波动习题答案
力学习题——波动习题课后作业
波动(习题课后作业)1. 传播速度为200m/s, 频率为50Hz 的平面简谐波, 在波线上相距为0.5m 的两点之间的相位差是( D )(A) π/3 (B) π/6 (C) π/2 (D) π/4 解: λ=u/λ=200/50=4(m) Δφ=(2π/λ)Δx =(2π/4)⨯0.5=π/42. 图为沿X 轴正向传播的平面余弦横波在某一时刻的波形图, 图中P 点距原点1m, 则波长为( C )(A) 2.75m (B) 2.5m (C) 3m (D) 2.75m Y(cm) 解: 设波表达式为)2 cos(ϕλπω+-=x t A y x =0处 3) cos(2=+=ϕωt yv =-2ωsin(ωt+φ)<0即23) cos(=+ϕωt ,sin(ωt+φ)>0 得6 πϕω=+t所以t 时刻的波形分布函数为)26cos(2x y λππ-=P 点t 时刻的位移 0)26cos(2=-=λππy P 点t 时刻的速度 0)26sin(2>--=λππωv32O P X得)26cos(=-λππ0)26sin(<-λππ226πλππ-=-∴ λ = 3m3. 一横波沿X 轴负方向传播, 若t 时刻波形曲线如图所示, 在t+T/4时刻原X 轴上的1、2、3三点的振动位移分别是( B ) (A) A 、0、-A (B) -A 、0、A (C) 0、A 、0 (D) 0、-A 、04. 两个相干波源S 1和S 2, 相距L=20m, 在相同时刻, 两波源的振动均通过其平衡位置, 但振动的速度方向相反, 设波速u=600m/s, 频率ν=100Hz, 试求在S 1和S 2间的连线上因干涉产生最弱点的所有位置(距S 1的距离).解: 已知φ1–φ2=π, 设S1为原点,在S 1和S 2连线间任取一点P ,其坐标为x∙∙xS 2∙S 1 L=20m L –xPxLx x L x r -=--=∆2)(r ∆--=∆λπϕϕϕ221)2(2L x --=λππ)(6100600m u===νλxx 32326)220(3ππππππ-++=-⨯+=x 3235ππ-=干涉减弱条件 πϕ)12(+=∆k πππ)12(3235+=-k x 即 得 ),2,1,0(31 ±±=-=k k x 因200≤≤x 即 20310≤-≤k 解得 31319≤≤-k 所以,1 ,2 ,3 ,4 ,5 ,6------=k )(1 , 4 , 7 , 10 , 13 , 16 , 19 m x =∴。
波动习题
六、练习题(一)选择题1、频率是200Hz 的波,它在骨头中的波长是(骨头中的波速3400m/s ):A 17mB 170mC 0.17mD 1.7m2、频率为30KHz 的机械波属于A 次声波B 声波C 物质波D 超声波3、对于频率为1000Hz ,人的听觉范围声强级A 0dB 到120dB B 0dB 到12dBC 10dB 到12dBD 12dB 到12db4、机械波在通过不同介质时,不会发生变化的物理量是A 波速B 强度C 波长D 频率5、频率为10Hz 的机械波属于A 次声波B 声波C 超声波D 物质波6、波源振动方程0.04cos(2.5)s t m π=,以100m/s 的速度在介质中传播,波动方程为 A 0.04cos 2.5()100x s t m π=-; B 0.04cos 2.5()100x s t m π=+; C 0.04cos(2.5)s t m π=; D 0.04cos(2.5100)s t m π=⨯。
7、波源振动方程0.04cos(2.5)s t m π=,以100m/s 的速度在介质中传播,距波源20m 处质点的振动方程为A 0.04cos 2.5(20)s t m π=-;B 0.04cos 2.5(0.2)s t m π=-;C 0.04cos 2.5(20)s t m π=+;D 0.04cos 2.5(0.2)s t m π=+。
8、波源振动方程0.04cos(2.5)S t m π=,以100m/s 的速度在介质中传播,在波源起振后1.0S 距波源20m 处质点的振动速度A V=0.04m/sB V ≠0C V=2m/sD V=09、设有波动方程0.02cos 2(1000.25)S t x m π=-,则波长A 4.0m λ=;B 0.25m λ=;C 0.5m λπ=;D 0.50m λ=。
10、设有波动方程0.02cos 2(1000.25)S t x m π=-,频率为A 200Hz ν=;B 100Hz ν=;C 50Hz ν=;D 0.50Hz ν=。
波动习题1
0.2
o 0.2
P
0.45
t1 0 x (m )
t 2 0.25s
前页 后页 目录
7
3 解:由波形图得
A 0.2m 0.6m x 0.15 u 0.6(m/s ) t 0.25 0 .6 T 1(s) u 0 .6
设波动表达式
x y A cos[ (t ) 0 ] u
1
1. 波动表式为y=0.05cos(10t-4x)(SI制)横波沿 绳子传播。 (1)求此波的振幅、波速、频率和波长。 (2)求绳子上各质点振动的最大速度和最大加速度。 (3)求x=0.2m处的质点在t=1s时的相位,它是原点处质 点在哪一时刻的相位? (4)分别画出t=1s、t=1.25s、t=1.50s各时刻的波形。 解:(1)
