定义法证明函数的单调性
定义法证明单调性
定义法证明单调性
定义法证明单调性:
单调性是指一个函数的值在某一区间内从一端到另一端的变化,是单方向的而不中断的。
定义法证明单调性就是通过定义函数的性质来证明其单调性,常用的定义如下:
1. 如果函数y=f(x)满足:对于所有x和x'都满足
f(x)<f(x'),则称函数y=f(x)为单调递增函数;
2. 如果函数y=f(x)满足:对于所有x和x'都满足
f(x)>f(x'),则称函数y=f(x)为单调递减函数;
3. 如果函数y=f(x)满足:对于所有x和x'都满足
f(x)=f(x'),则称函数y=f(x)为常数函数。
4. 如果函数y=f(x)既不满足上述条件1,也不满足上述条件2,则称函数y=f(x)为非单调函数。
通过定义函数的上述定义,可以根据函数特性判断函数是否单调,从而得出单调性的证明。
函数单调性的判断或证明方法
函数单调性的判断或证明方法.(1)定义法。
用定义法证明函数的单调性的一般步骤是①取值,设,且;②作差,求;③变形(合并同类项、通分、分解因式、配方等)向有利于判断差值符号的方向变形;④定号,判断的正负符号,当符号不确定时,应分类讨论;⑤下结论,根据函数单调性的定义下结论。
例1.判断函数在(-1,+∞)上的单调性,并证明.解:设-1<x1<x2,则f(x1)-f(x2)=-==∵-1<x1<x2,∴x1-x2<0,x1+1>0,x2+1>0.∴当a>0时,f(x1)-f(x2)<0,即f(x1)<f(x2),∴函数y=f(x)在(-1,+∞)上单调递增.当a<0时,f(x1)-f(x2)>0,即f(x1)>f(x2),∴函数y=f(x)在(-1,+∞)上单调递减.例2.证明函数在区间和上是增函数;在上为减函数。
(增两端,减中间)证明:设,则因为,所以,所以,所以所以设则,因为,所以,所以所以同理,可得(2)运算性质法.①在公共定义域内,两个增函数的和是增函数,两个减函数的和是减函数,增函数减去一个减函数为增函数,减函数减去一个增函数为减函数.(增+增=增;减+减=减;增-减=增,减-增=减)②若.③当函数.④函数二者有相反的单调性。
⑤运用已知结论,直接判断函数的单调性,如一次函数、反比例函数等。
(3)图像法.根据函数图像的上升或下降判断函数的单调性。
例3.求函数的单调区间。
解:在同一坐标系下作出函数的图像得所以函数的单调增区间为减区间为.(4)复合函数法.(步骤:①求函数的定义域;②分解复合函数;③判断内、外层函数的单调性;④根据复合函数的单调性确定函数的单调性.⑤若集合是内层函数的一个单调区间,则便是原复合函数的一个单调区间,如例4;若不是内层函数的一个单调区间,则需把划分成内层函数的若干个单调子区间,这些单调子区间便分别是原复合函数的单调区间,如例5.)设,,都是单调函数,则在上也是单调函数,其单调性由“同增异减”来确定,即“里外”函数增减性相同,复合函数为增函数,“里外”函数的增减性相反,复合函数为减函数。
判断函数单调性的三种途径
(1)若 m - 1 ≤ 0 ,
即 m≤1,
由 f ′(x) > 0 ,得 x > 1 ;由 f ′(x) < 0 ,
得 0<x<1.
故当 m ≤ 1 时,函数 f (x) 在 (1, +∞) 上单调递增,在
(0,1) 上单调递减.
(2)若 0 < m - 1 < 1 ,
即 1 < m < 2,
用于判断复杂函数的单调性.图象法则十分形象直观,
ìx2 - x,x < 0,
(2)由题意可知,y = í 2
î-x + x,x ≥ 0,
地判断出函数在各个区间上的单调性.
相较而言,定义法的适用范围较广,导数法则常
解答过程也较为简便.
数学篇
(-∞,1] 上单调递减,
在 [2, +∞) 上单调递增.
象,明确各个区间段上曲线的升降情况,就能一目了然
讨论不同区间内函数的单调性.
三、利用图象判断函数的单调性.
借助函数的图象,可以快速明确函数的变化情
况,了解函数的特征,如函数的定义域、值域、单调性
等.在判断函数的单调性时,可以先根据函数的性质或
函数的解析式画出函数的图象;然后从左往右观察函
数图象的变化趋势,当函数在某一区间段内的图象呈
上升趋势,则该函数在此区间内为增函数;当函数在
(作者单位:江苏省仪征市南京师范大学第二附
属高级中学)
Copyright©博看网. All Rights Reserved.
39
证明:如图 1,曲线 f (x) 关于直线 x = a 对称,在曲
图1
图2
m - 1 ≤ 0 、0 < m - 1 、m - 1 > 1 、m - 1 = 1 几种情况,来
高中数学函数单调性的判定和证明方法(详细)
⑤下结论,根据函数单调性的定义下结论。
作差法:
例1.判断函数 在(-1,+∞)上的单调性,并证明.
