matlab实验3及其答案

合集下载

MATLAB实验答案

MATLAB实验答案

MATLAB实验答案实验一:变量和矩阵的赋值、矩阵的初等运算实验目的:1. 熟悉MATLAB的工作环境2. 掌握变量的赋值、矩阵的创建。

3. 掌握矩阵和数组的初等运算。

4. 熟悉和掌握inv、mean、var、randn、rand、ones、zeros、magic、eye函数的使用。

实验内容:1. 菜单栏File→Preferences→Command Window→Font and Colors修改字体,选择Use custom font改为24。

同样方法File→Preferences→Editor/Debugger→Font and Colors 修改字体,选择Use custom font改为24。

点击Apply,OK即可。

2. 在内产生均匀分布的200个点,形成1×200向量赋给变量X。

(结果不必记录)X=linspace(0,2*pi,200);3. 在内每间隔3产生向量Y。

Y=[0:3:10];4. 给矩阵赋值,,打开workspace查看矩阵的赋值。

使用save data A B语句存储到data.mat数据文件中。

输入Clear all命令清空所有变量,再使用load data加载矩阵A 和B。

A=[1 4 8 13;-3 6 -5 -9;2 -7 -12 18];B=[5 4 3 -2;6 -2 3 -8;-1 3 -9 7];save data A B;clear all;load data;5. 产生8*6阶的正态分布随机数矩阵R,求其各列的平均值和方差,并求全体的平均值和方差。

R=randn(8,6);a=mean(R);b= var(R);c=mean(R(:));d=var(R(:));6. 模拟选号程序,现有10000人,按顺序编号为1,2,…10000号,一次随机选出一个编号,要求随机数均匀分布。

R=round(ceil(rand(10000,1)*10000));7. 产生4*6阶的均匀分布随机数矩阵R,要求其元素在1~16之间取整数值,并求此矩阵前四列组成的方阵的逆阵。

MATLAB实验指导书(附答案)

MATLAB实验指导书(附答案)

MATLAB基础实验指导书漳州师范学院物电系2010年10月目录实验一MATLAB环境的熟悉与基本运算 (2)实验二MATLAB数值运算 (8)实验三MATLAB语言的程序设计 (12)实验四MATLAB的图形绘制 (16)实验五采用SIMULINK的系统仿真 (20)实验六MATLAB在电路中的应用 (25)实验七MATLAB在信号与系统中的应用 (27)实验八MATLAB在控制理论中的应用 (29)实验一 MATLAB环境的熟悉与基本运算一、实验目的:1.熟悉MATLAB开发环境2.掌握矩阵、变量、表达式的各种基本运算二、实验基本知识:1.熟悉MATLAB环境:MATLAB桌面和命令窗口、命令历史窗口、帮助信息浏览器、工作空间浏览器文件和搜索路径浏览器。

2.掌握MATLAB常用命令3.MATLAB变量与运算符变量命名规则如下:(1)变量名可以由英语字母、数字和下划线组成(2)变量名应以英文字母开头(3)长度不大于31个(4)区分大小写MATLAB中设置了一些特殊的变量与常量,列于下表。

MATLAB运算符,通过下面几个表来说明MATLAB的各种常用运算符表2 MATLAB算术运算符表3 MATLAB关系运算符表4 MATLAB逻辑运算符表5 MATLAB特殊运算4.MATLAB的一维、二维数组的寻访表6 子数组访问与赋值常用的相关指令格式5.MATLAB的基本运算表7 两种运算指令形式和实质内涵的异同表6.MATLAB的常用函数表8 标准数组生成函数表9 数组操作函数三、实验内容1、学习使用help命令,例如在命令窗口输入help eye,然后根据帮助说明,学习使用指令eye(其它不会用的指令,依照此方法类推)2、学习使用clc、clear,观察command window、command history和workspace等窗口的变化结果。

3、初步程序的编写练习,新建M-file,保存(自己设定文件名,例如exerc1、exerc2、exerc3……),学习使用MATLAB的基本运算符、数组寻访指令、标准数组生成函数和数组操作函数。