I w u 6.36 106 340
2.16 10 (W/m )
3
前页 后页 目录
3
完 14
6 6. 一扬声器向各个方向均匀地发射频率为2000Hz声 波,在6m远处的强度为1.010-3W/m2。不计波的反射。 (空气密度=1.29kg/m3,声速u=340m/s)求:在30m 远处的声强为多大?在30m远处的位移振幅和压强振 幅为多大? A 解:
2I
3
1.69 10 (m) pm 2 uI 2 1.29 344 1.0 103 0.942(N/m )
2
前页 后页 目录
完 16
7
前页 后页 目录
9
3
10 0.2 cos[2t x ] 3 2
(1)P点的振动表达式
10 y P 0.2 cos[2t x P ] 3 2 10 0.2 cos[ 2t 0.3 ] 3 2
大学物理(第四版)课后习题及答案 波动
第十四章波动14-1 一横波再沿绳子传播时得波动方程为。
(1)求波得振幅、波速、频率及波长;(2)求绳上质点振动时得最大速度;(3)分别画出t=1s 和t=2s时得波形,并指出波峰和波谷。
画出x=1.0m处质点得振动曲线并讨论其与波形图得不同。
14-1分析(1)已知波动方程(又称波函数)求波动的特征量(波速、频率、振幅A及彼长 等),通常采用比较法。
将已知的波动方程按波动方程的一般形式书写,然后通过比较确定各特征量(式中前“-”、“+”的选取分别对应波沿x轴正向和负向传播)。
比较法思路清晰、求解简便,是一种常用的解题方法。
(2)讨论波动问题,要理解振动物理量与波动物理量之间的内在联系与区别。
例如区分质点的振动速度与波速的不同,振动速度是质点的运动速度,即;而波速是波线上质点运动状态的传播速度(也称相位的传播速度、波形的传播速度或能量的传播速度),其大小由介质的性质决定。
介质不变,彼速保持恒定。
(3)将不同时刻的t值代人已知波动方程,便可以得到不同时刻的波形方程,从而作出波形图。
而将确定的x值代入波动方程,便可以得到该位置处质点的运动方程,从而作出振动图。
解(1)将已知波动方程表示为与一般表达式比较,可得则(2)绳上质点的振动速度则(3) t=1s和 t=2s时的波形方程分别为波形图如图14-1(a)所示。
x=1.0m处质点的运动方程为振动图线如图14-1(b)所示。
波形图与振动图虽在图形上相似,但却有着本质的区别前者表示某确定时刻波线上所有质点的位移情况,而后者则表示某确定位置的时间变化的情况。
14-2 波源作简谐运动,其运动方程为,它所形成得波形以30m/s的速度沿一直线传播。
(1)求波的周期及波长;(2)写出波的方程。
14-2分析 已知彼源运动方程求波动物理量及波动方程,可先将运动方程与其一般形式进行比较,求出振幅地角频率及初相,而这三个物理量与波动方程的一般形式中相应的三个物理量是相同的。
大学物理(第四版)课后习题及答案 波动(2020年7月整理).pdf
第十四章波动14-1 一横波再沿绳子传播时得波动方程为[]x m t s m y )()5.2(cos )20.0(11−−−=ππ。
(1)求波得振幅、波速、频率及波长;(2)求绳上质点振动时得最大速度;(3)分别画出t=1s 和t=2s 时得波形,并指出波峰和波谷。
画出x=1.0m 处质点得振动曲线并讨论其与波形图得不同。
14-1 ()[]x m t s m y )(5.2cos )20.0(11−−−=ππ分析(1)已知波动方程(又称波函数)求波动的特征量(波速u 、频率ν、振幅A 及彼长 等),通常采用比较法。
将已知的波动方程按波动方程的一般形式⎥⎦⎤⎢⎣⎡+⎪⎭⎫ ⎝⎛=0cos ϕωu x t A y 书写,然后通过比较确定各特征量(式中前“-”、“+”的选取分别对应波沿x 轴正向和负向传播)。
比较法思路清晰、求解简便,是一种常用的解题方法。
(2)讨论波动问题,要理解振动物理量与波动物理量之间的内在联系与区别。
例如区分质点的振动速度与波速的不同,振动速度是质点的运动速度,即dt dy v =;而波速是波线上质点运动状态的传播速度(也称相位的传播速度、波形的传播速度或能量的传播速度),其大小由介质的性质决定。
介质不变,彼速保持恒定。
(3)将不同时刻的t 值代人已知波动方程,便可以得到不同时刻的波形方程)(x y y =,从而作出波形图。
而将确定的x 值代入波动方程,便可以得到该位置处质点的运动方程)(t y y =,从而作出振动图。
解(1)将已知波动方程表示为()()[]115.25.2cos )20.0(−−⋅−=s m x t s m y π 与一般表达式()[]0cos ϕω+−=u x t A y 比较,可得0,5.2,20.001=⋅==−ϕs m u m A则 m v u Hz v 0.2,25.12====λπω(2)绳上质点的振动速度()()()[]1115.25.2sin 5.0−−−⋅−⋅−==s m x t s s m dt dy v ππ 则1max 57.1−⋅=s m v(3) t=1s 和 t =2s 时的波形方程分别为()[]x m m y 115.2cos )20.0(−−=ππ()[]x m m y 125cos )20.0(−−=ππ波形图如图14-1(a )所示。
振动、波动练习题及答案
振动、波动练习题及答案振动、波动练习题⼀.选择题1.⼀质点在X 轴上作简谐振动,振幅A=4cm。
