遗传算法代码
遗传算法第四章交叉代码
遗传算法为了增加实用性,直接使用代码进行讲解;通过前面两章,我们知道交叉的方式有:单点交叉、多点交叉、均匀交叉、算术交叉、部分映射交叉【private List<Integer> singlePointCrossover(List<Integer> parent1, List<Integer> parent2) {// 单点交叉int startPos = random.nextInt(parent1.size());int endPos = random.nextInt(parent1.size());if (startPos > endPos) {int temp = startPos;startPos = endPos;endPos = temp;}List<Integer> child = new ArrayList<>(Collections.nCopies(parent1.size(), -1));for (int i = startPos; i <= endPos; i++) {int gene = parent1.get(i);child.set(i, gene);}for (int i = 0; i < parent2.size(); i++) {int gene = parent2.get(i);if (!child.contains(gene)) {for (int j = 0; j < child.size(); j++) {if (child.get(j) == -1) {child.set(j, gene);break;}}}}return child;}// 交叉操作(多点交叉)private List<Integer> multiPointCrossover(List<Integer> parent1, List<Integer> parent2) {int startPos = random.nextInt(parent1.size());int endPos = random.nextInt(parent1.size());if (startPos > endPos) {int temp = startPos;startPos = endPos;endPos = temp;}List<Integer> child = new ArrayList<>(parent1.subList(startPos, endPos));for (Integer gene : parent2) {if (!child.contains(gene)) {int insertionIndex = random.nextInt(child.size() + 1);child.add(insertionIndex, gene);}}return child;}// 交叉操作(均匀交叉)private List<Integer> uniformCrossover(List<Integer> parent1, List<Integer> parent2) { List<Integer> child = new ArrayList<>();for (int i = 0; i < parent1.size(); i++) {if (random.nextBoolean()) {child.add(parent1.get(i));} else {child.add(parent2.get(i));}}return child;}// 交叉操作(算术交叉)private List<Integer> arithmeticCrossover(List<Integer> parent1, List<Integer> parent2) {List<Integer> child = new ArrayList<>();for (int i = 0; i < parent1.size(); i++) {int gene1 = parent1.get(i);int gene2 = parent2.get(i);child.add((gene1 + gene2) / 2);}return child;}// 交叉操作(部分映射交叉)private List<Integer> partiallyMappedCrossover(List<Integer> parent1, List<Integer> parent2) {int startPos = random.nextInt(parent1.size());int endPos = random.nextInt(parent1.size());if (startPos > endPos) {int temp = startPos;startPos = endPos;endPos = temp;}List<Integer> child = new ArrayList<>(Collections.nCopies(parent1.size(), -1));for (int i = startPos; i <= endPos; i++) {int gene = parent1.get(i);child.set(i, gene);}for (int i = startPos; i <= endPos; i++) {int gene = parent2.get(i);int index = parent2.indexOf(gene);while (child.get(index) != -1) {gene = parent2.get(index);index = parent2.indexOf(gene);}child.set(index, parent2.get(i));}for (int i = 0; i < parent1.size(); i++) {if (child.get(i) == -1) {child.set(i, parent2.get(i));}}return child;}】。
遗传算法代码python
遗传算法代码python一、简介遗传算法是一种通过模拟自然选择和遗传学原理来寻找最优解的优化算法。
它广泛应用于各种领域,包括优化问题、搜索和机器学习等。
二、代码概述以下是一个简单的遗传算法的Python代码示例,用于解决简单的优化问题。
该算法使用一个简单的二进制编码方式,并使用适应度函数来评估每个个体的适应度。
三、代码实现```pythonimportnumpyasnp#遗传算法参数POPULATION_SIZE=100#种群规模CROSSOVER_RATE=0.8#交叉概率MUTATION_RATE=0.1#变异概率MAX_GENERATIONS=100#最大迭代次数#适应度函数deffitness(individual):#在这里定义适应度函数,评估每个个体的适应度#这里简单地返回个体值的平方,可以根据实际问题进行调整returnnp.sum(individual**2)#初始种群生成pop=np.random.randint(2,size=(POPULATION_SIZE,))#迭代过程forgenerationinrange(MAX_GENERATIONS):#评估种群中每个个体的适应度fitness_values=np.apply_along_axis(fitness,1,pop)#选择种群selected_idx=np.random.choice(np.arange(POPULATION_SIZE), size=POPULATION_SIZE,replace=True,p=fitness_values/fitness_va lues.sum())selected_pop=pop[selected_idx]#交叉操作ifCROSSOVER_RATE>np.random.rand():cross_points=np.random.rand(POPULATION_SIZE,2)<0.5#随机选择交叉点cross_pop=np.array([np.hstack((individual[cross_points[i, 0]:cross_points[i,1]]+individual[cross_points[i,1]:],other))f ori,otherinenumerate(selected_pop)]).T#合并个体并随机交叉得到新的个体cross_pop=cross_pop[cross_points]#将交叉后的个体重新排列成原始种群大小selected_pop=np.vstack((selected_pop,cross_pop))#将新个体加入种群中#变异操作ifMUTATION_RATE>np.random.rand():mutated_pop=selected_pop+np.random.randn(POPULATION_SIZE, 1)*np.sqrt(np.log(POPULATION_SIZE))*(selected_pop!=pop).astyp e(np.float)#根据变异概率对个体进行变异操作,得到新的个体种群mutated_pop=mutated_pop[mutated_pop!=0]#将二进制种群中值为0的个体去掉,因为这些个体是随机的二进制串,不是解的一部分,不应该参与变异操作selected_pop=mutated_pop[:POPULATION_SIZE]#将新种群中除最后一个以外的部分加入原始种群中(即新的种群被排除了适应度最差的个体)#选择当前最好的个体(用于更新最优解)best_idx=np.argmax(fitness_values)best_solution=selected_pop[best_idx]print(f"Generation{generation}:Bestsolution:{best_solutio n}")```四、使用示例假设要解决一个简单的优化问题:求一个一维函数的最小值。
遗传算法解释及代码(一看就懂)
遗传算法( GA , Genetic Algorithm ) ,也称进化算法。
遗传算法是受达尔文的进化论的启发,借鉴生物进化过程而提出的一种启发式搜索算法。
因此在介绍遗传算法前有必要简单的介绍生物进化知识。
一.进化论知识作为遗传算法生物背景的介绍,下面内容了解即可:种群(Population):生物的进化以群体的形式进行,这样的一个群体称为种群。
个体:组成种群的单个生物。
基因 ( Gene ) :一个遗传因子。
染色体 ( Chromosome ):包含一组的基因。
生存竞争,适者生存:对环境适应度高的、牛B的个体参与繁殖的机会比较多,后代就会越来越多。
适应度低的个体参与繁殖的机会比较少,后代就会越来越少。
遗传与变异:新个体会遗传父母双方各一部分的基因,同时有一定的概率发生基因变异。
简单说来就是:繁殖过程,会发生基因交叉( Crossover ) ,基因突变( Mutation ) ,适应度( Fitness )低的个体会被逐步淘汰,而适应度高的个体会越来越多。
那么经过N代的自然选择后,保存下来的个体都是适应度很高的,其中很可能包含史上产生的适应度最高的那个个体。
二.遗传算法思想借鉴生物进化论,遗传算法将要解决的问题模拟成一个生物进化的过程,通过复制、交叉、突变等操作产生下一代的解,并逐步淘汰掉适应度函数值低的解,增加适应度函数值高的解。
这样进化N代后就很有可能会进化出适应度函数值很高的个体。
举个例子,使用遗传算法解决“0-1背包问题”的思路:0-1背包的解可以编码为一串0-1字符串(0:不取,1:取);首先,随机产生M个0-1字符串,然后评价这些0-1字符串作为0-1背包问题的解的优劣;然后,随机选择一些字符串通过交叉、突变等操作产生下一代的M个字符串,而且较优的解被选中的概率要比较高。
这样经过G代的进化后就可能会产生出0-1背包问题的一个“近似最优解”。
编码:需要将问题的解编码成字符串的形式才能使用遗传算法。
遗传算法解释及代码(一看就懂)【精品毕业设计】(完整版)
遗传算法( GA , Genetic Algorithm ) ,也称进化算法。
遗传算法是受达尔文的进化论的启发,借鉴生物进化过程而提出的一种启发式搜索算法。
因此在介绍遗传算法前有必要简单的介绍生物进化知识。
一.进化论知识作为遗传算法生物背景的介绍,下面内容了解即可:种群(Population):生物的进化以群体的形式进行,这样的一个群体称为种群。
个体:组成种群的单个生物。
基因 ( Gene ) :一个遗传因子。
染色体 ( Chromosome ):包含一组的基因。
生存竞争,适者生存:对环境适应度高的、牛B的个体参与繁殖的机会比较多,后代就会越来越多。
适应度低的个体参与繁殖的机会比较少,后代就会越来越少。
遗传与变异:新个体会遗传父母双方各一部分的基因,同时有一定的概率发生基因变异。
简单说来就是:繁殖过程,会发生基因交叉( Crossover ) ,基因突变( Mutation ) ,适应度( Fitness )低的个体会被逐步淘汰,而适应度高的个体会越来越多。
那么经过N代的自然选择后,保存下来的个体都是适应度很高的,其中很可能包含史上产生的适应度最高的那个个体。
二.遗传算法思想借鉴生物进化论,遗传算法将要解决的问题模拟成一个生物进化的过程,通过复制、交叉、突变等操作产生下一代的解,并逐步淘汰掉适应度函数值低的解,增加适应度函数值高的解。
这样进化N代后就很有可能会进化出适应度函数值很高的个体。
举个例子,使用遗传算法解决“0-1背包问题”的思路:0-1背包的解可以编码为一串0-1字符串(0:不取,1:取);首先,随机产生M个0-1字符串,然后评价这些0-1字符串作为0-1背包问题的解的优劣;然后,随机选择一些字符串通过交叉、突变等操作产生下一代的M个字符串,而且较优的解被选中的概率要比较高。
这样经过G代的进化后就可能会产生出0-1背包问题的一个“近似最优解”。
编码:需要将问题的解编码成字符串的形式才能使用遗传算法。
遗传算法MATLAB完整代码(不用工具箱)
遗传算法MATLAB完整代码(不用工具箱)遗传算法解决简单问题%主程序:用遗传算法求解y=200*exp(-0.05*x).*sin(x)在区间[-2,2]上的最大值clc;clear all;close all;global BitLengthglobal boundsbeginglobal boundsendbounds=[-2,2];precision=0.0001;boundsbegin=bounds(:,1);boundsend=bounds(:,2);%计算如果满足求解精度至少需要多长的染色体BitLength=ceil(log2((boundsend-boundsbegin)'./precision));popsize=50; %初始种群大小Generationmax=12; %最大代数pcrossover=0.90; %交配概率pmutation=0.09; %变异概率%产生初始种群population=round(rand(popsize,BitLength));%计算适应度,返回适应度Fitvalue和累计概率cumsump[Fitvalue,cumsump]=fitnessfun(population);Generation=1;while Generation<generationmax+1< p="">for j=1:2:popsize%选择操作seln=selection(population,cumsump);%交叉操作scro=crossover(population,seln,pcrossover);scnew(j,:)=scro(1,:);scnew(j+1,:)=scro(2,:);%变异操作smnew(j,:)=mutation(scnew(j,:),pmutation);smnew(j+1,:)=mutation(scnew(j+1,:),pmutation);endpopulation=scnew; %产生了新的种群%计算新种群的适应度[Fitvalue,cumsump]=fitnessfun(population);%记录当前代最好的适应度和平均适应度[fmax,nmax]=max(Fitvalue);fmean=mean(Fitvalue);ymax(Generation)=fmax;ymean(Generation)=fmean;%记录当前代的最佳染色体个体x=transform2to10(population(nmax,:));%自变量取值范围是[-2,2],需要把经过遗传运算的最佳染色体整合到[-2,2]区间xx=boundsbegin+x*(boundsend-boundsbegin)/(power((boundsend),BitLength)-1);xmax(Generation)=xx;Generation=Generation+1;endGeneration=Generation-1;Bestpopulation=xx;Besttargetfunvalue=targetfun(xx);%绘制经过遗传运算后的适应度曲线。
