广东省高一下学期期中数学试卷
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
广东省高一下学期期中数学试卷
姓名:________
班级:________
成绩:________
一、 选择题 (共 12 题;共 24 分)
1. (2 分) (2019 高二上·北京期中) 数列-3,1,5,9,…的一个通项公式
()
A.
B.
C.
D.
2. (2 分) (2018 高一下·深圳期中) 已知向量
,
,则
()
A.
B.
C.
D. 3. (2 分) (2018 高二上·惠来期中) 已知 A、B 两地的距离为 10 km,B、C 两地的距离为 20 km,现测得 ∠ABC=120°,则 A、C 两地的距离为 ( ) A . 10 km
B.
km
C.
km
D.
km
4. (2 分) 在等比数列{an}中,S3=3a3 , 则其公比 q 的值为( )
第 1 页 共 20 页
A.﹣
B.
C . 1 或﹣
D . ﹣1 或
5. (2 分) (2020 高三上·厦门期中) 已知函数
的图象与 轴的两个相邻
交点的距离为 ,把
图象上每一点的横坐标缩小到原来的一半,再沿 轴向左平移 个单位长度,然后
纵坐标扩大到原来的 2 倍得到函数
的图象,若
在
上单调递增,则 的最大值为( )
A. B. C. D. 6. (2 分) 已知△ABP 的顶点 A、B 分别为双曲线 的值等于( ) A.
的左右焦点,顶点 P 在双曲线 C 上,则
B. C.
D.
7. (2 分) (2020 高一下·驻马店期末) 在
且满足
和
,连接
中, 是 边上的一点, 是 上的一点,
并延长交 于 ,若
,则 的值为( )
第 2 页 共 20 页
A. B.
C.
D.
8. (2 分) 数列 的通项公式
, 其前项和为 , 则 等于( )
A . 1006
B . 2012
C . 503
D.0
9. (2 分) (2020·奉贤模拟) 如图,圆 O 的半径为 1,A 是圆上的定点,P 是圆上的动点,角 x 的始边为射
线 ,终边为射线 ,过点 P 作直线 的垂线,垂足为 M,将点 M 到直线 的距离表示成 x 的函数
,
则
在
上的图象大致为( )
A.
第 3 页 共 20 页
B.
C.
D. 10. (2 分) (2016 高二下·北京期中) 已知定义在 R 上的函数 y=f(x)满足 f(x+2)=2f(x),当 x∈[0,
2]时,
,则函数 y=f(x)在[2,4]上的大致图象是( )
A. B.
第 4 页 共 20 页
C.
D.
11. (2 分) (2019 高二下·富阳月考) 已知向量 , , 满足
,若 为 , 的夹角,则
的值是( )
A.
B.
C.
D.
12.(2 分)(2019·河南模拟) 已知数列 中,
,且对任意的
,且
,都有
,
则
()
A.
B.
C.
D.
二、 填空题: (共 4 题;共 4 分)
13. (1 分) (2017 高一上·安庆期末) 已知 D 为三角形 ABC 的边 BC 的中点,点 P 满足 ,则实数 λ 的值为________.
第 5 页 共 20 页
14. (1 分) (2020 高一上·北海期末) 已知函数 ________.
,若
,则实数
15. (1 分) (2020·沈阳模拟) 已知等差数列 的前 n 项和为 ,且
中,
,
.则
________.
,
.数列
16. (1 分) 如图,在河的一侧有一塔 CD=12m,河宽 BC=3m,另一侧有点 A,AB=4m,则点 A 与塔顶 D 的距离 AD=________
三、 解答题 (共 6 题;共 70 分)
17. (10 分) (2020 高一下·宁波期中) 在 .
(1) 求角 B;
中,三个内角 A、B、C 的对边分别为 a、b、c,且
(2) 若
,
,求
的面积.
18. (10 分) (2016 高一下·南平期末) 已知向量 =(x,﹣1), =(x﹣2,3), =(1﹣2x,6).
(1) 若 ⊥(2 + ),求| |;
(2) 若 • <0,求 x 的取值范围.
19. (10 分) (2019 高三上·衡水月考) 在
知
.
中,角 , , 的对边分别为 , , ,已
(1) 若
,
(2) 若
的面积为 ,且
,求 , 的值; 为钝角三角形,求实数 的取值范围.
20. (15 分) (2019 高一下·广东期中) 已知正项数列 与正项数列
第 6 页 共 20 页
的前 项和分别为 和 ,
且对任意
,
恒成立.
(1) 若 (2) 在(1)的条件下,若
,求数列 ,求 ;
的通项公式;
(3) 若对任意
,恒有
及
成立,求实数 的取值范围.
21. (10 分) (2017 高一下·景德镇期末) 如图,矩形 ABCD 是一个历史文物展览厅的俯视图,点 E 在 AB 上, 在梯形 BCDE 区域内部展示文物,DE 是玻璃幕墙,游客只能在△ADE 区域内参观,在 AE 上点 P 处安装一可旋转的监 控摄像头,∠MPN 为监控角,其中 M、N 在线段 DE(含端点)上,且点 M 在点 N 的右下方,经测量得知:AD=6 米,
AE=6 米,AP=2 米,∠MPN= ,记∠EPM=θ(弧度),监控摄像头的可视区域△PMN 的面积为 S 平方米.
(1) 求 S 关于 θ 的函数关系式,并写出 θ 的取值范围:(参考数据:tan ≈3) (2) 求 S 的最小值. 22. (15 分) (2017 高一下·南京期末) 已知等差数列{an}和等比数列{bn},其中{an}的公差不为 0.设 Sn 是数列{an}的前 n 项和.若 a1 , a2 , a5 是数列{bn}的前 3 项,且 S4=16. (1) 求数列{an}和{bn}的通项公式;
(2) 若数列{
}为等差数列,求实数 t;
(3) 构造数列 a1 , b1 , a2 , b1 , b2 , a3 , b1 , b2 , b3 , …,ak , b1 , b2 , …,bk , …, 若该数列前 n 项和 Tn=1821,求 n 的值.
第 7 页 共 20 页