第三讲 数论专题 - 学生版

合集下载

人大附分班考试班 第三讲 数论 学生版

人大附分班考试班 第三讲 数论 学生版

生活就像海洋,只有意志坚强的人,才能到达彼岸。

——马克思小学阶段的数论知识包括数的整除、奇偶性、质数合数、约数倍数、同余问题、完全平方数等,这些知识也是初中数论的重点,分班考试的命题则在于考查这些知识的基本性质及其应用。

1.两个整数相加时,和是一个两位数,且两个数字相同;相乘时,积是一个三位数,且三个数字相同。

请写出所有满足上述条件的两个整数。

2. 一个五位数是54的倍数,并且它的各位数字都不为0。

删去它的一位数字后所得的四位数仍是54的倍数.再删去该四位数的一位数字后所得的三位数还是54的倍数,再删去该三位数的一位数字后所得的两位数还是54的倍数,试求原五位数。

3.已知2006120062111222N =⋅⋅⋅⋅⋅⋅ 个个,试将N 表示为4个大于1的自然数之积。

4.一队少年儿童不超过50人,围成一圈作游戏.每个儿童的左右相邻都恰是一个男孩子和一个女孩子。

问:这队少年儿童最多有多少人?为什么?真题模考第三讲数论生活就像海洋,只有意志坚强的人,才能到达彼岸。

——马克思5.将12345678910111213…依次写到第1997个数字,组成一个1997位数,此数除以9的余数是几?6. 求同时满足下列三个条件的自然数a 、b :①a b >;②169ab a b=+;③a b +是平方数。

7. 在11张卡片上各写有一个不超过5的数字,将这些卡片排成一行,得到一个11位数;再将它们按另一种顺序排成一行,又得到一个11位数.请证明这两个11位数的和的十进制表达式中至少有一位数字是偶数。

【例1】 已知p 、q 均为质数,且满足25359p p +=,则以3p +,1p q -+,24p q +-为边长的三角形是( )。

A . 锐角三角形B . 直角三角形C . 钝角三角形D . 等腰三角形考点拓展生活就像海洋,只有意志坚强的人,才能到达彼岸。

——马克思【例2】 π的前24位数值为3.14159265358979323846264 在这24个数字中,任意逐个抽取1个数字,并依次记作1a ,2a ,3a ,…24a ,则12342324()()()a a a a a a --- 为( )。

数论专题讲义

数论专题讲义

数论专题讲义数论专题数论主要分为以下几个模块:1、数的整除问题2、质数合数与分解质因数3、约数与倍数4、余数问题5、奇数与偶数6、位值原理7、完全平方数8、数字谜问题一、分裂问题一.一个数的末位能被2或5整除,这个数就能被2或5整除;一个数的末两位能被4或25整除,这个数就能被4或25整除;一个数的末三位能被8或125整除,这个数就能被8或125整除;2.一个位数数字和能被3整除,这个数就能被3整除;一个数各位数数字和能被9整除,这个数就能被9整除;3.如果一个整数的奇数位数和偶数位数之和的差可以除以11,那么这个数可以除以114.如果一个整数的末三位与末三位以前的数字组成的数之差能被7、11或13整除,然后这个数字可以除以7、11或13【备注】(以上规律仅在十进制数中成立.)性质1如果数a和数b都能被数c整除,那么它们的和或差也能被c整除.即如果ca,CB,然后是C(a±b)性质2如果数a能被数b整除,b又能被数c整除,那么a也能被c整除.即如果boa,Cob,然后COA用同样的方法,我们还可以得出:属性3如果a可以被B和C的乘积除,那么a也可以被B和C除。

也就是说,如果bcoa,那么么boa,coa.属性4如果数字a可以被数字B或数字C除,并且数字B和数字C是互质的,那么a必须被数字B除1/10除以和C的乘积。

也就是说,如果boa,COA和(B,C)=1,那么bcoa性质5如果数a能被数b整除,那么am也能被bm整除.如果b|a,那么bm|am(m是非零整数);性质6如果数a能整除数b,且数c能被数d整除,那么ac也能整除bd,如果b|a,和D C,然后是BD AC;1、整除判定特征如果六位数的数字是1992□ □ 可以除以105,最后两位数是多少?2、数的整除性质应用如果15abc6可以除以36,商是最小的,那么a、B和C分别是什么?3、整除综合性问题已知:23!?258d20c6738849766ab000。

2023年小升初第三讲专题训练之数论问题

2023年小升初第三讲专题训练之数论问题

小升初专题训练---数论数论在数学中旳地位是独特旳,高斯曾经说过“数学是科学旳皇后,数论是数学中旳皇冠”。

翻开任何一本数学辅导书,数论旳内容都占据了不少旳版面。

在小升初择校考试及小学各类数学竞赛中,直接运用数论知识解题旳题目分值大概占据整张试卷总分旳12%左右,小学阶段旳数论知识点重要有:1、质数与合数、因数与倍数、分解质因数2、数旳整除特性及整除性质3、余数旳性质、同余问题4、位值原理5、最值问题知识点一:质数与合数、因数与倍数、分解质因数1.质数与合数突破要点——质数合数分清晰,2是唯一偶质数(1)质数:一种数除了1和它自身以外,没有其他旳因数,这样旳数统称质数。

(2)合数:一种数除了1和它自身以外,尚有其他旳因数,这样旳数统称合数。

例如:4、6、8、10、12、14,…都是合数。

在100以内有2、3、5、7、11、13、17、19、23、29、31、37、41、47、53、59、61、67、71、73、79、83、89、97共25个质数2约数与倍数公因数短除法到一种不能除为止,公倍数除到海枯石烂为止,因数有限个,倍数无穷多。

假如一种自然数a能被自然数b整除,那么称a为b旳倍数,b为a旳约数。

假如一种自然数同步是若干个自然数旳约数,那么称这个自然数是这若干个自然数旳公约数。

在所有公约数中最大旳一种公约数,称为这若干个自然数旳最大公约数。

自然数a1,a2,…,an旳最大公约数一般用符号(a1,a2,…,an)表达,例如,(6,9,15)=3。

3.质因数与分解质因数(1)假如一种质数是某个数旳约数,那么就是说这个质数是这个数旳质因数。

(2)把一种合数用质因数相乘旳形式表达出来,叫做分解质因数。

例如,把42分解质因数,即是42=2×3×7。

其中2、3、7叫做42旳质因数。

又如,50=2×5×5,2、5都叫做50旳质因数。

4、要注意如下几条:(1)1既不是质数,也不是合数。

五升六暑期奥数培优讲义——6-02-数论专题(二)3-讲义-学生

五升六暑期奥数培优讲义——6-02-数论专题(二)3-讲义-学生

第2讲数论专题(二)【学习目标】1、复习带余除法、同余性质、中国剩余定理问题;2、熟悉数论常见的解题思路。

【知识梳理】1、同余问题:若a,b除以c的余数相同,那么(a- b)能被c整除。

2、余数的三大性质:(1)和的余数等于余数的和;(2)差的余数等于余数的差;(3)积的余数等于余数的积。

【典例精析】【例1】满足被4除余1,被5除余1,被6除余1的最小自然数是____。

【趁热打铁-1】满足被5除余3,被6除余3,被7除余3的最小自然数是____。

【例2】有一个自然数分别去除360、314、245得到相同的余数,这个自然数最大可能是多少?【趁热打铁-2】692、608、1126三个数分別除以同一个自然数,得到的余数相同,这个自然数是多少?【例3】有3个吉利数:888,518,666,用它们分别除以同一个自然数,所得余数依次为a,a+7,a+10,求这个自然数.【趁热打铁-3】有一个自然数,用它去除226余a,去除411余a+1,去除527余a+2,则a= 。

【例4】一个小于200的自然数,被7除余2,被8除余3,被9除余1,这个数是多少?【趁热打铁-4】满足被5除余3,被6除余1,被7除余2的最小自然数是多少?【例5】一堆苹果,2个2个地数剩1个,3个3个地数剩2个,4个4个地数剩3个,5个5个地数剩4个,6个6个地数剩5个,求这堆苹果至少有多少个?【趁热打铁-5】有一袋奶糖发给学前班的小朋友,每人得8,最后刻下1糖,每人得10最后也剩下1颗糖,每人得12颗,最后还是剩下1颗糖。

这袋奶糖至少有多少颗?【例6】某歌舞团200多人在大厅列队排练,若排成7排则多2人,排成5排则多4人,排成6排则多3人,问该歌舞团共有多少人?【趁热打铁-6】某整数除以5余4,除以7余2,除以11余8,这个整数最小是多少?【例7】如果一个自然数a除以6余4,除以9余4,且a共有6个不同的约数,那么a最小是多少?【趁热打铁-7】一个自然数分别用7、8、9去除,余数分别为1、2、3,三个商数的和为570,这个自然数是____.【例8】在一根长木棍上分别用红、黄、蓝三种颜色做标记,将木棍分成了10等份、12等份和15等份。

小升初第三讲――专题训练之数论问题.(优选)

小升初第三讲――专题训练之数论问题.(优选)

小升初专项训练---数论数论在数学中的地位是独特的,高斯曾经说过“数学是科学的皇后,数论是数学中的皇冠”。

翻开任何一本数学辅导书,数论的内容都占据了不少的版面。

在小升初择校考试及小学各类数学竞赛中,直接运用数论知识解题的题目分值大概占据整张试卷总分的12%左右,小学阶段的数论知识点主要有:1、质数与合数、因数与倍数、分解质因数2、数的整除特征及整除性质3、余数的性质、同余问题4、位值原理5、最值问题知识点一:质数与合数、因数与倍数、分解质因数1.质数与合数突破要点——质数合数分清楚,2是唯一偶质数(1)质数:一个数除了1和它本身以外,没有其他的因数,这样的数统称质数。

(2)合数:一个数除了1和它本身以外,还有其他的因数,这样的数统称合数。

例如:4、6、8、10、12、14,…都是合数。

在100以内有2、3、5、7、11、13、17、19、23、29、31、37、41、47、53、59、61、67、71、73、79、83、89、97共25个质数2约数与倍数公因数短除法到一个不能除为止,公倍数除到海枯石烂为止,因数有限个,倍数无穷多。

