paths for power flow, resulting in much higher overall reliability than is possible with isolated systems. National or regional grids can also cope with unexpected outages such as those caused by storms, earthquakes, landslides, and forest fires, or due to human error or deliberate acts of sabotage.Power qualityIn recent years electricity has been used to power more sophisticated and technically complex manufacturing processes, computers and computer network, and a variety of other high-technology consumer goods. These products and processes are sensitive not only to the continuity of power supplybut also to the constancy of electrical frequency and voltage. Consequently, utilities are taking new measure to provide the necessary reliability and quality of electrical power, such as by providing additional electrical equipment assure that the voltage and other characteristics of electrical power are constant.Voltage Regulation long transmission lines have considerable inductance and capacitance. When current flows through the lines, inductance and capacitance have the effect of varying the voltage on the line as the current varies. Thus the supply voltage varies with the load. Several kinds of devices are used to overcome this undesirable variation in an operation called regulation of the voltage. The devices include induction regulation and three-phase synchronous motors (called synchronous condensers), both of which vary the effective amount of inductance and capacitance in the transmission circuit.Inductance and capacitance react with a tendency to nullify one another. When a load circuit has more inductive than capacitive reactance, as almost invariably occurs in large power systems, the amount of power delivered for a given voltage and current is less than when the two are equal. The ratio of these two amounts of power is called the power factor. Because transmission-line losses are proportional to current, capacitance is added to the circuit when possible, thus bringing the power factor as nearly as possible to 1. For this reason, large capacitors are frequently inserted as a part of power-transmission systems.World Electric Power Production Over the period from 1950 to 2003, the most recent year for which data are available, annual world electrical power production and consumption rose from slightly less than 1 trillion kilowatt-hours (kw h ∙) to 15.9 trillion kw h ∙ A change also took place in the type of power generation. In 1950 about two-thirds of the world’s electricity came from steam-generating sources and about one-third from hydro electric sources. In 2003thermal sources produced 65 percent of the power, but hydropower had declined to 17 percent, and nuclear power accounted for 16percent of the total. The grown in nuclear power showed in some countries, notably the United States, in response to concerns about safety. Nuclear plants generated 20 percent of U.S. electricity in 2003; in France, the world leader, the figure was 78 percent.ConservationMuch of the world’s electricity is produced from the use of nonrenewable resources, such as natural gas, coal, oil, and uranium. Coal, oil, and natural gas contain carbon, and burning these fossil fuels contributes to global emissions of carbon dioxide and other pollutants. Scientists believe that carbon dioxide is the principal gas respon sible for global warming, a steady rise in Earth’s surface temperature.Consumers of electricity can save money and help protect the environment by eliminating unnecessary use of electricity, such as turning off lights when leaving a room. Other conservation methods include buying and using energy-efficient appliances and light bulbs, and using appliances such as washing machines and dryers, at off-peak production hours when rates are lower. Consumers may also consider environmental measures such as purchas ing “green power” when it is offered by a local utility, “Green power” is usually more expensive but relies on renewable and environmentally friendly energy sources, such as wind turbines and geothermal power plants.电力系统介绍电力系统把其它形式的能源转化为电能并输送给用户。

供配电系统-4EADD解析PPT教学课件

供配电系统-4EADD解析PPT教学课件

二、电源电压及引入方式


选择依据:


外网电压等级;
工 程
建筑用电负荷大小;
用户与电源距离;
供电回路数;
发展规划。
·
2020/10/16
17
·
12.1 供电系统
㈠单相低压


柱上变压器架空引入


外网电压:10kV/380V/220V
工 程
引入电源:220V单相
适应对象:
单相低压用电设备;
单幢建筑、用电负荷量:≤6.6kW
一级负荷:


一、二级旅馆(四星以上酒店):


——传媒电源
工 程
宴会厅电声、新闻摄影、录像电源;
——通道照明
宴会厅、餐厅、娱乐厅、高级客房、康乐设施、 厨房及主要通道照明;
——动力能源
地下室污水泵、雨水泵、厨房、部分客梯电力。
·
2020/10/16
11
·
12.1 供电系统
一级负荷:


高等学校、科研院所
·
2020/10/16
18
·
12.1 供电系统
㈡三相四线


柱上变压器架空引入


外网电压:10kV/380V/220V
工 程
引入电源:380/220V三相四线
适应对象:
有单相和三相低压用电设备;
建筑物较大、用电负荷量:≤250kW
·
2020/10/16
19
·
12.1 供电系统
㈢高压供电