解:设-1<x1<x2,
则f(x1)-f(x2)= -
=
=
∵-1<x1<x2,
∴x1-x2<0,x1+1>0,x2+1>0.
∴当a>0时,f(x1)-f(x2)<0, 即f(x1)<f(x2),
根据(1)可知 f(x1-x2)>1,f(x2)>0.
∵f(x1)=f[(x1-x2)+x2]=f(x1-x2)•f(x2)>f(x2),
∴函数f(x)在R上单调递减.
(二)、运算性质法.
函数
函数表达式
单调区间
特殊函数图像
一次函数
当 时, 在R上是增函数;
当 时, 在R上是减函数。
二次函数
当 时, 时 单调减,
⑷若两个基本初等函数在对应区间上的单调性是同时单调递增或同单调递减,则 为增函数,若为一增一减,则 为减函数(同增异减);
⑸求出相应区间的交集,既是复合函数 的单调区间。
以上步骤可以用八个字简记“一分”,“二求”,“三定”,“四交”。利用“八字”求法可以解决一些复合函数的单调性问题。
例7.求 ( 且 )的单调区间。
减函数的区间
函数
表达式
单调性
解:列表如下
由表知 是减函数的区间 , 。
所以函数的单调增区间为
减区间为 .
(四)、同增异减法(复合函数法).
定理1:若函数 在 内单调, 在 内单调,且集合{ ︳ , }
(1)若 是增函数, 是增(减)函数,则 是增(减)函数。(2)若 是减函数, 是增(减)函数,则 是减(增)函数。
证明函数单调性的方法总结
证明函数单调性的方法总结导读:1、定义法:利用定义证明函数单调性的一般步骤是:①任取x1、x2∈D,且x1 ②作差f(x1)-f(x2),并适当变形(“分解因式”、配方成同号项的和等);③依据差式的符号确定其增减性.2、导数法:设函数y=f(x)在某区间D内可导.如果f′(x)>0,则f(x)在区间D内为增函数;如果f′(x) 注意:(补充)(1)若使得f′(x)=0的x的值只有有限个,则如果f ′(x)≥0,则f(x)在区间D内为增函数;如果f′(x) ≤0,则f(x)在区间D内为减函数.(2)单调性的判断方法:定义法及导数法、图象法、复合函数的单调性(同增异减)、用已知函数的单调性等(补充)单调性的有关结论1.若f(x),g(x)均为增(减)函数,则f(x)+g(x)仍为增(减)函数.2.若f(x)为增(减)函数,则-f(x)为减(增)函数,如果同时有f(x)>0,则为减(增)函数,为增(减)函数3.互为反函数的两个函数有相同的单调性.4.y=f[g(x)]是定义在M上的函数,若f(x)与g(x)的'单调性相同,则其复合函数f[g(x)]为增函数;若f(x)、g(x)的单调性相反,则其复合函数f[g(x)]为减函数.简称”同增异减”5. 奇函数在关于原点对称的两个区间上的单调性相同;偶函数在关于原点对称的两个区间上的单调性相反.函数单调性的应用(1)求某些函数的值域或最值.(2)比较函数值或自变量值的大小.(3)解、证不等式.(4)求参数的取值范围或值.(5)作函数图象.【证明函数单调性的方法总结】1.函数单调性的说课稿2.高中数学函数的单调性的教学设计3.导数与函数的单调性的教学反思4.高中函数单调性的教学设计5.《函数的单调性》的说课稿6.函数单调性教案练习题7.函数单调性说课课件8.《函数的单调性》教学设计上文是关于证明函数单调性的方法总结,感谢您的阅读,希望对您有帮助,谢谢。
判断函数单调性的常用方法
判断函数单调性的常用方法判断函数单调性的常用方法一、定义法设$x_1.x_2$是函数$f(x)$定义域上任意的两个数,且$x_1f(x_2)$,则此函数为减函数。
例如,证明:当$x>0$时,$x>\ln(1+x)$。
f'(x)=\frac{1}{1+x}>0$,所以$f(x)$为严格递增的。
因为$f(x)>\lim\limits_{x\to 0}-\ln(1+x)=-\ln(1+0)=0$,所以$x>\ln(1+x)$。
二、性质法除了用基本初等函数的单调性之外,利用单调性的有关性质也能简化解题。
若函数$f(x)。
g(x)$在区间$B$上具有单调性,则在区间$B$上有:⑴$f(x)$与$f(x)+C$($C$为常数)具有相同的单调性;⑵$f(x)$与$c\cdot f(x)$当$c>0$时具有相同的单调性,当$c<0$时具有相反的单调性;⑷当$f(x)。
g(x)$都是增(减)函数,则$f(x)+g(x)$都是增(减)函数;⑸当$f(x)。
g(x)$都是增(减)函数,则$f(x)\cdot g(x)$当两者都恒大于时也是增(减)函数,当两者都恒小于时也是减(增)函数。
三、同增异减法是处理复合函数的单调性问题的常用方法。
对于复合函数$y=f[g(x)]$满足“同增异减”法(应注意内层函数的值域),可令$t=g(x)$,则三个函数$y=f(t)。
t=g(x)。
y=f[g(x)]$中,若有两个函数单调性相同,则第三个函数为增函数;若有两个函数单调性相反,则第三个函数为减函数。