遗传算法解释及代码(一看就懂)
遗传算法( GA , Genetic Algorithm ) ,也称进化算法。
遗传算法是受达尔文的进化论的启发,借鉴生物进化过程而提出的一种启发式搜索算法。
因此在介绍遗传算法前有必要简单的介绍生物进化知识。
一.进化论知识作为遗传算法生物背景的介绍,下面内容了解即可:种群(Population):生物的进化以群体的形式进行,这样的一个群体称为种群。
个体:组成种群的单个生物。
基因 ( Gene ) :一个遗传因子。
染色体 ( Chromosome ):包含一组的基因。
生存竞争,适者生存:对环境适应度高的、牛B的个体参与繁殖的机会比较多,后代就会越来越多。
适应度低的个体参与繁殖的机会比较少,后代就会越来越少。
遗传与变异:新个体会遗传父母双方各一部分的基因,同时有一定的概率发生基因变异。
简单说来就是:繁殖过程,会发生基因交叉( Crossover ) ,基因突变( Mutation ) ,适应度( Fitness )低的个体会被逐步淘汰,而适应度高的个体会越来越多。
那么经过N代的自然选择后,保存下来的个体都是适应度很高的,其中很可能包含史上产生的适应度最高的那个个体。
二.遗传算法思想借鉴生物进化论,遗传算法将要解决的问题模拟成一个生物进化的过程,通过复制、交叉、突变等操作产生下一代的解,并逐步淘汰掉适应度函数值低的解,增加适应度函数值高的解。
这样进化N代后就很有可能会进化出适应度函数值很高的个体。
举个例子,使用遗传算法解决“0-1背包问题”的思路:0-1背包的解可以编码为一串0-1字符串(0:不取,1:取);首先,随机产生M个0-1字符串,然后评价这些0-1字符串作为0-1背包问题的解的优劣;然后,随机选择一些字符串通过交叉、突变等操作产生下一代的M个字符串,而且较优的解被选中的概率要比较高。
这样经过G代的进化后就可能会产生出0-1背包问题的一个“近似最优解”。
编码:需要将问题的解编码成字符串的形式才能使用遗传算法。
(完整版)遗传算法c语言代码
srand((unsigned)time(NULL));
for(i=0;i<num;i++)
{
bianyip[i]=(rand()%100);
bianyip[i]/=100;
}
//确定可以变异的染色体
t=0;
for(i=0;i<num;i++)
{
if(bianyip[i]<pm)
printf("\n******************是否想再一次计算(y or n)***********************\n");
fflush(stdin);
scanf("%c",&choice);
}while(choice=='y');
return 0;
}
{
flag=0;
break;
}
}
if(flag)
{
group[i].city[j]=t;
j++;
}
}
}
printf("************初始种群如下****************\n");
for(i=0;i<num;i++)
{
for(j=0;j<cities;j++)
printf("%4d",group[i].city[j]);
{
group[i].p=1-(double)group[i].adapt/(double)biggestsum;
biggestp+=group[i].p;
遗传算法编码
遗传算法编码1. 引言遗传算法编码是遗传算法的重要组成部分,它决定了问题的解空间以及遗传算法的搜索能力。
本文将深入探讨遗传算法编码的原理、常用编码方式以及编码的优化方法。
2. 遗传算法概述遗传算法是一种模拟自然选择和遗传机制的搜索算法,它通过模拟生物进化的过程来寻找最优解。
遗传算法包含三个基本操作:选择、交叉和变异。
而编码是其中非常重要的一步,它将问题的解空间映射到遗传算法的搜索空间。
3. 二进制编码二进制编码是遗传算法中最常用的编码方式之一。
它将问题的解表示为一个二进制串,每个基因位上的0或1代表了一种取值。
例如,对于一个长度为10的二进制串,可以表示从0到1023的整数。
二进制编码的优点是简单、易于实现,但对于连续型问题的表示能力较弱。
3.1 基本二进制编码基本二进制编码将问题的解空间均匀划分为若干个区间,每个区间对应一个二进制码。
通过二进制码的变换和操作,可以实现选择、交叉和变异等基本操作。
但基本二进制编码的缺点是解空间的粒度较大,可能导致搜索效率低下。
3.2 Gray编码Gray编码是一种改进的二进制编码方式,它通过保证相邻两个码之间只有一个位的变化,减小了解空间的粒度。
Gray编码在交叉和变异操作中具有更好的性质,能够减小搜索空间的距离。
因此,Gray编码常用于需要高精度的遗传算法问题中。
4. 实数编码实数编码是另一种常用的遗传算法编码方式,它将问题的解表示为一个实数。
实数编码的优点是对连续型问题的表示能力较强,可以更精确地描述解空间。
但相比于二进制编码,实数编码的实现较为复杂。
4.1 浮点数编码浮点数编码是实数编码的一种常见形式。
它将问题的解表示为一个浮点数,通过确定小数点位置和精度来描述解的取值范围。
浮点数编码适用于解空间较大且精度要求一般的问题。
4.2 实数编码实数编码是一种更为灵活的编码方式,它将问题的解表示为一个实数,可以包含任意精度的小数部分。
实数编码适用于解空间较小且精度要求较高的问题。
遗传算法C语言源代码(一元函数和二元函数)
C语言遗传算法代码以下为遗传算法的源代码,计算一元代函数的代码和二元函数的代码以+++++++++++++++++++++++++++++++++++++为分割线分割开来,请自行选择适合的代码,使用时请略看完代码的注释,在需要更改的地方更改为自己需要的代码。
+++++++++++++++++++++++++++++++一元函数代码++++++++++++++++++++++++++++#include <stdio.h>#include<stdlib.h>#include<time.h>#include<math.h>#define POPSIZE 1000#define maximization 1#define minimization 2#define cmax 100#define cmin 0#define length1 20#define chromlength length1 //染色体长度//注意,你是求最大值还是求最小值int functionmode=minimization;//变量的上下限的修改开始float min_x1=-2;//变量的下界float max_x1=-1;//变量的上界//变量的上下限的修改结束int popsize; //种群大小int maxgeneration; //最大世代数double pc; //交叉率double pm; //变异率struct individual{char chrom[chromlength+1];double value;double fitness; //适应度};int generation; //世代数int best_index;int worst_index;struct individual bestindividual; //最佳个体struct individual worstindividual; //最差个体struct individual currentbest;struct individual population[POPSIZE];//函数声明void generateinitialpopulation();void generatenextpopulation();void evaluatepopulation();long decodechromosome(char *,int,int);void calculateobjectvalue();void calculatefitnessvalue();void findbestandworstindividual();void performevolution();void selectoperator();void crossoveroperator();void mutationoperator();void input();void outputtextreport();void generateinitialpopulation( ) //种群初始化{int i,j;for (i=0;i<popsize; i++){for(j=0;j<chromlength;j++){population[i].chrom[j]=(rand()%20<10)?'0':'1';}population[i].chrom[chromlength]='\0';}}void generatenextpopulation() //生成下一代{selectoperator();crossoveroperator();mutationoperator();}void evaluatepopulation() //评价个体,求最佳个体{calculateobjectvalue();calculatefitnessvalue();findbestandworstindividual();}long decodechromosome(char *string ,int point,int length) //给染色体解码{int i;long decimal=0;char*pointer;for(i=0,pointer=string+point;i<length;i++,pointer++)if(*pointer-'0'){decimal +=(long)pow(2,i);}return (decimal);}void calculateobjectvalue() //计算函数值{int i;long temp1,temp2;double x1;for (i=0; i<popsize; i++){temp1=decodechromosome(population[i].chrom,0,length1);x1=(max_x1-min_x1)*temp1/(1024*1024-1)+min_x1;//目标函数修改开始population[i].value=(pow(x1,5)-3*x1-1)*(pow(x1,5)-3*x1-1);//目标函数修改结束}}void calculatefitnessvalue()//计算适应度{int i;double temp;for(i=0;i<popsize;i++){if(functionmode==maximization){if((population[i].value+cmin)>0.0){temp=cmin+population[i].value;}else{temp=0.0;}}else if (functionmode==minimization){if(population[i].value<cmax){temp=cmax-population[i].value;}else{ temp=0.0;}}population[i].fitness=temp;}}void findbestandworstindividual( ) //求最佳个体和最差个体{int i;double sum=0.0;bestindividual=population[0];worstindividual=population[0];for (i=1;i<popsize; i++){if (population[i].fitness>bestindividual.fitness){bestindividual=population[i];best_index=i;}else if (population[i].fitness<worstindividual.fitness) {worstindividual=population[i];worst_index=i;}sum+=population[i].fitness;}if (generation==0){currentbest=bestindividual;}else{if(bestindividual.fitness>=currentbest.fitness){currentbest=bestindividual;}}}void performevolution() //演示评价结果{if (bestindividual.fitness>currentbest.fitness){ currentbest=population[best_index];}else{population[worst_index]=currentbest;}}void selectoperator() //比例选择算法{int i,index;double p,sum=0.0;double cfitness[POPSIZE];struct individual newpopulation[POPSIZE];for(i=0;i<popsize;i++){sum+=population[i].fitness;}for(i=0;i<popsize; i++){cfitness[i]=population[i].fitness/sum;}for(i=1;i<popsize; i++){cfitness[i]=cfitness[i-1]+cfitness[i];}for (i=0;i<popsize;i++){p=rand()%1000/1000.0;index=0;while (p>cfitness[index]){index++;}newpopulation[i]=population[index];}for(i=0;i<popsize; i++){population[i]=newpopulation[i];}}void crossoveroperator() //交叉算法{int i,j;int index[POPSIZE];int point,temp;double p;char ch;for (i=0;i<popsize;i++){index[i]=i;}for (i=0;i<popsize;i++){point=rand()%(popsize-i);temp=index[i];index[i]=index[point+i];index[point+i]=temp;}for (i=0;i<popsize-1;i+=2){p=rand()%1000/1000.0;if (p<pc){point=rand()%(chromlength-1)+1;for (j=point; j<chromlength;j++){ch=population[index[i]].chrom[j];population[index[i]].chrom[j]=population[index[i+1]].chrom[j];population[index[i+1]].chrom[j]=ch;}}}}void