周期T=2s。
其平衡位置取作坐标原点。
若t=0 时刻质点第⼀次通过x= -2cm 处,且向X 轴负⽅向运动,则质点第⼆次通过x= -2cm 处的时刻为()。
A 1sB 2sC 4sD 2s332.⼀圆频率为ω的简谐波沿X 轴的正⽅向传播,t=0 时刻的波形如图所⽰,则t=0 的波形t=0 时刻,X 轴上各点的振动速度υ与X轴上坐标的关系图应()3.图⽰⼀简谐波在 t=0 时刻的波形图,波速υ =200m/s ,则图中O 点的振动加速度的表达式为()2A a 0.4 2 cos( t ) 2 23B a 0.4 2 cos( t )22C a 0.4 2cos(2 t ) 4.频率为 100Hz ,传播速度为 300m/s 的平⾯简谐波,波线上两点振动的相位差为 3 ,则这两点相距()A 2mB 2.19mC 0.5mD 28.6m5.⼀平⾯简谐波在弹性媒质中传播,媒质质元从平衡位置运动到最⼤位置处的过程中,()。
A 它的动能转换成势能它的势能转换成动C 它从相邻的⼀段质元获得能量其能量逐渐增⼤Da20.4 2 cos(2 t2)υ (m/s)Bυ (m/s)DX(m)D 它把⾃⼰的能量传给相邻的⼀段质元,其能量逐渐减⼩6.在下⾯⼏种说法中,正确的说法是:()。
A 波源不动时,波源的振动周期与波动的周期在数值上是不同的B 波源振动的速度与波速相同C 在波传播⽅向上的任⼀质点振动位相总是⽐波源的位相滞后D 在波传播⽅向上的任⼀质点振动位相总是⽐波源的位相超前7.⼀质点作简谐振动,周期为T,当它由平衡位置向X 轴正⽅向运动时,从⼆分之⼀最⼤位移处到最⼤位移处这段路程所需要的时间为()。
A TBTCTDT4 12 6 88.在波长为λ的驻波中两个相邻波节之间的距离为()。
A λB 3 λ/4C λ/2D λ /49.在同⼀媒质中两列相⼲的平⾯简谐波的强度之⽐I1I 4是,则两列波的振幅之⽐是:()A A1 4 B1 2 CA1 16 DA11A2 A2 A2 A2 410.有⼆个弹簧振⼦系统,都在作振幅相同的简谐振动,⼆个轻质弹簧的劲度系数K 相同,但振⼦的质量不同。
大学物理第十一章波动光学习题答案
第十一章 波动光学习题11-1 在杨氏双缝实验中,双缝间距d =0.20 mm ,缝屏间距D =1.0 m ,若第2级明条纹离屏中心的距离为6.0 mm ,试求:(1)入射光的波长;(2)相邻两明条纹间的距离。
解:(1)由λk d D x =明知, λ22.01010.63⨯⨯= 30.610m m 600n m λ-=⨯= (2)3106.02.010133=⨯⨯⨯==∆-λd D x mm 11-2 在双缝装置中,用一很薄的云母片(n =1.58)覆盖其中的一条缝,结果使屏幕上的第7级明条纹恰好移到屏幕中央原零级明纹的位置。
若入射光的波长为550 nm ,求此云母片的厚度。
解:设云母片厚度为e ,则由云母片引起的光程差为e n e ne )1(-=-=δ 按题意 λδ7= ∴610106.6158.1105500717--⨯=-⨯⨯=-=n e λm 6.6=m μ 11-3 在折射率n 1=1.52的镜头表面涂有一层折射率n 2=1.38的MgF 2增透膜,如果此膜适用于波长λ=550 nm 的光,问膜的最小厚度应取何值?解:设光垂直入射增透膜,欲透射增强,则膜上、下两表面反射光应满足干涉相消条件,即λ)21(22+=k e n ),2,1,0(⋅⋅⋅=k 222422)21(n n k n k e λλλ+=+=)9961993(38.14550038.125500+=⨯+⨯=k k o A令0=k ,得膜的最薄厚度为996o A 。
11-4 白光垂直照射在空气中厚度为0.4μm 的玻璃片上,玻璃的折射率为1.50。
试问在可见光范围内(λ= 400~700nm ),哪些波长的光在反射中增强?哪些波长的光在透射中增强?解:(1)222n d j λδλ=+= 24 3,480n m 21n d j j λλ===- (2)22(21) 22n d j λλδ=+=+ 22n d j λ= 2,600n m j λ==;3,400nm j λ== 11-5 白光垂直照射到空气中一厚度为380 nm 的肥皂膜上,设肥皂膜的折射率为1.33,试问该膜的正面呈现什么颜色?背面呈现什么颜色? 解:由反射干涉相长公式有42221ne ne k k λδλλ=+==-, ),2,1(⋅⋅⋅=k 得4 1.3338002674nm 2214 1.3338003404nm 231k k λλ⨯⨯===⨯-⨯⨯===⨯-,红色,紫色所以肥皂膜正面呈现紫红色。
大学物理课后习题及答案 波动
第十四章波动14-1 一横波再沿绳子传播时得波动方程为[]x m t s m y )()5.2(cos )20.0(11---=ππ。
(1)求波得振幅、波速、频率及波长;(2)求绳上质点振动时得最大速度;(3)分别画出t=1s 和t=2s 时得波形,并指出波峰和波谷。
画出x=1.0m 处质点得振动曲线并讨论其与波形图得不同。
14-1 ()[]x m t s m y )(5.2cos )20.0(11---=ππ分析(1)已知波动方程(又称波函数)求波动的特征量(波速u 、频率ν、振幅A 及彼长 等),通常采用比较法。
