几何光学作业
习题九 几何光学
习题九 几何光学(习题参考解答)[9-1] 将一物置于长柱形玻璃的凸球面前25cm 处,设这个凸球面曲率半径为5cm ,玻璃前的折射率n=1.5,玻璃前的媒质是空气,求:(1) 像的位置,是实像还是虚像?(2) 该折射面的焦距。
已知:5.11525====n n cm r cm u o 求:①?=v ②??21==f f 解:∵ rn n v n u n 1221-=+ ∴ 515151251-=+.v . )(25cm v = 成实像当:时∞=u 2f v =515.112-=f cm f 152=当:1f u v =∞=时55.15.111=∞+f cm f 101=答:像的位置在球面后25cm 外 为实像焦距cm f 101= cm f 152=[9-2] 有一厚度为3cm ,折射率为1.5的共轴球面系统,其第一折射面是半径为2cm 的球面,第二折射面是平面,若在该共轴球面系统前面对第一折射面8cm 处放一物,像在何处? 已知:cm d 3= 1=o n 5.1=n cm r 21= ∞=2rcm u 81=求:?=v解:∵ rn n v n u n 1221-=+ ∴ 215151811-=+.v . cm v 121=又 ∵ ∞-=+--5.111)312(5.1v ∴ cm v 6=答:像最后成在第二折射面后6cm 处。
[9-3] 一个双凸透镜,放在空气中,两面的曲率半径分别为15cm 和30cm ,如玻璃折射率为1.5,物距为100cm ,求像的位置和大小,并作图验证之。
已知:cm r 151= cm r 302-= 5.1=n cm u 100=求:像的位置?=v 像的大小解:∵ 透镜的焦距f 为:()121111-⎥⎦⎤⎢⎣⎡⎪⎪⎭⎫ ⎝⎛--=r r n f ∴ 1)301151)(15.1(-⎥⎦⎤⎢⎣⎡---=f )(20cm =又 ∵ fv u 111=+ ∴20111001=+v )(25cm v =又 ∵ 放大率 uv m = 10025= 41=答:像的位置在透镜后20cm 外,实像且放大率为41[9-4] 一对称的双凸透镜折射率为1.5它在空气中的焦距为12cm ,其曲率半径为多大?另一双凸薄透镜置下列介质中,其左边为折射率为n 1=4/3的水,右边为空气,且右侧球面的半径与上一透镜的相同。
几何光学练习题
A,玻璃球B,双凸透镜C,双凹透镜D,球面镜
22.折射球面的物方、象方折射率分别为n和 ,若物、象距分别为S和 ,系统的角放大率为
A, /S;B,S/ ;C,- /S;D,-S/
23.当光线从折射率为n1的光密媒质射向折射率为n2的光疏媒质时,发生全反射的临界角为
A, ;B, ;C, ;D,
5.在焦距为f的透镜光轴上,物点从3f移到2f处,在移动的过程中,物象点之间的距离
A,先减小后增大;B,先增大后减小;C,由小到大;D,由大到小
6.棱镜的顶角为A,折射率为n,当A很小时的最小偏向角为
A,A;B,nA;C,(n-1)A;D,(n+1)A
7.在空气中,垂直通过折射率为n,厚度为d的平板玻璃观察物体,看到的象移近了
2.凸透镜L1和凹透镜L2共轴放置,相距10cm,凸透镜的象方焦距为20cm,凹透镜的物方焦距为20cm,物体A位于凸透镜前方30cm处,试确定物体所成的象的位置和性质。
3.凸透镜的焦距为10cm,凹透镜的焦距为4cm,两透镜相距12cm,已知高为1cm的物体放在凸透镜左边20cm处,物体先经凸透镜成象再由凹透镜成象,求象的位置和性质,并作出光路图。
A,透镜右侧16cm;B,透镜左侧16cm处;C,透镜右侧26.7cm;D,透镜左侧26.7cm处
13.一个物体在平面镜前10cm处,如果你站在该物的后面距镜30cm处看它的象,眼睛应聚焦的位置为
A,25cm;B,35cm;C,45cm;D,40cm
14.在符号法则中,平面镜的成象公式为
A, =S;B,- =-S;C, /S=1;D, =-S
A,一个倒立的实象;B,一个放大的实象;C,成象于无穷远处;D,一个缩小的实象
几何光学练习
几何光学练习(一)1、有一直径为4cm 的实心玻璃球,球内有一小气泡,当观察者的眼睛与球心、气泡在同一条直线上时,气泡似相距球面1cm ,试求此气泡距球面的真实距离。
玻璃的折射率为1.5。
2、如图所示,一个半径为R 的球型玻璃鱼缸放置在直立的平面镜前,缸壁很薄,其中心距镜面3R ,缸中充满水,观察者在远处通过球心并与镜面垂直的方向注视鱼缸,一条小鱼以速度v 0射率n=4/3。
3、某人将折射率n=1.50、半径为10cm的玻璃球放在书上看字。
试求:(1)看到的字在什么地方?放大率为多少?(2)若将玻璃球切成两半并取其一,令其平面向上,而让球面和书面接触,这时看到的字在何处?放大率等于多少?4、如图所示,凸透镜焦距为f=15cm ,OC=25cm ,以C 点为圆心,r=5cm 为半径的发光圆环与主轴共面,试求出该圆环通过透镜折射后所成的像。
5、若一会聚透镜在空气中的焦距为5cm ,平置于离水箱底面40cm 高处,水箱充水至60cm ,试问:(1)水箱底面经过这一系统成像于何处?设透镜的折射率为1.52,水的折射率为1.33。
(2)假定水面以2cm/s 的速率向下降至透镜处,求这段时间内像的变化情况。
6、如图所示,一个小会聚透镜紧靠在凹面镜上,遮住面镜反射面的中央部分,当物体位于面镜前某一位置时,此光具组成两个实像。
一个像到面镜的距离为v 1=50cm ,另一个像到面镜的距离为v 2=10cm 。
求透镜的焦距。
7、平面镜M 1与凸透镜L 的主光轴的夹角α=45°,L 的焦距f=15cm ,AO=24cm ,BO=32cm ,N 是一挡光板,发光点P 在A 点正上方16cm 处,但发出的光线不能直接射到凸透镜上,如图所示,求发光点P 通过此光学系统最终成像的位置。
2 2题图 4题图几何光学练习题(二)1、平行光束垂直射在等腰棱镜的底面上,如图所示。
如果在离棱镜距离L=100cm 处放一个屏M ,在屏幕中央形成宽为2d=1cm 的暗纹,求棱镜的折射角α。
09专题:几何光学专题(含答案)
09专题:几何光学专题1.如图所示,甲、乙两块透明介质,折射率不同,截面为14圆周,半径均为R,对接成半圆。