mutationoperator() //变异操作{int i,j;double p;for (i=0;i<popsize;i++){for(j=0;j<chromlength;j++){p=rand()%1000/1000.0;if (p<pm){population[i].chrom[j]=(population[i].chrom[j]=='0')?'1':'0';}}}void input() //数据输入{ //printf("初始化全局变量:\n");//printf(" 种群大小(50-500):");//scanf("%d", &popsize);popsize=500;if((popsize%2) != 0){//printf( " 种群大小已设置为偶数\n");popsize++;};//printf(" 最大世代数(100-300):");//scanf("%d", &maxgeneration);maxgeneration=200;//printf(" 交叉率(0.2-0.99):");//scanf("%f", &pc);pc=0.95;//printf(" 变异率(0.001-0.1):");//scanf("%f", &pm);pm=0.03;}void outputtextreport()//数据输出{int i;double sum;double average;sum=0.0;for(i=0;i<popsize;i++){sum+=population[i].value;}average=sum/popsize;printf("当前世代=%d\n当前世代平均函数值=%f\n当前世代最优函数值=%f\n",generation,average,population[best_index].value);}void main() //主函数{ int i;long temp1,temp2;double x1,x2;generation=0;input();generateinitialpopulation();evaluatepopulation();while(generation<maxgeneration)generation++;generatenextpopulation();evaluatepopulation();performevolution();outputtextreport();}printf("\n");printf(" 统计结果: ");printf("\n");//printf("最大函数值等于:%f\n",currentbest.fitness);printf("其染色体编码为:");for (i=0;i<chromlength;i++){printf("%c",currentbest.chrom[i]);}printf("\n");temp1=decodechromosome(currentbest.chrom,0,length1);x1=(max_x1-min_x1)*temp1/(1024*1024-1)+min_x1;printf("x1=%lf\n",x1);//这是需要修改的地方printf("最优值等于:%f\n",(pow(x1,5)-3*x1-1)*(pow(x1,5)-3*x1-1));}+++++++++++++++++++++++++二元函数代码+++++++++++++++++++++++++++++++++++++++++ #include <stdio.h>#include<stdlib.h>#include<time.h>#include<math.h>#define POPSIZE 500#define maximization 1#define minimization 2#define cmax 100#define cmin 0#define length1 20#define length2 20#define chromlength length1+length2 //染色体长度//-----------求最大还是最小值int functionmode=maximization;//-----------//-----------变量上下界float min_x1=0;float max_x1=3;float min_x2=1;float max_x2=5;//-----------int popsize; //种群大小int maxgeneration; //最大世代数double pc; //交叉率double pm; //变异率struct individual{char chrom[chromlength+1];double value;double fitness; //适应度};int generation; //世代数int best_index;int worst_index;struct individual bestindividual; //最佳个体struct individual worstindividual; //最差个体struct individual currentbest;struct individual population[POPSIZE];//函数声明void generateinitialpopulation();void generatenextpopulation();void evaluatepopulation();long decodechromosome(char *,int,int);void calculateobjectvalue();void calculatefitnessvalue();void findbestandworstindividual();void performevolution();void selectoperator();void crossoveroperator();void mutationoperator();void input();void outputtextreport();void generateinitialpopulation( ) //种群初始化{int i,j;for (i=0;i<popsize; i++){for(j=0;j<chromlength;j++){population[i].chrom[j]=(rand()%40<20)?'0':'1';}population[i].chrom[chromlength]='\0';}}void generatenextpopulation() //生成下一代{selectoperator();crossoveroperator();mutationoperator();}void evaluatepopulation() //评价个体,求最佳个体{calculateobjectvalue();calculatefitnessvalue();findbestandworstindividual();}long decodechromosome(char *string ,int point,int length) //给染色体解码{int i;long decimal=0;char*pointer;for(i=0,pointer=string+point;i<length;i++,pointer++)if(*pointer-'0'){decimal +=(long)pow(2,i);}return (decimal);}void calculateobjectvalue() //计算函数值{int i;long temp1,temp2;double x1,x2;for (i=0; i<popsize; i++){temp1=decodechromosome(population[i].chrom,0,length1);temp2=decodechromosome(population[i].chrom,length1,length2);x1=(max_x1-min_x1)*temp1/(1024*1024-1)+min_x1;x2=(max_x2-min_x2)*temp2/(1024*1024-1)+min_x2;//-----------函数population[i].value=x1*x1+sin(x1*x2)-x2*x2;//-----------}}void calculatefitnessvalue()//计算适应度{int i;double temp;for(i=0;i<popsize;i++){if(functionmode==maximization){if((population[i].value+cmin)>0.0){temp=cmin+population[i].value;}else{temp=0.0;}}else if (functionmode==minimization){if(population[i].value<cmax){temp=cmax-population[i].value;}else{ temp=0.0;}}population[i].fitness=temp;}}void findbestandworstindividual( ) //求最佳个体和最差个体{int i;double sum=0.0;bestindividual=population[0];worstindividual=population[0];for (i=1;i<popsize; i++){if (population[i].fitness>bestindividual.fitness){bestindividual=population[i];best_index=i;}else if (population[i].fitness<worstindividual.fitness) {worstindividual=population[i];worst_index=i;}sum+=population[i].fitness;}if (generation==0){currentbest=bestindividual;}else{if(bestindividual.fitness>=currentbest.fitness){currentbest=bestindividual;}}}void performevolution() //演示评价结果{if (bestindividual.fitness>currentbest.fitness){currentbest=population[best_index];}else{population[worst_index]=currentbest;}}void selectoperator() //比例选择算法{int i,index;double p,sum=0.0;double cfitness[POPSIZE];struct individual newpopulation[POPSIZE];for(i=0;i<popsize;i++){sum+=population[i].fitness;}for(i=0;i<popsize; i++){cfitness[i]=population[i].fitness/sum;}for(i=1;i<popsize; i++){cfitness[i]=cfitness[i-1]+cfitness[i];}for (i=0;i<popsize;i++){p=rand()%1000/1000.0;index=0;while (p>cfitness[index]){index++;}newpopulation[i]=population[index];}for(i=0;i<popsize; i++){population[i]=newpopulation[i];}}void crossoveroperator() //交叉算法{int i,j;int index[POPSIZE];int point,temp;double p;char ch;for (i=0;i<popsize;i++){index[i]=i;}for (i=0;i<popsize;i++){point=rand()%(popsize-i);temp=index[i];index[i]=index[point+i];index[point+i]=temp;}for (i=0;i<popsize-1;i+=2){p=rand()%1000/1000.0;if (p<pc){point=rand()%(chromlength-1)+1;for (j=point; j<chromlength;j++){ch=population[index[i]].chrom[j];population[index[i]].chrom[j]=population[index[i+1]].chrom[j];population[index[i+1]].chrom[j]=ch;}}}}void mutationoperator() //变异操作{int i,j;double p;for (i=0;i<popsize;i++){for(j=0;j<chromlength;j++){p=rand()%1000/1000.0;if (p<pm){population[i].chrom[j]=(population[i].chrom[j]=='0')?'1':'0';}}}}void input() //数据输入{ //printf("初始化全局变量:\n");//printf(" 种群大小(50-500):");//scanf("%d", &popsize);popsize=200;if((popsize%2) != 0){//printf( " 种群大小已设置为偶数\n");popsize++;};//printf(" 最大世代数(100-300):");//scanf("%d", &maxgeneration);maxgeneration=200;//printf(" 交叉率(0.2-0.99):");//scanf("%f", &pc);pc=0.9;//printf(" 变异率(0.001-0.1):");//scanf("%f", &pm);pm=0.003;}void outputtextreport()//数据输出{int i;double sum;double average;sum=0.0;for(i=0;i<popsize;i++){sum+=population[i].value;}average=sum/popsize;printf("当前世代=%d\n当前世代平均函数值=%f\n当前世代最优函数值=%f\n",generation,average,population[best_index].value);}void main() //主函数{ int i;long temp1,temp2;double x1,x2;generation=0;input();generateinitialpopulation();evaluatepopulation();while(generation<maxgeneration){generation++;generatenextpopulation();evaluatepopulation();performevolution();outputtextreport();}printf("\n");printf(" 统计结果: ");printf("\n");//printf("最大函数值等于:%f\n",currentbest.fitness);printf("其染色体编码为:");for (i=0;i<chromlength;i++){printf("%c",currentbest.chrom[i]);}printf("\n");temp1=decodechromosome(currentbest.chrom,0,length1);temp2=decodechromosome(currentbest.chrom,length1,length2);x1=(max_x1-min_x1)*temp1/(1024*1024-1)+min_x1;x2=(max_x2-min_x2)*temp2/(1024*1024-1)+min_x2;printf("x=%lf,y=%lf\n",x1,x2);//-----------修改函数printf("最大值=%f\n",x1*x1+sin(x1*x2)-x2*x2);//-----------}。