如果一个自然数a能被自然数b整除,那么称a为b的倍数,b为a的约数。

如果一个自然数同时是若干个自然数的约数,那么称这个自然数是这若干个自然数的公约数。

在所有公约数中最大的一个公约数,称为这若干个自然数的最大公约数。

自然数a1,a2,…,an的最大公约数通常用符号(a1,a2,…,an)表示,例如,(6,9,15)=3。

3.质因数与分解质因数(1)如果一个质数是某个数的约数,那么就是说这个质数是这个数的质因数。

(2)把一个合数用质因数相乘的形式表示出来,叫做分解质因数。

例如,把42分解质因数,即是42=2×3×7。

其中2、3、7叫做42的质因数。

又如,50=2×5×5,2、5都叫做50的质因数。

4、要注意以下几条:(1)1既不是质数,也不是合数。

数学竞赛第三章数论ppt课件

数学竞赛第三章数论ppt课件

2024/7/24
第三章 数 论
7
为了规范事业单位聘用关系,建立和 完善适 应社会 主义市 场经济 体制的 事业单 位工作 人员聘 用制度 ,保障 用人单 位和职 工的合 法权益
3.1 整数的奇偶性和整除性
二、整数的整除性 例题
例10. 设p是大于5的素数,求证:240|p4-1.
例11. p≥5是素数,且2p+1也是素数,证明: 4p+1必是合数。
3.2 同 余
一、同余的定义和性质
性质
反复利用(4)(5),可以对多个(模相同的)同余式建立加、减和乘
法的运算公式。特别地,由(5)易推出:
若 a b(modm) ,则 an bn (mod m) ; 但是同余式的消去律一般并不成立,即从
未必能推出
。正确的结果是:
(6)若
,则 a b(mod m ) ,由此可以推出:
费马(Fermat)大定理(当n>2时,xn+yn=zn没有
非平凡的整数解),历经300余年,已由英国数学家安
德鲁 ·维尔斯(A.Wiles )证明。
数书九章——大衍类
2024/7/24
第三章 数 论
17
为了规范事业单位聘用关系,建立和 完善适 应社会 主义市 场经济 体制的 事业单 位工作 人员聘 用制度 ,保障 用人单 位和职 工的合 法权益
13
为了规范事业单位聘用关系,建立和 完善适 应社会 主义市 场经济 体制的 事业单 位工作 人员聘 用制度 ,保障 用人单 位和职 工的合 法权益
3.2 同 余
一、同余的定义和性质
例题
例1.今天是星期四,则101000天后是星期几? 例2.证明:993993+991991能被1984整除.

奥数六年级千份讲义779西城综合分班考试班第三讲学生

奥数六年级千份讲义779西城综合分班考试班第三讲学生

第三讲数论真题模考1、某个自然数被187除余52,被188除也余52,那么这个自然数被22除的余数是_____2、有一种最简真分数,它们的分子与分母的乘积都是693,如果把所有这样的分数从大到小排列,那么第二个分数是___________。

3、在200至300之间,有三个连续自然数,其中。

最小的能被3整除,中间的能被5整除,最大的能被7整除,那么,这样的三个连续自然数是。

4、先任意指定7个整数,然后将它们按任意顺序填入27方格表第一行的七个方格中,再将它们按任意顺序填入方格表第二行的芳格中。

最后,将所有同一列的两个数之和相乘。

那么,积是。

(填奇或偶)。

5、将一个三位数的个位数字与百位数字对调位置,得到一个新的三位数。

已知这两个三位数的乘积等于52605,那么,这两个三位数的和等于。

6、1A,A除以11余5,除以9余7 ,除以13余3,这个数最小是________。

7、一位现在一百多岁的老寿星,公元2x时的年龄为x岁,则此老寿星2001年多少岁?8、两个连续自然数的平方和等于365,又有三个连续自然数的平方和等于365,则这两个连续自然数为_______,这三个连续自然数为_______。

9、已知,m n都是自然数,且2n=126m,则n的最小值为_______________。

10、学校新买来118个乒乓球,67个乒乓球拍和33个乒乓球网,如果将这3种物品每样均平分给每个班,那么这三种物品剩下的数量相同,请问学校有多少个班?考点拓展【例1】在一位自然数中,任取一个质数和一个合数相乘,所有可能的乘积的总和是 _________【例2】将1~9九个自然数分成三组,每组三个数。

第一组三个数之积是48,第二组三个数之积是45,第三组三个数之和最大是。

【例3】 199677777741⋅⋅⋅÷个余 。

【例4】 2002名学生成一横排,第一次从左至右1—3报数,第二次从右至左1—5报数,两次报的数之和等于5的学生有 名。

奥数六年级千份讲义709人大附分班考试班第三讲数论学生版

奥数六年级千份讲义709人大附分班考试班第三讲数论学生版

小学阶段的数论知识包括数的整除、奇偶性、质数合数、约数倍数、同余问题、完全平方数等,这些知识也是初中数论的重点,分班考试的命题则在于考查这些知识的基本性质及其应用。

1.两个整数相加时,和是一个两位数,且两个数字相同;相乘时,积是一个三位数,且三个数字相同。

请写出所有满足上述条件的两个整数。

2. 一个五位数是54的倍数,并且它的各位数字都不为0。

删去它的一位数字后所得的四位数仍是54的倍数.再删去该四位数的一位数字后所得的三位数还是54的倍数,再删去该三位数的一位数字后所得的两位数还是54的倍数,试求原五位数。

3.已知2006120062111222N =⋅⋅⋅⋅⋅⋅个个,试将N 表示为4个大于1的自然数之积。

4.一队少年儿童不超过50人,围成一圈作游戏.每个儿童的左右相邻都恰是一个男孩子和一个女孩子。

问:这队少年儿童最多有多少人?为什么?5. 将12345678910111213…依次写到第1997个数字,组成一个1997位数,此数除以9的余数是几?第三讲数论6. 求同时满足下列三个条件的自然数a 、b :①a b >;②169ab a b=+;③a b +是平方数。

7. 在11张卡片上各写有一个不超过5的数字,将这些卡片排成一行,得到一个11位数;再将它们按另一种顺序排成一行,又得到一个11位数.请证明这两个11位数的和的十进制表达式中至少有一位数字是偶数。

【例1】 已知p 、q 均为质数,且满足25359p p +=,则以3p +,1p q -+,24p q +-为边长的三角形是( )。

A . 锐角三角形B . 直角三角形C . 钝角三角形D . 等腰三角形【例2】 π的前24位数值为 3.14159265358979323846264在这24个数字中,任意逐个抽取1个数字,并依次记作1a ,2a ,3a ,…24a ,则12342324()()()a a a a a a ---为( )。

数论综合(三)

数论综合(三)

余数问题是数论知识板块中另一个内容丰富,题目难度较大的知识体系,也是各大杯赛、小升初考试必考的奥数知识点,所以学好本讲知识对于同学们来说非常重要。

余数问题主要包括了带余除法的定义,三大余数定理(加法余数定理、乘法余数定理、同余定理),及中国剩余定理和有关弃九法原理的应用。

一、带余除法的定义及性质:一般地,如果a是整数,b是整数(b≠0),若有a÷b=q……r,也就是a=b×q+r,0≤r<b,我们就称上面的除法算式为一个带余除法算式。

这里:r=时:我们称a可以被b整除,q称为a除以b的商或完全商(1)当0r≠时:我们称a不可以被b整除,q称为a除以b的商或不完全商(2)当0二、同余的概念和性质同余定义:若两个整数a、b被自然数m除有相同的余数,那么称a、b对于模m同余,用式子表示为:a≡b(mod m)。

(*)上式可读作:a同余于b,模m。

同余式(*)意味着(我们假设a≥b):a-b=mk,k 是整数,即m|(a-b)例如:①15≡365(mod 7),因为365-15=350=7×50。

②56≡20(mod 9),因为56-20=36=9×4。

③90≡0(mod 10),因为90-0=90=10×9。

由例③我们得到启发,a可被m整除,可用同余式表示为:a≡0(mod m)。

例如,表示a是一个偶数,可以写a≡0(mod 2);表示b是一个奇数,可以写b≡1(mod 2)。

同余的性质:性质1:a≡a(mod m)(反身性),这个性质很显然,因为a-a=0=m·0。

性质2:若a≡b(mod m),那么b≡a(mod m)(对称性)。

性质3:若a≡b(mod m),b≡c(mod m),那么a≡c(mod m)(传递性)。

性质4:若a≡b(mod m),c≡d(mod m),那么a±c≡b±d(mod m)(可加减性)。

性质5:若a≡b(mod m),c≡d(mod m),那么ac≡bd(mod m)(可乘性)。

数论讲义答案(第三章)

数论讲义答案(第三章)