注:(1)奇函数在对称的两个区间上有相同的单调性,偶函数在对称的两个区间上有相反的单调性;2)互为反函数的两个函数有相同的单调性;3)如果$f(x)$在区间$D$上是增(减)函数,那么$f(x)$在$D$的任一子区间上也是增(减)函数。
设单调函数$y=f(x)$为外层函数,$y=g(x)$为内层函数。
定义法证明函数的单调性课件
证明二次函数单调性
总结词
通过二次函数的对称轴和开口方向,可以判断其单调性。
详细描述
对于二次函数$f(x) = ax^2 + bx + c$,其对称轴为$x = -\frac{b}{2a}$。如果函数的 开口向上(即$a > 0$),那么函数在对称轴左侧是单调递减的,在对称轴右侧是单调 递增的;如果函数的开口向下(即$a < 0$),那么函数在对称轴左侧是单调递增的,
回顾本次课件的主要内容
介绍了定义法证明函 数单调性的基本步骤 ;
提供了练习题,帮助 学生巩固所学知识。
通过例题演示了如何 运用定义法证明函数 单调性;
提出下一次课件的预告和要求
下一次课件将介绍函数的奇偶性 和周期性;
要求学生提前预习相关基础知识 ;
准备相关问题及疑惑,便于课堂 讨论和解答。
THANK YOU
单调函数的图像特征
递增函数的图像呈上升趋势,递减函数的图像呈下降趋势。
单调函数的性质
如果$f(x)$在区间$I$上单调递增,那么对于任意的$x_{1}, x_{2}$满足$x_{1} < x_{2}$, 都有$f(x_{1}) < f(x_{2})$;同样地,如果$f(x)$在区间$I$上单调递减,那么对于任意的 $x_{1}, x_{2}$满足$x_{1} < x_{2}$,都有$f(x_{1}) > f(x_{2})$。
数
练习题:证明$y=2x+1$在 $\mathbf{R}$上是增函数
二次函数单调性证明练习
总结词:理解二次函数的单调性
输标02入题
二次函数的一般形式是$y=ax^{2}+bx+c$,当 $a>0$时,函数在区间$( - \infty,\frac{-b}{2a})$上是 减函数,在区间$(\frac{-b}{2a},+\infty)$上是增函数
证明函数单调性的方法总结归纳
证明函数单调性的方法总结归纳1、定义法:利用定义证明函数单调性的一般步骤是:①任取x1、x2∈D,且x1②作差f(x1)-f(x2),并适当变形(“分解因式”、配方成同号项的和等);③依据差式的符号确定其增减性.2、导数法:设函数y=f(x)在某区间D内可导.如果f′(x)>0,则f(x)在区间D 内为增函数;如果f′(x)注意:(补充)(1)若使得f′(x)=0的x的值只有有限个,则如果f ′(x)≥0,则f(x)在区间D内为增函数;如果f′(x) ≤0,则f(x)在区间D内为减函数.(2)单调性的判断方法:定义法及导数法、图象法、复合函数的单调性(同增异减)、用已知函数的单调性等(补充)单调性的有关结论1.若f(x),g(x)均为增(减)函数,则f(x)+g(x)仍为增(减)函数.2.若f(x)为增(减)函数,则-f(x)为减(增)函数,如果同时有f(x)>0,则为减(增)函数,为增(减)函数3.互为反函数的两个函数有相同的单调性.4.y=f[g(x)]是定义在M上的函数,若f(x)与g(x)的单调性相同,则其复合函数f[g(x)]为增函数;若f(x)、g(x)的单调性相反,则其复合函数f[g(x)]为减函数.简称”同增异减”5. 奇函数在关于原点对称的两个区间上的单调性相同;偶函数在关于原点对称的两个区间上的单调性相反.函数单调性的应用(1)求某些函数的值域或最值.(2)比较函数值或自变量值的大小.(3)解、证不等式.(4)求参数的取值范围或值.(5)作函数图象.搜集整理,仅供参考学习,请按需要编辑修改。
高中数学函数单调性的判定和证明方法(详细)
函数单调性的判定和证明方法(一)、定义法步骤:①取值,设x1<x2, 并是某个区间上任意二值;②作差:;或作商:,≠0;③变形向有利于判断差值符号的方向变形;,≠0向有利于判断商的值是否大于1方向变形;(常用的变形技巧有:1、分解因式,当原函数是多项式时,作差后进行因式分解;2、通分,当原函数是分式函数时,作差后往往进行通分再进行因式分解;3、配方,当原函数是二次函数时,作差后考虑配方便于判定符号;4、分子有理化,当原函数是根式函数时,作差后往往考虑分子有理化等);④定号,判断的正负符号,当符号不确定时,需进行分类讨论;⑤下结论,根据函数单调性的定义下结论。
作差法:例1.判断函数在(-1,+∞)上的单调性,并证明.解:设-1<x1<x2,则f(x1)-f(x2)=-==∵-1<x1<x2,∴x1-x2<0,x1+1>0,x2+1>0.∴当a>0时,f(x1)-f(x2)<0,即f(x1)<f(x2),∴函数y=f(x)在(-1,+∞)上单调递增.当a<0时,f(x1)-f(x2)>0,即f(x1)>f(x2),∴函数y=f(x)在(-1,+∞)上单调递减.例2.证明函数在区间和上是增函数;在上为减函数。