遗传算法 c语言代码
以下是一个简单的遗传算法的C语言代码示例:c#include <stdio.h>#include <stdlib.h>#include <time.h>#include <math.h>#define POPULATION_SIZE 100#define GENE_LENGTH 10#define MAX_GENERATIONS 1000#define MUTATION_RATE 0.01#define CROSSOVER_RATE 0.8typedef struct Individual {char genes[GENE_LENGTH];double fitness;} Individual;double calculate_fitness(Individual* individual) {// 计算适应度函数,这里使用简单的二进制字符串中1的个数作为适应度 int count = 0;for (int i = 0; i < GENE_LENGTH; i++) {if (individual->genes[i] == '1') {count++;}}return count;}void initialize_population(Individual* population) {// 初始化种群for (int i = 0; i < POPULATION_SIZE; i++) {for (int j = 0; j < GENE_LENGTH; j++) {population[i].genes[j] = rand() % 2 ? '0' : '1';}population[i].fitness = calculate_fitness(&population[i]); }}void selection(Individual* population, Individual* parents) {// 选择操作,采用轮盘赌算法选择两个父代个体double total_fitness = 0;for (int i = 0; i < POPULATION_SIZE; i++) {total_fitness += population[i].fitness;}double rand1 = rand() / (double)RAND_MAX * total_fitness;double rand2 = rand() / (double)RAND_MAX * total_fitness;double cumulative_fitness = 0;int parent1_index = -1, parent2_index = -1;for (int i = 0; i < POPULATION_SIZE; i++) {cumulative_fitness += population[i].fitness;if (rand1 < cumulative_fitness && parent1_index == -1) {parent1_index = i;}if (rand2 < cumulative_fitness && parent2_index == -1) {parent2_index = i;}}parents[0] = population[parent1_index];parents[1] = population[parent2_index];}void crossover(Individual* parents, Individual* offspring) {// 交叉操作,采用单点交叉算法生成两个子代个体int crossover_point = rand() % GENE_LENGTH;for (int i = 0; i < crossover_point; i++) {offspring[0].genes[i] = parents[0].genes[i];offspring[1].genes[i] = parents[1].genes[i];}for (int i = crossover_point; i < GENE_LENGTH; i++) {offspring[0].genes[i] = parents[1].genes[i];offspring[1].genes[i] = parents[0].genes[i];}offspring[0].fitness = calculate_fitness(&offspring[0]);offspring[1].fitness = calculate_fitness(&offspring[1]);}void mutation(Individual* individual) {// 变异操作,以一定概率翻转基因位上的值for (int i = 0; i < GENE_LENGTH; i++) {if (rand() / (double)RAND_MAX < MUTATION_RATE) {individual->genes[i] = individual->genes[i] == '0' ? '1' : '0'; }}individual->fitness = calculate_fitness(individual);}void replace(Individual* population, Individual* offspring) {// 替换操作,将两个子代个体中适应度更高的一个替换掉种群中适应度最低的一个个体int worst_index = -1;double worst_fitness = INFINITY;for (int i = 0; i < POPULATION_SIZE; i++) {if (population[i].fitness < worst_fitness) {worst_index = i;worst_fitness = population[i].fitness;}}if (offspring[0].fitness > worst_fitness || offspring[1].fitness > worst_fitness) {if (offspring[0].fitness > offspring[1].fitness) {population[worst_index] = offspring[0];} else {population[worst_index] = offspring[1];}}}。
遗传算法java代码
遗传算法java代码遗传算法(Genetic Algorithm)是一种基于生物进化的启发式算法,通过模拟自然选择、交叉和突变等基因操作来优化问题的解。
以下是一个基于Java的遗传算法示例代码:```javaimport java.util.ArrayList;import java.util.List;import java.util.Random;//假设我们要求解的问题是求一个二进制序列的最大值,这个序列的长度为10public class GeneticAlgorithm//染色体长度private static final int CHROMOSOME_LENGTH = 10;//种群大小private static final int POPULATION_SIZE = 100;//迭代次数private static final int MAX_GENERATIONS = 100;//交叉概率private static final double CROSSOVER_RATE = 0.8;//变异概率private static final double MUTATION_RATE = 0.1; //随机数生成器private static final Random RANDOM = new Random(; //个体类private static class Individual//染色体private int[] chromosome;//适应度private double fitness;public Individuachromosome = new int[CHROMOSOME_LENGTH];fitness = 0.0;}//初始化染色体public void initializeChromosomfor (int i = 0; i < CHROMOSOME_LENGTH; i++) chromosome[i] = RANDOM.nextInt(2);}}//计算个体的适应度public void calculateFitnesint decimalValue = 0;for (int i = CHROMOSOME_LENGTH - 1; i >= 0; i--) decimalValue += chromosome[i] * Math.pow(2, CHROMOSOME_LENGTH - i - 1);}fitness = decimalValue;}//获取个体的适应度public double getFitnesreturn fitness;}//获取染色体public int[] getChromosomreturn chromosome;}//设置染色体public void setChromosome(int[] chromosome)this.chromosome = chromosome;}}//生成初始种群private static List<Individual> createInitialPopulatioList<Individual> population = new ArrayList<>(;for (int i = 0; i < POPULATION_SIZE; i++)Individual individual = new Individual(;individual.initializeChromosome(;population.add(individual);}return population;}//选择父母个体private static Individual selectParent(List<Individual> population)double sumFitness = 0.0;for (Individual individual : population)sumFitness += individual.getFitness(;}double randomFitness = RANDOM.nextDouble( * sumFitness;double cumulativeFitness = 0.0;for (Individual individual : population)cumulativeFitness += individual.getFitness(;if (cumulativeFitness > randomFitness)return individual;}}return population.get(0);}//交叉操作private static Individual crossover(Individual parent1, Individual parent2)Individual offspring = new Individual(;int[] parent1Chromosome = parent1.getChromosome(;int[] parent2Chromosome = parent2.getChromosome(;int crossoverPoint = RANDOM.nextInt(CHROMOSOME_LENGTH - 1) + 1;int[] offspringChromosome = new int[CHROMOSOME_LENGTH];System.arraycopy(parent1Chromosome, 0, offspringChromosome, 0, crossoverPoint);System.arraycopy(parent2Chromosome, crossoverPoint, offspringChromosome, crossoverPoint, CHROMOSOME_LENGTH - crossoverPoint);offspring.setChromosome(offspringChromosome);return offspring;}//变异操作private static void mutate(Individual individual)int[] chromosome = individual.getChromosome(;for (int i = 0; i < CHROMOSOME_LENGTH; i++)if (RANDOM.nextDouble( < MUTATION_RATE)chromosome[i] = chromosome[i] == 0 ? 1 : 0;}}individual.setChromosome(chromosome);}//遗传算法主函数public static void main(String[] args)List<Individual> population = createInitialPopulation(;for (int generation = 0; generation < MAX_GENERATIONS; generation++)for (Individual individual : population)individual.calculateFitness(;}Individual bestIndividual = population.get(0);for (Individual individual : population)if (individual.getFitness( > bestIndividual.getFitness() bestIndividual = individual;}}System.out.println("Generation: " + generation + " Best Individual: " + bestIndividual.getFitness();List<Individual> newPopulation = new ArrayList<>(;while (newPopulation.size( < POPULATION_SIZE)Individual parent1 = selectParent(population);Individual parent2 = selectParent(population);Individual offspring = crossover(parent1, parent2);mutate(offspring);newPopulation.add(offspring);}population = newPopulation;}}```以上示例代码实现了一个简单的二进制序列的最大化遗传算法。
遗传算法(浮点数编码)
浮点数编码实现遗传算法遗传算法主要包括三个主要操作,选择、交叉和变异。