数论讲义答案(第三章)1. 证明: 若n 为正整数, α为实数, 则(1) ][][αα=⎥⎦⎤⎢⎣⎡n n , (2) [][]ααααn n n n =⎥⎦⎤⎢⎣⎡-+++⎥⎦⎤⎢⎣⎡++1...1. 证明:(1) 设n α = nq + r + {n α}, 0 ≤ r < n , 则[n α] = nq + r ,左边 = q n r q n r nq n n =⎥⎦⎤⎢⎣⎡+=⎥⎦⎤⎢⎣⎡+=⎥⎦⎤⎢⎣⎡][α, 右边 = []q n n r q n n r nq n n =⎥⎦⎤⎢⎣⎡++=⎥⎦⎤⎢⎣⎡++=⎥⎦⎤⎢⎣⎡=}{}{αααα 所以[]αα=⎥⎦⎤⎢⎣⎡n n ][. (2) 设n α = nq + r + {n α}, 0 ≤ r < n , 则[n α] = nq + r , α = q +( r + {n α})/n . r = 0时, α = q +{n α}/n , 左边 = q + q + … + q = nq . 右边 = nq .r ≥ 1时, 左边 = ⎥⎦⎤⎢⎣⎡-+++++⎥⎦⎤⎢⎣⎡++++⎥⎦⎤⎢⎣⎡++n n n r q n n r q n n r q 1}{...1}{}{ααα = nq +∑∑--=--=⎥⎦⎤⎢⎣⎡+++⎥⎦⎤⎢⎣⎡++11}{}{r n k n r n k n k n r n k n r αα = nq + 0 + n - 1 - (n - r ) + 1 = nq + r=[n α] = 右边. #2. 证明不等式[2α] + [2β] ≥ [α] + [α + β] + [β]证明:设α = m + a , β = n + b , m , n ∈Z , 0 ≤ a , b < 1. 不妨设a ≥ b , 则 [2α] + [2β] = [2m +2a ] + [2n + 2b ]= 2m + 2n + [2a ] + [2b ]而[α] + [α + β] + [β] = [m + a ] + [n + b ] + [m + n + a + b ]= 2m + 2n + [a ] + [b ] + [a +b ] = 2m + 2n + [a +b ]下证 [2a ] + [2b ] ≥ [a +b ] 而 a ≥ b , 故[2a ]≥[a +b ],自然有[2a ] + [2b ] ≥ [a +b ]. #3. 证明: 若a > 0, b > 0, n > 0, 满足n | a n - b n , 则n | (a n - b n )/(a -b ).证明:设p m || n , p 为一个素数, a - b = t , 若p |/t , 则由p m | a n - b n , 自然有p m | (a n - b n )/t . 现设p | t , 而tb t b t b a nn n n -+=-)( = ∑=--⎪⎪⎭⎫ ⎝⎛ni i i n t b i n 11因为!)1)...(1(11i t b i n n n t b i n i i n i i n ----+--=⎪⎪⎭⎫ ⎝⎛ (1) 在i = 1, 2, …, n 时, i !中含p 的最高方幂是∑∑∞=∞=≤-=<⎥⎦⎤⎢⎣⎡111k k kk i p ip i p i 又因p i -1 | t i -1, p m | n , 故由(1)可知p m | n i t b i n i i n ,...,1,1=⎪⎪⎭⎫ ⎝⎛--.即 p m | (a n - b n )/(a -b ). 把n 作因子分解并考察每一个素因子, 这就证明了n | (a n - b n )/(a -b ). #4. 证明: 若n ≥ 5, 2 ≤ b ≤ n , 则⎥⎦⎤⎢⎣⎡--b n b )!1(1. (1) 证明:若b < n , 则b (b -1) | (n -1)!, 即⎥⎦⎤⎢⎣⎡--b n b )!1(1, 且⎥⎦⎤⎢⎣⎡-b n )!1(∈Z , 故(1)成立. 若b = n , n 是一个合数且不是一个素数的平方, 可设b = n = rs , 1 < r < s < n , 由(n , n -1) = 1知s < n -1, 故b (b -1) = rs (n -1) | (n -1)!, (1)式成立.若b = n = p 2, p 是一个素数, 由n = p 2 ≥ 5知, 1 < p < 2p < p 2 - 1 = n - 1, 故p , 2p , n - 1是小于n 的三个不同的数. 故p ⋅2p ⋅(n -1) = 2b (b -1) | (n -1)!, 故(1)式成立.若b = n = p , p 是一个素数, 由(p -1)! + 1 ≡ 0 (mod p )知p p p p p p p p p p )1()!1(11)!1(11)!1()!1(---=-+-=⎥⎦⎤⎢⎣⎡-+-=⎥⎦⎤⎢⎣⎡- 即)1()!1()!1(---=⎥⎦⎤⎢⎣⎡-p p p p p , 而(p , p -1) = 1知(p -1)⎥⎦⎤⎢⎣⎡-p n )!1(, (1)成立. #5. 证明: 对于任意的正整数n ,)!1(!)!2(+n n n是一个整数.证明: 因为pot p ((2n )!) = ∑∞=⎥⎦⎤⎢⎣⎡12i i p n , pot p ((n )!) = ∑∞=⎥⎦⎤⎢⎣⎡1i i p n , pot p ((n +1)!) = ∑∞=⎥⎦⎤⎢⎣⎡+11i i p n .所以只需证∀ i ≥ 1, ⎥⎦⎤⎢⎣⎡++⎥⎦⎤⎢⎣⎡≥⎥⎦⎤⎢⎣⎡i i i p n p n p n 12. (*)设n = qp i + r , 0 ≤ r < p i , 则若r < p i - 1, 则,,1q p n q p n i i =⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡+(*)式成立. 若r = p i - 1, 则,,11q p n q p n i i =⎥⎦⎤⎢⎣⎡+=⎥⎦⎤⎢⎣⎡+而⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡+=+≥⎥⎦⎤⎢⎣⎡-++=⎥⎦⎤⎢⎣⎡-+=⎥⎦⎤⎢⎣⎡i i i i i i p n p n q p p q p p q p n i 1121122222, 故此时(*)式也成立. 所以)!1(!)!2(+n n n ∈Z . #6. 证明: 设∑==kj j n n 1, 则(1)!!...!!21k n n n n 是一个整数;(2) 如n 是一个素数, 而max(n 1, …, n k ) < n , 则!!...!!|21k n n n n n .证明:(1) 证法一 只需设n 1, n 2,…, n k 均为正数, 设p 为任意素数, 则v p ((n )!) = ∑∞=⎥⎦⎤⎢⎣⎡1i i p n , v p ((n j )!) = k j p n i i j ≤≤⎥⎦⎤⎢⎣⎡∑∞=0,1, 只需证∑=⎥⎦⎤⎢⎣⎡≥⎥⎦⎤⎢⎣⎡++k j i j ik p n p n n 11...对∀i ≥ 1均成立, 而由P64 性质2知这是显然的, 故!!...!!21k n n n n ∈Z .证法二 n = 2时,Z n n n n n n ∈⎪⎪⎭⎫ ⎝⎛=-111)!(!!, 假设n - 1时结论成立, 则当n 时Z n n n n n n n n n n n n n n n n n n n n k k k k ∈++++++=+++=)!()!...)((!!)!(!!...!)!...(!!...!!213212*********(由归纳假设知Z n n n n n n k ∈+++++)!()!...)((21321, 又!!)!(2121n n n n +∈Z .)(2) 若n 是素数, 且max(n 1, n 2,…,n k ) < n , 故n | n !, 而n |/n 1!, n 2!, …, n k !, 所以 !!...!!|21k n n n n n . #7. 证明: 如果在自然数列1 ≤ a 1 < a2 < … < a k ≤ n中, 任意两个数a i , a j 的最小公倍数[a i , a j ] > n , 则k ≤ ⎥⎦⎤⎢⎣⎡+21n . 证明:断言: 对于≤2n 的任意n + 1个正整数中, 至少有一个被另一个所整除. 设1 ≤ a 1 < a 2 < … < a n +1 ≤ 2n , a i = 2λi b i , λi ≥ 0, 2|/b i , 1 ≤ i ≤ n +1, 其中b i < 2n . 因为在1, 2, …, 2n 中只有n 个不同的奇数1, 3, …, 2n -1, 故b 1, b 2, …, b n +1中至少有两个相同. 设b i = b j , 1 ≤ i < j ≤ n +1, 于是在a i = 2λi b i 和a j = 2λj b i 中, 由a i < a j 知λi < λj . 故a i | a j .若k > ,21⎥⎦⎤⎢⎣⎡+n 当n = 2t 时, k > t n =⎥⎦⎤⎢⎣⎡+21, 故a 1, …, a k 为k (k ≥ t +1)个小于等于2t 的数, 故∃ i , j , 1 ≤ i < j ≤ k , 使得a i | a j . 故[a i , a j ] = a j ≤ n , 矛盾!若n = 2t + 1, 则k > ⎥⎦⎤⎢⎣⎡+21n = t + 1, 因为1, 2, …, n = 2t + 1中只能有t + 1个奇数, 故k 个数a 1, a 2, …, a k 中有一对数i , j , 1 ≤ i < j ≤ k , 使得a i | a j , 所以[a i , a j ] = a j ≤ n 矛盾. 故k ≤ ⎥⎦⎤⎢⎣⎡+21n . # 8. 证明: 若k > 0, 则∑==kd d u )(0)(ϕ. 证明:若∃ d , 使得ϕ(d ) = k ,则(1) 22 | d , 则u (d ) = 0不考虑.(2) 2 || d , 则(d /2, 2) = 1, 所以ϕ(d ) = ϕ(2⨯d /2) = ϕ(2)⨯ϕ(d /2) = ϕ(d /2) = k .而 u (d ) + u (d /2) = 0.(3) 2|/d , 则ϕ(2d ) = ϕ(2)⨯ϕ(d ) = ϕ(d ) = k , 而u (2d ) + u (d ) = 0. 故{u (d ) ≠ 0 | u (d ) = k }可分成若干对, 每对为u (d ) + u (2d ) = 0. 故∑==kd d u )(0)(ϕ. # 9. 证明∑=nd n u d u |22)()(.证明:由u (n )的定义有⎩⎨⎧=中含有平方因子中不含有平方因子n n n u ,0,1)(2, 当n 中不含有平方因子时, 显然∑==nd u d u |21)1()(当n 中含有平方因子时, 设n = n 02m , n 0 > 1, m 不含平方因子, 则0)()()()(1||.||0222022====∑∑∑∑>n d n d mn d nd d u d u d u d u .故=∑nd d u |2)(u 2(n ). #其实, 采用类似的方法可证⎩⎨⎧>=∑其它若,11,|,0)(|m n m d u k n d k. 10. 证明: 对于任一个素数p ,∑⎪⎩⎪⎨⎧≥===n d n p n n d p u d u | ,01, ,21,1)),(()(是其余情形若若若αα. 证明:n = 1结论显然. 若n = p α, α ≥ 1, 则2)()()1()1()),(()(|=+=∑p u p u u u d p u d u nd .若(n , p ) = 1, 则0)()),(()(||==∑∑nd nd d u d p u d u .若n = p αn 1, n 1 > 1, 则0)()()()()()()),(()(111|1|),(|1),(||=+=+=∑∑∑∑∑==n d n d pp d n d p d n d nd p u d u d u p u d u d u d p u d u #11. 证明∑=n d d d u n n |2)()()(ϕϕ 证明:n = 1时结论显然.n > 1时, 由于u (n ), ϕ(n )均是积性函数, 所以u 2(d )/ϕ(d ), ∑nd d d u |2)()(ϕ也是积性函数. 设n = p 1α1…p s αs , 则右边 = ∏∏∏===-=⎪⎪⎭⎫ ⎝⎛-+=⎪⎪⎭⎫ ⎝⎛+++sk s k s k kk k k k k k p p p p p u p p u k k 111221111)()(...)()(1ααϕϕ. 