(增两端,减中间)证明:设,则因为,所以,所以,所以所以设则,因为,所以,所以所以同理,可得作商法:例3.设函数y=f(x)定义在R上,对于任意实数m,n,恒有f(m+n)=f(m)•f(n)且当x>0时,0<f(x)<1(1)求证:f(0)=1 且当x<0时,f(x)>1(2)求证:f(x)在R上是减函数.证明:(1)∵对于任意实数m,n,恒有f(m+n)=f(m)•f(n),令m=1,n=0,可得f(1)=f(1)•f(0),∵当x>0时,0<f(x)<1,∴f(1)≠0.∴f(0)=1.令m=x<0,n=-x>0,则f(m+n)=f(0)=f(-x)•f(x)=1,∴f(-x)f(x)=1,又∵-x>0时,0<f(-x)<1,∴f(x)=1f(-x)>1.(1)设x1<x2,则x1-x2<0,根据(1)可知 f(x1-x2)>1,f(x2)>0.∵f(x1)=f[(x1-x2)+x2]=f(x1-x2)•f(x2)>f(x2),∴函数f(x)在R上单调递减.(二)、运算性质法.v1.0 可编辑可修改函数函数表达式单调区间特殊函数图像一次函数)0(≠+=kbkxy当0>k时,y在R上是增函数;当0<k时,y在R上是减函数。
高中数学函数单调性的判定和证明方法(详细)
函数单调性的判定和证明方法(一)、定义法步骤:①取值,设x V x ,并是某个区间上任意二 值;X 叱)②作差;或作商:,g ) 丰0;f (叼)③ 变形/⑴叩(巧)向有利于判断差值符号的方向变形;-Si ) 乒o 向有利于判断商的值是否大于 1方向变形;(常用的变形技巧有:1、分解因式,当原函数是 多项式时,作差后进行因式分解; 2、通分,当原函数是 分式函数时,作差后往往进行通分再进行因式分解; 3、配 方,当原函数是 二次函数 时,作差后考虑配方便于判定符号; 4、分子有理化,当原函数是根式函数时,作差后往往考虑分子有理化等);④ 定号,判断的正负符号,当符号不确定时,需进行分类讨论; ⑤ 下结论,根据函数单调性的定义下结论。
作差法:解:设一1<X 1<X 2,如1 吧则 f (X 1)—f (X 2)= "+1 —冷 *1+1) ■皿(而 +1)-(升硕恐+1)Ui+i )(j+D例1.判断函数ax7+i 在(-1,+ 8 )上的单调性,并证明.—1<X i <X 2,X 1 — X 2<0 , X i+ 1>0 , X 2 + 1>0..•当 a>0 时,f (X 1)-f (X 2)<0 , 即f (X 1)<f (X 2), •••函数y=f (X )在(-1, + 8)上单调递增.当 a<0 时,f (X 1)—f (X 2)>0 , 即f (X 1)>f (X 2), 函数y=f (X )在(—1, + °°)上单调递减.所 W1-—<0所以砰砰 ,所以(心)二玉 -^2-—) 则 七 -因为知fE 泗对,三口所以所以砰砰所以「「一-":-解1、[ /⑴在+8)上为增函数*例2.证明函数*卜扁赌晌向上为减函数。
证明:设。
5也幅”'幻(-皿-石]屯尊\+00)在区间L ' V 」和妃% ,/ (增两端,减中间)/ 31) — J g )=瓦 + —-Xj-—上是增函数;在31—叱)(1-—)因为强而,所以5 〈泗e同理可得在(-咛-齐止为增函现在止为诫函氮作商法:例3.设函数y=f (x)定义在R上,对于任意实数m , n,恒有f (m+n ) =f (m) ?f (n) 且当x> 0 时,0v f (x) v 1(1) 求证:f (0) =1 且当xv 0 时,f (x) > 1(2) 求证:f (x)在R上是减函数.证明:(1) •.,对于任意实数m, n,恒有f (m+n ) =f (m) ?f (n),令m=1 , n=0,可得 f (1) =f (1) ?f (0),..当x> 0 时,0v f (x) v 1, . • f (1)乒0.f (0) =1 .令m=x v 0, n=-x > 0,则 f (m+n ) =f (0) =f (-x) ?f (x) =1 ,f (-x) f (x) =1 ,又.• -x > 0 时,0 V f (-x ) V 1 ,• • f(x)=1f(-x)> 1.(1)设x1 vx2,贝U x1-x2 v 0,根据(1)可知f (x1-x2 ) > 1, f (x2) > 0.. f (x1) =f[ (x1-x2 ) +x2]=f (x1-x2 ) ?f (x2) > f (x2),•••函数f (x)在R上单调递减.(二)、运算性质法.函数表达式单调区间次函数y kx b(k 0)二次函数_ 2 , - y ax bx c(a 0,a,b,c R)反比例函数指数函数对数函数ky -x(k R 且k 0)xy a(a 0,a 1)当k 0时,y在R上是增函数;当k 。
函数单调性怎么判断
函数单调性怎么判断
1、导数法
首先对函数进行求导,令导函数等于零,得X值,判断X与导函数的关系,当导函数大于零时是增函数,小于零是减函数。
2、定义法
设x1,x2是函数f(x)定义域上任意的两个数,且x1<x2,若f(x1)<f(x2),则此函数为增函数;反知,若f(x1)>f(x2),则此函数为减函数.