一光束从A点垂直射入甲中,OA=22R,在B点恰好发生全反射,从乙介质D点(图中未画出)射出时,出射光线与BD连线间夹角为15°。
已知光在真空中的速度为c,求:(1)乙介质的折射率;(2)光由B到D传播的时间。
2.如图所示,单色细光束射到一半径为R的透明球表面,光束在过球心的平面内,入射角θ1=60°,该光束折射进入球内后在内表面反射一次,再经球表面折射后射出,出射光束恰好与最初入射光束平行。
(已知真空中光速为c)①补充完整该光束的光路图,求透明球的折射率;②求这束光在透明球中传播的时间。
3.如图所示,三棱镜的横截面ABC为直角三角形,∠A=90°,∠B=30°,边AC长为20cm,三棱镜材料的折射率为3,一束平行于底边BC的单色光从AB边上的中点O射入此棱镜,已知真空中光速为3.0×108m/s。
求:(1)从AB边射入的折射角;(2)通过计算判断光束能否从BC边射出。
4.如图所示,半圆玻璃砖的半径R=12cm,直径AB与光屏MN垂直并接触于A点。
一束激光a从半圆弧表面上射向半圆玻璃砖的圆心O,光线与竖直直径AB之间的夹角为60°,最终在光屏MN上出现两个光斑,且A点左侧光斑与A之间距离为4cm。
求:①玻璃砖的折射率;②改变激光a 的入射方向,使光屏MN 上只剩一个光斑,求此光斑离A 点的最远距离。
5.(多选)如图,一束光沿半径方向射向一块半圆柱形玻璃砖,在玻璃砖底面上的入射角为θ,经折射后射出a 、b 两束光线。
则( )A .在玻璃中,a 光的传播速度小于b 光的传播速度B .在真空中,a 光的波长小于b 光的波长C .玻璃砖对a 光的折射率小于对b 光的折射率D .若改变光束的入射方向使θ角逐渐变大,则折射光线a 首先消失E .分别用a 、b 光在同一个双缝干涉实验装置上做实验,a 光的干涉条纹间距大于b 光的干涉条纹间距6.(2019·沈阳市第一七0中学高二期中)如图所示,将半圆形玻璃砖放在竖直面内,它左方有较大的光屏P ,一光束SA 总是射向圆心O ,在光束SA 绕圆心O 逆时针转动过程中,在光屏P 上先看到七色光带,然后各色光陆续消失,则此七色光带从下到上....的排列顺序以及最早消失的光是( ) A .红光→紫光,红光 B .紫光→红光,红光 C .红光→紫光,紫光D .紫光→红光,紫光7.固定的半圆形玻璃砖的横截面如图。
几何光学典型例题
1.桌面上有一倒立的玻璃圆锥,其顶点恰好与桌面接触,圆锥的轴(图中虚线)与桌面垂直,过轴线的截面为等边三角形,如图所示,有一半径为r=3cm的圆柱形平行光束垂直入射到圆锥的底面上,光束的中心轴与圆锥的轴重合。
已知玻璃的折射率为n=1.6,求光束在桌面上形成的光斑半径。
【答案】6cm2.如图,一赛艇停在平静的水面上,赛艇前端有一标记P离水面的高度为h1=0.6m,尾部下端Q略高于水面;赛艇正前方离赛艇前端S1=0.8m处有一浮标。
一潜水员在浮标前方S2=3.0m处下潜到深度为h2=4.0m时,看到标记P刚好被浮标挡住,此处看不到船尾端Q;潜水员继续下潜△h=4.0m,恰好能看见Q,求:(1) 水的折射率n;(2) 赛艇的长度l。
(可用根式表示)【答案】(1)43n=(2)87( 3.8) 3.33l m m=-≈3.如图所示,空气中有一折射率为的玻璃柱体,其横截面是圆心角为90°,半径为R的扇形OAB。
一束平行光平行于横截面,以45°入射角照射到0A上,0B不透光。
若只考虑首次入射到圆弧AB上的光,则AB上有光透出部分的弧长为多长?【答案】14Rπ4.(9分)用透明物质做成内、外半径分别为a,b的空心球的内表面上,涂有能完全吸光的物质,当一束平行光射向此球时,被吸收掉的光束的横截面积S=2πa2,如图所示。
不考虑透明物质的吸收和外表面的反射,试求该透明物质的折射率n【答案】n=25.一位学生用如图所示的方法来测定水的折射率,该学生在一个游泳池测得池中水深h=1.2 m(池底水平),用一根竹竿竖直立于池底,浸入水中部分刚好是全长的一半,太阳光与水平方向成θ=37°角射入游泳池,池底竹竿顶端的影子到竹竿底端的距离为L=2.5 m,求水的折射率和光在水中的传播速度。
(sin37°=0.6,cos37°=0.8)【答案】34;2.25×108 m/s6.【物理-选修3-4】(15分)(1)如图所示,一列简谐横波沿x轴传播,实线为t1=0时刻的波形图,虚线为t2=0.25s时刻的波形图,已知这列波的周期大于0.25s,则这列波的传播速度大小和方向可能是:A.2m/s,向左B.2m/s,向右C.6m/s,向左D.6m/s,向右(2)单色光束射到折射率n=1.414的透明球表面,光束在过球心的平面内,入射角i=450研究经折射进入球内后,又经内表面反射一次,再经球面折射后射出的光线,如图示。
光学作业答案
I = 0.37% ,此时接近消反射。 I0
2π λ0 λ0 = π , λ0 = 500nm λ 2 λ
(2)反射两光束相位差
δ=
2π
λ
2n 2 h =
将 λ = 400nm 和 λ = 700 nm 分别代入上式,得到相位差分别是 1.375πrad 和 0.7857πrad 20.砷化镓发光管制成半球形,以增加位于球心的发光区对外输出功率,减少反射损耗,已 知砷化镓发射光波长 930nm,折射率为 3.4,为了进一步提高光输出功率,常在球形表面涂 一层增透膜。 (1)不加增透膜时,球面的强度反射率多大? (2)增透膜折射率和厚度应取多大? (3)如果用氟化镁(1.38)作为增透膜,能否增透?强度反射率多大? (4)如果用硫化锌(2.35) ,情况又如何? 解:
此光学系统成像在 L1 之右 10cm 处。
, s1, s2 10 10 = − = −1 , V2 = − = − = 2, 横向放大率分别为 V1 = − −5 s1 10 s2
总放大率 V = V1 • V2 = −2 27.用作图法求本题各图中的 Q 像。 (a)
(b)
(c)
(d)
35.(1)用作图法求图中光线 1 共轭线 (2)在图上标出光具组节点 N,N’位置
与屏幕交点(零级)随之移动,即以 M 为中心转了角 β ≈ δs / B ,反映在屏幕上零级位移