外网电压:10kV
第十二章

第2章 楼宇供配电系统(英文)1

第2章 楼宇供配电系统(英文)1
G generator Main I interlock Emergency bus Main II
Hall lighting Emergency lighting Important UPS computer load
Fire lift
Fire protection
◆ 对大厅照明等稍为重要的负荷,由于配电开关上装有失压脱扣器,在 市电故障时已全部分闸,然后可根据机组负荷情况手动合闸。例如此时 无火灾可全部合闸,如一旦发生火灾,则根据消防发出的指令自动跳闸。 方案适用于电网稳定、大楼重要负荷较多的工程。
(a) One
S1
main + one spare single bus
S2
Main 主供 10kV Bus
Spare 备用
(a) ◆ ◆ ◆ ◆
Two inputs Single bus bar Save (area and finance ) Service interruption or blackout ( bus failure ) Building with low reliability requirement or low load
Fire protection
◆ 正常情况,消防设备等用电设备为两路市电同时供电,应急母线电源 由其中一路市电供给。当两路市电失去一路,可以通过两路市电中间的 联络开关合闸恢复大部分供电,当两路市电全部失去时,自动启动机组 ATS开关转换,应急母线由机组供电,保证消防设备等重要负荷的供电。
2.2 Typical system inside the building
柜 柜

器 柜
器 柜

电 所


  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

供配电系统摘要:电力系统的基本功能是向用户输送电能。

lOkV配电网是连接供电电源与工业、商业及生活用电的枢纽,其网络庞大及复杂。

对于所有用户都期望以最低的价格买到具有高度可靠性的电能。

然而,经济性与可靠性这两个因素是互相矛盾的。

要提高供电网络的可靠性就必须增加网络建设投资成本。

但是,如果提高可靠性使用户停电损失的降低小于用于提高可靠性所增加的投资,那么这种建设投资就没有价值了。

通过计算电网的投资和用户停电的损失,最终可找到一个平衡点,使投资和损失的综合经济性最优。

关键词:供配电,供电可靠性,无功补偿,负荷分配1 引言电力体制的改革引发了新一轮大规模的电力建设热潮从而极大地推动了电力技术革命新技术新设备的开发与应用日新月异特别是信息技术与电力技术的结合在很大程度上提高了电能质量和电力供应的可靠性由于技术的发展又降低了电力建设的成本进而推动了电网设备的更新换代本文就是以此为契机以国内外配电自动化中一些前沿问题为内容以配电自动化建设为背景对当前电力系统的热点技术进行一些较深入的探讨和研究主要完成了如下工作.(1)提出了配电自动化建设的两个典型模式即―体化模式和分立化模式侧重分析了分立模式下的配电自动化系统体系结构给出了软硬件配置主站选择管理模式最佳通讯方式等是本文研究的前提和实现平台.(2)针对配电自动化中故障测量定位与隔离以及供电恢复这一关键问题分析了线路故障中电压电流等电量的变化导出了相间短路工况下故障定位的数学描述方程并给出了方程的解以及故障情况下几个重要参数s U& s I& e I& 选择表通过对故障的自动诊断与分析得出了优化的隔离和恢复供电方案自动实现故障快速隔离与网络重构减少了用户停电范围和时间有效提高配网供电可靠性文中还给出了故障分段判断以及网络快速重构的软件流程和使用方法.(3)状态估计是实现配电自动化中关键技术之一本文在阐述状态估计方法基础上给出了不良测量数据的识别和结构性错误的识别方法针对状态估计中数据对基于残差的坏数据检测和异常以及状态量中坏数据对状态估计的影响及存在的问题提出了状态估计中拓扑错误的一种实用化检测和辩识方法针对窃电漏计电费问题独创性提出一种通过电量突变和异常分析防止窃电的新方法并在潍坊城区配电得到验证.(4)针对配电网负荷预测建模困难参数离散度大以及相关因素多等问题本文在分析常规负荷预测模型及方法基础上引入了气象因素日期类型社会环境影响等参数给出了基于神经网络的电力负荷预测方法实例验证了方法的正确性.(5)针对无源滤波在抑制谐波和无功补偿方面的不足以及补偿度的不连续性本文提出了一种PWM 主电路拓朴结构和基于无功功率理论的有源滤波方案建立了基于Saber Designer 仿真平台仿真分析证明了方案的可行性同时结合配电自动化技术对配电网动态无功优化补偿和降低线损的方法进行了设计分析通过实例计算验证了其客观的经济效益.(6)针对中国电力市场未来的发展趋势以及政府监管下的电力市场公平交易设计了一种适合我国电力市场现状按照电价分组电量协调分组竞价的短期电力交易模式给出了基于边际电价的机组组合算法制订交易计划的数学模型以及安全经济约束等在竞争比例逐步提高的情况下能够较好地解决原有中长期合同电价和短期竞争电价的矛盾减少电厂不公平的收益差异同时也可在电力市场全网的负荷曲线上对所有电厂进行限量优化减少总的系统购电费用.2 配电网分析配电网是电力系统中的一个重要环节,配电网接地方式和安全运行直接关系到电力系统的安全和稳定。