用浮点数编码进行运算,三种操作方法如下:选择:1. 计算i f 和n i S f =∑2. 计算ii nf P S =3. 累计概率1ii j j g P ==∑4. 产生均匀分布0~1的随机数r5. 将r 与i g 比较,如果1i i g r g -≤≤,则选择个体i 进入到下一代新群体6. 反复执行4和5,直至新群体的个体数目等于父代群体规模交叉:11(1)(1)t tt A B A t t t B A Bx x x x x x αααα++=+-=+- 其中,1t A x +和1t B x +是交叉之后的个体,t A x 和tB x 是随机选择的两个个体,α是交叉的一个常数, 取值为(0,1]。
变异:1max min()()%20()()%21t t t A A A tt A A x k x x r rand x x k x x r rand +⎧+⋅-⋅==⎨-⋅-⋅=⎩,,1t A x +是变异之后的个体,tA x 是变异之前的个体,k 是变异的一个常数,取值为(0,1],max x 是个体的上限,min x 是个体的下限,r 是产生的随机数。
适应度线性变换:F aF b '=+其中F 是原适应度,F '是变换之后的适应度,a,b 是变换的系数。
适应度线性变换要满足下面两个条件:条件一:avgavg F F '= 条件二:maxavg F C F '=⋅C=1.2~2缩放时参数a,b 的计算方法可以用如下方法: 如果满足:maxmin 1avg C F F F C ⋅->-就令:max (1)avg avg C a F F F -=-max max avg avg avgF C F b F F F -⋅=-否则:min avgavg F a F F =- min min avgavg F F b F F ⋅=- 实现代码如下:#include<stdio.h>#include<stdlib.h>#include<math.h>#include<time.h>#define M 80 //种群数量#define XMIN -1 //下限#define XMAX 2 //上限#define PI 3.1415926#define PC 0.8 //交叉概率#define PM 0.18 //变异概率#define PA 0.01 //交叉因子struct Node{double Pmember;double Myfitness; //Myfitness是适应度double Myfitsum; //Myfitsum是适应度占总体适应度的百分比,然后从第一个个体往后累加,主要用于选择操作}Nownode[M],Nextnode[M]; //本代群体和下一代群体int nodeindex[M]; //交叉时随机配对,存放配对的群体下标int T=0;double fx(double x) //根据x计算fx{double y;y=x*sin(10*PI*x)+2;//y=100-(x-5)*(x-5);return y;}int calfitness() //计算适应度值{int i;double minfitness,maxfitness,avefitness=0;double C=1.7,a,b;double temp;minfitness=Nownode[0].Myfitness=fx(Nownode[0].Pmember);maxfitness=minfitness;avefitness=maxfitness;for(i=1;i<M;i++){Nownode[i].Myfitness=fx(Nownode[i].Pmember);avefitness+=Nownode[i].Myfitness;if(minfitness>Nownode[i].Myfitness){minfitness=Nownode[i].Myfitness;}if(maxfitness<Nownode[i].Myfitness){maxfitness=Nownode[i].Myfitness;}}if(minfitness<0)//如果有负的适应度值,就把所以的适应度都加上一个数,使适应度全都为正数{temp=minfitness;Nownode[0].Myfitness+=-temp;avefitness=Nownode[0].Myfitness;maxfitness=Nownode[0].Myfitness;minfitness=Nownode[0].Myfitness;for(i=1;i<M;i++){Nownode[i].Myfitness+=-temp;avefitness+=Nownode[i].Myfitness;if(minfitness>Nownode[i].Myfitness){minfitness=Nownode[i].Myfitness;}if(maxfitness<Nownode[i].Myfitness){maxfitness=Nownode[i].Myfitness;}}}//适应度线性变换avefitness=avefitness/M;//计算平均适应度if(minfitness>(C*avefitness-maxfitness)/(C-1)){a=(C-1)*avefitness/(maxfitness-avefitness);b=(maxfitness-C*avefitness)*avefitness/(maxfitness-avefitness);}else{a=avefitness/(avefitness-minfitness);b=minfitness*avefitness/(avefitness-minfitness);}for(i=0;i<M;i++){Nownode[i].Myfitness=a*Nownode[i].Myfitness+b;}Nownode[0].Myfitsum=Nownode[0].Myfitness;for(i=1;i<M;i++){Nownode[i].Myfitsum=Nownode[i].Myfitness+Nownode[i-1].Myfitsum;//每一个Myfitsum都是自己的适应度加上前一个的Myfitsum}for(i=0;i<M;i++){Nownode[i].Myfitsum=Nownode[i].Myfitsum/Nownode[M-1].Myfitsum;//每一个Myfitsum除以所有适应度之和,使Myfitsum为0~1之间}return 0;}double randn() //产生XMIN到XMAX之间的随机数{return XMIN+1.0*rand()/RAND_MAX*(XMAX-XMIN);}int initpopulation() //初始化种群{int i;for(i=0;i<M;i++){Nownode[i].Pmember=randn();}calfitness(); //计算适应度return 0;}int assignment(struct Node *node1,struct Node *node2)//把node2的值赋值给node1{node1->Pmember=node2->Pmember;node1->Myfitness=node2->Myfitness;node1->Myfitsum=node2->Myfitsum;return 0;}int copypopulation() //复制操作{int i,num=0;double temp;while(num<M){temp=1.0*rand()/RAND_MAX;for(i=1;i<M;i++){if(temp<=Nownode[0].Myfitsum){assignment(&Nextnode[num++],&Nownode[0]);//把第一个个体复制到下一代break;}if(temp>=Nownode[i-1].Myfitsum&&temp<=Nownode[i].Myfitsum)//把第i个个体复制到下一代{assignment(&Nextnode[num++],&Nownode[i]);break;}}}for(i=0;i<M;i++){assignment(&Nownode[i],&Nextnode[i]); //更新本代个体}calfitness(); //计算适应度return 0;}int isrepeat(int temp,int n) //产生随机下标判断是否重复{int i;for(i=0;i<n;i++){if(nodeindex[i]==temp)return 1;}return 0;}int crossover(){int i,temp;double temp_pc;for(i=0;i<M;i++) //产生交叉点的下标{do {temp=rand()%M;} while(isrepeat(temp,i));nodeindex[i]=temp;}for(i=0;i<M;i=i+2){temp_pc=1.0*rand()/RAND_MAX; //如果满足交叉的条件,就开始交叉if(temp_pc<=PC){Nownode[nodeindex[i]].Pmember=PA*Nownode[nodeindex[i+1]].Pmember+(1-PA)*Nowno de[nodeindex[i]].Pmember;Nownode[nodeindex[i+1]].Pmember=PA*Nownode[nodeindex[i]].Pmember+(1-PA)*Nowno de[nodeindex[i+1]].Pmember;}}calfitness(); //计算适应度return 0;}int mutation() //变异操作{int i,temp;double k=0.8,temp_pm;for(i=0;i<M;i++){temp_pm=1.0*rand()/RAND_MAX;if(temp_pm<=PM) //如果满足变异条件,就开始变异{temp=rand()%2;if(temp==0){Nownode[i].Pmember=Nownode[i].Pmember+k*(XMAX-Nownode[i].Pmember)*1.0*rand( )/RAND_MAX;}else{Nownode[i].Pmember=Nownode[i].Pmember-k*(Nownode[i].Pmember-XMIN)*1.0*rand()/ RAND_MAX;}}}calfitness(); //计算适应度return 0;}int findmaxfit()//找到适应度最大的个体{int i,index=0;double temp=0;for(i=0;i<M;i++){if(temp<Nownode[i].Myfitness){index=i;temp=Nownode[i].Myfitness;}}return index;}int main(){int i=0,index;int num=0,num1=0,num2=0;srand(time(NULL));while(num++<1000){T=0;initpopulation();while(T++<200){copypopulation();crossover();mutation();}index=findmaxfit();if(fabs(Nownode[index].Pmember-1.85)<=0.1){num1++;}else{num2++;}}printf("正确的次数有%d次\n",num1);printf("错误的次数有%d次\n",num2);return 0;}。
遗传算法Matlab源代码
遗传算法Matlab源代码完整可以运行的数值优化遗传算法源代码function[X,MaxFval,BestPop,Trace]=fga(FUN,bounds,MaxEranum,PopSiz e,options,pCross,pMutation,pInversion)%[X,MaxFval,BestPop,Trace]=fga(FUN,bounds,MaxEranum,PopSiz e,options,pCross,pMutation,pInversion)% Finds a maximum of a function of several variables.% fga solves problems of the form:% max F(X) subject to: LB = X = UB (LB=bounds(:,1),UB=bounds(:,2))% X - 最优个体对应自变量值% MaxFval - 最优个体对应函数值% BestPop - 最优的群体即为最优的染色体群% Trace - 每代最佳个体所对应的目标函数值% FUN - 目标函数% bounds - 自变量范围% MaxEranum - 种群的代数,取50--500(默认200)% PopSize - 每一代种群的规模;此可取50--200(默认100)% pCross - 交叉概率,一般取0.5--0.85之间较好(默认0.8)% pMutation - 初始变异概率,一般取0.05-0.2之间较好(默认0.1)% pInversion - 倒位概率,一般取0.05-0.3之间较好(默认0.2) % options - 1*2矩阵,options(1)=0二进制编码(默认0),option(1)~=0十进制编码,option(2)设定求解精度(默认1e-4)T1=clock;%检验初始参数if nargin2, error('FMAXGA requires at least three input arguments'); endif nargin==2, MaxEranum=150;PopSize=100;options=[1 1e-4];pCross=0.85;pMutation=0.1;pInversion=0.25;endif nargin==3, PopSize=100;options=[1 1e-4];pCross=0.85;pMutation=0.1;pInversion=0.25;endif nargin==4, options=[1 1e-4];pCross=0.85;pMutation=0.1;pInversion=0.25;endif nargin==5, pCross=0.85;pMutation=0.1;pInversion=0.25;endif nargin==6, pMutation=0.1;pInversion=0.25;endif nargin==7, pInversion=0.25;endif (options(1)==0|options(1)==1)find((bounds(:,1)-bounds(:,2))0)error('数据输入错误,请重新输入:');end% 定义全局变量global m n NewPop children1 children2 VarNum% 初始化种群和变量precision = options(2);bits = ceil(log2((bounds(:,2)-bounds(:,1))' ./ precision));%由设定精度划分区间VarNum = size(bounds,1);[Pop] = InitPop(PopSize,bounds,bits,options);%初始化种群[m,n] = size(Pop);fit = zeros(1,m);NewPop = zeros(m,n);children1 = zeros(1,n);children2 = zeros(1,n);pm0 = pMutation;BestPop = zeros(MaxEranum,n);%分配初始解空间BestPop,TraceTrace = zeros(1,MaxEranum);完整可以运行的数值优化遗传算法源代码Lb = ones(PopSize,1)*bounds(:,1)';Ub = ones(PopSize,1)*bounds(:,2)';%二进制编码采用多点交叉和均匀交叉,并逐步增大均匀交叉概率%浮点编码采用离散交叉(前期)、算术交叉(中期)、AEA重组(后期)OptsCrossOver = [ones(1,MaxEranum)*options(1);...round(unidrnd(2*(MaxEranum-[1:MaxEranum]))/MaxEranum)]';%浮点编码时采用两种自适应变异和一种随机变异(自适应变异发生概率为随机变异发生的2倍)OptsMutation = [ones(1,MaxEranum)*options(1);unidrnd(5,1,MaxEranum)]';if options(1)==3D=zeros(n);CityPosition=bounds;D = sqrt((CityPosition(:, ones(1,n)) - CityPosition(:, ones(1,n))').