C δs ,即幕上条纹总体发生一个平移。 B (5)设扩展光源 b,即其边缘两点间隔 δs = b ,若这两套条纹错开的距离(零级平移量) δx = Δx ,则幕上衬比度降为零,据此有, B+C C δx = b , Δx = λ 2aB B 令 δx = Δx ,
36.已知 1-1’是一对共轭光线,求光线 2 的共轭线。
几何光学习题及解答
几何光学习题及解答1.证明反射定律符合费马原理。
证明:费马原理是光沿着光程为最小值、最大值或恒定值的路径传播。
⎰=BAnds 或恒值max .min ,在介质n 与'n 的界面上,入射光A 遵守反射定律11i i '=,经O 点到达B 点,如果能证明从A 点到B 点的所有光程中AOB 是最小光程,则说明反射定律符合费马原理。
设C 点为介质分界面上除O 点以外的其他任意一点,连接ACB 并说明光程∆ ACB>光程∆AOB由于∆ACB 与∆AOB 在同一种介质里,所以比较两个光程的大小,实际上就是比较两个路程ACB 与AOB 的大小。
从B 点到分界面的垂线,垂足为o ',并延长O B '至 B ′,使B O B O '='',连接 B O ',根据几何关系知B O OB '=,再结合11i i '=,又可证明∠180='B AO °,说明B AO '三点在一直线上,B AO ' 与AC 和B C '组成ΔB AC ',其中B C AC B AO '+〈'。
又∵CB B C AOB OB AO B O AO B AO ='=+='+=',ACB CB AC AOB =+〈∴即符合反射定律的光程AOB 是从A 点到B 点的所有光程中的极小值,说明反射定律符合费马原理。
2、根据费马原理可以导出在近轴光线条件下,从物点发出并会聚到像点的所有光线的光程都相等.由此导出薄透镜的物象公式。
证明:由QB A ~FBA 得:OF\AQ=BO\BQ=f\s同理,得OA\BA=f '\s ',BO\BA=f\s由费马定理:NQA+NQ A '=NQ Q '结合以上各式得:(OA+OB)\BA=1得证 3.眼睛E 和物体PQ 之间有一块折射率为1.5的玻璃平板(见题3.3图),平板的厚度d 为30cm.求物PQ 的像 与物体PQ 之间的距离 为多少?解:.由题意知光线经两次折射后发生的轴向位移为:cmn d p p 10)321(30)11(=-=-=',即像与物的距离为cm 103.眼睛E 和物体PQ 之间有一块折射率为1.5的玻璃平板(见题3.3图),平板的厚度d 为30cm.求物PQ 的像 与物体PQ 之间的距离 为多少?解:.由题意知光线经两次折射后发生的轴向位移为:cmn d p p 10)321(30)11(=-=-=',即像与物的距离为cm 10En=1题3.3图4.玻璃棱镜的折射棱角A 为60度,对某一波长的光其折射率为1.6.计算(1)最小偏向角;(2)此时的入射角;(3)能使光线从A 角两侧透过棱镜的最小入射角.解:由最小偏向角定义得 n=sin2A0+θ/sin 2A,得θ0=46゜16′由几何关系知,此时的入射角为:i=2A0+θ=53゜8′当在C 处正好发生全反射时:i 2’= sin-16.11 =38゜41′,i 2=A- i 2’=21゜19′∴i 1= sin -1(1.6sin 21゜19′)= 35゜34′ ∴imin =35゜34′5.图示一种恒偏向棱角镜,它相当于一个30度-60-90度棱镜与一个45度-45度度棱镜按图示方式组合在一起.白光沿i 方向入射,我们旋转这个棱镜来改变1θ,从而使任意一种波长的光可以依次循着图示的路径传播,出射光线为r.求证:如果2sin 1n=θ则12θθ=,且光束i 与 r 垂直(这就是恒偏向棱镜名字的由来). 解: i nsin sin 11=θ若θ1sin = 2n , 则 sini 1 = 21, i 1=30。
几何光学习题及解答
几何光学习题及解答1.证明反射定律符合费马原理。
证明:费马原理是光沿着光程为最小值、最大值或恒定值的路径传播。
Bndmin.ma某或恒值A,在介质n与n'的界面上,入射光A遵守反射定律i1i1,经O点到达B点,如果能证明从A点到B点的所有光程中AOB是最小光程,则说明反射定律符合费马原理。
设C点为介质分界面上除O点以外的其他任意一点,连接ACB并说明光程ACB>光程AOB由于ACB与AOB在同一种介质里,所以比较两个光程的大小,实际上就是比较两个路程ACB与AOB的大小。
从B点到分界面的垂线,垂足为o,并延长BO至B,使OBOB,连接OB,根′据几何关系知OBOB,再结合i1i1,又可证明∠AOB180°,说明AOB三点在一直线上,AOB与AC和CB组成ΔACB,其中AOBACCB。
又∵AOBAOOBAOOBAOB,CBCBAOBACCBACB即符合反射定律的光程AOB是从A点到B点的所有光程中的极小值,说明反射定律符合费马原理。
BAi’n‘OCOn’‘B2、根据费马原理可以导出在近轴光线条件下,从物点发出并会聚到像点的所有光线的光程都相等.由此导出薄透镜的物象公式。
证明:由QBA~FBA得:OF\\AQ=BO\\BQ=f\\同理,得OA\\BA=f\\,BO\\BA=f\\结合以上各式得:(OA+OB)\\BA=1得证3.眼睛E和物体PQ之间有一块折射率为1.5的玻璃平板(见题3.3图),平板的厚度d为30cm.求物PQ 的像与物体PQ之间的距离为多少解:.由题意知光线经两次折射后发生的轴向位移为:12ppd(1)30(1)10cmn3,即像与物的距离为10cm3.眼睛E和物体PQ之间有一块折射率为1.5的玻璃平板(见题3.3图),平板的厚度d为30cm.求物PQ的像与物体PQ之间的距离为多少解:.由题意知光线经两次折射后发生的轴向位移为:12ppd(1)30(1)10cmn3,即像与物的距离为10cmEQn=1题3.3图4.玻璃棱镜的折射棱角A为60度,对某一波长的光其折射率为1.6.计算(1)最小偏向角;(2)此时的入射角;(3)能使光线从A角两侧透过棱镜的最小入射角.0A解:由最小偏向角定义得n=in2A/in2,得0=46゜16′0A由几何关系知,此时的入射角为:i=2=53゜8′当在C处正好发生全反射时:i2=in’11.6-1=38゜41′,i2=A-i2=21゜19′’i1=in-1(1.6in21゜19′)=35゜34′imin=35゜34′5.图示一种恒偏向棱角镜,它相当于一个30度-60-90度棱镜与一个45度-45度度棱镜按图示方式组合在一起.白光沿i方向入射,我们旋转这个棱镜来改变1,从而使任意一种波长的光可以依次循着图示的路径传播,出射光线为r.求证:如果束i与r 垂直(这就是恒偏向棱镜名字的由来).解:in1nini1in1n2则21,且光n1。