MATLAB实验三参考答案

MATLAB实验三参考答案

how =collect(x)
4、求下列函数的极限(写出命令) (1) lim
cos x e x 0 x4

x2 2
syms x; limit('(cos(x)-exp(-1/2*x^2))/(x^4)',x,0) -1/12 (2) lim
2 x ln 2 x 1 x 0 1 cos x
syms n; S=symsum(1/((3*n-2)*(3*n+1)),n,1,inf) 8、试求出函数 f ( x )
sin x 的麦克劳林幂级数展开式的前 9 项,并求出关于 x=2 x 3x 2
2
的 Taylor 幂级数展开式的前 5 项。(命令 taylor 或者 taylortool)
河南财经政法大学数学与信息科学学院 1
实验报告
结果: EXPR =(x^2+x*exp(-t)+1)*(x+exp(-t)) expr1 =x^3+2*exp(-t)*x^2+(1+exp(-t)^2)*x+exp(-t) expr2 =x*exp(-t)^2+(2*x^2+1)*exp(-t)+(x^2+1)*x 3、factor(因式分解),simple(简化运算,对表达式尝试多种不同的算法进行简化,并以最 简化形式给出,How 中记录的为简化过程中使用的方法, )指令的使用 syms a x; f1=x^4-5*x^3+x^2+5*x-6; factor(f1) x^4-5*x^3+x^2+5*x-6 f2=x^2-a^2; factor(f2) (x-a)*(x+a) f3=2*sin(x)^2-cos(x)^2 [y , how]=simple(f3) y 为 f 的最优化简形式,How 中记录的为简化过程中使用的方法 y =-3*cos(x)^2+2 how =simplify [y , how]=simple(f1) y =x^4-5*x^3+x^2+5*x-6

MATLAB)课后实验答案

MATLAB)课后实验答案

实验一 MATLAB 运算基础1、 先求下列表达式得值,然后显示MATLAB 工作空间得使用情况并保存全部变量。

(1) 0122sin 851z e =+(2) 21ln(2z x =+,其中2120.455i x +⎡⎤=⎢⎥-⎣⎦ (3) 0.30.330.3sin(0.3)ln , 3.0, 2.9,,2.9,3.022a a e e a z a a --+=++=--L (4) 2242011122123t t z t t t t t ⎧≤<⎪=-≤<⎨⎪-+≤<⎩,其中t =0:0、5:2、5 解:4、 完成下列操作:(1) 求[100,999]之间能被21整除得数得个数。

(2) 建立一个字符串向量,删除其中得大写字母。

解:(1) 结果:(2)、 建立一个字符串向量 例如:ch='ABC123d4e56Fg9';则要求结果就是:实验二 MATLAB 矩阵分析与处理1、 设有分块矩阵33322322E R A O S ⨯⨯⨯⨯⎡⎤=⎢⎥⎣⎦,其中E 、R 、O 、S 分别为单位矩阵、随机矩阵、零矩阵与对角阵,试通过数值计算验证22E R RS A OS +⎡⎤=⎢⎥⎣⎦。

解: M 文件如下;5、 下面就是一个线性方程组:1231112340.951110.673450.52111456x x x ⎡⎤⎢⎥⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎢⎥⎢⎥⎣⎦(1) 求方程得解。

(2) 将方程右边向量元素b 3改为0、53再求解,并比较b 3得变化与解得相对变化。

(3) 计算系数矩阵A 得条件数并分析结论。

解: M 文件如下:实验三 选择结构程序设计1、 求分段函数得值。

2226035605231x x x x y x x x x x x x ⎧+-<≠-⎪=-+≤<≠≠⎨⎪--⎩且且及其他用if 语句实现,分别输出x=-5、0,-3、0,1、0,2、0,2、5,3、0,5、0时得y 值。