3、性质法
若函数f(x)、g(x)在区间B上具有单调性,则在区间B上有:
⑴f(x)与f(x)+C(C为常数)具有相同的单调性;
⑵f(x)与c•f(x)当c>0具有相同的单调性,当c<0具有相反的单调性;
⑶当f(x)、g(x)都是增(减)函数,则f(x)+g(x)都是增(减)函数;
⑷当f(x)、g(x)都是增(减)函数,则f(x)•g(x)当两者都恒大于0时也是增(减)函数,当两者都恒小于0时也是减(增)函数;
4、复合函数同增异减法
对于复合函数y=f[g(x)]满足“同增异减”法(应注意内层函数的值域),可令t=g(x),则三个函数y=f(t)、t=g(x)、y=f[g(x)]中,若有两个函数单调性相同,则第三个函数为增函数;若有两个函数单调性相反,则第三个函数为减函数。
拓展资料:
1、奇函数在对称的两个区间上有相同的单调性,偶函数在对称的两个区间上有相反的单调性;
2、互为反函数的两个函数有相同的单调性;
3、如果f(x)在区间D上是增(减)函数,那么f(x)在D的任一子区间上也是增(减)函数.。
判断函数单调性的常用方法
判断函数单调性的常用方法一、定义法设x1,x2是函数f(x)定义域上任意的两个数,且x1<x2,假设f(x1)<f(x2),那么此函数为增函数;反知,假设f(x1)>f(x2),那么此函数为减函数. 【例1】证明:当0>x 时,)1ln(x x +>。
证明:令01111)()1ln()(>+=+-='+-=xx x x f x x x f 所以,当0>x 时,0)(>'x f ,所以)(x f 为严格递增的0)01ln(0)0()(=+-=>⇒f x f ,所以)1ln(x x +>。
二、性质法除了用根本初等函数的单调性之外,利用单调性的有关性质也能简化解题. 假设函数f(x)、g(x)在区间B 上具有单调性,那么在区间B 上有: ⑴ f(x)与f(x)+C 〔C 为常数〕具有相同的单调性;⑵ f(x)与c•f(x)当c >0具有相同的单调性,当c <0具有相反的单调性;⑷当f(x)、g(x)都是增(减)函数,那么f(x)+g(x)都是增(减)函数; ⑸当f(x)、g(x)都是增(减)函数,那么f(x)•g(x)当两者都恒大于0时也是增(减)函数,当两者都恒小于0时也是减(增)函数;三、同增异减法是处理复合函数的单调性问题的常用方法. 对于复合函数y =f [g(x)]满足“同增异减〞法(应注意内层函数的值域),可令 t =g(x),那么三个函数 y =f(t)、t =g(x)、y =f [g(x)]中,假设有两个函数单调性相同,那么第三个函数为增函数;假设有两个函数单调性相反,那么第三个函数为减函数.注:〔1〕奇函数在对称的两个区间上有相同的单调性,偶函数在对称的两个区间上有相反的单调性;〔2〕互为反函数的两个函数有相同的单调性;〔3〕如果f(x)在区间D 上是增〔减〕函数,那么f(x)在D 的任一子区间上也是增〔减〕函数.设单调函数)(x f y =为外层函数,)(x g y =为内层函数 (1) 假设)(x f y =增,)(x g y =增,那么))((x g f y =增. (2) 假设)(x f y =增,)(x g y =减,那么))((x g f y =减. (3) 假设)(x f y =减,)(x g y =减,那么))((x g f y =增.(4) 假设)(x f y =减,)(x g y =增,那么))((x g f y =减.例1. 求函数222)(-+=x xx f 的单调区间.教学意图:先让学生学会找出外层函数和内层函数然后再进一步教会学生如何求此函数的单调区间.此题当中定义域是一切实数,在此处我还没有让学生认识到定义域的重要性,先让学生初步掌握复合函数单调区间的求法. 解题过程:外层函数:ty 2=内层函数:22-+=x x t 内层函数的单调增区间:],21[+∞-∈x 内层函数的单调减区间:]21,[--∞∈x 由于外层函数为增函数所以,复合函数的增区间为:],21[+∞-∈x 复合函数的减区间为:]21,[--∞∈x 四、求导法导数小于0就是递减,大于0递增,等于0,是拐点极值点求函数值域的常用方法 1.观察法用于简单的解析式。
判断函数单调性的常见方法
判断函数单调性的常见方法一、函数单调性的定义:
一般的,设函数y=f(X)的定义域为A,I?A,如对于区间内任意两个值X1、X2,
1)、当X1<X2时,都有f(X1)<f(X2),那么就说y=f(x)在区间I上是单
调增函数,I称为函数的单调增区间;
2)、当X1>X2时,都有f(X1)>f(X2),那么就说y=f(x)在区间I上是单
调减函数,I称为函数的单调减区间。
二、常见方法:
Ⅰ、定义法:定义域判断函数单调性的步骤
①取值:
在函数定义域的某一子区间I内任取两个不等变量X1、X2,可设X1<X2; ②作差(或商)变形:
作差f(X1)-f(X2),并通过因式分解、配方、有理化等方法向有利于
判断差的符号的方向变形;
③定号:
确定差f(X1)-f(X2)的符号;