将已知的波动方程按波动方程的一般形式⎥⎦⎤⎢⎣⎡+⎪⎭⎫ ⎝⎛=0cos ϕωu x t A y μ书写,然后通过比较确定各特征量(式中前“-”、“+”的选取分别对应波沿x 轴正向和负向传播)。
比较法思路清晰、求解简便,是一种常用的解题方法。
(2)讨论波动问题,要理解振动物理量与波动物理量之间的内在联系与区别。
例如区分质点的振动速度与波速的不同,振动速度是质点的运动速度,即dt dy v =;而波速是波线上质点运动状态的传播速度(也称相位的传播速度、波形的传播速度或能量的传播速度),其大小由介质的性质决定。
介质不变,彼速保持恒定。
(3)将不同时刻的t 值代人已知波动方程,便可以得到不同时刻的波形方程)(x y y =,从而作出波形图。
而将确定的x 值代入波动方程,便可以得到该位置处质点的运动方程)(t y y =,从而作出振动图。
解(1)将已知波动方程表示为()()[]115.25.2cos )20.0(--⋅-=s m x t s m y π 与一般表达式()[]0cos ϕω+-=x t A y 比较,可得0,5.2,20.001=⋅==-ϕs m u m A则 m v u Hz v 0.2,25.12====λπω(2)绳上质点的振动速度()()()[]1115.25.2sin 5.0---⋅-⋅-==s m x t s s m dt dy v ππ 则1max 57.1-⋅=s m v(3) t=1s 和 t =2s 时的波形方程分别为()[]x m m y 115.2cos )20.0(--=ππ()[]x m m y 125cos )20.0(--=ππ 波形图如图14-1(a )所示。
第十章 波动 习题解答 (1)
(1)波动方程;
(2)求 x=0.5m 处质点的振动方程;画出该质点的振动图 ;
(3)求 t=1.0s 时各质点的位移分布,画出该时刻的波形图。
解:(1) 波函数 y = Acos[ω(t − x ) + ϕ] ,其中 T = 2s,ω = 2π / T = π , u = λ / T = 1m / s u
P
10.0m
x/m
x/m
y/m
u
O
t/s
O
x/m
A、振动 x-t 曲线
B、波动 y-x 曲线
(2)波源振动速度等于波速吗?振幅和周期呢?波动方程中波源的位置一定位于原点 O?
波源的初相?
波源振动速度不等于波速;波源的振幅和周期等于波动的振幅和周期
波函数为: y = 0.1cos[500π(t + x )+ π ](m) 5000 3
(C) A = A12 + A22 + 2 A1A2 cos ∆ϕ
(D) A1 − A2 ≤ A ≤ A1 + A2
∆ϕ
= ϕ2
− ϕ1
− 2π
r2 − r1 λ
拓展:B 选项改为“某时刻,在两列波相遇的区域中某质点若为静止,则这两列波必相干” 答案:错误
10.11 如图所示,S1、S2 为两平面简谐波相干波源,S2 的
=
4m , ∆ϕ
= ϕB0
− ϕ A0
−
2π λ
(rB
− rA )
=π
−
2π λ
(rB
− rA ) ,
干涉而静止的条件: ∆ϕ = ±(2k +1) π k = 0,1,2,
P 点为 AB 连线上任一点,rA 为 P 点到 A 点距离,rB 为 P 点到 B 点距离,
波动光学习题解答
波动光学习题解答1-1 在杨氏实验装置中,两孔间的距离等于通过光孔的光波长的100倍,接收屏与双孔屏相距50cm 。
求第1 级和第3级亮纹在屏上的位置以及它们之间的距离。
解: 设两孔间距为d ,小孔至屏幕的距离为D ,光波波长为λ,则有=100d λ.(1)第1级和第3级亮条纹在屏上的位置分别为-5150==510m 100D x d λ=⋅⨯-42503==1.510m 100D x d λ=⋅⨯(2)两干涉条纹的间距为-42=1.010m Dx d λ∆=⋅⨯1-2 在杨氏双缝干涉实验中,用06328A =λ的氦氖激光束垂直照射两小孔,两小孔的间距为1.14mm ,小孔至屏幕的垂直距离为1.5m 。
求在下列两种情况下屏幕上干涉条纹的间距。
(1)整个装置放在空气中; (2)整个装置放在n=1.33的水中。
解: 设两孔间距为d ,小孔至屏幕的距离为D ,装置所处介质的折射率为n ,则两小孔出射的光到屏幕的光程差为21()xn r r nd Dδ=-=所以相邻干涉条纹的间距为D x d nλ∆=⋅(1)在空气中时,n =1。
于是条纹间距为9431.5632.8108.3210(m)1.1410D x d λ---∆==⨯⨯=⨯⨯ (2)在水中时,n =1.33。
条纹间距为9431.5632.810 6.2610(m)1.1410 1.33D x d n λ---⨯⨯∆=⋅==⨯⨯⨯1-3 如图所示,1S 、2S 是两个相干光源,它们到P 点的距离分别为1r 和2r 。
路径1S P 垂直穿过一块厚度为1t 、折射率为1n 的介质板,路径2S P 垂直穿过厚度为2t ,折射率为2n 的另一块介质板,其余部分可看做真空。
这两条路径的光程差是多少? 解:光程差为 222111[r (n 1)t ][r (n 1)t ]+--+-1-4 如图所示为一种利用干涉现象测定气体折射率的原理性结构,在1S 孔后面放置一长度为l 的透明容器,当待测气体注入容器而将空气排出的过程中幕上的干涉条纹就会移动。
波动学练习题答案
设在一种介质中,波长,频率,周期和波速分别为λ,f,T,u.