matlab实验三答案详解

matlab实验三答案详解

实验三选择结构程序设计实验内容1.程序代码function f(x)if x<0&x~=-3y=x*x+x-6;elseif x>0&x<5&x~=2&x~=3y=x*x-5.*x+6;elsey=x*x-x-1endy运行结果>> f(-7)y =36>> f(2.5)y =-0.2500>> f(90)y =80092.程序代码score=input('分数=');if score<=100&score>=0switch fix(score/10)case{9,10}grade='A';case{8}grade='B';case{7}grade='C';case{6}grade='D';otherwisegrade='E';endgradeelsedisp('输入有误,请输入正确的百分制成绩');end运行结果>> 分数=56grade =E>> f分数=345输入有误,请输入正确的百分制成绩3.程序代码time=input('工作时间=');switch timecase{time>120}wage=(time-120)*(1+15/100)*84+120*84;case{time<60}wage=time*84-700;otherwisewage=time*84end运行结果>> f工作时间=150wage =12600>> f工作时间=50wage =4200>> f工作时间=110wage =92404.程序代码A=10+90*rand(5);a=fix(A(3,3))b=fix(A(2,4))x=input('输入一个运算符号','s');switch xcase {'+'}c=a+b;case{'-'}c=a-b;case{'*'}c=a*b;case{'/'}c=a/b;otherwisec='无效'endc运行结果>> fa =55b =59输入一个运算符号+c =114>> fa =77b =14输入一个运算符号/c =5.5000>> fa =30b =58输入一个运算符号#c =无效c =无效5.程序代码A=input('输入一个5行6列的矩阵A=');n=input('输入一个正整数n=');if n<5&n>0disp(A(n,:));elsedisp(A(5,:));endlasterr运行结果>> f输入一个5行6列的矩阵A=[1 2 3 4 5 5;2 3 4 5 7 6;2 9 2 2 2 3;11 2 11 9 7 3;2 3 4 5 6 7] 输入一个正整数n=62 3 4 5 6 7ans =Undefined function or variable 'clcl'.>> f输入一个5行6列的矩阵A=[1 2 3 4 5 5;2 3 4 5 7 6;2 2 2 2 2 3;11 2 3 9 7 3;2 3 4 5 6 7]输入一个正整数n=32 2 2 2 2 3ans =Undefined function or variable 'clcl'.。

【免费下载】MATLAB实验三答案

【免费下载】MATLAB实验三答案

运算符
()
^
~
*
> < >= == <=
|&
矩阵进行关系运算时,应该保证两个矩阵的维数一致或其中一 个矩阵为标量。比较关系运算是对两个矩阵的对应运算进行比较。
1.2 租用一个交通工具,前 100 公里需要 0.5 美元一公里,在 下面的 200 公里中 0.23 美元每公里,超过 300 公里的部分一律按 0.2 美元每公里算,编写一个程序,自定义总公里数 x,求总花销及平 均每公里的花销。(分别定义 x<=100,100<x<=300,x>300 三个总公里 数验证结果)。
>> d|b>a
ans =
1
>> a*b^2>a*c
ans =
(2)
a
1

1 2
0 1
>> a=[1 0;-2 1];b=[0 2;-2 -1];
>> a>=b
ans =
>> a|b
ans =
(3)
a>c&b>c, c<=d
10
11
11
11
>> format compact
a


2,
M 文件: x=input('请输入总公里数 x='); if x<=100
w=0.5*x; disp(['总花销 w=',num2str(w),' 美元']) elseif 100<x<=300 w=0.5*100+(x-100)*0.23; disp(['总花销 w=',num2str(w),' 美元']) else

Matlab实验三答案

Matlab实验三答案

Matlab实验三答案实验三 MATLAB语⾔的程序设计⼀、实验⽬的:1、熟悉MATLAB程序编辑与设计环境2、掌握各种编程语句语法规则及程序设计⽅法3、函数⽂件的编写和设计4、了解和熟悉跨空间变量传递和赋值⼆、实验基本知识:1、程序流程控制语句for循环结构语法:for i=初值:增量:终值语句1……语句nend说明:1.i=初值:终值,则增量为1。