④判断:
根据定义得出结论。
例:已知函数f(x)=x3+x,判断f(x)在(-∞,+∞)上的单调性并证明解:任取x1、x2?(-∞,+∞),x1<x2,则
f﹙x1﹚-f﹙x2﹚=(x13+x1)- (x23+x2)=(x1-x2)+(x13-x23)。
高中数学函数单调性的判定和证明方法(详细)
函数单调性的判定和证明方法(一)、定义法步骤:①取值,设x1<x2, 并是某个区间上任意二值;②作差:;或作商:,≠0;③变形向有利于判断差值符号的方向变形;,≠0向有利于判断商的值是否大于1方向变形;(常用的变形技巧有:1、分解因式,当原函数是多项式时,作差后进行因式分解;2、通分,当原函数是分式函数时,作差后往往进行通分再进行因式分解;3、配方,当原函数是二次函数时,作差后考虑配方便于判定符号;4、分子有理化,当原函数是根式函数时,作差后往往考虑分子有理化等);④定号,判断的正负符号,当符号不确定时,需进行分类讨论;⑤下结论,根据函数单调性的定义下结论。
作差法:例1.判断函数在(-1,+∞)上的单调性,并证明.解:设-1<x1<x2,则f(x1)-f(x2)=-==∵-1<x1<x2,∴x1-x2<0,x1+1>0,x2+1>0.∴当a>0时,f(x1)-f(x2)<0,即f(x1)<f(x2),∴函数y=f(x)在(-1,+∞)上单调递增.当a<0时,f(x1)-f(x2)>0,即f(x1)>f(x2),∴函数y=f(x)在(-1,+∞)上单调递减.例2.证明函数在区间和上是增函数;在上为减函数。
(增两端,减中间)证明:设,则因为,所以,所以,所以所以设则,因为,所以,所以所以同理,可得作商法:例3.设函数y=f(x)定义在R上,对于任意实数m,n,恒有f(m+n)=f(m)•f(n)且当x>0时,0<f(x)<1(1)求证:f(0)=1 且当x<0时,f(x)>1(2)求证:f(x)在R上是减函数.证明:(1)∵对于任意实数m,n,恒有f(m+n)=f(m)•f(n),令m=1,n=0,可得f(1)=f(1)•f(0),∵当x>0时,0<f(x)<1,∴f(1)≠0.∴f(0)=1.令m=x<0,n=-x>0,则f(m+n)=f(0)=f(-x)•f(x)=1,∴f(-x)f(x)=1,又∵-x>0时,0<f(-x)<1,∴f(x)=1f(-x)>1.(1)设x1<x2,则x1-x2<0,根据(1)可知 f(x1-x2)>1,f(x2)>0.∵f(x1)=f[(x1-x2)+x2]=f(x1-x2)•f(x2)>f(x2),∴函数f(x)在R上单调递减.(二)、运算性质法.v1.0 可编辑可修改函数函数表达式单调区间特殊函数图像一次函数)0(≠+=kbkxy当0>k时,y在R上是增函数;当0<k时,y在R上是减函数。
第06讲 函数的单调性的判断、证明和单调区间的求法
精品二轮第06讲:函数的单调性的判断、证明和单调区间的求法【知识要点】一、判断函数单调性的方法判断函数单调性一般有四种方法:单调四法 导数定义复合图像 1、定义法用定义法判断函数的单调性的一般步骤:①取值,设D x x ∈21,,且12x x <;②作差,求)()(21x f x f -;③变形(合并同类项、通分、分解因式、配方等);④判断)()(21x f x f -的正负符号;⑤根据函数单调性的定义下结论.2、复合函数分析法设()y f u =,()u g x =[,]x a b ∈,[,]u m n ∈都是单调函数,则[()]y f g x =在[,]a b 上也是单调函数,其单调性由“同增异减”来确定,即“里外”函数增减性相同,复合函数为增函数,“里外”函数的增减性相反,复合函数为减函数.如下表:3、导数判断法设()f x 在某个区间(,)a b 内有导数()f x ',若()f x 在区间(,)a b 内,总有()0(()0)f x f x ''><,则()f x 在区间(,)a b 上为增函数(减函数).4、图像法一般通过已知条件作出函数图像的草图,如果函数的图像,在某个区间D ,从左到右,逐渐上升,则函数在这个区间D 是增函数;如果从左到右,是逐渐下降,则函数是减函数. 二、证明函数的单调性的方法证明函数的单调性一般有三种方法:定义法、复合函数分析法和导数法.由于数学的证明是比较严谨的,所以图像法只能用来判断函数的单调性,但是不能用来证明.三、求函数的单调区间求函数的单调区间:单调四法,导数定义复合图像 1、定义法 :由于这种方法比较复杂,所以一般用的较少.2、复合函数法:先求函数的定义域,再分解复合函数,再判断每一个内层函数的单调性,最后根据复合函数的单调性确定函数的单调性.3、导数法:先求函数的定义域D ,然后求导()f x ',再解不等式()()0f x '>< ,分别和D 求交集,得函数的递增(减)区间 .4、图像法:先利用描点法或图像的变换法作出函数的图像,再观察函数的图像,写出函数的单调区间.