^2 +...(CityPosition(:,2*ones(1,n)) - CityPosition(:,2*ones(1,n))').^2 );end%========================================================================== % 进化主程序%%===================================== ===================================== eranum = 1;H=waitbar(0,'Please wait...');while(eranum=MaxEranum)for j=1:mif options(1)==1%eval(['[fit(j)]=' FUN '(Pop(j,:));']);%但执行字符串速度比直接计算函数值慢fit(j)=feval(FUN,Pop(j,:));%计算适应度elseif options(1)==0%eval(['[fit(j)]=' FUN '(b2f(Pop(j,:),bounds,bits));']);fit(j)=feval(FUN,(b2f(Pop(j,:),bounds,bits)));elsefit(j)=-feval(FUN,Pop(j,:),D);endend[Maxfit,fitIn]=max(fit);%得到每一代最大适应值Meanfit(eranum)=mean(fit);BestPop(eranum,:)=Pop(fitIn,:);Trace(eranum)=Maxfit;if options(1)==1Pop=(Pop-Lb)./(Ub-Lb);%将定义域映射到[0,1]:[Lb,Ub]--[0,1] ,Pop--(Pop-Lb)./(Ub-Lb)endswitch round(unifrnd(0,eranum/MaxEranum))%进化前期尽量使用实行锦标赛选择,后期逐步增大非线性排名选择case {0} [selectpop]=TournamentSelect(Pop,fit,bits);%锦标赛选择case {1}[selectpop]=NonlinearRankSelect(Pop,fit,bits);%非线性排名选择end完整可以运行的数值优化遗传算法源代码[CrossOverPop]=CrossOver(selectpop,pCross,OptsCrossOver(er anum,:));%交叉[MutationPop]=Mutation(CrossOverPop,fit,pMutation,VarNum,O ptsMutation(eranum,:)); %变异[InversionPop]=Inversion(MutationPop,pInversion);%倒位%更新种群if options(1)==1Pop=Lb+InversionPop.*(Ub-Lb);%还原PopelsePop=InversionPop;endpMutation=pm0+(eranum^3)*(pCross/2-pm0)/(eranum^4); %逐步增大变异率至1/2交叉率percent=num2str(round(100*eranum/MaxEranum));waitbar(eranum/MaxEranum,H,['Evolution complete ',percent,'%']);eranum=eranum+1;endclose(H);% 格式化输出进化结果和解的变化情况t=1:MaxEranum;plot(t,Trace,t,Meanfit);legend('解的变化','种群的变化');title('函数优化的遗传算法');xlabel('进化世代数');ylabel('每一代最优适应度');[MaxFval,MaxFvalIn]=max(Trace);if options(1)==1|options(1)==3X=BestPop(MaxFvalIn,:);elseif options(1)==0X=b2f(BestPop(MaxFvalIn,:),bounds,bits);endhold on;plot(MaxFvalIn,MaxFval,'*');text(MaxFvalIn+5,MaxFval,['FMAX=' num2str(MaxFval)]);str1=sprintf(' Best generation:\n %d\n\n Best X:\n %s\n\n MaxFval\n %f\n',...MaxFvalIn,num2str(X),MaxFval);disp(str1);% -计时T2=clock;elapsed_time=T2-T1;if elapsed_time(6)0elapsed_time(6)=elapsed_time(6)+60;elapsed_time(5)=elapsed_time(5)-1;endif elapsed_time(5)0elapsed_time(5)=elapsed_time(5)+60;elapsed_time(4)=elapsed_t ime(4)-1;end完整可以运行的数值优化遗传算法源代码str2=sprintf('elapsed_time\n %d (h) %d (m) %.4f (s)',elapsed_time(4),elapsed_time(5),elapsed_time(6));disp(str2);%===================================== ===================================== % 遗传操作子程序%%===================================== ===================================== % -- 初始化种群--% 采用浮点编码和二进制Gray编码(为了克服二进制编码的Hamming悬崖缺点)function [initpop]=InitPop(popsize,bounds,bits,options)numVars=size(bounds,1);%变量数目rang=(bounds(:,2)-bounds(:,1))';%变量范围if options(1)==1initpop=zeros(popsize,numVars);initpop=(ones(popsize,1)*rang).*(rand(popsize,numVars))+(ones (popsize,1)*bounds(:,1)');elseif options(1)==0precision=options(2);%由求解精度确定二进制编码长度len=sum(bits);initpop=zeros(popsize,len);%The whole zero encoding individualfor i=2:popsize-1pop=round(rand(1,len));pop=mod(([0 pop]+[pop 0]),2);%i=1时,b(1)=a(1);i1时,b(i)=mod(a(i-1)+a(i),2)%其中原二进制串:a(1)a(2)...a(n),Gray串:b(1)b(2)...b(n)initpop(i,:)=pop(1:end-1);endinitpop(popsize,:)=ones(1,len);%The whole one encoding individualelsefor i=1:popsizeinitpop(i,:)=randperm(numVars);%为Tsp问题初始化种群endend% -- 二进制串解码--function [fval] = b2f(bval,bounds,bits)% fval - 表征各变量的十进制数% bval - 表征各变量的二进制编码串% bounds - 各变量的取值范围% bits - 各变量的二进制编码长度scale=(bounds(:,2)-bounds(:,1))'./(2.^bits-1); %The range of the variablesnumV=size(bounds,1);cs=[0 cumsum(bits)];for i=1:numVa=bval((cs(i)+1):cs(i+1));fval(i)=sum(2.^(size(a,2)-1:-1:0).*a)*scale(i)+bounds(i,1);end% -- 选择操作--完整可以运行的数值优化遗传算法源代码% 采用基于轮盘赌法的非线性排名选择% 各个体成员按适应值从大到小分配选择概率:% P(i)=(q/1-(1-q)^n)*(1-q)^i, 其中P(0)P(1)...P(n), sum(P(i))=1function [NewPop]=NonlinearRankSelect(OldPop,fit,bits) global m n NewPopfit=fit';selectprob=fit/sum(fit);%计算各个体相对适应度(0,1)q=max(selectprob);%选择最优的概率x=zeros(m,2);x(:,1)=[m:-1:1]';[y x(:,2)]=sort(selectprob);r=q/(1-(1-q)^m);%标准分布基值newfit(x(:,2))=r*(1-q).^(x(:,1)-1);%生成选择概率newfit=[0 cumsum(newfit)];%计算各选择概率之和rNums=rand(m,1);newIn=1;while(newIn=m)NewPop(newIn,:)=OldPop(length(find(rNums(newIn)newfit)),:);newIn=newIn+1;end% -- 锦标赛选择(含精英选择) --function [NewPop]=TournamentSelect(OldPop,fit,bits)global m n NewPopnum=floor(m./2.^(1:10));num(find(num==0))=[];L=length(num);a=sum(num);b=m-a;PopIn=1;while(PopIn=L)r=unidrnd(m,num(PopIn),2^PopIn);[LocalMaxfit,In]=max(fit(r),[],2);SelectIn=r((In-1)*num(PopIn)+[1:num(PopIn)]');NewPop(sum(num(1:PopIn))-num(PopIn)+1:sum(num(1:PopIn)),:)=OldPop(SelectIn,:);PopIn=PopIn+1;r=[];In=[];LocalMaxfit=[];endif b1NewPop((sum(num)+1):(sum(num)+b-1),:)=OldPop(unidrnd(m,1,b-1),:);end[GlobalMaxfit,I]=max(fit);%保留每一代中最佳个体NewPop(end,:)=OldPop(I,:);% -- 交叉操作--function [NewPop]=CrossOver(OldPop,pCross,opts)global m n NewPopr=rand(1,m);完整可以运行的数值优化遗传算法源代码y1=find(rpCross);y2=find(r=pCross);len=length(y1);if len==1|(len2mod(len,2)==1)%如果用来进行交叉的染色体的条数为奇数,将其调整为偶数y2(length(y2)+1)=y1(len);y1(len)=[];endi=0;if length(y1)=2if opts(1)==1%浮点编码交叉while(i=length(y1)-2)NewPop(y1(i+1),:)=OldPop(y1(i+1),:);NewPop(y1(i+2),:)=OldPop(y1(i+2),:);if opts(2)==0n1%discret crossoverPoints=sort(unidrnd(n,1,2));NewPop(y1(i+1),Points(1):Points(2))=OldPop(y1(i+2),Points(1):Po ints(2));NewPop(y1(i+2),Points(1):Points(2))=OldPop(y1(i+1),Points(1):Po ints(2));elseif opts(2)==1%arithmetical crossoverPoints=round(unifrnd(0,pCross,1,n));CrossPoints=find(Points==1);r=rand(1,length(CrossPoints));NewPop(y1(i+1),CrossPoints)=r.*OldPop(y1(i+1),CrossPoints)+(1 -r).*OldPop(y1(i+2),CrossPoints);NewPop(y1(i+2),CrossPoints)=r.*OldPop(y1(i+2),CrossPoints)+(1 -r).