左边 =()∏∏∏===---=-=-sk k ksk kssk kssp p pp p pp p p p s s 111111111)1(...1 (11)αααα. 故 ∑=n d n n d d u |2)()()(ϕϕ. # 12. 证明: ∑=nd d d u |0)()(ϕ的充分必要条件是)2(mod 0≡n .证明:设n = k k p p αα (1)1, p 1, …, p k 为不同的素数, αi ≥ 1, i = 1, 2, …, k .)...()...(...)()()1()1()()(111|k kki iind p p pp u p p u u d d u ϕϕϕϕ+++=∑∑==∏∑==--++--+ki ikki i pp 11)1()1(...)1)(1(1=∏=--ki i p 1)11(所以,n pd d u ind |220)()(|⇔=∃⇔=∑某个ϕ. #13. 证明:)0(2)1()(1>+=⎥⎦⎤⎢⎣⎡∑=n n n d n d nd ϕ. 证明:n = 1时结论显然.假设对n = k 时成立, 即2)1()(1+=⎥⎦⎤⎢⎣⎡∑=k k d k d kd ϕ. 则n = k + 1时, 有)1(1)()(1)(1111++⎪⎪⎭⎫ ⎝⎛⎥⎦⎤⎢⎣⎡-⎥⎦⎤⎢⎣⎡++⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡+∑∑∑==+=k d k d k d d k d d k d kd k d k d ϕϕϕϕ =)1()(2)1(11|++++∑+<+k d k k k d k d ϕϕ = ∑+++1|)(2)1(k d d k k ϕ =12)1(+++k k k = 2)2)(1(++k k . #证法二 因为∑⎥⎦⎤⎢⎣⎡==⎥⎦⎤⎢⎣⎡d n k d n 11, 所以∑∑∑⎥⎦⎤⎢⎣⎡====⎥⎦⎤⎢⎣⎡d n k nd nd d d n d 1111)()(ϕϕ∑∑⎥⎦⎤⎢⎣⎡===d n k n d d 11)(ϕ∑∑=⎥⎦⎤⎢⎣⎡==nk k n d d 11)(ϕ∑=⎥⎦⎤⎢⎣⎡=n k k n k 1)(ϕ)(1k k n n k ϕ∑=⎥⎦⎤⎢⎣⎡= )(...)3(3)2(2)1(n n n n ϕϕϕϕ++⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡+=∑∑∑+++=nd d d d d d |2|1|)(...)()(ϕϕϕn +++=...21 2)1(+=n n . # 14. 计算S (n ) = ∑⎪⎭⎫⎝⎛n d d n u d u |)(.解:若n = 1, S (1) = 1, 若n = p 1…p k , 则S (n ) = ∑⎪⎭⎫⎝⎛nd d n u d u |)(= u (1)u (p 1p 2…p k ) + u (p 1)u (p 2…p k ) + … + u (p k )u (p 1…p k -1) +… + u (p 1p 2…p k )u (1)= (-1)k (k k kk C C C +++ (1)0) = 2k (-1)k若n = p 12p 2…p k , 则S (n ) = ∑+-==⎪⎭⎫⎝⎛nd k k p p p u p u d n u d u |1211)1()...()()(其余情形S (n ) = 0. # 15. 证明: n 是素数的充分必要条件是σ(n ) + ϕ(n ) = nd (n ). 证明:“⇒” 若n 为素数, 则σ(n ) = 1 + n , ϕ(n ) = n - 1, d (n ) = 2, 所以有σ(n ) + ϕ(n ) = nd (n ).“⇐” n , d (n ), ϕ(n ), σ(n )均是极性函数, 若n 不为素数的方幂, n = n 1n 2, (n 1, n 2) = 1,σ(n 1n 2) + ϕ(n 1n 2) = σ(n 1)σ(n 2) + ϕ(n 1)ϕ (n 2)≠ (σ(n 1)+ϕ(n 1))⋅( σ(n 2)+ ϕ (n 2)) = n 1n 2d (n 1n 2).若n = p α, α ≥ 1, σ(n ) = 1 + p + … + p α-1 + p α, ϕ(n ) = p α - p α-1, d (n ) = α + 1, 1 + p + … + p α-2 + 2p α = (α + 1)p α, 只有α = 1时σ(n ) + ϕ(n ) = nd (n )才成立, 即n 是素数. # 16. 证明: 如果有正整数n 满足ϕ(n + 3) = ϕ(n ) + 2, (1)则n = 2p α 或n + 3 = 2p α, 其中α ≥ 1, p ≡ 3 (mod 4), p 是素数. 证明:经验证可知n = 1, 2不满足(1)式, 设n > 2, 则ϕ(n ), ϕ(n +3)均为偶数. 由(1)知ϕ(n )和ϕ(n +3)不能同时被4整除, 故只能有ϕ(n ) ≡ 2 (mod 4), ϕ(n +3) ≡ 0 (mod 4)或ϕ(n ) ≡ 0 (mod 4), ϕ(n +3) ≡ 2 (mod 4).令n = 2α1p 2α2…p k αk , 则ϕ(n ) = 2α1-1p 2α2-1(p 2-1)…p k αk -1(p k -1). 由于ϕ(n )中2α1-1, (p 2-1), …, (p k -1)均被2整除, 若ϕ(n ) ≡ 2 (mod 4), 则n 只能含有一个奇素数因子, 因此n 有三种情况: (1) n = 2α1, 此时α1 = 2, 故n = 4; (2) n = p 2α2, 此时p 2满足p 2 ≡ 3 (mod 4); (3) n = 2α1p 2α2, 此时α1 = 1, p 2 ≡ 3 (mod 4), 即n = 2p 2α2. 因为ϕ(4) ≠ ϕ(1) + 2, 所以若ϕ(n +3) ≡ 2 (mod 4), 经类似的分析可得n + 3 = p α, 2p α, α ≥ 1, p ≡ 3 (mod 4). 设n = p α, 由(1)得ϕ(p α+3) = p α - p α-1 + 2 (2)设2t || p α + 3, t ≥ 1, 由(2)得 p α - p α-1 + 2 = ϕ(2t ⋅(p α + 3)/2t )= 2t -1⋅ϕ( (p α + 3)/2t ) ≤ 2t -1⋅( (p α + 3)/2t -1) = (p α + 3)/2-2t -1即有 p α - p α-1 + 2 ≤ (p α + 3)/2 - 1, 化简得p α ≤ 2p α-1 - 3, 也即3 ≤ p α-1(2-p ) 由于p > 2, 故 3 ≤ p α-1(2-p )不能成立. 同样可证n + 3 = p α时, (1)式不成立, 故n = 2p α或n + 3= 2p α. # 17. 证明ϕ(n ) ≥ n /d (n ).证明:设n 的标准分解式为s l s l p p n ...11=, 故ϕ(n )d (n ) = n (1-1/p 1)…(1-1/p s )(l 1 + 1)…(l s + 1) ≥ n (1/2)s 2s = n于是得ϕ(n ) ≥ n /d (n ). # 18. 求出满足ϕ(mn ) = ϕ(m ) + ϕ(n ) (1)的全部正整数对(m , n ). 解:设(m ,n ) = d , 则从ϕ(n )的公式不难有ϕ(mn ) = d ⋅ϕ(m )⋅ϕ(n )/ϕ(d ), 由(1)得ϕ(m ) + ϕ(n ) = d ⋅ϕ(m )⋅ϕ(n )/ϕ(d ), (2)设ϕ(m )/ϕ(d ) = a , ϕ(n )/ϕ(d ) = b , a , b 都是正整数, (2)化为1/a + 1/b = d (3)d > 2时, 易证(3)无正整数解, 在d = 1和d = 2时, (3)分别仅有正整数解a = b = 2和a = b = 1. 在d = 1, a = b = 2时, ϕ(m ) = ϕ(n ) = 2, 因此(m , n ) = (3, 4), (4, 3); 在d = 2, a = b = 1时, ϕ(m ) = ϕ(n ) = 1, 于是(m , n ) = (2, 2). # 19. 若n > 0, 满足24 | n + 1, 则24 | σ(n ). 证明:由24 | n + 1知n ≡ -1(mod 3)和n ≡ -1(mod 8), 设因子d | n , 则3|/d , 2|/d , 可设d ≡ 1, 2 (mod 3), d ≡ 1, 3, 5, 7(mod 8).因为d ⋅(n /d ) = n ≡ -1 (mod 3)和d ⋅(n /d ) = n ≡ -1(mod 8), 由此推出, d ≡ 1 (mod 3), n /d ≡ 2 (mod 3) 或d ≡ 2 (mod 3), n /d ≡ 1 (mod 3), 和d ≡ 3 (mod 8), n /d ≡ 5 (mod 8) 或d ≡ 5 (mod 8), n /d ≡ 3 (mod 8) 或d ≡ 1 (mod 8), n /d ≡ 7 (mod 8) 或d ≡ 7 (mod 8), n /d ≡ 1 (mod 8).每一种情形都有d + n /d ≡ 0 (mod 3), d + n /d ≡ 0 (mod 8), 故d + n /d ≡ 0(mod 24). 又若d = n /d , 则n = d 2, d > 1, 则因为2|/n , 所以2|/d , 但n = d 2 ≡ 1 (mod 8)矛盾. 所以n 的所有正因子可以配对, 每对为d , n /d , 故24 | σ(n ). # 20. 证明: 若n = p 1α1 p 2α2⋅⋅⋅ p k αk , k ≤ 8, 则ϕ(n ) > n /6. 证明:ϕ(n ) = ⎪⎪⎭⎫⎝⎛-⎪⎪⎭⎫ ⎝⎛-k p p n 11...111 而p i 越大, 1 - 1/p i 越大, 故只要证p 1, p 2, …, p 8为前8个素数时, ϕ(n ) > n /6成立即可, 即要证611911...511311211>⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-, 而左边=6132332355296>, 即结论成立. # 21. 设w (1) = 0, n > 1, w (n )是n 的不同的素因子的个数, 证明:f (n ) = w (n )*μ(n ) = 0或1.证明:若n = p α (α ≥ 2)f (n ) = w (n )*u (n ) = ∑⎪⎭⎫⎝⎛nd d n w d u |)( = u (1)⋅w (p α) + u (p )⋅w (p α-1) = u (1)⋅1 + (-1)⋅1 = 0.若n = p ,f (n ) = w (n )*u (n ) = w (1)⋅u (p ) + w (p )⋅u (1) = 1若n = p 1α1 p 2α2⋅⋅⋅ p k αk , k ≥ 2, 则 f (n ) = w (n )*u (n )= ∑⎪⎭⎫⎝⎛nd d n w d u |)(= )1()1())1(()1(...)1()1()1(1110w C k k C k u C k u C k k k k k k kk -⋅+---⋅++-⋅-⋅+⋅⋅-- = 1|)')1((=-x k x= 0 # 22. 设f (x )的定义域是[0, 1]中的有理数,F (n ) = ()nknk f 1=∑, F *(n ) = ()n k nn k k f 1),(1==∑,证明: F *(n ) = μ(n )*F (n ). 证明:由Mobius 变换定理知, 等价于证明F (n ) = F *(n )*e (n ), 即要证F (n ) = ∑∑∑==⎪⎭⎫ ⎝⎛=nd dd k k nd d k f d F |1),(1|*)(. 而对于r /n , r = 1, 2, …, n 的每个分数, 既约后均为k /d , d | n , k ≤ d , (k , d ) = 1的形式, 即为某个r /n , 1 ≤ r ≤ n . 故∑∑∑===⎪⎭⎫⎝⎛=⎪⎭⎫ ⎝⎛n r nd dd k k n r f d k f 1|1),(1, 即F (n ) = ∑nd d F |*)(, 再由Mobius 逆变换即得. #23. 证明: 若f (n )是完全积性函数, 则对所有的数论函数g (n ), h (n ), 有f (n ) (g (n ) *h (n )) = (f (n )g (n )) * (f (n )h (n )).