2.初值、增量、终值可正可负,可以是整数,也可以是⼩数,只须符合数学逻辑。

while 循环结构语法:while 逻辑表达式循环体语句end说明:1、whiIe结构依据逻辑表达式的值判断是否执⾏循环体语勾。

若表达式的值为真,执⾏循环体语句⼀次、在反复执⾏时,每次都要进⾏判断。

若表达式的值为假,则程序执⾏end之后的语句。

2、为了避免因逻辑上的失误,⽽陷⼊死循环,建议在循环体语句的适当位置加break语句、以便程序能正常执⾏。

(执⾏循环体的次数不确定;每⼀次执⾏循环体后,⼀定会改变while 后⾯所跟关系式的值。

)3、while循环也可以嵌套、其结构如下:while逻辑表达式1循环体语句1while逻辑表达式2循环体语句2end循环体语句3endelse if 表达式2(可选)语句2else(可选)语句3endend说明:1.if结构是⼀个条件分⽀语句,若满⾜表达式的条件,则往下执⾏;若不满⾜,则跳出if结构。

2.else if表达式2与else为可选项,这两条语句可依据具体情况取舍。

3.注意:每⼀个if都对应⼀个end,即有⼏个if,记就应有⼏个end。

switch-case结构语法:switch表达式case常量表达式1语句组1case常量表达式2语句组2……otherwise语句组nend说明:1.switch后⾯的表达式可以是任何类型,如数字、字符串等。

2.当表达式的值与case后⾯常量表达式的值相等时,就执⾏这个case后⾯的语句组如果所有的常量表达式的值都与这个表达式的值不相等时,则执⾏otherwise后的执⾏语句。

MATLAB实验及答案详解

MATLAB实验及答案详解

>> C3
C3 =
9 22 2
8 19 -6
36 88 3
>> D1
D1 =
2 -2 3
655
16 -10 3
>> D2
D2 =
0.5000 -2.0000 0.3333
0.6667 5.0000 0.2000
1.0000 -10.0000 3.0000
>> D3
D3 =
141
4 25 1
16 100 9
5.0000 - 5.0000i 6.0000 - 6.0000i
②求矩阵的逆矩阵
>> B=[1 2;3 4];
>> B1=inv(B) 运行后显示:
B1 = -2.0000 1.0000 1.5000 -0.5000
>> B2=B^(-1) 运行后显示: B2 =
-2.0000 1.0000 1.5000 -0.5000 ③关于矩阵求幂 >>A=[1 2;3 4]; B=[ 2 1;3 2]; >>A.^B 运行后显示: ans =
>>A=[1,2,3;4,5,6] 运行后显示: A= 123 456
在命令窗口输入:
>>b=A(1,2)
运行后显示:b =2
在命令窗口输入:
>>A(2,3)=-3
运行后显示:A =
123
4 5 -3
矩阵的操作
>>A=[1,2,3;4,5,6;7,8,9]
>>B=diag(A) %X 为矩阵时,V=diag(X,k)得到列向量 V,它取自 X 的第 K 个对角

matlab2009实验3参考解答

matlab2009实验3参考解答

MATLAB 实验三MATLAB 计算可视化试验报告说明:1 做试验前请先预习,并独立完成试验和试验报告。

2 报告解答方式:将MATLAB 执行命令和最后运行结果从命令窗口拷贝到每题的题目下面,请将报告解答部分的底纹设置为灰色,以便于批阅。

3 在页眉上写清报告名称,学生姓名,学号,专业以及班级。

3 报告以Word 文档书写。

文档命名方式: 学号+姓名+_(下划线)+试验几.doc 如:110400220张三_试验1.doc 4 试验报告doc 文档以附件形式发送到maya_email@ 。