进入另一种介质时,
频率不变,周期不变T 波速变为u1,波长变为λ1= u1T.
2.判断下面几种说法,哪些是正确的,那些错的?
(1)机械振动一定能产生机械波; 机械振动在弹性介质中传播形成的波,叫机械波 (2)质点振动的速度是和波的传播速度相等的; 错
vs 30m / s
10、A、B是简谐波波线上的两点,已知,B点的相位落
后于A点π/3,A,B两点相距0.5m,波的频率为100Hz,
则该波的波长λ=
m,波速u=
m/s。
λ=3m,2π*0.5/λ=π/3
u=300m/s
11、已知波源的振动周期为410-2s,波的传播速度为 300m/s,波沿x轴正方向传播,则位于x1=10m和x2=16m 的两质点振动相位差为: π 。ΔØ=2π*(16-10)/λ, 求出波长代入
靠近,听到的频率比1500Hz肯定大 等于340/(340-22)×1500
9.汽车过车站时,车站上的观察者测得声音的频率 由1200Hz变到1000Hz。设空气中声速为330m/s, 则汽车的速度为【 】
(A)90m/s; (B)66m/s; (C)55m/s; (D)30m/s
听到的频率变小,汽车在过站,肯定远离 等于330/(330+x)×1200=1000,解出x
它所形成的波以 30 m/s 的速度沿一直线传播,则该波的方
程为
y=0.04cos240π(t-x/30)
。
6. 一弦上的驻波方程为 y 0.03cos1.6x cos550t m,
大学物理—波动习题答案
L2 P2 x
P1 O
2.(3294) ( ) 在截面积为S的圆管中,有一列平面简谐波在传播, 在截面积为 的圆管中,有一列平面简谐波在传播,其波的表达 的圆管中
ω 管中波的平均能量密度是w, 式为y = Acos[ t − 2π( x / λ )],管中波的平均能量密度是 ,则 ωλ 通过截面积S的平均能流 的平均能流____________________. 通过截面积 的平均能流 . Sw 2π
波动习题
1.(3067) ( ) 时的波形曲线如图所示, 一平面简谐波的表达式为 (SI) ,t = 0时的波形曲线如图所示, 时的波形曲线如图所示 则 y (m) (A) O点的振幅为 点的振幅为-0.1 m. 点的振幅为 . u 0.1 (B) 波长为 m. 波长为3 . (C) a、b两点间相位差为 . 、 两点间相位差为 O a b x (m) C ] (D) 波速为 m/s . 波速为9 [ -0.1
7. 解:入射波在 x = 0 处引起的振动方程为 y10 = A cosωt ,由于反射端为固定 端,∴反射波在 x = 0 处的振动方程为 ∴ y20 = A cos(ωt + π) 或 y20 = A cos(ωt − π) 2分 ∴反射波为 或 驻波表达式为
x y2 = A cos(ωt + π − 2π )
(SI)
(SI)
6.解:(1) 与波动的标准表达式 y = A cos 2 π(ν t − x / λ ) 解 得: ν = 4 Hz, λ = 1.50 m, , , u = λν = 6.00 m/s 波速 (2) 节点位置
1 4 πx / 3 = ± ( nπ + π ) 2
1 x = ± 3( n + ) m , 2
大学物理习题答案13波动
大学物理练习题十三一、选择题1. 下列函数f (x, t)可表示弹性介质中的一维波动,式中A 、a 和b 是正的常数。
其中哪个函数表示沿X 轴负方向传播的行波? [ A ] (A )()()bt ax A t x f +=cos , (B ))cos(),(bt ax A t x f -= (C )bt ax A t x f cos cos ),(⋅= (D )bt ax A t x f sin sin ),(⋅=2. 如图所示为一平面简谐波在t=2s 时刻的波形图,质点P 的振动方程是 [ C ](A )[]3/)2(cos 01.0ππ+-=t y p (SI) (B )[]3/)2(cos 01.0ππ++=t y p (SI) (C )[]3/)2(2cos 01.0ππ+-=t y p (SI) (D )[]3)2(2cos 01.0ππ--=t y p (SI)解:m A 01.0=,m 200=λ,s m u /200=,πλππνω222===u设P 点振动方程为)cos(φω+=t A y p ,t=2s 时 ⎪⎩⎪⎨⎧<+⨯-==+⨯=0)22cos(sin 005.0)22cos(01.0φπωφπA v y pp ,⎩⎨⎧>+⨯=+⨯0)22sin(5.0)22cos(φπφπ 322πφπ=+⨯ , 34ππφ+-= =+-=)342cos(01.0πππt y p )3)2(2cos[01.0ππ+-t3. 一平面简谐波在弹性媒质中传播,在某一瞬时,波传播到的媒质中某质元正处于平衡位置,此时它的能量是 [ C ] (A )动能为零,势能最大。
(B )动能为零,势能为零。
(C )动能最大,势能最大。
(D )动能最大,势能为零。
解:媒质中质元的能量pk W W ∆=∆)(22y A -∝ 平衡位置y=0,所以动能与势能均最大。
注意:不同于弹簧振子的动能与势能关系!二、填空题1. 一个余弦横波以速度u 沿X 轴正向传播,t 时刻波形曲线如图所示。
第10章 波动习题解答(课堂使用)
6
10-7 一横波在沿绳子传播时的波动方程 为 y 0.20cos(2.50t x), 式中y和x的单位 为 m , t的单位为s.(1) 求波的振幅、波速、 频率及波长;(2)求绳上的质点振动时的最 大速度;(3)分别画出t 1s 和 t 2s 时的波 形,并指出波峰和波谷.画出x 1.0m处质点的 振动曲线并讨论其与波形图的不同.