*OldPop(y1(i+1),CrossPoints); else %AEA recombination Points=round(unifrnd(0,pCross,1,n));CrossPoints=find(Points==1);v=unidrnd(4,1,2);NewPop(y1(i+1),CrossPoints)=(floor(10^v(1)*OldPop(y1(i+1),Cro ssPoints))+...10^v(1)*OldPop(y1(i+2),CrossPoints)-floor(10^v(1)*OldPop(y1(i+2),CrossPoints)))/10^v(1);NewPop(y1(i+2),CrossPoints)=(floor(10^v(2)*OldPop(y1(i+2),Cro ssPoints))+...10^v(2)*OldPop(y1(i+1),CrossPoints)-floor(10^v(2)*OldPop(y1(i+1),CrossPoints)))/10^v(2);endi=i+2;endelseif opts(1)==0%二进制编码交叉while(i=length(y1)-2)if opts(2)==0[NewPop(y1(i+1),:),NewPop(y1(i+2),:)]=EqualCrossOver(OldPop( y1(i+1),:),OldPop(y1(i+2),:)); else[NewPop(y1(i+1),:),NewPop(y1(i+2),:)]=MultiPointCross(OldPop( y1(i+1),:),OldPop(y1(i+2),:)); endi=i+2;endelse %Tsp问题次序杂交for i=0:2:length(y1)-2xPoints=sort(unidrnd(n,1,2));NewPop([y1(i+1)y1(i+2)],xPoints(1):xPoints(2))=OldPop([y1(i+2)y1(i+1)],xPoints(1):xPoints(2));完整可以运行的数值优化遗传算法源代码%NewPop(y1(i+2),xPoints(1):xPoints(2))=OldPop(y1(i+1),xPo ints(1):xPoints(2));temp=[OldPop(y1(i+1),xPoints(2)+1:n)OldPop(y1(i+1),1:xPoints(2))];for del1i=xPoints(1):xPoints(2)temp(find(temp==OldPop(y1(i+2),del1i)))=[];endNewPop(y1(i+1),(xPoints(2)+1):n)=temp(1:(n-xPoints(2)));NewPop(y1(i+1),1:(xPoints(1)-1))=temp((n-xPoints(2)+1):end);temp=[OldPop(y1(i+2),xPoints(2)+1:n)OldPop(y1(i+2),1:xPoints(2))];for del2i=xPoints(1):xPoints(2)temp(find(temp==OldPop(y1(i+1),del2i)))=[];endNewPop(y1(i+2),(xPoints(2)+1):n)=temp(1:(n-xPoints(2)));NewPop(y1(i+2),1:(xPoints(1)-1))=temp((n-xPoints(2)+1):end);endendendNewPop(y2,:)=OldPop(y2,:);% -二进制串均匀交叉算子function[children1,children2]=EqualCrossOver(parent1,parent2) global n children1 children2hidecode=round(rand(1,n));%随机生成掩码crossposition=find(hidecode==1);holdposition=find(hidecode==0);children1(crossposition)=parent1(crossposition);%掩码为1,父1为子1提供基因children1(holdposition)=parent2(holdposition);%掩码为0,父2为子1提供基因children2(crossposition)=parent2(crossposition);%掩码为1,父2为子2提供基因children2(holdposition)=parent1(holdposition);%掩码为0,父1为子2提供基因% -二进制串多点交叉算子function[Children1,Children2]=MultiPointCross(Parent1,Parent2)%交叉点数由变量数决定global n Children1 Children2 VarNumChildren1=Parent1;Children2=Parent2;Points=sort(unidrnd(n,1,2*VarNum));for i=1:VarNumChildren1(Points(2*i-1):Points(2*i))=Parent2(Points(2*i-1):Points(2*i));Children2(Points(2*i-1):Points(2*i))=Parent1(Points(2*i-1):Points(2*i));end% -- 变异操作--function[NewPop]=Mutation(OldPop,fit,pMutation,VarNum,opts) global m n NewPopNewPop=OldPop;r=rand(1,m);MutIn=find(r=pMutation);L=length(MutIn);完整可以运行的数值优化遗传算法源代码i=1;if opts(1)==1%浮点变异maxfit=max(fit);upfit=maxfit+0.05*abs(maxfit);if opts(2)==1|opts(2)==3while(i=L)%自适应变异(自增或自减)Point=unidrnd(n);T=(1-fit(MutIn(i))/upfit)^2;q=abs(1-rand^T);%if q1%按严格数学推理来说,这段程序是不能缺少的% q=1%endp=OldPop(MutIn(i),Point)*(1-q);if unidrnd(2)==1NewPop(MutIn(i),Point)=p+q;elseNewPop(MutIn(i),Point)=p;endi=i+1;endelseif opts(2)==2|opts(2)==4%AEA变异(任意变量的某一位变异)while(i=L)Point=unidrnd(n);T=(1-abs(upfit-fit(MutIn(i)))/upfit)^2;v=1+unidrnd(1+ceil(10*T));%v=1+unidrnd(5+ceil(10*eranum/MaxEranum));q=mod(floor(OldPop(MutIn(i),Point)*10^v),10);NewPop(MutIn(i),Point)=OldPop(MutIn(i),Point)-(q-unidrnd(9))/10^v;i=i+1;endelsewhile(i=L)Point=unidrnd(n);if round(rand)NewPop(MutIn(i),Point)=OldPop(MutIn(i),Point)*(1-rand);elseNewPop(MutIn(i),Point)=OldPop(MutIn(i),Point)+(1-OldPop(MutIn(i),Point))*rand; endi=i+1;endendelseif opts(1)==0%二进制串变异if L=1while i=Lk=unidrnd(n,1,VarNum); %设置变异点数(=变量数)for j=1:length(k)if NewPop(MutIn(i),k(j))==1NewPop(MutIn(i),k(j))=0;else完整可以运行的数值优化遗传算法源代码NewPop(MutIn(i),k(j))=1;endendi=i+1;endendelse%Tsp变异if opts(2)==1|opts(2)==2|opts(2)==3|opts(2)==4numMut=ceil(pMutation*m);r=unidrnd(m,numMut,2);[LocalMinfit,In]=min(fit(r),[],2);SelectIn=r((In-1)*numMut+[1:numMut]');while(i=numMut)mPoints=sort(unidrnd(n,1,2));if mPoints(1)~=mPoints(2)NewPop(SelectIn(i),1:mPoints(1)-1)=OldPop(SelectIn(i),1:mPoints(1)-1);NewPop(SelectIn(i),mPoints(1):mPoints(2)-1)=OldPop(SelectIn(i),mPoints(1)+1:mPoints(2));NewPop(SelectIn(i),mPoints(2))=OldPop(SelectIn(i),mPoints(1));NewPop(SelectIn(i),mPoints(2)+1:n)=OldPop(SelectIn(i),mPoints( 2)+1:n);elseNewPop(SelectIn(i),:)=OldPop(SelectIn(i),:);endi=i+1;endr=rand(1,m);MutIn=find(r=pMutation);L=length(MutIn);while i=LmPoints=sort(unidrnd(n,1,2));rIn=randperm(mPoints(2)-mPoints(1)+1);NewPop(MutIn(i),mPoints(1):mPoints(2))=OldPop(MutIn(i),mPoin ts(1)+rIn-1);i=i+1;endendend% -- 倒位操作--function [NewPop]=Inversion(OldPop,pInversion)global m n NewPopNewPop=OldPop;r=rand(1,m);PopIn=find(r=pInversion);len=length(PopIn);if len=1while(i=len)d=sort(unidrnd(n,1,2));完整可以运行的数值优化遗传算法源代码NewPop(PopIn(i),d(1):d(2))=OldPop(PopIn(i),d(2):-1:d(1)); i=i+1;。
遗传算法解释及代码(一看就懂)
遗传算法( GA , Genetic Algorithm ) ,也称进化算法。
遗传算法是受达尔文的进化论的启发,借鉴生物进化过程而提出的一种启发式搜索算法。
因此在介绍遗传算法前有必要简单的介绍生物进化知识。
一.进化论知识作为遗传算法生物背景的介绍,下面内容了解即可:种群(Population):生物的进化以群体的形式进行,这样的一个群体称为种群。
个体:组成种群的单个生物。
基因 ( Gene ) :一个遗传因子。
染色体 ( Chromosome ):包含一组的基因。
生存竞争,适者生存:对环境适应度高的、牛B的个体参与繁殖的机会比较多,后代就会越来越多。
适应度低的个体参与繁殖的机会比较少,后代就会越来越少。
遗传与变异:新个体会遗传父母双方各一部分的基因,同时有一定的概率发生基因变异。
简单说来就是:繁殖过程,会发生基因交叉( Crossover ) ,基因突变( Mutation ) ,适应度( Fitness )低的个体会被逐步淘汰,而适应度高的个体会越来越多。
那么经过N代的自然选择后,保存下来的个体都是适应度很高的,其中很可能包含史上产生的适应度最高的那个个体。
二.遗传算法思想借鉴生物进化论,遗传算法将要解决的问题模拟成一个生物进化的过程,通过复制、交叉、突变等操作产生下一代的解,并逐步淘汰掉适应度函数值低的解,增加适应度函数值高的解。
这样进化N代后就很有可能会进化出适应度函数值很高的个体。
举个例子,使用遗传算法解决“0-1背包问题”的思路:0-1背包的解可以编码为一串0-1字符串(0:不取,1:取);首先,随机产生M个0-1字符串,然后评价这些0-1字符串作为0-1背包问题的解的优劣;然后,随机选择一些字符串通过交叉、突变等操作产生下一代的M个字符串,而且较优的解被选中的概率要比较高。
这样经过G代的进化后就可能会产生出0-1背包问题的一个“近似最优解”。
编码:需要将问题的解编码成字符串的形式才能使用遗传算法。
遗传算法代码汇总
% 求下列函数的最小值%% y=20+x(1).^2+x(2).^2-10*(cos(2*pi.*x(1))+cos(2*pi.*x(2))) %%思路:可以转化为y=10+x.^2-10*cos(2*pi.*x),循环两次,求y值和。
%% 将x 的值用一个14位的二值形式表示为二值问题,一个14位的二值数提供的分辨率是每为(10-0)/(2^14-1)≈0.001 。
%% 将变量域[-5,5] 离散化为二值域[0,16383], x=0+10*b/16383, 其中 b 是[0, 16383] 中的一个二值数。
%% %%--------------------------------------------------------------------------------------------------------------%%--------------------------------------------------------------------------------------------------------------%% 编程%-----------------------------------------------% 2.1初始化(编码)% initpop.m函数的功能是实现群体的初始化,popsize表示群体的大小,chromlength表示染色体的长度(二值数的长度),% 长度大小取决于变量的二进制编码的长度(在本例中取10位)。
%遗传算法子程序%Name: initpop.m%初始化function pop=initpop(popsize,chromlength)pop=round(rand(popsize,chromlength)); % rand随机产生每个单元为{0,1} 行数为popsize,列数为chromlength的矩阵,% roud对矩阵的每个单元进行圆整。
遗传算法简介及代码详解
遗传算法简述及代码详解声明:本文内容整理自网络,认为原作者同意转载,如有冒犯请联系我。
遗传算法基本内容遗传算法为群体优化算法也就是从多个初始解开始进行优化每个解称为一个染色体,各染色体之间通过竞争、合作、单独变异,不断进化。
染色体:又可以叫做基因型个体(individuals)群体/种群(population):一定数量的个体组成,及一定数量的染色体组成,群体中个体的数量叫做群体大小。
初始群体:若干染色体的集合,即解的规模,如30,50等,认为是随机选取的数据集合。
适应度(fitness):各个个体对环境的适应程度优化时先要将实际问题转换到遗传空间就是把实际问题的解用染色体表示称为编码,反过程为解码/译码,因为优化后要进行评价(此时得到的解是否较之前解优越),所以要返回问题空间,故要进行解码。
SGA采用二进制编码,染色体就是二进制位串,每一位可称-可编辑修改-为一个基因;如果直接生成二进制初始种群,则不必有编码过程,但要求解码时将染色体解码到问题可行域内。
遗传雌的准备工作:1)数据转换操作,包括表现型到基因型的转换和基因型到表现型的转换。
前者是把求解空间中的参数转化成遗传空间中的染色体或者个体(encoding),后者是它的逆操作(decoding)2)确定适应度计算函数,可以将个体值经过该函数转换为该个体的适应度,该适应度的高低要能充分反映该个体对于解得优秀程度。
非常重要的过程。
遗传算法基本过程为:1)编码,创建初始群体2)群体中个体适应度计算3)评估适应度4)根据适应度选择个体5)被选择个体进行交叉繁殖6)在繁殖的过程中引入变异机制7)繁殖出新的群体,回到第二步实例一:(建议先看实例二)求X金1,30]范围内的y = Q -10%的最小值-可编辑修改-1)编码算法选择为"将X转化为2进制的串",串的长度为5位(串的长度根据解的精度设定,串长度越长解得精度越高)(等位基因的值为0 or 1)。
geatpy遗传算法代码python
一、介绍近年来,随着计算机科学和人工智能领域的发展,遗传算法作为一种优化算法,越来越受到人们的关注和重视。
而在基于Python语言的遗传算法实现中,geatpy无疑是一个备受推崇的工具包。
本文将从几个方面介绍geatpy遗传算法代码在Python中的应用。
二、geatpy简介geatpy是基于Python的遗传算法工具包,它提供了丰富的功能和灵活的接口,使得用户能够便捷地实现遗传算法的相关操作。
无论是单目标优化问题还是多目标优化问题,geatpy都具备良好的适应性和可扩展性,使其广泛应用于各种领域。
三、安装与配置1. 安装geatpy在命令行中使用pip install geatpy命令即可完成geatpy的安装,如果已经安装了Python环境,那么安装过程会比较快捷。
2. 配置开发环境在进行实际开发前,需要确保自己的开发环境已经配置完成,例如安装相关的Python IDE、Jupyter Notebook等,在PyCharm、VSCode等IDE中添加geatpy库,以便于后续的使用。
四、使用geatpy解决优化问题在应用geatpy解决优化问题时,一般需要经过以下几个步骤:1. 定义目标函数首先需要定义优化的目标函数,即待解决的优化问题。