几何光学习题及答案
几何光学习题及答案几何光学习题及答案光学是物理学的一个重要分支,研究光的传播、反射、折射、干涉、衍射等现象。
几何光学是光学中的一个重要概念,它主要研究光在直线传播时的规律。
在几何光学中,有许多有趣的习题可以帮助我们更好地理解光的行为。
下面,我将提供一些几何光学习题及其答案,希望对大家的学习有所帮助。
习题一:平面镜反射假设有一面平面镜,光线以45度的角度入射到镜面上,求出反射光线的角度。
答案:根据平面镜反射定律,入射角等于反射角,因此反射光线的角度也是45度。
习题二:球面镜成像一面凸透镜的焦距为20cm,物体距离透镜20cm,求出成像的位置和倍率。
答案:根据透镜公式1/f = 1/v - 1/u,其中f为焦距,v为像距,u为物距。
代入数据计算可得1/20 = 1/v - 1/20,解得v = 40cm。
根据倍率公式m = v/u,代入数据计算可得m = 40/20 = 2。
因此成像位置在距离透镜40cm处,倍率为2。
习题三:折射定律光线从空气射入折射率为1.5的介质中,入射角为30度,求出折射角。
答案:根据折射定律n1sinθ1 = n2sinθ2,其中n1为入射介质折射率,n2为出射介质折射率,θ1为入射角,θ2为折射角。
代入数据计算可得1sin30 =1.5sinθ2,解得θ2 = arcsin(1sin30/1.5) ≈ 19.47度。
因此折射角约为19.47度。
习题四:薄透镜成像一面凸透镜的焦距为10cm,物体距离透镜20cm,求出成像的位置和倍率。
答案:根据透镜公式1/f = 1/v - 1/u,代入数据计算可得1/10 = 1/v - 1/20,解得v = 20cm。
根据倍率公式m = v/u,代入数据计算可得m = 20/20 = 1。
因此成像位置在距离透镜20cm处,倍率为1。
习题五:干涉条纹两束光线以相同的频率和相位差为0的情况下通过两个狭缝,观察到干涉条纹。
如果将狭缝之间的距离减小一半,观察到的干涉条纹间距会发生什么变化?答案:干涉条纹的间距与狭缝之间的距离成正比。
高中物理经典:几何光学-经典例题精选全文完整版
可编辑修改精选全文完整版
51几何光学
授课内容:
例题1、求视深。
设水下h处有一物体,从它的正上方水面观察,看到的物体的像在什么位置?设水的折射率为n。
例题2、如图一个储油桶的底面直径与高均为d,当桶内没有油时,从某点A恰能看到桶底边缘的某点B。
当桶内油的深度等于桶高的一半时,仍沿AB方向看去,恰好看到桶底上的点C,CB两点距离d/4。
求油的折射率和光在油中传播的速度。
A
d
B
例题3、假设地球表面不存在大气层,那么人们观察到的日出时刻与存在大气层的情况相比()
A、将提前
B、将延后
C、不变
D、在某些地区将提前,在另一些地区将延后。
例题4、如图所示,两块同样的的玻璃直角三棱镜ABC,两者的AC面是平行放置的,在它们之间是均匀的未知透明介质。
一单色细光束O垂直于AB面入射,在图示的出射光线中
A.1、2、3(彼此平行)中的任一条都有可能
B.4、5、6(彼此平行)中的任一条都有可能
C.7、8、9(彼此平行)中的任一条都有可能
D.只能是4、6中的某一条
例题5、例题5. 光线由介质A进入介质B,入射角小于折射角,由此可知()
A、介质A是光密介质
B、光在介质A中的速度大些
C、介质A的折射率比介质B的小
D、光从介质A进入介质B不可能发生全反射
例题6. 如图所示,一立方体玻璃砖,放在空气中,平行光束从立方体的顶面斜射入玻璃砖,然后投射到它的一个侧面,若全反射临界角为42°,问:
(1)这光线能否从侧面射出?
(2)若光线能从侧面射出,
玻璃砖折射率应该满足何条件?
i r。
第一章几何光学
第一章 几何光学A、基础训练一、选择题1、如图15-10所示,是实际景物的俯视图,平面镜AB 宽1米,在镜的右前方站着一个人甲,另一人乙沿着镜面的中垂线走近平面镜,若欲使甲乙能互相看到对方在镜中的虚像,则乙与镜面的最大距离是(A) 0.25米 (B) 0.5米 (C) 0.75米 图15-10(D) 1米2、如图15-11所示,水平地面与竖直墙面的交点为O 点,质点A 位于离地面高NO ,离墙远MO 处,在质点A 的位置放一点光源S ,后来,质点A 被水平抛出,恰好落在O 点,不计空气阻力,那么在质点在空中运动的过程中,它在墙上的影子将由上向下运动,其运动情况是(A) 相等的时间内位移相等 (B) 自由落体图15-11(C) 初速度为零的匀加速直线运动,加速度a <g (D) 变加速直线运动3、如图15-12所示,两束频率不同的光束A 和B 分别沿半径方向射入半圆形玻璃砖,出射光线都是OP 方向,下面正确的是(A) 穿过玻璃砖所需的时间较长(B) 光由玻璃射向空气发生全反射时,A 的临界角小 (C) 光由玻璃射向空气发生全反射时,B 的临界角小 (D) 以上都不对 4、下列说法正确的是①物与折射光在同一侧介质中是实物且物距为正;与入射光在同一侧介质中是虚物且物距为负。
②虚像像距小与零,且一定与折射光不在同一侧介质中。
③判断球面镜曲率半径的正负可以看凹进去的那一面是朝向折射率高的介质还是折射率低的介质。
④单球面镜的焦度为负,说明起发散作用,为正说明起会聚作用。
因此凸面镜不可能起发散作用。
⑤物方焦距是像距无穷远时的物距,像方焦距是物距无穷远时的像距 (A) ②③④ (B) ①②③⑤(C) ①②⑤ (D) ①③ (E) ①③④5、已知 , ,11=n 5.12=n cm r 10-=在图15-14光路图中正确的是(A) 1,2 (B) 2,.3 (C) 2,4 (D) 1,2,4 (E) 26、一块正方形玻璃砖的中间有一个球形大气泡。
几何光学练习题