而接地方式的选择,是与本国国情、自然环境、设备制造和运行水平等有关的,例如,雷电的活动情况、绝缘结构的设计、对周边的干扰等因素,都会影响中性点接地方式的选择;反过来,中性点接地方式对电力系统的设计、运行、调试以及发展都有很大影响。

一般在电压等级较高的系统中,绝缘费用在设备总价格中占相当大的比重,降低绝缘水平带来的经济效益很显著,通常就采用中性点直接接地的方式,而采用自动重合闸来保证供电可靠性:相反,在电压等级较低的系统中,通常都采用中性点不接地的方式来提高供电可靠性。

因此,在综合考虑供电可靠性、安全因素、过电压因素、继电保护的选择、投资费用等各方面因素的情况下,来论证正确选择配电网接地方式的重要性,以及如何不断开发,利用新型接地装置来应用在配电网接地系统中是当今配电网接地方式的一个重要课题。

本文主要工作是对lOkV配电网接地方式进行研究和比较选择。

分别论述各类接地方式的优缺点,主要有国内外比较常用的中性点不接地方式、中性点经消弧线圈接地方式(也称谐振接地方式)、中性点电阻接地方式、中性点直接接地方式。

通过技术比较确定最优接地方式,还利用一种近几年研究开发的,应用在谐振接地方式中的自动跟踪补偿装置,再配以灵敏的小电流接地选线保护,能够有效限制电网的故障接地电弧,更有利于电网的安全运行。

本文首先对配电网各类接地方式做深入的研究。

全面介绍国内外几种常用的中性点接地方式的运行特性,通过技术经济比较对不同的接地方式进行综合评价,再结合不同的接地方式的发展前景得出结论,优化了的谐振接地方式表现出很大的发展潜力。

然后,本文对lOkV配电网中性点谐振接地方式的运行特性进行了研究和介绍。

从限制故障接地电弧的危害出发,重点论述如何利用电流谐振原理,有效熄灭故障接地电弧等。

接着,本文结合国内外科技的发展和创新成果,对谐振接地优化方式中的微机接地保护性和自动跟踪补偿装置进行全面的分析与论述,说明谐振接地优化方式在供电可靠性、人身安全、设备安全和通信干扰等方面,具有较好的运行特性,既解决了小电流接地系统接地保护的选择性,又实现了自动调谐,使此种接地方式成为配电网比较理想的中性点接地方式。

本文同时还对谐振接地方式实施技术进行了研究,包括消弧线圈的参数选择、安装、调整、运行与维护等内容。

最后,本文总结了本课题研究的内容。

谐振接地籍助微机技术的支持,近些年来国内外均在进行优化,优化谐振接地技术是提高供电可靠性、保护人身安全、设备安全和电磁环境等的一项合理的重要技术手段,而谐振接地实施技术更充分发挥谐振接地方式的功能,使谐振接地方式具有更好的技术经济指标。

随著电网的不断发展和丰富的实践结果表明,以谐振接地方式为代表的小电流接地方式优于其他接地方式,这是配电网的中性点接地方式发展的总趋势,在今后的配电网接地方式中应推广应用。