解: 设波源为坐标原点(如图)
yo Acos(t )
yu
x
t
0,y2oyW/ T0y,vOAV01c0o00sA(1cs0o0s1(1(0t01t 0x202)
)
2
O
)
9
yW
Acos(100 (t
x) 100
)
2
A cos( 100t
x
)
2
(1)距波源 15.0m 和 5.0m 两点处质
点的运动方程和初相; 注意:波源为坐标原点
x) u
]
2
(C)yA cos [ω(t Nhomakorabeax)
]
(D)y Acos[ω(t x) ]
u2
u
x 0, t T
y
u u: 速度大小
A
4
代入C式: 2
T
yo
A cos[ω( T 4
0 ) u
2
]
yo Acos0 A
x
O
-A
图a
代入D式:yo
A cos[ω( T 4
0 ) u
]
yo
A cos[
y
A cos[ (t
x) u
0
]
y 0.2cos[ 2.5 (t x )]
大学物理第十章波动学习题答案
第十章 波动学习题10-1 有一平面简谐波0.02cos20030x y t π⎛⎫=- ⎪⎝⎭,x ,y 的单位为m ,t 的单位为s 。
(1)求其振幅、频率、波速和波长;(2)求x=0.1m 处质点的初相位。
解:(1)A=0.02m ,v=ω/2π=200π/2π=100s -1,u=30m/s ,λ=u/v=0.3m(2)02000.1200230303x πππφ⨯=-=-=- 10-2 一横波沿绳子传播时的波动方程为()0.05cos 104y t x ππ=-,x ,y 的单位为m ,t 的单位为s 。
(1)求其振幅、频率、波长和波速;(2)求绳子上各质点振动的最大速度和最大加速度;(3)求x=0.2m 处的质点在t=1s 时的相位,它是原点处质点在哪一时刻的相位?(4)分别画出t=1s ,1.25s ,1.5s 时的波形曲线。
解:(1)A=0.05m ,v=ω/2π=10π/2π=5s -1,λ=0.5m ,u=λv=2.5m/s(2)m A ω=v ,2m a A ω= (3)1041040.29.2t x φπππππ=-=-⨯= 10-3 一平面简谐波()x πt y π2-10sin 05.0=,x ,y 的单位为m ,t 的单位为s 。
(1)求其频率、周期、波长和波速;(2)说明x =0时方程的意义,并作图表示。
解:(1)v=ω/2π=10π/2π=5s -1,T=1/v=0.2s ,λ=1m ,u=λv=5m/s(2)0.05sin10y πt = 原点处质点的振动方程10-4 波源作简谐运动,振动方程为()m cos240100.43πt y -⨯=,它所形成的波形以30m·s -1的速度沿一直线传播。
(1)求波的周期及波长;(2)写出波动方程。
解:(1)T=2π/ω=2π/240π=1/120s ,λ=uT=30/120=0.25m(2)()34.010cos240m 30x y πt -⎛⎫=⨯- ⎪⎝⎭10-5 如图所示,一平面简谐波在介质中以速度u=20m/s 沿x 轴负方向传播,已知a 点的振动方程为y a =3cos4πt ,t 的单位为s ,y 的单位为m 。
波动习题答案讲课稿
y1
4.00 10 2
cos
1 3
(4 x
24t )
(SI)
y2
4.00 10 2
cos
1 3
(4 x
24t )
(SI)
求: (1) 两波的频率、波长、波速;
(2) 两波叠加后的节点位置;
(3) 叠加后振幅最大的那些点的位置.
6.解:(1) 与波动的标准表达式 y Acos 2π(t x / ) 对比可
2
①
2分
而此时,b 质点正通过 y = 0.05 m 处向 y 轴正方向运动,应有
y 0.1cos[7π 2π(0.2 / ) ] 0.05
且 由①、②两式联立得
7π 2π(0.2 / ) 1 π
3
= 0.24 m 17π / 3
②
2分
1分 1分
∴ 该平面简谐波的表达式为
y 0.1cos[7πt πx 17 π] (SI)
1.解:设平面简谐波的波长为,坐标原点处质点振动初相为,则该列平面简谐
波的表达式可写成
y 0.1c o s7(πt 2πx / ) (SI)
2分
t=1s时
y 0.1c o s7[π 2π(0.1/ ) ] 0
因此时 a 质点向 y 轴负方向运动,故
7π 2π(0.1/ ) 1 π
am a x ( 2 y / t 2 )m a x 4π2 2 A 4.93103 m/s2
与标准形式
各1分 1分 2分 2分
(3)
2π(x2 x1) / π ,二振动反相
2分
3.(3082)
如图,一平面波在介质中以波速u = 20 m/s沿x轴负方向传播,
已知A点的振动方程为 (SI). (1) 以A点为坐标原点写出波的表达式;
大学物理第十四章波动光学习题+答案
D k 0,1, 2 明纹中心位置
暗纹中心位置
k 1, 2,3
D 相邻两明纹(或暗纹)中心间距离: Δx d
3、薄膜等厚干涉 劈尖干涉
垂直入射: 2ne
2
相邻明纹(暗纹)间的厚度差: e
C R
2n 相邻明纹(暗纹)中心间距离: l 2n
牛顿环
r 2Re
(2) 屏幕上主极大位置由光栅公式决定
(a b)sin k
(3) 缺级现象 (a b)sin k
k 0,1, 2, 3 ——主极大
k 1, 2, 3
k 1, 2, 3
干涉明纹 衍射暗纹
a sin k
ab k k k 1, 2, 3 a (4) 重级现象 k11 k2 2
波 动 光 学 习 题 课
一、基本概念
1、相干光的获得 把由光源上同一点发出的光设法分成两部分,再叠 加起来。