几何光学练习题几何光学是光学中的重要分支,它研究了光的传播和反射原理。
通过解决几何光学练习题,我们可以更好地理解和应用这些原理。
本文将提供几个几何光学练习题,并附上解答,帮助读者巩固所学知识。
练习题一:一束光线从玻璃进入水中,观察到折射角为45度。
已知玻璃的折射率为1.5,水的折射率为1.33。
求入射角。
解答:根据折射定律,入射角i、折射角r和介质的折射率n之间有关系:n1*sin(i) = n2*sin(r),其中n1和n2分别表示两个介质的折射率。
代入已知条件,得到1.5*sin(i) = 1.33*sin(45°)。
解方程,求得入射角i ≈ 48.43度。
练习题二:一束光线从空气射向玻璃表面,入射角为60度,折射角为30度。
已知空气的折射率为1,求玻璃的折射率。
解答:根据折射定律,入射角i、折射角r和介质的折射率n之间有关系:n1*sin(i) = n2*sin(r),其中n1和n2分别表示两个介质的折射率。
代入已知条件,得到1*sin(60°) = n2*sin(30°)。
解方程,求得玻璃的折射率n2 ≈ 1.73。
练习题三:一个玻璃球的半径为5厘米,放置在水中,观察到球的视深为3厘米。
水的折射率为1.33,玻璃的折射率为1.5。
求球的物理深度。
解答:根据折射定律,球的视深d、球的物理深度h和介质的折射率n之间有关系:d/n = h/(n-1),其中n表示介质的折射率。
代入已知条件,得到3/1.33 = h/(1.5-1)。
解方程,求得球的物理深度h ≈ 8.25厘米。
练习题四:一束光线通过一个凹透镜后变为发散光。
已知透镜的焦距为20厘米,物体距离透镜为40厘米,求像的位置。
解答:根据透镜公式,光线通过凹透镜后成像的位置由以下关系确定:1/f = 1/v - 1/u,其中f表示透镜的焦距,v表示像的位置,u表示物体的位置。
代入已知条件,得到1/20 = 1/v - 1/40。
几何光学作业2011(2)
第1题:
一折射球面r=150mm,n=1,n’=1.5。
当物方截距分别为-∞、-1000mm、-100mm、0mm、100mm、150mm、200mm时,求像方截距及垂轴放大率各为多少?
第2题:
在曲率半经r=200mm的凸面镜前l= -1000 mm处有一物高为y=100mm的物体,求该物体经球面镜后所成像的位置和大小。
第3题:
1.针对位于空气中的正透镜组(f’大于0)和负透镜组(f’小于0),用作图法分别对以下物距(以主点为原点)
-∞、-2f、- f、-f/2、f/2、f、2f、∞
求像平面的位置。
第4题:
已知一个透镜将一物放大-3X投影在屏幕上,当透镜向物体移近18mm时,物体将被放大-4X,求透镜的焦距。
第1题:
某物镜由两个薄光组组成:f1’=100mm,f2’=200mm,d=0;在第一光组前x= —50mm 处有一物高为y=20mm的物体,求:(1)该物镜的焦距;(2)像的位置;(3)像高。
第2题:
一个薄正透镜将一实物成一实象,物象之间相距112.5 mm,求:
1)当像高为物高的4倍时,该正透镜的焦距;
2)上述情况下,该正透镜应放在何处?(它到物面的距离)
3)若希望所成的象的像高为物高的1/4倍,且物和像的位置不变,则该正透镜应向何方移动?移动的距离是多少?
第3题:
一薄透镜组焦距为100 mm,和另一焦距为50 mm的薄透镜组合,其组合焦距仍为100 mm,问两薄透镜的相对位置,并求基点位置。
第4题:
(1)、在图3-2中求出虚物Y的象Y’
题3-2图
(2)、在图3-3中求出实像A’的共轭物点A。
题3-3图。
物理竞赛作业(几何光学)
物理竞赛作业(光学)姓名_______________1.如图所示,某人的眼睛在E处通过放大镜L观察标尺M,F为L的焦点,他既能通过L看到M上一部分刻度,又能直接从镜外看到一部分刻度.试在题图上用作图法求出他看不到的M上的刻度值的范围2.设有两凸透镜L1和L2,它们的焦距各为20cm和30cm,两者相距10cm,在L1前100cm 处放一高4.5cm的物体,求最后所成像的位置、大小和性质,并作图.3.图为一凹球面镜,球心为C,内盛透明液体,已知C至液面的高度CE为40厘米,主轴C0上有一物体A,物离液面高度AE恰好为30厘米时,物A的实像和物处于相同的高度.实验时光圈直径很小,可以保证近轴光线成像.试求该透明液体的折射率n.4.要在一张照片上同时拍摄物体正面和几个不同侧面的像,可以在物体的后面放两个直立的大平面镜AO和BO,使物体和它对两个平面镜所成的像都摄入照相机.如图(a)图所示,图中带箭头的圆圈P代表一个人的头部,白色、半圆代表人的脸部,此人正面对着照相机的镜头;有斜线的半圆代表脑后的头发;箭头表示头顶上的帽子,(c)图为俯视图.若两平面镜的夹角么∠AOB=72°,设人头的中心恰好位于角平分线OC上,且照相机到人的距离远大于人到平面镜的距离.(1)试在右(c)图中画出P的所有的像的位置并用空白和斜线分别表示人脸和头发,以表明各个像的方位.(2)在右图(b)中的方框中画出照片上得到的所有的像(分别用空白和斜线表示人脸和头发,用箭头表示头顶上的帽子)5.某同学用一块直径12.5cm,焦距1m的凸透镜L l和一块直径1 cm,焦距10cm的凸透镜L2,自制一个开普勒望远镜.(1)当用它沿水平方向观察50m远处的旗杆并使其最终成像于10m远处时,镜筒的长度应多大?这时旗杆如果位于望远镜的轴线所在的竖直面上,它上面应有多长的一段被观察到?(2)如果要使被观察到的旗杆长度增加一倍,且尽可能增加像的亮度,不改变镜筒的长度而在物镜和目镜之间放上一块适当的凸透镜就可以,则这个透镜应放在f什么位置?直径及焦距应多大?。
几何光学练习题及答案
几何光学练习题及答案教学内容:1.球面折射:单球面折射;共轴球面折射系统。
2.透镜:薄透镜及薄透镜组合成像;透镜的像差和纠正方法。
3.眼睛:人眼的光学结构。
眼的调节、人眼的分辨本领及视力;4.光学仪器:放大镜;光学显微镜的放大率、分辨本领和数值孔径。
一、填空题1.把焦距为2.0×10-1m的凸透镜和焦距为4.0×10-1m的凹透镜紧密粘合,它们的焦度为;一个会聚透镜的焦距为10 cm,物距为30 cm,则像距为。