四、一些重要的有用的结论1、奇函数在其对称区间上的单调性相同,如函数xy 1=、x y =和3x y =;偶函数在其对称区间上的单调性相减,如函数2x y =.2、在公共的定义域内,增函数+增函数是增函数,减函数+减函数是减函数.其他的如增函数⨯增函数不一定是增函数,函数x y =和函数3x y =都是增函数,但是它们的乘积函数4x y =不是增函数. 3、求函数的单调区间,必须先求函数的定义域,即遵循“函数问题定义域优先的原则”. 4、单调区间必须用区间来表示,不能用集合或不等式,单调区间一般写成开区间,不必考虑端点问题.5、在多个单调区间之间不能用“或”和“”连接,只能用逗号隔开.如函数()y f x =的增区间为(1,2),(3,5).不要写成(1,2)(3,5).【方法讲评】【例1】证明函数()(0)f x x a x=+>在区间)+∞是增函数.【反馈检测1】讨论函数21)(++=x ax x f )21(≠a 在),2(+∞-上的单调性.【例2】已知函数()f x 的定义域是0x ≠的一切实数,对定义域内的任意12,x x ,都有1212()()()f x x f x f x =+,且当1x >时()0f x >,(2)1f =.(1)求证()f x 是偶函数;(2)()f x 在(0,)+∞上时增函数;(3)解不等式2(21)2f x -<.【反馈检测2】已知()f x 是定义在区间[1,1]-上的奇函数,且(1)1f =,若,[1,1],0m n m n ∈-+≠时,有()()0f m f n m n +>+.(1)解不等式1()(1)2f x f x +<-(2)若2()21f x t at ≤-+对所有[1,1],[1,1]x a ∈-∈-恒成立,求实数t 的取值范围.【例3】已知函数1ln )1()(2+++=ax x a x f (1)讨论函数)(x f 的单调性;(2)设1-<a .如果对任意),0(,21+∞∈x x ,||4)()(|2121x x x f x f -≥-,求a 的取值范围.【反馈检测3】已知函数1()ln 1af x x ax x-=-+-()a R ∈. (1)当12a ≤时,讨论()f x 的单调性; (2)设2()2 4.g x x bx =-+当14a =时,若对任意1(0,2)x ∈,存在[]21,2x ∈,使12()()f x g x ≥,求实数b 取值范围.【例4】 设函数()sin cos 1f x x x x =-++,02x π<<,求函数()f x 的单调区间与极值.【反馈检测4】 某地有三家工厂,分别位于矩形ABCD 的顶点,A B 及CD 的中点P 处,已知20AB km =,10CB km = ,为了处理三家工厂的污水,现要在矩形ABCD 的区域上(含边界),且,A B 与等距离的一点O 处建造一个污水处理厂,并铺设排污管道,,AO BO OP ,设排污管道的总长为y km . (1)按下列要求写出函数关系式:①设()BAO rad θ∠=,将y 表示成θ的函数关系式; ②设OP x =(km ) ,将y 表示成x 的函数关系式.(2)请你选用(1)中的一个函数关系式,确定污水处理厂的位置,使三条排污管道总长度最短.【反馈检测5】函数()f x 的导函数'()f x ,对x R ∀∈,都有'()()f x f x >成立,若(ln 2)2f =,则满足不等式()xf x e >的x 的范围是( )A .1x >B .01x <<C .ln 2x >D .0ln 2x <<CBPOAD【反馈检测6】【2017天津,理6】已知奇函数()f x 在R 上是增函数,()()g x xf x =.若2(log 5.1)a g =-,0.8(2)b g =,(3)c g =,则a ,b ,c 的大小关系为( ) (A )a b c << (B )c b a << (C )b a c <<(D )b c a <<方法三 复合函数分析法 使用情景 较简单的复合函数.解题步骤先求函数的定义域,再分解复合函数,再判断每一个内层函数的单调性,最后根据复合函数的单调性确定函数的单调性.【例5】【2017课标II ,文8】函数2()ln(28)f x x x =-- 的单调递增区间是( ) A.(,2)-∞- B. (,1)-∞- C. (1,)+∞ D. (4,)+∞ 【反馈检测7】 已知函数22()sin 3sin sin()2cos 2f x wx wx wx wx π=+++ (0)x R w ∈>,在y 轴右侧的第一个最高点的横坐标为6π. (1) 求w ;(2)(2)若将函数()f x 的图象向右平移6π个单位后,再将得到的图象上各点横坐标伸长到原来的4倍,纵坐标不变,得到函数()y g x =的图象,求函数()y g x =的最大值及单调递减区间.方法四 图像法使用情景 函数的图像比较容易画出.解题步骤一般通过已知条件作出函数图像的草图,如果函数的图像,在某个区间,从左到右,逐渐上升,则函数在这个区间是增函数;如果从左到右,是逐渐下降,则函数是减函数.【例6】求函数2()||f x x x =-+的单调区间.