凡文档命名不符合规范,或者发送方式不正确,不予登记。

5 每次试验报告的最后提交期限:下周试验课之前。

6 欢迎访问我的教学论坛:/nbbs ,由此进入Matlab 专栏。

论坛注册时请在个人签名档写上自己的姓名和学号,以便于权限设置,可在论坛上交流学习,并可下载发布的试验报告和解答参考等相关资料。

一 目的和要求(1)熟练掌握MATLAB 二维曲线的绘制(2)熟练掌握图形的修饰(3)掌握三维图形的绘制(4)熟练掌握各种特殊图形的绘制(5)掌握句柄图形的概念(6)了解GUI 设计二 内容和步骤(说明:绘图题需在报告中粘贴图形结果。

)1 绘制二维曲线(必做)查阅stem 绘图指令,利用stem 绘制复指数序列n j e n x )3..01.0()(+-=(其中1010<<-n )的相关图形,要求:(1)把窗口分成2行2列。

(2)左上窗口绘制复指数序列的实部波形,窗口右上角绘制复指数序列的虚部波形,左下角绘制复指数序列的幅度波形,右下角绘制窗口的相位波形。

要求每个子图标注标题,X,Y 轴说明。

要求显示网格。

% 复指数序列程序n=-10:10;alpha=-0.1+0.3*j;x=exp(alpha*n);real_x=real(x); % 实部img_x=imag(x); % 虚部mag_x=abs(x); % 幅值phase_x=(180/pi)*angle(x); % 相角,转为角度subplot(2,2,1)stem(n,real_x);title('实数部分');xlabel('n');ylabel('real');grid onsubplot(2,2,2)stem(n,img_x);title('虚数部分');xlabel('n');ylabel('imag');grid onsubplot(2,2,3)stem(n,mag_x);title('幅度');xlabel('n');ylabel('abs');grid onsubplot(2,2,4)stem(n,phase_x);title('相位');xlabel('n');ylabel('phase');grid on同学解题过程存在的问题:1注意括号应用,有同学如此定义指数序列:x=exp(-0.1+j*0.3)*n,思考错在哪里?2绘图程序最好放在M脚本中编辑,部分同学是在命令窗口中,这样不便于对程序的调试和修正。

MATLAB语言与控制系统仿真_参考题答案_第3章

MATLAB语言与控制系统仿真_参考题答案_第3章

3.5 MATLAB 绘图实训3.5.1 实训目的1.学会MATLAB 绘图的基本知识;2.掌握MATLAB 子图绘制、图形注释、图形编辑等基本方法;3.学会通过MATLAB 绘图解决一些实际问题;4.练习二维、三维绘图的多种绘图方式,了解图形的修饰方法;5.学会制作简单的MATLAB 动画。

图3-46 炮弹发射示意图3.5.2 实训内容1. 炮弹发射问题〔1炮弹发射的基础知识炮弹以角度α射出的行程是时间的函数,可以分解为水平距离)(t x 和垂直距离)(t y 。

)cos()(0αtv t x = %水平方向的行程; 205.0)sin()(gt tv t y -=α %垂直方向的行程;其中,0v 是初速度;g 是重力加速度,为9.82m/s ;t 是时间。

〔2炮弹发射程序举例:分析以下程序以及图3-47各个图形的实际意义。

a=pi/4; v0=300; g=9.8;t=0:0.01:50; x=t*v0*cos<a>;y=t*v0*sin<a>-0.5*g*t.^2;subplot<221>;plot<t,x>;grid;title<‘时间-水平位移曲线'>; subplot<222>;plot<t,y>;grid;title<‘时间-垂直位移曲线'>; subplot<223>;plot<x,y>;grid;title<‘水平位移-垂直位移曲线'>; subplot<224>;plot<y,x>;grid;title<‘垂直位移-水平位移曲线'>; 图3-4745角发射曲线 〔3编程解决炮弹发射问题①假设在水平地面上以垂直于水平面的角度向上发射炮弹,即发射角90=α,假设初速度分别为[310,290,270]m/s,试绘制时间-垂直位移曲线,编程求取最高射程;绘图要求:◆ 标题设为"炮弹垂直发射问题";◆ 在图上通过添加文本的方式表明初速度; ◆ 在x 轴标注"时间";◆ 在y 轴上标注"垂直距离"; ◆ 添加网格线;◆ 将310m/s 的曲线改为线粗为2的红色实线; ◆ 将290m/s 的曲线改为线粗为3的绿色点划线;◆ 将270m/s 的曲线改为线粗为2的蓝色长点划线;a=pi/2; v1=310; g=9.8;t=0:0.01:50; x1=t*v1*cos<a>;y1=t*v1*sin<a>-0.5*g*t.^2;plot<t,y1>;grid; title<'炮弹垂直发射问题'>; xlabel<'时间'>; ylabel<'垂直距离'>; hold on; v2=290;x2=t*v2*cos<a>;y2=t*v2*sin<a>-0.5*g*t.^2; plot<t,y2>; v3=270;x3=t*v3*cos<a>;y3=t*v3*sin<a>-0.5*g*t.^2; plot<t,y3>;zgsc=[max<y1>; max<y2>; max<y3>] %三次发射的最高射程 运行结果如下: zgsc =1.0e+003 * 4.9031 4.29083.7194最高射程分别为:4903.1米,4290.8米,3719.4米。