2.不易引起眼睛过度疲劳的最适宜距离约为 ,这个距离称为视力正常人的。
3.正常视力的人,其远点在,近点距离约为 10~12cm,远视眼是近点变远,近视眼。
4.从物体上两点发出的光线对人眼所张的角称为视角。
眼睛能分辩的称为眼的分辨本领.5.当观察国际标准视力表所张视角为10’时,国际标准视力为,标准对数视力为。
6.近视眼的矫正方法是配戴一副适当焦度的,远视眼矫正需配戴一副适当焦度的。
7.用放大镜观察物体时,物体置于处,眼睛所看到的像虚实、正倒、大小如何?。
8.显微镜的放大率等于与的乘积。
9.显微镜物镜所能分辨出的两点之间的最短距离为,称为显微镜物镜的数值孔径。
10.提高显微镜分辨本领的方法有和。
二、选择题1.单球面折射成像公式适用条件是( )。
A.平行光入射 B.近轴光线入射 C.n2>nlD.nl>n22.如图所示,物体在A点,对左球面而言,物距u1、像距v1>2r和曲率半径r1的正、负为( )。
A.u1、v1、r1均为负B.u1、r1为正,v1为负C.r1为正,u1、v1为负D.u1、v1、r1均为正3.同3题一样,对右球面而言,物距u2、像距v2和曲率半径r2的正、负为( )。
A.u2、v2、r2均为正 B.u2、r2为负,v2为正C.U2、v2、r2均为负D.U2为负,r2、v2为正4.单球面、薄透镜的物方焦距是像距为无限时的()。
A.物距,只能与物同侧 B.物距,只能与物异侧C.物距,可与物同侧或异侧 D.以上均不对5、一曲率半径为50cm、折射率为1.5的薄平凸透镜使一物形成大小为物体2倍的蚀像,则该物的位置应在镜前()。
(完整版)几何光学练习题
Ⅰ几何光学练习题一.选择题1.关于光的反射,下列说法中正确的是 ( C )A .反射定律只适用于镜面反射B .漫反射不遵循反射定律C .如果甲能从平面镜中看到乙的眼睛,则乙也能同时通过镜面看到甲的眼睛D .反射角是指反射光线与界面的夹角2.光线由空气射入半圆形玻璃砖,再由玻璃砖射入空气,指出下列图光路图哪个是可能的( C )3.光线以某一入射角从空气射入折射率为3的玻璃中,折射光线恰好跟反射光线垂直,则入射角等于A 450B 300C 600D 1504.光线由一种介质Ⅰ射向另一种介质Ⅱ,若这两种介质的折射率不同,则 ( C )A .一定能进入介质Ⅱ中传播B .若进入介质Ⅱ中,传播方向一定改变C .若进入介质Ⅱ中,传播速度一定改变D .不一定能进入介质Ⅱ中传播5.如图所示,竖直放置的平面镜M 前,放有一点光源S ,设S 在平面镜中的像为S ′,则相对于站在地上的观察点来说(A C )A .若S 以水平速度v 向M 移动,则S ′以-v 移动B .若S 以水平速度v 向M 移动,则S ′以-2v 移动C .若M 以水平速度v 向S 移动,则S ′以2v 移动D .若M 以水平速度v 向S 移动,则S ′以v 移动6.三种介质I 、II 、III 的折射率分别为n 1、n 2和n 3,且n 1>n 2>n 3,则 ( B ) A .光线由介质III 入射II 有可能发生全反射 B .光线由介质I 入射III 有可能发生全反射 C .光线由介质III 入射I 有可能发生全反射D .光线由介质II 入射I 有可能发生全反射7.一条光线在三种介质的平行界面上反射或折射的情况如 图所示,若光在 I 、II 、III 三种介质中的速度分别为 v 1、v 2和v 3,则 ( C )A .v 1>v 2>v 3B .v 1<v 2<v 3C .v 1>v 3>v 2D .v 1<v 3<v 2A DMS8。
下图是四位同学画的光的色散示意图。
几何光学习题及答案
几何光学习题及答案几何光学是研究光在不同介质中的传播规律和成像特性的学科。
以下是一些几何光学的习题及答案,供学习者参考。
# 习题1:光线的折射一束光线从空气斜射入水中,入射角为30°,求折射角。
答案:根据斯涅尔定律,\( n_1 \sin(\theta_1) = n_2 \sin(\theta_2) \),其中\( n_1 \)和\( n_2 \)分别是空气和水的折射率,\( \theta_1 \)和\( \theta_2 \)分别是入射角和折射角。
空气的折射率为1,水的折射率约为1.33。
将已知数值代入公式,得到:\[ 1 \times \sin(30°) = 1.33 \times \sin(\theta_2) \]\[ \sin(\theta_2) = \frac{1}{1.33} \times \sin(30°) \]\[ \theta_2 = \arcsin\left(\frac{1}{1.33} \times\frac{1}{2}\right) \]\[ \theta_2 \approx 22.09° \]# 习题2:凸透镜的焦距已知凸透镜的焦距为20cm,物体距离透镜30cm,求像的性质。
答案:根据透镜公式\( \frac{1}{f} = \frac{1}{d_o} + \frac{1}{d_i} \),其中\( f \)是焦距,\( d_o \)是物距,\( d_i \)是像距。
已知\( f = 20cm \) 和 \( d_o = 30cm \),代入公式得到:\[ \frac{1}{20} = \frac{1}{30} + \frac{1}{d_i} \]\[ \frac{1}{d_i} = \frac{1}{20} - \frac{1}{30} \]\[ d_i = \frac{30}{20 - 30} = -45cm \]由于像距是负值,表示像在透镜的同侧,且是实像。
物理竞赛几何光学训练(含答案)