分波阵面法
分振幅法
2、光程与光程差
n2 r2 n1r1
3、半波损失
2 2 (n2 r2 n1r1 )
当光从光疏媒质射向光密媒质时,反射光有位相 的突变,相当于 的附加光程差,叫半波损失。
x tan 5 103 f
a sin 0.2 5 10 mm 1000 nm 4 2
3
a
x
f
暗纹,4个半波带
4-5 某元素的特征光谱中含有波长分别为1=450nm 和2=750nm的光谱线。在光栅光谱中,这两种波长的 谱线有重叠现象,重叠处2的谱线的级数将是 (A) 2,3,4,5…… (C) 2,4,6,8……
大学物理 第十章 波动部分习题
第十章 波动一、简答题1、什么是波动? 振动和波动有什么区别和联系?答:波动一般指振动在介质中的传播。
振动通常指一个质点在平衡位置附近往复地运动,波动是介质中的无数个质点振动的总体表现。
2、机械波的波长、频率、周期和波速四个量中,(1) 在同一介质中,哪些量是不变的? (2) 当波从一种介质进入另一种介质中,哪些量是不变的?答:(1) 频率、周期、波速、波长 (2)频率和周期3、波动方程⎪⎭⎫ ⎝⎛-=u x cos y t A ω中的u x 表示什么? 如果把它写成⎪⎭⎫ ⎝⎛-=u x cos y ωωt A ,u x ω又表示什么? 答:u x 表示原点处的振动状态传播到x 处所需的时间。
ux ω表示x 处的质点比原点处的质点所落后的相位。
4、波动的能量与哪些物理量有关? 比较波动的能量与简谐运动的能量.答:波的能量与振幅、角频率、介质密度以及所选择的波动区域的体积都有关系。
简谐运动中是振子的动能与势能相互转化,能量保持守恒的过程;而行波在传播过程中某一介质微元的总能量在随时间变化,从整体上看,介质中各个微元能量的变化体现了能量传播的过程。
5. 平面简谐波传播过程中的能量特点是什么?在什么位置能量为最大?答案:能量从波源向外传播,波传播时某一体元的能量不守桓,波的传播方向与能量的传播方向一致,量值按正弦或余弦函数形式变化,介质中某一体元的波动动能和势能相同,处于平衡位置处的质点,速度最大,其动能最大,在平衡位置附近介质发生的形变也最大,势能也为最大。
6. 驻波是如何形成的?驻波的相位特点什么?答案:驻波是两列振幅相同的相干波在同一直线上沿相反方向传播时叠加而成。
驻波的相位特点是:相邻波节之间各质点的相位相同,波节两边质点的振动有的相位差。
7 惠更斯原理的内容是什么?利用惠更斯原理可以定性解释哪些物理现象?答案:介质中任一波振面上的各点,都可以看做发射子波的波源,其后任一时刻,这些子波的包络面就是该时刻的波振面。
振动、波动练习题及答案
振动、波动练习题一.选择题1.一质点在X 轴上作简谐振动,振幅A=4cm 。
周期T=2s 。
其平衡位置取作坐标原点。
若t=0时刻质点第一次通过x= -2cm 处,且向X 轴负方向运动,则质点第二次通过x= -2cm 处的时刻为( )。
A 1sB 32s C 34s D 2s2.一圆频率为ω的简谐波沿X 轴的正方向传播,t=0时刻的波形如图所示,则t=0时刻,X 轴上各点的振动速度υ与X 轴上坐标的关系图应( )。
3.图示一简谐波在t=0时刻的波形图,波速υ=200m/s ,则图中O 点的振动加速度的表达式为( )。
)22cos(4.0)2cos(4.0)23cos(4.0)2cos(4.02222ππππππππππππ+-=--=-=-=t a D t a C t a B t a A4.频率为100Hz点振动的相位差为3π,则这两点相距( )。
A 2mB 2.19mC 0.5mD 28.6m5.一平面简谐波在弹性媒质中传播,媒质质元从平衡位置运动到最大位置处的过程中,( )。
A 它的动能转换成势能B 它的势能转换成动能C 它从相邻的一段质元获得能量其能量逐渐增大D 它把自己的能量传给相邻的一段质元,其能量逐渐减小6.在下面几种说法中,正确的说法是:( )。
A 波源不动时,波源的振动周期与波动的周期在数值上是不同的B 波源振动的速度与波速相同C 在波传播方向上的任一质点振动位相总是比波源的位相滞后D 在波传播方向上的任一质点振动位相总是比波源的位相超前7.一质点作简谐振动,周期为T ,当它由平衡位置向X 轴正方向运动时,从二分之一最大位移处到最大位移处这段路程所需要的时间为( )。
A 4T B 12T C 6T D 8T8.在波长为λ的驻波中两个相邻波节之间的距离为( )。
A λ B 3λ/4 C λ/2 D λ/49.在同一媒质中两列相干的平面简谐波的强度之比421=I I 是,则两列波的振幅之比是:( ) A=21A A 4 B =21A A 2 C =21A A 16 D =21A A 4110.有二个弹簧振子系统,都在作振幅相同的简谐振动,二个轻质弹簧的劲度系数K 相同,但振子的质量不同。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
波动习题1
一、选择题
1、 一平面简谐波沿Ox 正方向传播,波动表达式为]2
)42(
2cos[10.0π
+-π=x t y ,则该波在t = 0.5 s 时刻的波形图是 [ B ]
x (m )O 2
0.10
y (m )(A)
x (m )O 2
0.10
y (m )
(B)
x (m )O 2
-0.10
y (m )
(C)x (m )O
2
y (m )
(D)
-0.10
2、 已知一平面简谐波的表达式为 )cos(bx at A y -=(a 、b 为正值常量),则
A 、波的频率为a .