matlab作业3参考答案

matlab作业3参考答案

matlab作业3参考答案Matlab作业3参考答案Matlab作业3是一个综合性的编程任务,要求学生运用Matlab的各种功能和工具来解决实际问题。

本文将提供Matlab作业3的参考答案,并对其中的关键步骤和思路进行详细解释。

一、问题描述在本次作业中,学生需要解决一个关于图像处理的问题。

具体来说,给定一张彩色图像,学生需要编写Matlab代码来实现以下功能:1. 将彩色图像转换为灰度图像;2. 对灰度图像进行高斯滤波;3. 对滤波后的图像进行边缘检测;4. 对边缘图像进行二值化处理。

二、解决方案1. 将彩色图像转换为灰度图像首先,我们需要读取彩色图像。

可以使用Matlab的imread函数来实现。

然后,使用rgb2gray函数将彩色图像转换为灰度图像。

代码如下:```matlabrgbImage = imread('image.jpg');grayImage = rgb2gray(rgbImage);```2. 对灰度图像进行高斯滤波接下来,我们需要对灰度图像进行高斯滤波。

高斯滤波是一种常用的图像平滑方法,可以有效地去除图像中的噪声。

Matlab提供了fspecial函数来生成高斯滤波器。

代码如下:```matlabh = fspecial('gaussian', [3 3], 1);filteredImage = imfilter(grayImage, h);```3. 对滤波后的图像进行边缘检测在这一步中,我们需要对滤波后的图像进行边缘检测。

边缘检测可以帮助我们找到图像中的边缘和轮廓。

Matlab提供了多种边缘检测算法,如Sobel算子和Canny算子。

代码如下:```matlabedgeImage = edge(filteredImage, 'canny');```4. 对边缘图像进行二值化处理最后,我们需要对边缘图像进行二值化处理,将图像中的边缘转换为黑白两种颜色。

MATLAB作业3参考答案

MATLAB作业3参考答案

MA TLAB 作业三参考答案1、 请将下面给出的矩阵A 和B 输入到MA TLAB 环境中,并将它们转换成符号矩阵。

若某一矩阵为数值矩阵,另以矩阵为符号矩阵,两矩阵相乘是符号矩阵还是数值矩阵。

576516535501232310014325462564206441211346,39636623515212107600774101201724407734737812486721711076815A B ⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥==⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥---⎢⎥⎢⎥⎢⎥⎢⎥--⎣⎦⎣⎦【求解】矩阵的输入与转换是很直接的。