D 几何光学训练题1.对于下列光现象的说法中,正确的是 ( )A .夏天烈日照射下公路远望像洒了一层水一样,这是光的全反射现象B .通过玻璃三棱镜看到的像比物体实际位置要低C .光导纤维是利用光的全反射现象制成的D .手术台上的无影灯消除影子是由于光没直线传播的形成的 2.对于光的传播,下列说法中正确的是( ). A.一定颜色的光传播度大小由媒质决定B.不同颜色的光在同一种媒质中传播时,波长越短的光传播速度越快C.同一频率的光在不同媒质波长不同,而在真空中的波长最长D.同一色光的频率随传播速度不同而改变3.简易潜望镜中的两块平面镜中心点之间的距离为L,通过潜望镜观察水平正前方的物体,看到像的位置比物体的实际位置( ).A.水平方向远L,竖直方向低LB.水平方向远L,竖直方向高LC.水平方向近L,竖直方向高LD.水平方向近L,竖直方向低L4.某一单色光在折射率为n 1的媒质中传播时,它的波长、频率和波速分别用λ1、γ1和υ1表示,在折射度为n 2的媒质中,分别用λ2、γ2和υ2表示,以上这些物理量存在如下的关系( ).5.在两束频率相同的单色光的交点前放一块平行的玻璃砖后,则交点的位置与不放玻璃砖前相比( ).(如图7-2-4所示)A.不变B.向左C.向右D.向左还是向右由光的频率大小决定6.点光源S 通过带有圆孔的挡板N ,照射到屏M 上,形成直径为d 的亮圆.如果在挡 板靠近光屏一侧放上一块厚玻璃砖,如图20-14所示,这时点光源通过圆孔和玻璃,在屏上形成直径为D 的亮圆.则直径D 和d 的大小关系为 ( )A .d >DB .d =DC .d <D D .无法确定7.如图所示,任意一条光线射向夹角为ϕ的两平面镜的相对镜面上,相继经两镜面反射后,最后射出线与最初入射线的方向间夹角应为( )(A) ϕ (B)2ϕ (C)3ϕ (D)4ϕ8.某同学为了研究光的色散,设计了如下实验:在墙角放置一个盛水 的容器,其中有一块与水平面成45°角放置的平面镜M ,如图所示,一细束白光斜射向水面,经水折射向平面镜,被平面镜反射经 水面折射后照在墙上,该同学可在墙上看到 ( ) A .上紫下红的彩色光带 B .上红下紫的彩色光带 C .外红内紫的环状光带 D .一片白光 9.如图所示,两个同种玻璃制成的棱镜,顶角α1 略大于α2 ,两单色光1和2分别垂直入射三棱镜,其出射光线与第二界面的夹角β1 =β2 ,则A 、在棱镜中1光的折射率比2光小B 、在光谱中,1光比较靠近红光C 、在棱镜中1光的传播速度比2光的小D 、把此两光由水中射向空气,产生全反射时,1光的临界角比2光的临界角大。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1 1.5 1−1.5 ⇒d = 50cm → − = 40 −(d − 30) −5
所以棒长50cm 所以棒长
3. 一平凹薄透镜,由折射率为 一平凹薄透镜,由折射率为1.50的玻璃制成,其凹 的玻璃制成, 的玻璃制成 面的曲率半径为10cm,位于空气中,求它的焦距和光 面的曲率半径为 ,位于空气中, 焦度。如果将此透镜放在水中,水的折射率为4/3, 焦度。如果将此透镜放在水中,水的折射率为 ,问 透镜焦距数值变为原来在空气焦距的多少倍? 透镜焦距数值变为原来在空气焦距的多少倍? ′ n2 ′ , 解:(1) f ′ = 其中 n = n =1 n = 1.5, 2 1 ′ n2 − n n− n 1 + r = ∞, r =10cm , 1 2 r r 2 1 n′ 1 2 ⇒ f ′ = −20cm Φ = = = −5D −2 f ′ − 20×10 (2) 放入水中
20cm
5cm
L 1
L 2
S2
S1
(二) 选择题
1. 声波在空气中的速度为 声波在空气中的速度为330m·s-1,而在水中为 1320m·s-1,则当声波入射到空气和水的分界面上,其 则当声波入射到空气和水的分界面上, 1 对声波而言折射率较高的介质是 临界角为________, 临界角为 arcsin , 空气 。 4 _________。 2. 一束波长为λ的平行光 自 的平行光S自 •M S 空气垂直射到厚度为e的玻璃 空气垂直射到厚度为 的玻璃 h 面上A点处 A 板aa'面上 点处,如图所示, 面上 点处,如图所示, • a a′ 已知玻璃的折射率为n, 已知玻璃的折射率为 ,入射 • B 光到达A点后分为反射光和透 光到达 点后分为反射光和透 • N 射光两束, 射光两束,这两束光分别传 播到M点和 点时, 点和N点时 播到 点和 点时,光程保持 相同,已知AM长度为 米, 长度为h米 相同,已知 长度为 AN长度是 +λ 2−(。−1)e 长度是_________。 长度是 h n
n′ n n′ − n 1 − 1= 1 1 ′ l1 l1 r 1
M M′
• •
光折射在平行平面玻璃右边第二次成像 1 1.5 n′ n n′ − n 2 2 2 2 → − =0 − = 1 ′ 9−t l2 l2 r 2
1.5 1 ′ → − = 0 ⇒l1 = 9cm ′ l1 6
6பைடு நூலகம்m
1 cm 8
4 ′ n2 = n = , n =1.5, r = ∞, r =10cm 1 1 2 3 代入(1) 代入 焦距公式中 ⇒ f ′′ = −80cm f ′′ ⇒放 倍 大 数 n= =4 f′
4. 自一透镜射出的光向 点会聚(如图所示),在M 自一透镜射出的光向M点会聚 如图所示), 点会聚( ),在 点的左方放一厚度为t的平行平面玻璃 折射率为1.50, 的平行平面玻璃, 点的左方放一厚度为 的平行平面玻璃,折射率为 , 玻璃垂直水平轴,则光线会聚于M'点 玻璃垂直水平轴,则光线会聚于 点,即M点沿水平 点沿水平 轴移至M'点 已知玻璃左边一面距M点为 点为6cm, MM' 轴移至 点,已知玻璃左边一面距 点为 , 为1/8cm,求玻璃的厚度。 ,求玻璃的厚度。 解:光入射平行平面玻璃左边第一次成像
′ ⇒l1 = −399R≈ ∞
第二次成像, 第二次成像,根据公式
1 1.33 1−1.33 → − = ′ l2 ∞ −R
n′ n n′ − n 2 − 2= 2 2 ′ l2 l2 r 2
′ ⇒l2 = 3R 成像在后表面3R处。 成像在后表面 处
2. 一折射率为 一折射率为1.50的玻璃棒,在其两端磨圆并抛光成 的玻璃棒, 的玻璃棒 半径为5cm的半球面,当一物放置于棒轴上离一端 的半球面, 半径为 的半球面 20cm处时,最后的像成在离另一端 处时, 处时 最后的像成在离另一端40cm处,此棒的长 处 度为多少? 度为多少? n =1.5 第一次成像, 解:第一次成像,根据公式
d
•