本论文提出的思路、方案和结论不仅对于lOkV配电网中性点接地方式选择研究、实际工程应用具有实际的参考作用,对于其他电压等级中性点接地方式选择同样具有借鉴的作用。

电力系统的基本功能是向用户输送电能。

lOkV配电网是连接供电电源与工业、商业及生活用电的枢纽,其网络庞大及复杂。

对于所有用户都期望以最低的价格买到具有高度可靠性的电能。

然而,经济性与可靠性这两个因素是互相矛盾的。

要提高供电网络的可靠性就必须增加网络建设投资成本。

但是,如果提高可靠性使用户停电损失的降低小于用于提高可靠性所增加的投资,那么这种建设投资就没有价值了。

通过计算电网的投资和用户停电的损失,最终可找到一个平衡点,使投资和损失的综合经济性最优。

论文针对配电网各种接线模式的特点,就各种接线模式的经济性和可靠性进行了分析。

3 小结论文首先介绍lOkV配电网各种典型的接线模式和国外几个国家的典型接线模式,然后确定配电网接线模式分析的思路,明确进行分析的必要性和重要性。

再提出最优分段数计算的必要性,阐述最优分段数对经济性和可靠性的影响,然后建立最优分段数计算模型,并简单介绍各种接线模式的供电方案。

而后对配电网各种接线模式的可靠性和经济性进行了计算和分析,通过计算并描绘的各种图表。

并对最优分段数作了分析和讨论。

文章最后对各种接线模式的经济性和可靠性进行总结,分析了各种接线模式各自的优点和缺点,其适用情况。

并结合实际情况针对lOkV配电网的规划和建设提出有益的建议。

为lOkV配电网的规划设计及为建成网架坚实、布局合理、管理科学、能够安全、优质、高效运行的配电网提供理论的依据和有益的指引。

Power Supply and Distribution SystemABSTRACT:The basic function of the electric power system is to transport the electric power towards customers. The l0kV electric distribution net is a key point that connects the power supply with the electricity using on the industry, business and daily-life. For the electric power, allcostumers expect to pay the lowest price for the highest reliability, but don't consider that it's self-contradictory in the co-existence of economy and reliable.To improve the reliability of the power supply network, we must increase the investment cost of the network construction But, if the cost that improve the reliability of the network construction, but the investment on this kind of construction would be worthless if the reducing loss is on the power-off is less thanthe increasing investment on improving the reliability .Thus we find out a balance point to make the most economic,between the investment and the loss by calculating the investment on power net and the loss brought from power-off.KEYWORDS:power supply and distribution, power distribution reliability,reactive compensation, load distributionThe revolution of electric power system has brought a new big round construction,which is pushing the greater revolution of electric power technique along with the application of new technique and advanced equipment. Especially, the combination of the information technique and electric power technique, to great ex- tent, has improved reliability on electric quality and electric supply. The technical development decreases the cost on electric construction and drives innovation of electric network. On the basis of national and internatio- nal advanced electric knowledge, the dissertation introduces the research hotspot for present electric power sy- etem as following.Firstly, This dissertation introduces the building condition of distribution automation(DA), and brings forward two typical construction modes on DA construction, integrative mode and fission mode .It emphasize the DA structure under the condition of the fission mode and presents the system configuration, the main station scheme, the feeder scheme, the optimized communication scheme etc., which is for DA research reference.Secondly, as for the (DA) trouble measurement, position, isolation and resume, This dissertation analyzes the changes of pressure and current for line problem, gets math equation by educing phase short circuit and problem position under the condition of single-phase and works out equation and several parameter s U& , s I& and e I& table on problem . It brings out optimized isolation and resume plan, realizes auto isolation and network reconstruction, reduces the power off range and time and improves the reliability of electric power supply through problem self- diagnoses and self-analysis. It also introduces software flow and use for problem judgement and sets a model on network reconstruction and computer flow.Thirdly, electricity system state is estimated to be one of the key techniques in DA realization. The dissertation recommends the resolvent of bad measurement data and structure mistake on the ground of describing state estimate way. It also advances a practical test and judging way on topology mistake in state estimate about bad data test and abnormity in state estimate as well as the problem and effect on bad data from state measure to state estimate .As for real time monitor and control problem, the dissertation introduces a new way to solve them by electricity break and exceptional analysis, and the way has been tested in Weifang DA.Fourthly, about the difficulty for building the model of load forecasting, big parameter scatter limit and something concerned, the dissertation introduces some parameters, eg. weather factor, date type and social environment effect based on analysis of routine load forecasting and means. It presents the way for electricity load forecasting founded on neural network(ANN),which has been tested it’s validity by example and made tobe good practical effect.Fifthly, concerning the lack of concordant wave on preve nting concordant wave and non-power compensation and non-continuity on compensation, there is a topology structure of PWM main circuit and nonpower theory on active filter the waves technique and builds flat proof on the ground of Saber Designer and proves to be practical. Meanwhile, it analyzes and designs the way of non-power need of electric network tre- nds and decreasing line loss combined with DA, which have been tested its objective economic benefit throu- gh counting example.Sixthly, not only do the dissertation design a way founded on the magrginal electric price fitted to our present national electric power market with regards to future trends of electric power market in China and fair trade under the government surveillance, that is group competitio n in short-term trade under the way of grouped price and quantity harmony, but also puts forward combination arithmetic, math model of trading plan and safty economical restriction. It can solve the original contradiction between medium and long term contract price and short term competitive price with improvement on competitive percentage and cut down the unfair income difference of electric factory, at the same time, it can optimize the electric limit for all electric