在geatpy中,目标函数可以是单目标函数,也可以是多目标函数。
定义好目标函数后,需要将其封装成Python函数,并按规范进行命名和注释。
2. 设置优化参数在使用geatpy进行优化前,需要设置一些优化参数,如种裙规模、交叉概率、变异概率等。
这些参数会影响到算法的收敛速度和解的质量,需要根据实际问题进行合理设置。
3. 调用geatpy接口通过调用geatpy提供的接口,将定义好的目标函数和设置好的优化参数传递给算法,然后进行迭代运算,直至达到停止条件。
4. 分析和使用优化结果最终得到优化结果后,需要对结果进行分析和评估,判断是否满足优化问题的要求。
如果满足,则可以将结果用于实际应用中。
python遗传算法代码
python遗传算法代码以下是一个简单的遗传算法的Python代码:```pythonimport random# 初始化种群def init_population(population_size, chromosome_length): population = []for i in range(population_size):chromosome = [random.randint(0, 1) for _ inrange(chromosome_length)]population.append(chromosome)return population# 计算适应度值def calculate_fitness(chromosome):fitness = sum(chromosome)return fitness# 选择def selection(population, fitness):max_fitness = max(fitness)max_index = fitness.index(max_fitness)return population[max_index]# 交叉def crossover(parent1, parent2):crossover_point = random.randint(1, len(parent1) - 1)child1 = parent1[:crossover_point] +parent2[crossover_point:]child2 = parent2[:crossover_point] +parent1[crossover_point:]return child1, child2# 变异def mutation(chromosome, mutation_rate):for i in range(len(chromosome)):if random.random() < mutation_rate:chromosome[i] = 1 - chromosome[i]return chromosome# 遗传算法主函数def genetic_algorithm(population_size, chromosome_length, mutation_rate, generations):population = init_population(population_size, chromosome_length)for _ in range(generations):fitness = [calculate_fitness(chromosome) for chromosome in population]new_population = []for _ in range(population_size // 2):parent1 = selection(population, fitness)parent2 = selection(population, fitness)child1, child2 = crossover(parent1, parent2)child1 = mutation(child1, mutation_rate)child2 = mutation(child2, mutation_rate)new_population.append(child1)new_population.append(child2)population = new_populationbest_chromosome = selection(population, fitness) best_fitness = calculate_fitness(best_chromosome) return best_chromosome, best_fitness# 测试population_size = 50chromosome_length = 10mutation_rate = 0.01generations = 100best_chromosome, best_fitness =genetic_algorithm(population_size, chromosome_length, mutation_rate, generations)print("Best Chromoso" best_chromosome)print("Best Fitness:" best_fitness)```这段代码实现了一个简单的遗传算法,通过随机生成初始种群,利用适应度函数计算每个染色体的适应度值,然后进行选择、交叉和变异操作,最终得到最优解。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
%求下列函数的最大值%%f(x)=10*sin(5x)+7*cos(4x)x∈[0,10]%%将x的值用一个10位的二值形式表示为二值问题,一个10位的二值数提供的分辨率是每为(10-0)/(2^10-1)≈0.01。
%%将变量域[0,10]离散化为二值域[0,1023],x=0+10*b/1023,其中b是[0,1023]中的一个二值数。
%2.1初始化(编码)%initpop.m函数的功能是实现群体的初始化,popsize表示群体的大小,chromlength表示染色体的长度(二值数的长度),%长度大小取决于变量的二进制编码的长度(在本例中取10位)。
%遗传算法子程序%Name:initpop.m%初始化function pop=initpop(popsize,chromlength)pop=round(rand(popsize,chromlength));%rand随机产生每个单元为{0,1}行数为popsize,列数为chromlength的矩阵,%roud对矩阵的每个单元进行圆整。
这样产生的初始种群。
%2.2计算目标函数值%2.2.1将二进制数转化为十进制数(1)%遗传算法子程序%Name:decodebinary.m%产生[2^n2^(n-1)...1]的行向量,然后求和,将二进制转化为十进制function pop2=decodebinary(pop)[px,py]=size(pop);%求pop行和列数for i=1:pypop1(:,i)=2.^(py-i).*pop(:,i);endpop2=sum(pop1,2);%求pop1的每行之和%2.2.2将二进制编码转化为十进制数(2)%decodechrom.m函数的功能是将染色体(或二进制编码)转换为十进制,参数spoint表示待解码的二进制串的起始位置%(对于多个变量而言,如有两个变量,采用20为表示,每个变量10为,则第一个变量从1开始,另一个变量从11开始。
本例为1),%参数1ength表示所截取的长度(本例为10)。
%遗传算法子程序%Name:decodechrom.m%将二进制编码转换成十进制function pop2=decodechrom(pop,spoint,length)pop1=pop(:,spoint:spoint+length-1);pop2=decodebinary(pop1);%2.2.3计算目标函数值%calobjvalue.m函数的功能是实现目标函数的计算,其公式采用本文示例仿真,可根据不同优化问题予以修改。
%遗传算法子程序%Name:calobjvalue.m%实现目标函数的计算function[objvalue]=calobjvalue(pop)temp1=decodechrom(pop,1,10);%将pop每行转化成十进制数x=temp1*10/1023;%将二值域中的数转化为变量域的数objvalue=10*sin(5*x)+7*cos(4*x);%计算目标函数值%2.3计算个体的适应值%遗传算法子程序%Name:calfitvalue.m%计算个体的适应值function fitvalue=calfitvalue(objvalue)global Cmin;Cmin=0;[px,py]=size(objvalue);for i=1:pxif objvalue(i)+Cmin>0temp=Cmin+objvalue(i);elsetemp=0.0;endfitvalue(i)=temp;endfitvalue=fitvalue';%2.4选择复制%选择或复制操作是决定哪些个体可以进入下一代。
程序中采用赌轮盘选择法选择,这种方法较易实现。
%根据方程pi=fi/∑fi=fi/fsum,选择步骤:%1)在第t代,由(1)式计算fsum和pi%2)产生{0,1}的随机数rand(.),求s=rand(.)*fsum%3)求∑fi≥s中最小的k,则第k个个体被选中%4)进行N次2)、3)操作,得到N个个体,成为第t=t+1代种群%遗传算法子程序%Name:selection.m%选择复制function[newpop]=selection(pop,fitvalue)totalfit=sum(fitvalue);%求适应值之和fitvalue=fitvalue/totalfit;%单个个体被选择的概率fitvalue=cumsum(fitvalue);%如fitvalue=[1234],则cumsum(fitvalue)=[1 3610][px,py]=size(pop);ms=sort(rand(px,1));%从小到大排列fitin=1;newin=1;while newin<=pxif(ms(newin))<fitvalue(fitin)newpop(newin)=pop(fitin);newin=newin+1;elsefitin=fitin+1;endend%2.5交叉%交叉(crossover),群体中的每个个体之间都以一定的概率pc交叉,即两个个体从各自字符串的某一位置%(一般是随机确定)开始互相交换,这类似生物进化过程中的基因分裂与重组。
例如,假设2个父代个体x1,x2为:%x1=0100110%x2=1010001%从每个个体的第3位开始交叉,交又后得到2个新的子代个体y1,y2分别为:%y1=0100001%y2=1010110%这样2个子代个体就分别具有了2个父代个体的某些特征。
利用交又我们有可能由父代个体在子代组合成具有更高适合度的个体。
%事实上交又是遗传算法区别于其它传统优化方法的主要特点之一。
%遗传算法子程序%Name:crossover.m%交叉function[newpop]=crossover(pop,pc)[px,py]=size(pop);newpop=ones(size(pop));for i=1:2:px-1if(rand<pc)cpoint=round(rand*py);newpop(i,:)=[pop(i,1:cpoint),pop(i+1,cpoint+1:py)];newpop(i+1,:)=[pop(i+1,1:cpoint),pop(i,cpoint+1:py)];elsenewpop(i,:)=pop(i);newpop(i+1,:)=pop(i+1);endend%2.6变异%变异(mutation),基因的突变普遍存在于生物的进化过程中。
变异是指父代中的每个个体的每一位都以概率pm翻转,即由“1”变为“0”,%或由“0”变为“1”。
遗传算法的变异特性可以使求解过程随机地搜索到解可能存在的整个空间,因此可以在一定程度上求得全局最优解。
%遗传算法子程序%Name:mutation.m%变异function[newpop]=mutation(pop,pm)[px,py]=size(pop);newpop=ones(size(pop));for i=1:pxif(rand<pm)mpoint=round(rand*py);if mpoint<=0mpoint=1;endnewpop(i)=pop(i);if any(newpop(i,mpoint))==0newpop(i,mpoint)=1;elsenewpop(i,mpoint)=0;endelsenewpop(i)=pop(i);endend%2.7求出群体中最大得适应值及其个体%遗传算法子程序%Name:best.m%求出群体中适应值最大的值function[bestindividual,bestfit]=best(pop,fitvalue)[px,py]=size(pop);bestindividual=pop(1,:);bestfit=fitvalue(1);for i=2:pxif fitvalue(i)>bestfitbestindividual=pop(i,:);bestfit=fitvalue(i);endend%2.8主程序%遗传算法主程序%Name:genmain05.mclearclfpopsize=20;%群体大小chromlength=10;%字符串长度(个体长度)pc=0.6;%交叉概率pm=0.001;%变异概率pop=initpop(popsize,chromlength);%随机产生初始群体for i=1:20%20为迭代次数[objvalue]=calobjvalue(pop);%计算目标函数fitvalue=calfitvalue(objvalue);%计算群体中每个个体的适应度[newpop]=selection(pop,fitvalue);%复制[newpop]=crossover(pop,pc);%交叉[newpop]=mutation(pop,pc);%变异[bestindividual,bestfit]=best(pop,fitvalue);%求出群体中适应值最大的个体及其适应值y(i)=max(bestfit);n(i)=i;pop5=bestindividual;x(i)=decodechrom(pop5,1,chromlength)*10/1023;pop=newpop;endfplot('10*sin(5*x)+7*cos(4*x)',[010])hold onplot(x,y,'r*')hold off[z index]=max(y);%计算最大值及其位置x5=x(index)%计算最大值对应的x值y=z【问题】求f(x)=x10*sin(5x)7*cos(4x)的最大值,其中0<=x<=9【分析】选择二进制编码,种群中的个体数目为10,二进制编码长度为20,交叉概率为0.95,变异概率为0.08【程序清单】%编写目标函数function[sol,eval]=fitness(sol,options)x=sol(1);eval=x10*sin(5*x)7*cos(4*x);%把上述函数存储为fitness.m文件并放在工作目录下initPop=initializega(10,[09],'fitness');%生成初始种群,大小为10[x endPop,bPop,trace]=ga([09],'fitness',[],initPop,[1e-611],'maxGenTer m',25,'normGeomSelect',...[0.08],['arithXover'],[2],'nonUnifMutation',[2253])%25次遗传迭代运算借过为:x=7.856224.8553(当x为7.8562时,f(x)取最大值24.8553)注:遗传算法一般用来取得近似最优解,而不是最优解。