B 、波的传播速度为 b/a .
C 、波长为 π / b .
D 、波的周期为2π / a . [ D ] 3、 如图所示,有一平面简谐波沿x 轴负方向传播,坐标原点O 的振动规律为)cos(0φω+=t A y )
,则B 点的振动方程为 A 、])/(cos[0φω+-=u x t A y . B 、)]/([cos u x t A y +=ω. C 、})]/([cos{0φω+-=u x t A y . D 、})]/([cos{0φω++=u x t A y . [ D ] 二、填空题
4、 A ,B 是简谐波波线上距离小于波长的两点.已知,B 点振动的相位比A 点落后
π3
1
,波长为λ = 3 m ,则A ,B 两点相距L = ____1/2____________m .
5、 已知波源的振动周期为4.00×10-
2 s ,波的传播速度为300 m/s ,波沿x 轴正方向传播,
则位于x 1 = 10.0 m 和x 2 = 16.0 m 的两质点振动相位差为 π.
6、 请按频率递增的顺序,写出比可见光频率高的电磁波谱的名称___紫外线_______ ;
_______X 射线___; ___γ射线______ . 三、计算题
7、 图为t = T / 4 时一平面简谐波的波形曲线,求其波的表达式。
解:3304==μλT
πππω1654
3302T 2=⨯==
x
y u
B
O |x|
x (m)
O 1 u =330 m/s
y (m)
2 3
])360
(165cos[1.0y ψπ+-=x
t s T t 330
1
4==
0]360
1
165cos[1.00=+⨯
=ψπy 0〉V
πψ=∴
])360
(165cos[1.0y ππ+-
=x
t 8.(不考)一平面简谐波沿x 轴正向传播,波的振幅A = 10 cm ,角频率ω = 7π rad/s.当t = 1.0 s 时,x = 10 cm 处的a 质点正通过其平衡位置向y 轴负方向运动,而x = 20 cm 处的b 质点正通过y = 5.0 cm 点向y 轴正方向运动.设该波波长λ >10 cm ,求该平面波的表达式. 解:
设])(cos[y ψυ
ω+-=x
t A
m X 24.06
51.022=⇒=⨯=⨯=λπ
λπΔλπΔψ s m T /84.024.02
72=⨯===πλωλυ
t=1时,3
46521π
ππφ=+=
t=0时,ππ
ππφ63
7340-=-=
即3π 所以]3
)84.0(7
cos[1.0y π
π+-=x t
波动习题2
一、选择题
1、 一平面简谐波在弹性媒质中传播,质元从平衡位置运动到最大位移处的过程中
A 、它的动能转换成热能。
B 、它的势能转换成动能。
C 、它从相邻的一段质元获得能量其能量逐渐增大。
D 、它把自己的能量传给相邻的一段质元,其能量逐渐减小。
[ D ] 2、 图中画出一向右传播的简谐波在t 时刻的波形图,反
射面为波密介质,波由P 点反射,则反射波在t 时刻
的波形图为
[ B ]
二、填空题
3、 在同一媒质中两列频率相同的平面简谐波的强度之比I 1 / I 2 = 16则这两列波的振幅之比
是 A 1 / A 2 = 4/1 。
4、 如图所示,在平面波传播方向上有一障碍物AB ,根据惠更斯原理,定性地绘出波绕过
障碍物传播的情况.
三、计算题
5、 在弹性媒质中有一沿
x 轴正向传播的平面波,其表达式为
)2
1
4cos(01.0π-
π-=x t y .若在x = 5.00 m 处有一媒质分界面,且在分界面处反射波相位突变π,设反射波的强度不变,试写出反射波的表达式.
x
-A
P
(B)
x
-A
P
(A)
x
-A
P
(C)
x
-A
P
(D)
O O O O y
y y
y x -A
P
B y
C
O
波线
波阵面
A B
λ
解:
3
0.01cos(4)2y t =-π入入射波在反射端:
1
0.01cos(4)2
y t =-π反反射波在反射端:
0.01cos[4(5)]
2
0.01cos[4]
2
y t x t x π
ππ
π=+--=++反反射波波动方程:
6、 如图所示,原点O 是波源,振动方向垂直于纸面,波长是
λ .AB 为波的反射平面,反射时无相位突变π.O 点位于
A 点的正上方,h AO =.Ox 轴平行于A
B .求Ox 轴上干涉加强点的坐标(限于x ≥ 0). 解:
222122()(2())22
x
r r h x k π
π
ϕπλ
λ∆=
-=
+-=加强
2212
h x k k λλ=-
7、 火车A 以20m ·s -1
的速度向前行驶,A 车的司机听到本车的汽笛频率为120Hz ,另一火车
B ,以25m ·s -1
的速度向A 迎面驶来,问B 车司机听到A 车汽笛的频率是多少?(设空气中声速为340 m ·s -1
) 解:134025
12013734020
o s s u V Hz u V νν++=
=⨯=-- x
O
h
A
B。