factories and reduce the total purchase charge of electric power from burthen curve of whole electric market network.The distribution network is an important link among the power system. Its neutral grounding mode and operation connects security and stability of the power system directly. At the same time, the problem about neutral grounding is associated with national conditions, natural environment, device fabrication and operation. For example, the activity situation of the thunder and lightning, insulating structure and the peripheral interference will influence the choice of neutral grounding mode Conversely, neutral grounding mode affects design, operation, debugs and developing. Generally in the system higher in grade in the voltage, the insulating expenses account for more sizable proportion at the total price of the equipment. It is very remarkable to bring the economic benefits by reducing the insulating level. Usually such system adopt the neutral directly grounding and adopt the autoreclosing to guarantee power supply reliability. On the contrary, the system which is lower in the voltage adopts neutral none grounding to raise power supply reliability. So it is an important subject to make use of new- type earth device to apply to the distribution network under considering the situation in such factors of various fields as power supply reliability, safety factor, over-voltage factor, the choice of relay protection, investment cost, etc.The main work of this paper is to research and choice the neutral grounding mode of the l0kV distribution network. The neutral grounding mode of the l0kV network mainly adopts none grounding, grounding by arc suppressing coil, grounding by reactance grounding and directly grounding. The best grounding mode is confirmed through the technology comparison. It can help the network run in safety and limit the earth electric arc by using auto-tracking compensate device and using the line protection with the detection of the sensitive small ground current. The paper introduces and analyzes the characteristic of all kindof grounding modes about l0kV network at first. With the comparison with technological and economy, the conclusion is drawn that the improved arc suppressing coil grounding mode shows a very big development potential.Then, this paper researches and introduces some operation characteristics of the arc suppressing coil grounding mode of the l0kV distribution network. And then the paper put emphasis on how to extinguish the earth electric arc effectively by utilizing the resonance principle. This paper combines the development of domestic and international technology and innovative achievement, and introduces the computer earth protection and autotracking compensate device. It proves that the improved arc suppressing coil grounding mode have better operation characteristics in power supply reliability, personal security, security of equipment and interference of communication. The application of the arc suppressing coil grounding mode is also researched in this paper.Finally, the paper summarizes this topic research. As a result of the domination of the arc suppressing coil grounding mode, it should be more popularized and applied in the distribution network in the future.The way of thinking, project and conclusions in this thesis have effect on the research to choose the neutral grounding mode not only in I0kV distribution network but also in other power system..The basic function of the electric power system is to transport the electric power towards customers. The l0kV electric distribution net is a key point that connects the power supply with the electricity using on the industry, business and daily-life. For the electric power, all costumers expect to pay the lowest price for the highest reliability, but don't consider that it's self-contradictory in the co-existence of economy and reliable. To improve the reliability of the power supply network, we must increase the investment cost of the network con- struction But, if the cost that improve the reliability of the network construction, but the investment on this kind of construction would be worthless if the reducing loss is on the power-off is less than the increasing investment on improving the reliability .Thus we find out a balance point to make the most economic, between the investment and the loss by calculating the investment on power net and the loss brought from power-off. The thesis analyses on the economic and the reliable of the various line modes, according to the characteristics various line modes existed in the electric distribution net in foshan..First, the thesis introduces as the different line modes in the l0kV electric distribution net and in some foreign countries. Making it clear tow to conduct analyzing on the line mode of the electric distribution net, and telling us how important and necessary that analyses are.Second, it turns to the necessity of calculating the number of optimization subsection, elaborating how it influences on the economy and reliability. Then by building up the calculation mode of the number of optimization subsection it introduces different power supply projects on the different line modes in brief. Third, it carries on the calculation and analyses towards the reliability and economy of the different line modes of electric distribution net, describing drafts according by the calculation. Then it makes analysis and discussion on the number of optimization subsection.At last, the article make conclusion on the economy and reliability of different line modes, as well as, its application situation. Accordion to the actual circumstance, the thesis puts forward the beneficial suggestion on the programming and construction of the l0kV electric distribution net in all areas in foshan. Providing the basic theories and beneficial guideline for the programming design of the lOkV electric distribution net and building up a solid net, reasonable layout, qualified safe and efficiently-worked electric distribution net. References。

相关文档
最新文档