n′ n n′ − n 1.5 1 1.5 −1 1 1 1 1 − = ′ ⇒l1 = 30cm → − = ′ l1 l1 r ′ l1 − 20 5 1 n′ n n′ − n 2 第二次成像, 第二次成像,根据公式 − 2= 2 2 ′ l2 l2 r 2 l2 = −(d − 30)cm
10. 如图所示,L1、L2分别为凸透镜和凹透镜,前面放 如图所示, 分别为凸透镜和凹透镜, 一小物,移动屏幕到L 的 处接收到像。 一小物,移动屏幕到 2后20cm的S1处接收到像。现将凹 透镜L 撤去,将屏幕移前5cm至S2处,重新接收到像, 重新接收到像, 透镜 2撤去,将屏幕移前 至 凹透镜L 的焦距为( 凹透镜 2的焦距为( ) A. -20cm C. -60cm B. -40cm D. -80cm
3. 要把球面发射镜前 要把球面发射镜前10cm处的灯丝成像在 处的墙上, 处的灯丝成像在3m处的墙上 处的灯丝成像在 处的墙上, r=_________cm,这时像放大了 -30 -19.4 ,这时像放大了________倍。 倍 4. 一点光源位于水面下 一点光源位于水面下20cm处,光从水中出射,水的折 处 光从水中出射, 射率为4/3,则在水面上形成的最大圆直径为________m。 射率为 ,则在水面上形成的最大圆直径为 0.456 。 5. 在空气中频率为 ×1014Hz的单色光进入某种透明介 在空气中频率为5× 的单色光进入某种透明介 质后波长变为4000Å,则此介质的折射率为 1.5 质后波长变为 ,则此介质的折射率为_______, , 14 光在介质内频率为_______________。 光在介质内频率为 5×10 H z 。 6. 当用曲率半径不等的一双凸透镜在同种介质中对一 实物成像,若先后使凸透镜分别面向物(物距不变), 实物成像,若先后使凸透镜分别面向物(物距不变), 不变 两次成像大小_______,位置 两次成像大小 ,位置___________。 。 不变
(三) 计算题
1. 一半径为 的薄壁玻璃球盛满水,若把一物体放置于 一半径为R的薄壁玻璃球盛满水 的薄壁玻璃球盛满水, 离其表面3R处 求最后的像的位置。 离其表面 处,求最后的像的位置。玻璃壁的影响可忽 略不计,水的折射率n=1.33。 略不计,水的折射率 。 盛水的玻璃球不能看作是薄透镜, 解: 盛水的玻璃球不能看作是薄透镜,分别成像 第一次成像, 第一次成像,根据公式 1.33 1 1.33−1 n′ n n′ − n 1 1 1 1 − = → − = ′ l1 l1 r ′ l1 − 3R R 1
7. 照相机的透镜往往采用两个薄透镜胶合而成,一个 照相机的透镜往往采用两个薄透镜胶合而成, 是焦距为10cm的凸透镜 另一个是焦距为15cm的凹透 的凸透镜, 是焦距为10cm的凸透镜,另一个是焦距为15cm的凹透 那么这一透镜组的焦距为( 镜,那么这一透镜组的焦距为( ) A. 5cm B. 6cm C. 20cm D. 30cm
4. 一薄透镜由折射率为 的玻璃制成,将此薄透镜放 一薄透镜由折射率为1.5的玻璃制成 的玻璃制成, 在折射率为4/3的水中 的水中。 在折射率为 的水中。则此透镜的焦距数值就变成原 来在空气中焦距数值的() 来在空气中焦距数值的() D:1.5/1.333倍 : 倍 C. 4倍 倍 A. 2倍 B. 3倍 倍 倍 5. 焦距为 焦距为4cm的薄凸透镜用作放大镜,若物置于透镜 的薄凸透镜用作放大镜, 的薄凸透镜用作放大镜 前3cm处,则其横向放大率为( ) 处 则其横向放大率为( A. 3 B. 4 C. 6 D. 12
f′ f 16 −12 + =1 → + =1 再根据 l′ l l′ −18 在玻璃箱右48cm ⇒l′ = 48cm 在玻璃箱右 ′ 48 1 n l1 1 = ⋅ β1 = = −2 n′l1 −18 4 3 1
5. 有一长 有一长40cm的玻璃箱(其壁厚可略)箱内装水(如 的玻璃箱( 的玻璃箱 其壁厚可略)箱内装水( 图所示),在箱的一端开一圆孔,嵌上一平凸薄透镜, ),在箱的一端开一圆孔 图所示),在箱的一端开一圆孔,嵌上一平凸薄透镜, 其焦距f'=12cm,如果在镜外面距透镜 其焦距 ,如果在镜外面距透镜18cm处有一物 处有一物 的像在何处, 体A,问物体 的像在何处,放大率是多少?其中水的 ,问物体A的像在何处 放大率是多少? 折射率为4/3,玻璃的折射率为3/2。 折射率为 ,玻璃的折射率为 。 A • 第二次成像, 第二次成像,玻璃折射 n′ n n′ − n 1 4 3 1−4 3 2 2 2 2 − = → − = ′ ′ l2 l2 r l2 8 ∞ 2
7. 一面镜子失落在水深 一面镜子失落在水深30cm的水桶底部,人眼在离水面 的水桶底部, 的水桶底部 15cm处向下俯视桶底的镜子,看到镜子里眼睛的像,它 处向下俯视桶底的镜子, 处向下俯视桶底的镜子 看到镜子里眼睛的像, 离人眼的距离为________cm。 离人眼的距离为 75 。 8. 显微镜物镜的焦距为 显微镜物镜的焦距为4mm,中间像成在物镜像方焦 , 点后面160mm处,如果目镜是 ×的,则显微镜的总 点后面 处 如果目镜是20 放大率为___________。 放大率为 。 -800 9. 设伽利略望远镜的放大率是 × ,物镜与目镜的距离 设伽利略望远镜的放大率是4 是12cm,则物镜为 16 ,则物镜为_______cm,目镜的焦距为 -4 ,目镜的焦距为______cm。 。
6+ −t 8
3 ⇒t = cm 8
5. 有一长 有一长40cm的玻璃箱(其壁厚可略)箱内装水(如 的玻璃箱( 的玻璃箱 其壁厚可略)箱内装水( 图所示),在箱的一端开一圆孔,嵌上一平凸薄透镜, ),在箱的一端开一圆孔 图所示),在箱的一端开一圆孔,嵌上一平凸薄透镜, 其焦距f'=12cm,如果在镜外面距透镜 其焦距 ,如果在镜外面距透镜18cm处有一物 处有一物 的像在何处, 体A,问物体 的像在何处,放大率是多少?其中水的 ,问物体A的像在何处 放大率是多少? 折射率为4/3,玻璃的折射率为3/2。 折射率为 ,玻璃的折射率为 。 A • 解:第一次成像 嵌在玻璃箱后, 嵌在玻璃箱后,平凸薄透镜的像方焦距发生变化 f′ n′ f′ 4 2 =− → =− ⇒ f ′ = 16cm f n 3 −12 1