【反馈检测8】 已知函数),1()(0)(-=≥x x x f x R x f 时上的偶函数,当是定义在 (1)求函数)(x f 的解析式;(2)若)(x f =2,求x 的值; (3)画出该函数的图像并根据图像写出单调区间.精品二轮第06讲:函数的单调性的判断、证明和单调区间的求法参考答案【反馈检测1答案】当12a >时,原函数是增函数;当12a <时,原函数是减函数.【反馈检测2答案】(1)104x ≤≤;(2)022t t t =≥≤-或或 【反馈检测2详细解析】212121212121()()(1)1,()()()()()()f x f x x x f x f x f x f x x x x x +->>-∴-=+-=--设1>212121212121()()()()()00()()f x f x f x f x x x x x x x x x +-+-=->->+-+-由已知得21111211()()0()(1)111024112x f x f x f x f x x x x x⎧-≤+≤⎪⎪∴->∴+<-∴-≤-≤∴≤<⎨⎪⎪+<-⎩函数在定义域内单调递增。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(1)已知函数 f(x) 在区间A上单增,g(x)在区间B上 单增,则f(x)+g(x)在公共区间上是增函数
(2)已知函数 f(x) 在区间A上单增,g(x)在区间B 上单减,则f(x)-g(x)在公共区间上是增函数
(3)已知函数 f(x) 在区间A上单减,g(x)在区间B 上单减,则f(x)+g(x)在公共区间上是减函数
对任意 x1, x2 D, 且f (x1 ) f (x2 )
则有______. (2)若函数 y f (x)在区间D上是减函数,对
任意 x1 , x2 D, 且f (x1 ) f (x2 )
则有______.
1、设函数f(x)是R上的减函数,
若f(m-1)>f(2m-1),则实数m的取值范围 是________.
2、已知函数 f(x)为区间[-1,1]上的增函数 ,
则满足f(x)<f(1/2)的实数x的取值范围为
________.
3、已知函数f
(
x)
x 4
2
x
4 x
x, 2,
x x
0
若0 f(2-a
2)>f(
a),
则实数a的取值范围是.
已知y=f(x)在(0,+ )上有意义,且单调递 增,并满足f(2)=1,f(xy)=f(x)+f(y).
f
(x)
x
1 x
的图像
(1)判断函数 f (x) x 1 在区间 (,1) x
上的单调性并证明;
(2)判断函数 f (x) x 1 在区间 (1,0)
x
的单调性并证明。 (3)(0,1)的单调性呢?
(4) (1,) 的单调性怎样?
由上猜测函数 f (x) x a (a 0) 的单调情况并证明 x
结论:设y=f(g(x))是由外函数y=f(u)和 内函数u=g(x)复合而成的函数,则:
(1)若y=f(u)为增函数,u=g(x)为增函数,则 y=f(g(x))也为增函数
(2)若y=f(u)为增函数,u=g(x)为减函数,则 y=f(g(x))也为减函数
(3)若y=f(u)为减函数,u=g(x)为增函数,则 y=f(g(x))也为减函数
例1、已知函数f (x) x 2 2x 3,则f(2),f(3),f(-5)
的大小关系为______.
例2、设函数f(x)在(-∞,+∞)上为减函数,则
()
A.f(a)>f(2a)
B.f(a 2)<f(a)
C.f(a 2+a)<f(a)
D.f( a 2+1)<f(a)
二、利用单调性解不等式
(1)若函数 y f (x) 在区间D上是增函数,
(4)已知函数 f(x) 在区间A上单减,g(x)在区间B 上单增,则f(x)-g(x)在公共区间上是减函数
即:增+增=增,减+减=减
增-减=增,减-增=减
证明函数 f (x) x2 1
在定义域上的单调性。
若函数y=f(x)在(a,b)上单 调递增,u=g(x)在(a,b) 上单调递增,
证明:函数y=f(g(x))在 (a,b)上单调递增。
(4)若y=f(u)为减函数,u=g(x)为减函数,则 y=f(g(x))也为增函数
结论即为:同增异减
函数 f (x) x2 2x 3的单调递减区
间为________
函数单调性的应用
一、利用单调性比较大小
(1)增函数中自变量大函数值也大,减函数中自变 量小函数值反而大。但要注意将自变量放在同一单 调区间。
(1)求证:f( x2)=2f(x); (2)求f(1)的值; (3)若f(x)+f(x+3)<2,求x的取值范围。
定义法证明函数的 单调性
例1、用定义法证明下列函数的单调性
(1) f (x) 1 , x (2,) x2
(2) f (x) x3 x, x R
例2、判定函数 f (x) x x2 1
在区间 (,) 的单调性。
例3、讨论函数
f
(x)
x
ax 2 1
(1Leabharlann x1,a0)
的单调性。
例4、作出函数