证明:f (n )⋅(g (n )*h (n )) = f (n )⋅(∑⎪⎭⎫⎝⎛nd d n h d g |)()= ∑⎪⎭⎫⎝⎛nd d n h d g n f |)()(= ∑⎪⎭⎫⎝⎛⎪⎭⎫ ⎝⎛nd d n h d n f d g d f |)()(= (f (n )⋅g (n ))*(f (n )⋅h (n )) #24. 证明: 若f (n )和f 1(n )各为g (n )和g 1(n )的麦比乌斯变换, 则()()d nnd dn nd f d g g d f 1|1|)()(∑=∑. 证明:f (n ) = ∑nd d g |)(, f 1(n ) = ∑nd d g |11)(,∑∑∑⎪⎭⎫⎝⎛=⎪⎭⎫ ⎝⎛nd n d dc d n g c g d n g d f |||11)()( ∑∑∑∑∑==⎪⎭⎫⎝⎛an b na n a an b n d b g a g b g a g d n f d g ||1||1|1)()()()()( 令b = n /d , 则(n /d ) | (n /a )⇒ a | d . 于是∑∑∑∑⎪⎭⎫⎝⎛=n d d a an b na d n g a gb g a g ||1||1)()()(.故∑∑⎪⎭⎫⎝⎛n d dc d n g c g ||1)(与∑∑n a an b b g a g ||1)()(展开式中每一项均相等, 因此()()d nnd dn nd f d g g d f 1|1|)()(∑=∑. # 证法二f = g *e ,f 1 =g 1*e , 则f *g 1 = g *e *g 1 = g *g 1*e = g *(g 1*e ) = g *f 1. # 25. 设f (x )是一个整系数多项式, ψ(n )代表f (0), f (1), ⋅⋅⋅ , f (n -1) (1)中与n 互素的数的个数, 证明: (1) ψ(n )是积性数论函数;(2) ψ(p α) = p α-1( p -b p ), b p 代表(1)中被素数p 整除的数的个数. 证明:(1) 需证 ∀(m , n ) = 1,f (0), f (1), …, f (n -1) f (n ), f (n + 1), …, f (2n -1) ……f ((m -1)⋅n ), f ((m -1)⋅n + 1), …, f ((m -1)⋅n + n -1)中与mn 互素的个数为ψ(m )ψ(n )个. 又f (x )为整系数多项式, 故 f (i + n ) ≡ f (i ) mod n f (i + m ) ≡ f (i ) mod m故上述mn 个数中每一行与n 互素的有ψ(n )个, 所以f (0), f (1), …., f ((m -1)⋅n + n -1)中共有m ψ(n )个与n 互素的数. 而f (i ), f (n + i ), …, f ((m -1)⋅n + i )由于i , n + i , …, (m -1)⋅n + i 恰好通过mod m 的一组完系, 所以上述m ψ(n )个与n 互素的数中有ψ(m )ψ(n )个与m 互素, 因此有ψ(mn ) = ψ(m )ψ(n ). (2) (a , p α) = 1⇔(a , p ) = 1, 而f (0), f (1), …, f (p -1) f (p ), f (p + 1), …, f (2p -1) ……f ((p α-1-1)⋅p ), f ((p α-1-1)⋅p + 1), …, f ((p α-1-1)⋅p + p -1) 每一行与p 互素个数为p -b p , 于是ψ(p α) = p α-1(p -b p ). # 26. 证明.))((())((2|3|t d t d nt nt ∑=∑证明:因为d 为积性函数, 故d 3, d 3*e , (d *e )2均为积性函数, 故只需对n = 1及n = p α证明上式即可!n = 1时, 左边 = 1 = 右边, 故命题成立. n = p α时, p 为素数, α ≥ 1时()()223330303|32141)1(...21)1())(())((++=++++=+==∑∑∑==ααααααi i ipt i p d t d ()()∑∑∑∑=++=⎪⎭⎫ ⎝⎛+=⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛==ααααααp t i i i p t t d i p d t d |32220202|))((2141)1()()(. # 27. 找出所有的正整数n 分别满足(1) ϕ(n ) = n /2; (2) ϕ(n ) = ϕ(2n ); (3) ϕ(n ) = 12.证明: 设n = p 1α1 p 2α2⋅⋅⋅ p k αk , p 1 < p 2 < … < p k , 则ϕ(n ) = n (1-1/p 1)…(1-1/p k ).(1) 若ϕ(n ) = n /2, 则(1-1/p 1)…(1-1/p k ) = 1/2.若t = 1, 则p 1 = 2, n = 2α即为所求.若p 1 ≠ 2, (1-1/p 1)…(1-1/p k ) = 1/2, 则2(p 1-1)…(p k -1) = p 1p 2…p k , 而p 1, p 2, …, p k 均为不同的奇素数, 所以此时ϕ(n ) = n /2不成立.(2) 若n 为奇数, p 1, p 2, …, p k 均为不同的奇素数, 则)(11...1111...112112)2(11n p p n p p n n k k ϕϕ=⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-=. 若n 为偶数, 设p 1 = 2, 则)(211...211211...112112)2(2n p n p p n n t ϕϕ=⎪⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-=. 所以当n 是奇数时, ϕ(n ) = ϕ(2n ).(3) 若ϕ(n ) = p 1α1-1(p 1-1) p 2α2-1(p 2-1)⋅⋅⋅ p k αk -1(p k -1) = 12, 则p i - 1 | 12, i = 1,2, …, k . 故p i ∈ {2, 3, 5, 7, 13}且k ≤ 3, αi ≤ 3, i = 1, 2, …, k . 则若2|/n , ϕ(n ) = 12, 则n = 13, 3⨯7; 若2||n , 则n = 2⨯13, 2⨯3⨯7; 若4 || n , 则n = 4⨯7. 若2k || n (k ≥ 3), 则ϕ(n ) = ϕ(2k )⋅ϕ(n /2k ) = 2k -1⋅ϕ(n /2k ) = 12没有整数解, 所以ϕ(n ) = 12的解只有n = 13, 3⨯7, 2⨯13, 2⨯3⨯7, 4⨯7. #28. 证明: 设p n 表示第n 个素数, 则存在正常数C 1, C 2使C 1 n log n < p n < C 2 n log n .证明:n ≥ 2时, 由第7节定理1有nnn n n log 12)(log 81≤≤π将n 换成p n , 有nn n np p n p p log 12log 81≤≤. (1)上面不等式左边给出 p n ≤ 8n log p n . (2) 两边取对数有 log p n ≤ log8n + loglog p n . (3) 又x > 1时, log x < x /2, 所以loglog p n < log p n /2. 所以由(3)式, 有log p n /2<log8n . log p n <2log8n ≤8log n (因为n ≥ 2, (8n )2 ≤ n 8)再由(2)有, p n <64n log n , 取C 2 = 64即可. 而(1)的右边给出p n ≥ n log p n /12> n log n /12, 故取C 1 = 1/12即可. 即(1/12) n log n < p n < 64 n log n . #29. 证明: 设f 1 = f 2 = 1, F n +2 = F n +1 + F n (n ≥ 0), 则(F m , F n ) = F (m , n ).证明:(1) 首先证明对于n ≥ 2, m ≥ 1有f n +m = f n -1f m + f n f m +1, (*)对m 归纳证之m = 1时, 要证f n +1 = f n -1f 1 + f n f 2 = f n -1 + f n 即可. 假设小于m 时(*)成立. 则等于m 时, 由题设 f n +m = f n +m -1 + f n +m -2= (f n -1f m -1 + f n f m ) + (f n -1f m -2+f n f m -1) (归纳假设) = f n -1(f m -1 + f m -2) + f n (f m + f m -1) = f n -1 f m + f n f m +1 (m ≥ 3)m = 2时, f n +2 = f n +1 + f n = f n + f n -1 + f n = 2f n + f n -1f 2 = f n -1f 2 + f n f 3 故(*)成立.(2) 若m | n , 则f m | f n , 事实上, 设n = mn 1, 对n 1归纳, n 1 = 1时显然, 设f m | f mn 1, 则f m (n 1+1) = f mn 1+m )1(=f mn 1-1⋅f m + f mn 1⋅f m +1 故f m | f m (n 1+1) 故m | n 时, f m | f n . (3) (f n , f n + 1) = 1, n ≥ 1设(f n , f n + 1) = d , 则由题设 f n + 1 = f n +f n - 1 ⇒ d | f n - 1, 继续下去得d | f 1 = 1, 即d = 1. (4) 设m > n , (f m , f n ) =f (m , n ). 若m = n , 显然. 事实上, 设m = nq + r , 0 < r < n .(因若n | m , 由(2)显然). 由(1)及(2)有:(f m , f n ) = (f nq + r , f n )= (f nq - 1f r + f nq f r + 1, f n ) nqn f f |=(f nq - 1f r , f n )而f n | f nq , (f nq - 1, f nq ) = 1, ∴(f nq - 1, f n ) = 1, ∴(f m , f n ) = (f r , f n )令n = q 1r + r 0, 同上又有(f r , f n ) = (f r , f r 0) =…=f (m , n ). # 30. 证明: 设f (n )是一个积性函数, 则对素数的方幂p α (α ≥ 1)有f ( p α) = f ( p )α,则f (n )是完全积性函数. 证明:设m = p 1α1 p 2α2⋅⋅⋅ p k αk , n = p 1β1 p 2β2⋅⋅⋅ p k βk , αi ≥ 0, βi ≥ 0, i = 1, 2 , …, k .f (m ) = f (p 1α1 p 2α2⋅⋅⋅ p k αk ) = f (p 1α1)…f (p k αk ) = f (p 1)α1…f (p k )αk .同理, f (n ) = f (p 1)β1…f (p k )βk . 所以f (mn ) = f (p 1α1+β1p 2α2+β2⋅⋅⋅ p k αk +βk ) = f (p 1)α1+β1…f (p k )αk +βk . #31. 证明: 若F (n ), f (n )是两个数论函数, 则F (n ) = nd |∏f (d )的充分必要条件是f (n ) = nd |∏F (d )μ(n /d ).证明:“⇒”)/(||1|)/(1)()(d n u n d dd nd d n u d f d F ∏∏∏== )/(|)/(|1111)(td n u n d d n t d f ∏∏(d = d 1t )= ∑∏)1/(|11)/(|1)(d n t td n u nd d f = ∏=11|1)(d n nd d f= f (n )“⇐”)/(||1|)/(1)()(d n u n d dd nd d n u d F d f ∏∏∏== )/(|)/(|1111)(td n u n d d n t d F ∏∏ (d = d 1t )= ∑∏)1/(|11)/(|1)(d n t td n u nd d F= ∏=11|1)(d n n d d F= F (n ) #。

六年级奥数专题 数论综合三(学生版)

六年级奥数专题 数论综合三(学生版)

学科培优数学“数论综合三”学生姓名授课日期教师姓名授课时长知识定位数论是研究整数性质的一个数学分支,它历史悠久,而且有着强大的生命力。

数论问题叙述简明,“很多数论问题可以从经验中归纳出来,并且仅用三言两语就能向一个行外人解释清楚,但要证明它却远非易事”。

因而有人说:“用以发现天才,在初等数学中再也没有比数论更好的课程了。

任何学生,如能把当今任何一本数论教材中的习题做出,就应当受到鼓励,并劝他将来从事数学方面的工作。

”所以在国内外各级各类的数学竞赛中,数论问题总是占有相当大的比重。

知识梳理涉及知识点多、解题过程比较复杂的整数综合题,以及基本依靠数论手段求解的其他类型问题.例题精讲【试题来源】【题目】己知五个数依次是13,12, 15, 25,20它们每相邻的两个数相乘得四个数,这四个数每相邻的两个数相乘得三个数,这三个数每相邻的两个数相乘得两个数,这两个数相乘得一个数。

请问最后这个数从个位起向左数、可以连续地数到几个0?【试题来源】【题目】有4个不同的自然数,它们当中任意2个数的和是2的倍数,任意3个数的和是3的倍数.为了使得这4个数的和尽可能地小,这4个数分别是多少?【试题来源】【题目】将数字4,5,6,7,8,9各使用一次,组成一个被667整除的6位数,那么,这个6位数除以667的结果是.【试题来源】【题目】在小于5000的自然数中,能被11整除,并且数字和为13的数,共有多少个?【试题来源】【题目】从1,2,3,……n中,任取57个数,使这57个数必有两个数的差为13,则n的最大值为_______。

【试题来源】【题目】一个自然数与自身相乘的结果称为完全平方数。

已知一个完全平方数是四位数,且各位数字均小于7。

如果把组成它的数字都加上3,便得到另外一个完全平方数,求原来的四位数。

【试题来源】【题目】4个不同的真分数的分子都是1,它们的分母有2个是奇数、2个是偶数,而且2个分母是奇数的分数之和与2个分母是偶数的分数之和相等.这样的奇数和偶数很多,小明希望这样的2个偶数之和尽量地小,那么这个和的最小可能值是多少?习题演练【试题来源】【题目】A telephone number has the from ABC-DEF-GHIJ,where each letter represents a different digit . The digits in ench part of the number are in decreasing order;that is,ABC,DEF,and GHIJ,Further more,D,E,and F are consecutive even digits;G,H,I,and J are consecutive odd digits ;and A+B+C=9. What is A ?【试题来源】【题目】在给定的圆周上有2000个点.任取一点标上数1;按顺时针方向从标有1的点往后数2个点,在第2个点上标上数2;从标有2的点再往后数3个点,在第3个点上标上数3;……;依此类推,直至在圆周上标出1993.对于圆周上的这些点,有的点可能标上多个数,有的点可能没有被标数.问标有数1993的那个点上标的最小数是多少?【试题来源】【题目】设1,3,9,27,81,243是6个给定的数,从这6个数中取出若干个数,每个数至多取一次,然后将取出的数相加得到一个和数,这样共可得到63个不同的数.把这些数从小到大排列起来依次是1,3,4,9,10,12,…,那么其中第39个数多少?【试题来源】【题目】证明:形如11,111,1111,11111,…的数中没有完全平方数.【试题来源】【题目】有10个整数克的砝码(允许砝码重量相同),将其中一个或几个放在天平的右边,待称的物品放在天平的左边,能称出1,2,3,…,200的所有整数克的物品来;那么,这10个砝码中第二重的砝码最少是克。

数列与简易数论三讲(学生)

数列与简易数论三讲(学生)

数列与简易数论选讲第一讲 基础理论与研究的缘起数列是高中数学的重要内容,同时也是学习高等数学的基础.在每年的高考中,以数列为载体.综合运用数列知识解决有关不定方程的整数解或整数的整除等问题已成为新的热点.这类和正整数有关的问题对数学思维能力和探索能力提出了更高的要求。

简单的初等数论几个常用结论和定理:(1)算术基本定理:设整数1>a ,那么必有)(21**=n p p p a ,其中)1(n j p j ≤≤是素数,且在不记次序的意义下)(**是唯一的;(2)关于整除的常用性质①c b b a ,,则c a ②c a b a ,,则c b a + ③0,≠b b a ,则b a ≤(3)高斯函数问题设x 是实数,[]x 表示不超过x 的最大整数,称为x 的整数部分,即[]x 是一个整数且满足[][]1+<≤x x x记{}[]x x x -=,称为x 的小数部分。

设y x ,是实数,则 ①若,y x ≤则[][]y x ≤②对于任意整数m ,有[][]{}{}x m x m x m x =++=+,,{}x 是周期为1的周期函数 ③[][][][][]1++≤+≤+y x y x y x ,其中等号有且仅有一个成立。

④小于x 的最大整数是[]1---x ;大于x 的最小整数是[]1+x⑤对于整数m ,有[]⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡m x m x一、问题提出问题1:设1250,,,a a a ⋅⋅⋅是从-1,0,1这三个整数中取值的数列,若12509a a a ++⋅⋅⋅+=,2221250(1)(1)(1)107a a a ++++⋅⋅⋅++=,则1250,,,a a a ⋅⋅⋅中数字0的个数为 .问题2:已知,,,a b c d 是正整数,a b c d <<<,7d a -=,若,,a b c 成等差数列,,,b c d 成等比数列,则这四数依次为 . 问题3:已知等差数列{}n a 首项为a ,公差为b ,等比数列{}n b 首项为b ,公比为a ,其中,a b 都是大于1的正整数,且1123,a b b a <<,对于任意的*n N ∈,总存在*m N ∈,使得3m n a b +=成立,则n a = ..问题4:一个正数,它的小数部分、整数部分及它本身,依次构成等比数列,则这个正数为 .问题5:设等比数列2,,,,a aq aq 其中q 是整数,试问数列中存在三项(按原顺序)构成等差数列吗?二、思考探究探究1:设{}n a 是公差为d 的等差数列,{}n b 是公比为q 的等比数列.(1)若31n a n =-,是否存在,m k N *∈,使1m m k a a a ++=?(2)数列{}n b 中,若11b =,公比1(0,)2q ∈,且k N *∀∈,12k k k b b b ++--仍是{}n b 中的项,则q = .(3){}n a 满足11,2,a d ==试证明任给N m *∈,总存在p ∈N *使1,,m p a a a 成等比数列.1.对“绝对差数列”有如下定义:在数列{}n a 中, 12a a 、是正整数,且12n n n a a a --=-,3,4,5...,n = 则称数列{}n a 为“绝对差数列”.若在数列{}n a 中,203a =,221a =,则201120122013a a a ++=2. 设等比数列{a n }满足公比q ∈N *,a n ∈N *,且数列{a n }中任意两项之积也是该数列的一项.若a 1=24,则q 的所有可能取值之和为3. 已知等差数列{a n }和等比数列{b n }满足a 1=b 1=-2,a 2=b 2=4,则满足a n =b n 的n 的所有取值构成的集合是______.4. 设a 1,a 2,…,a n 为正整数,其中至少有五个不同值. 若对于任意的i ,j (1≤i <j ≤n ),存在k ,l (k ≠l , 且异于i 与j )使得a i +a j =a k +a l ,则n 的最小值是5.设数列}{n a 的前n 项和为n S .若对任意正整数n ,总存在正整数m ,使得m n a S =,则称}{n a 是“H 数列”.(1)若数列}{n a 的前n 项和n n S 2=(∈n N *),证明: }{n a 是“H 数列”;(2)设}{n a 是等差数列,其首项11=a ,公差0<d .若}{n a 是“H 数列”,求d 的值;(3)证明:对任意的等差数列}{n a ,总存在两个“H 数列”}{n b 和}{n c ,使得n n n c b a +=(∈n N *)成立。

奥数杯赛-第3讲-专题3-数论综合-学生版

奥数杯赛-第3讲-专题3-数论综合-学生版

奥数杯赛-第3讲-专题3-数论综合同学须知:本讲内容比较多,倍数、余数、质数、合数,都要涉及到,题量不能太大,所以,基本上就是讲基础。

内容设计25道题,尽量涵盖数论的基本问题。

课后练习5道题。

【基本特点汇总】整除的一些基本性质:1、尾数判断法:(1)能被2、5整除的数的特征:个位数字能被2或5整除。

【尾数系】(2)能被4、25整除的数的特征:末两位能被4和25整除。

【双尾数】(3)能被8、125整除的数的特征:末三位能被8和125整除。

【三尾数】2、数字求和法:能被3、9整除的数的特征:各个数位的数字之和能被3或9整除;弃3法,弃9法。

3、奇偶位求差法:能被11整除的数的特征:“奇位和”与“偶位和”的差能被11整除。

(大减小)4、和的整除性与差整除性:两个数如果都能被自然数a整除,那么他们的和与差也能被a整除。

5、能被7、11、13整除的数的特征:求末三位数与之前的数之差(大减小)6、能被99整除的数的特征:两位截断求和(从右向左截断)。

【1】能同时被2,3,5整除的最大的三位数是()。

【2】能同时被2,5,7整除的最大的五位数是()。

【3】1到100之内所有不能被3整除的数的和是()。

【4】小猪写了一个两位数59,小牛写了一个两位数89,他们让小羊写一个一位数放在59和89之间拼成一个五位数8959□,使得这个五位数能被7整除,那么小羊写的数应该是()。

【提示】后三位截断法+尝试法。

【5】如果九位数789AB 1234能被99整除,那么AB 代表的两位数是()。

【6】(试除法)在1992后面补上三个数字,组成7位数,使他能被2,3,5,11整除,这个七位数最小值是()。

【提示】首先求出2,3,5,11的最小公倍数,用1992000除以最小公倍数(试除法),然后采用“补余”法,求出最小值。

【7】特点:余数的和等于(被除数)和的余数;原则上余数小于除数,特殊情况下除外。

有一个自然数,用它去除63、91、129得到3个余数的和是25,这个自然数是()。

迎春杯六年级讲义(6讲)迎春杯第 3 讲数论学生版讲义

迎春杯六年级讲义(6讲)迎春杯第 3 讲数论学生版讲义

第三讲 数论综合整除的概念a ,b ,c 为整数,且,如果a÷b=c ,即整数a 除以整数b ,得到的商是整数c 且没有余数,那么称作n能被b 整除,或者是说b 能整除a ,记作;否则,称为a 不能被b 整除,或是说b 不能整除n .如果整数a 能够被整数b 整除,则a 叫做b 的倍数,b 叫做a 的约数.整除的基本性质如果a ,b 都能够被c 整除,那么它们的和与差也能够被c 整除.即:如果,那么如果b 与c 的积能整除a ,那么b 与c 都能整除a .即:如果,那么 如果c 能整除b ,b 能整除a ,那么c 能整除a .即:如果如果b ,c 都能够整除,且b 与c 互质,那么b 与c 的乘积能整除a .即: 数的整除特征能被2整除的数的特征:个位数字是0,2,4,6,8;能被3(或9)整除的数的特征:各位的数字之和能够被3(或9)整除;能被4(或25)整除的数的特征:末两位数能够被4(或25)整除;能被5整除的数的特征:个位数字是0或5;能被7(或11、13)整除的数的特征:一个整数的末三位与末三位以前的数字所组成的数之差能够被7(或1、11、13)整除;能被8(或125)整除的数的特征:末三位数能够被8(或125)整除;能被11整除的数的特征:奇数位上的数字之和与偶数位上的数字之和的差能够被11整除.质数与合数一个数除了l 和它本身,不再有别的约数,那么这个数叫做质数.比如2,3,7,37,….一个数除了1和它本身,还有别的约数,那么这个数是合数.比如4,8,14,48,….特别的:1既不是质数也不是合数.质因数与分解质因数(算术基本定理)如果一个质数是某个数的约数,那么就说这个质数是这个数的质因数.把一个合数用质因数相乘的形式表示出来,叫做分解质因数.比如:把42分解质因数应该是42=2×3×7,其中2,3,7是42的质因数.又如:35423=⨯ ,其中2和3都是54的质因数. 利用分解质因数求约数的个数 一般地,如果分解质因数有下列形式:其中都是质因数,而是指数,即对应A 包含各个质因数的个数.那么A 的所有约数的个数为比如:,那么300的所有约数共有(2+1)(1+1)(2+1)=18个.那么A 的所有约数的和为()[],,ab a b a b =约数与倍数约数与倍数的关系很简单,其实就是整除关系的另外一种称谓;当然也有概念的延伸,就是在多个数之间去研究公约数和公倍数,经常地应用最大公约数与最小公倍数解题.下面我们就先回顾基本的概念: 公约数与最大公约数几个数公有的约数,叫做这几个数的公约数;其中最大的一个,叫做这几个数的最大公约数.例如:12的约数有1,2,3,4,6,12.18的约数有l ,2,3,6,9,18 那么它们的公约数有l ,2,3,6;其中最大公约数为6.公倍数与最小公倍数几个数公有的倍数,叫做这几个数的公倍数;其中最小的一个,叫做这几个数的最小公倍数.例如:15的倍数有:15,30,45,60,75,90, 105,120,…. 10的倍数有:10,20,30,40,50,60,70, 80。

六年级下册数学试题-奥数专题:第3讲 数论(2)全国通用

六年级下册数学试题-奥数专题:第3讲 数论(2)全国通用

六年级下册数学试题-奥数专题:第3讲数论(2)全国通用数论这门学科最初是从研究整数开始的,所以叫做整数论。

后来整数论又进一步发展,就叫做数论了。

确切的说,数论就是一门研究整数性质的学科。

数论在数学中的地位是独特的,高斯曾经说过“数学是科学的皇后,数论是数学中的皇冠”。

这个“皇冠”上历史上出现了许多闪闪发亮的明珠:哥德巴赫猜想,孪生素数猜想,斐波那契数列,梅森素数,费马大定理,黎曼猜想等等数论是华杯赛的必考点之一,也常常被放在压轴题的位置。

本讲继续针对数论模块的高频考点和难点,进行讲解巩固。

考察难度数论题作为华杯赛的必考点之一,整体难度大,一般情况下在 3★以上,部分涉及构造或代数运算的题目会达到 5★。

备考建议孩子在复习的时候,约倍、质合、整除的特征和性质这些基本概念要非常熟悉,但这些知识基础还远远不够,进一步要把重点放在相关应用上,此外分解质因数也是常用分析问题的方式之一,更高阶的需要掌握分类讨论的思想和代数构造的能力。

课前预习1)在下边的算式中,每个汉字代表0 至9 这十个数字中的一个,相同的汉字代表相同数字、不同汉字代表不同数字.则“数学竞赛”所代表的四位数是.(第19届华杯复赛)2)设n是小于50的自然数,使得3n+5和5n+4有大于1的公因数的所有的n有个.(第18 届华杯复赛)模块一数字谜要点复习1.数字谜定义:一般是指那些含有未知数字或未知运算符号的算式.2.数字谜突破口:这种不完整的算式,就像“谜”一样,要解开这样的谜,就得根据有关的运算法则,数的性质(和差积商的位数,数的整除性,奇偶性,尾数规律等)来进行正确的推理,判断.3.解数字谜:一般是从某个数的首位或末位数字上寻找突破口.推理时应注意:⑴⑵⑶数字谜中的文字,字母或其它符号,只取0~9 中的某个数字;要认真分析算式中所包含的数量关系,找出尽可能多的隐蔽条件;必要时应采用枚举和筛选相结合的方法(试验法),逐步淘汰掉那些不符合题意的数字;⑷数字谜解出之后,最好验算一遍.例11)在图中的加法竖式中,如果不同的汉字可以代表相同的数字,使得算式成立,则四位数华杯决赛的最小值为.(第16 届华杯复赛)兔六决年届赛十+华杯20112)用“学”和“习”代表两个不同的数字,四位数“ 学学学学”与“习习习习”的积是一个七位数,且它的个位和百万位数字与“学”所代表的数字相同,那么“ 学习”所能代表的两位数共有个.(第18 届华杯复赛)3)如图的加法竖式中,不同的汉字可以代表相同的数字,满足要求的不同算式共有种。

六年级春季第三讲知识概述

六年级春季第三讲知识概述

学而思六年级春季第三讲知识概述数论模块之因倍质合一、概念1、因数倍数:如果a ÷b 没有余数,则称a 是b 的倍数,b 是a 的因数2、质数合数:如果一个数的因数只有1和它本身,那么这个数是质数;如果一个数的因数除了1和它本身以外还有其他的数,那么这个数是合数注:①0和1既不是质数也不是合数②最小的质数为2,最小的合数为4③偶数中唯一的质数是2,其余都是合数④熟记100以内的质数,共25个:2、3、5、7、11、13、17、19、23、29、31、37、41、43、47、53、59、61、67、71、73、79、83、89、97⑤几个常见数:三位最小质数101,三位最大质数997,四位最小质数1009对应题目:例1、例1练一练,例3、例3练一练二、质数合数判断方法:用该数除以从小到大的质数,如果除以某一个质数除得尽,那么这个数是合数;如果一直除不尽,那么这个数是质数。

(不断作除法直到商小于除数为止) 分解质因数,将一个数写成若干个质数的乘积的形式对应题目:例4、例5、例5练一练、B1、B2、B3、B5、B6、B7、B10三、因数倍数1、因数个数与因数之和 如果一个数分解质因数形式为a b c kM A B C K =⨯⨯⨯⨯那么它的因数个数为(1)(1)(1)a b k +⨯+⨯⨯+(次方数加1相乘) 因数之和为 222(1)(1)(1)a b k A A A B B B K K K ++++⨯++++⨯⨯++++2、最大公因数与最小公倍数几个数公共的因数称为公因数,其中最大的那个叫做最大公因数,用式子(a ,b )表示,它是所有公因数的倍数。

(最小公因数一定是1,不研究)几个数公共的倍数称为公倍数,其中最小的那个叫做最小公倍数,用式子 [a ,b] 表示,它是所有公倍数的因数。

(最大公倍数不存在,不研究)求法:枚举法、短除法、分解质因数法注:1. 如果两个数互质,那么最大公因数是1,最小公倍数是它们的乘积2. 如果两个数有倍数关系,那么最大公因数是较小的数,最小公倍数是较大的数3. 求两个较大数的最大公因数,用辗转相除法4. 求三个数或以上的最小公倍数,只能用分解质因数法。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第三讲数论专题
重点知识点:
一、整除性质
①如果自然数a为M的倍数,则ka为M的倍数。

(k为正整数)
②如果自然数a、b均为M的倍数,则a+b,a-b均为M的倍数。

③如果a为M的倍数,p为M的约数,则a为p的倍数。

④如果a为M的倍数,且a为N的倍数,则a为[M,N]的倍数。

二、整除特征
1.末位系列
(2,5)末位
(4,25)末两位
(8,125)末三位
2.数段和系列
3、9 各位数字之和——任意分段原则(无敌乱切法)
33,99 两位截断法——偶数位任意分段原则
3.数段差系列
11
整除判断:奇和与偶和之差
余数判断:奇和-偶和(不够减补十一,直到够减为止)
7、11、13—三位截断法:从右往左,三位一隔:
整除判断:奇段和与偶段和之差
余数判断:奇段和-偶段和(不够减则补,直到够减)三、整除技巧:
1.除数分拆:(互质分拆,要有特征)
2.除数合并:(结合试除,或有特征)
3.试除技巧:(末尾未知,除数较大)
4.同余划删:(从前往后,剩的纯粹)
5.断位技巧:(两不得罪,最小公倍)
四、约数三定律
约数个数定律:(指数+1)再连乘
约数和定律:(每个质因子不同次幂相加)再连乘约数积定律:自身n(n=约数个数÷2)
例题:
【例1】2025的百位数字为0,去掉0后是225,225×9=2025。

这样的四位数称为“零巧数”,那么所有的零巧数是_____。

【巩固】某校人数是一个三位数,平均每个班级36人,若将全校人数的百位数与十位数对调,则全校人数比实际少180人,那么该校人数最多可以达到____人。

【例2】若两个自然数的平方和是637,最大公约数与最小公倍数的和为49,则这两个数是多少?
【巩固】两个两位数,它们的最大公约数是9,最小公倍数是360,这两个两位数分别是
_______。

【例3】一个两位数,数字和是质数。

而且,这个两位数分别乘以3,5,7之后,得到的数的数字和都仍为质数。

满足条件的两位数为_____。

【例4】对四位数 a b c d,若存在质数p和正整数k,使a×b×c×d=p k,且a+b
+c+d=p p-5,求这样的四位数的最小值,并说明理由。

【例5】已知,23!= 2585a01b738c849766de000 其中a,b,c,d,e表示五个互不相同的偶数数字,且c>b 求a,b,c,d,e分别是多少?
余数问题
一、带余除法的定义及性质:
一般地,如果a是整数,b是整数(b≠0),若有a÷b=q……r,也就是a=b×q+r, 0≤r<b;我们称上面的除法算式为一个带余除法算式。

这里:
r=时:我们称a可以被b整除,q称为a除以b的商或完全商
(1)当0
r≠时:我们称a不可以被b整除,q称为a除以b的商或不完全商
(2)当0
一个完美的带余除法讲解模型:
如图,这是一堆书,共有a本,这个a就可以理
解为被除数,现在要求按照b本一捆打包,那么b就
是除数的角色,经过打包后共打包了c捆,那么这个
c就是商,最后还剩余d本,这个d就是余数。

这个图能够让学生清晰的明白带余除法算式中4个量的关系。

并且可以看出余数一定要比除数小。

二、三大余数定理:
1.余数的加法定理
a与b的和除以c的余数,等于a,b分别除以c的余数之和,或这个和除以c的余数。

例如:23,16除以5的余数分别是3和1,所以23+16=39除以5的余数等于4,即两个余数的和3+1.
当余数的和比除数大时,所求的余数等于余数之和再除以c的余数。

例如:23,19除以5的余数分别是3和4,故23+19=42除以5的余数等于3+4=7除以5的余数,即2.
2.余数的乘法定理
a与b的乘积除以c的余数,等于a,b分别除以c的余数的积,或者这个积除以c所得的余数。

例如:23,16除以5的余数分别是3和1,所以23×16除以5的余数等于3×1=3。

当余数的和比除数大时,所求的余数等于余数之积再除以c的余数。

例如:23,19除以5的余数分别是3和4,所以23×19除以5的余数等于3×4除以5的余数,即2.
3.同余定理
若两个整数a、b被自然数m除有相同的余数,那么称a、b对于模m同余,用式子表示为:a≡b ( mod m ),左边的式子叫做同余式。

同余式读作:a同余于b,模m。

由同余的性质,我们可以得到一个非常重要的推论:若两个数a,b除以同一个数m得到的余数相同,则a,b的差一定能被m整除
用式子表示为:如果有a≡b ( mod m ),那么一定有a-b=mk,k是整数,即m|(a-b)三、弃九法原理:
任何一个整数模9同余于它的各数位上数字之和。

以后我们求一个整数被9除的余数,只要先计算这个整数各数位上数字之和,再求这个和被9除的余数即可。

++++=
例:检验算式1234189818922678967178902889923
四、中国剩余定理:
一个自然数分别除以3,5,7后,得到三个余数分别为2,3,2.那么我们首先构造一个数字,使得这个数字除以3余1,并且还是5和7的公倍数。

⨯=,即5和7的最小公倍数出发,先看35除以3余2,不符合要求,那么先由5735
⨯=是否可以,很显然70除以3余1
就继续看5和7的“下一个”倍数35270
类似的,我们再构造一个除以5余1,同时又是3和7的公倍数的数字,显然21可以符合要求。

最后再构造除以7余1,同时又是3,5公倍数的数字,45符合要求,那么所求的自然数可以这样计算:
⨯+⨯+⨯±=-,其中k是从1开始的自然数。

270321245[3,5,7]233[3,5,7]
k k
也就是说满足上述关系的数有无穷多,如果根据实际情况对数的范围加以限制,那么我们就能找到所求的数。

例如对上面的问题加上限制条件“满足上面条件最小的自然数”,
⨯+⨯+⨯-⨯=得到所求那么我们可以计算2703212452[3,5,7]23
如果加上限制条件“满足上面条件最小的三位自然数”,
我们只要对最小的23加上[3,5,7]即可,即23+105=128。

例题:
【例1】一列数,前几个数是1,3,8,21,55,144,377,987,…,通过观察中间数的3倍都是它前后相邻2个数之和,求:这列数中的第2011个数除以6所得的余数是几?
【巩固】有一串数:5,8,13,21,34,55,89,…,其中第一个数是5,第二个数是8,从第三个数起,每个数恰好是前两个数的和。

那么在这串数中,第2011个数被3除后所得余数是几?
【例2】有一个整数,用它去除70,110,160所得到的3个余数之和是50,那么这个整数是______。

【例3】一个自然数除429、791、500所得的余数分别是a+5、2a、a,求这个自然数和a的值。

【巩固】学前班有几十位小朋友,老师买来176个苹果,216块饼干,324粒糖,并将它们尽可能地平均分给每位小朋友。

余下的苹果、饼干、糖的数量之比是1∶2∶3,问学前班有多少位小朋友?
【例4】一个自然数被7,8,9除的余数分别是1,2,3,并且三个商数的和是
570,求这个自然数。

【拓展】一个大于10的自然数,除以5余3,除以7余1,除以9余4,那么满足条
件的自然数最小为____。

【例5】已知 a =20082008…2008 ,问:a除以13所得的余数是______。

2008个2008
课后练习
1、(全国小学数学奥林匹克试题)两数相除,商4余8,被除数、除数、商数、余数四数之和等于415,则被除数是_______.
2、已知2008被一些自然数去除,所得的余数都是10,那么这样的自然数共有多少个?
3、(全国小学数学奥林匹克试题)六张卡片上分别标上1193、1258、1842、1866、1912、2494六个数,甲取3张,乙取2张,丙取1张,结果发现甲、乙各自手中卡片上的数之和一个人是另—个人的2倍,则丙手中卡片上的数是________.
4、求12644319÷的余数
5、已知60,154,200被某自然数除所得的余数分别是1a -,2a ,31a -,求该自然数的值.
6、有三所学校,高中A 校比B 校多10人,B 校比C 校多10人.三校共有高中生2196人.有一所学校初中人数是高中人数的2倍;有一所学校初中人数是高中人数的1.5倍;还有一所学校高中、初中人数相等.三所学校总人数是5480人,那么A 校总人数是________人.
6、三个质数的乘积恰好等于它们的和的7倍,求这三个质数.
7、有一个大于1的整数,除45,59,101所得的余数相同,求这个数.
8、将1至2008这2008个自然数,按从小到大的次序依次写出,得一个多位数:1234567891011121320072008,试求这个多位数除以9的余数.
9、在7进制中有三位数abc,化为9进制为cba,求这个三位数在十进制中为多少?
⨯=?
10、在几进制中有12512516324
11、在大于1000的整数中,找出所有被34除后商与余数相等的数,那么这些数的和是多少?。

相关文档
最新文档