>> A=[5,7,6,5,1,6,5; 2,3,1,0,0,1,4; 6,4,2,0,6,4,4; 3,9,6,3,6,6,2; 10,7,6,0,0,7,7; 7,2,4,4,0,7,7; 4,8,6,7,2,1,7]; A=sym(A) A =[ 5, 7, 6, 5, 1, 6, 5] [ 2, 3, 1, 0, 0, 1, 4] [ 6, 4, 2, 0, 6, 4, 4] [ 3, 9, 6, 3, 6, 6, 2] [ 10, 7, 6, 0, 0, 7, 7] [ 7, 2, 4, 4, 0, 7, 7] [ 4, 8, 6, 7, 2, 1, 7]>> B=[3,5,5,0,1,2,3; 3,2,5,4,6,2,5; 1,2,1,1,3,4,6; 3,5,1,5,2,1,2; 4,1,0,1,2,0,1; -3,-4,-7,3,7,8,12; 1,-10,7,-6,8,1,5]; B=sym(B) B =[ 3, 5, 5, 0, 1, 2, 3] [ 3, 2, 5, 4, 6, 2, 5] [ 1, 2, 1, 1, 3, 4, 6] [ 3, 5, 1, 5, 2, 1, 2] [ 4, 1, 0, 1, 2, 0, 1][ -3, -4, -7, 3, 7, 8, 12] [ 1, -10, 7, -6, 8, 1, 5]2、 利用MA TLAB 语言提供的现成函数对习题1中给出的两个矩阵进行分析,判定它们是否为奇异矩阵,得出矩阵的秩、行列式、迹和逆矩阵,检验得出的逆矩阵是否正确。

915230-MATLAB第三版实验答案

915230-MATLAB第三版实验答案
s=0;n=0;
for i=2:49 b=i*(i+l)-l; m=fix(sqrt(b)); for j=2:m
if rem(b,j)==0 break
end
end
if j==m
n=n+l;
s=s+b;
end
end
实验6函数文件
%第1题
function y=matl (x)$建立函数文件matl・m
实验7绘图操作
%第1题
% (1)
x=linspace(0,2*pif101);
y=(0.5 + 3*sin (x)・/(1+x.A2))・*cos(x); plot(x,y)
%(2)
x=-5:0・01:5;
y=[];%起始设y为空向疑
for x0=x
if x0<=0$不能写成x0=<0
y=[y,(xO+sqrt(pi))/exp(2)]; else
for i=10:99
j = 10*rem(iz10)+fix (i/10);
if mat3(i)&mat3(j)
disp (i)
end
end
%第4题
function y=fx(x)
y=l・/ ( (x-2)・A2+0・l)+1./((x-3)・A4+0・01);
$在命令窗口调用该函数文件:
y=fx(2)
if t==f+!
z=x+y;
elseif t==,-1
z=x-y;
elseif t==1*'
z=x*y;
elseif t==、['
z=x/y;

MATLAB)课后实验答案-精简版

MATLAB)课后实验答案-精简版

MATLAB)课后实验答案-精简版实验一 MATLAB 运算基础1. 先求下列表达式的值,然后显示MA TLAB 工作空间的使用情况并保存全部变量。

(1) 0122sin 851z e=+(2) 21ln(2z x =+,其中2120.455i x +??=?-??(3) 0.30.330.3sin(0.3)ln,3.0, 2.9,,2.9,3.022aaee a z a a --+=++=--(4) 2242011122123t t z t t t t t ?≤<?=-≤<??-+≤<?,其中t =0:0.5:2.52. 已知:1234413134787,2033657327A B --??==-??求下列表达式的值:(1) A+6*B 和A-B+I (其中I 为单位矩阵)(3) A^3和A.^3(4) A/B及B\A(5) [A,B]和[A([1,3],:);B^2]3. 设有矩阵A 和B 123453 0166789101769,1112 1314150234 1617181920970212223242541311A B ??-?==-?(1) 求它们的乘积C 。

(2) 将矩阵C 的右下角3×2子矩阵赋给D 。

(3) 查看MA TLAB 工作空间的使用情况。

4. 完成下列操作:(1) 求[100,999]之间能被21整除的数的个数。

(2) 建立一个字符串向量,删除其中的大写字母。

(2). 建立一个字符串向量例如:ch='ABC123d4e56Fg9';则要求结果是:实验二 MATLAB 矩阵分析与处理1. 设有分块矩阵33322322E R A O S=?,其中E 、R 、O 、S 分别为单位矩阵、随机矩阵、零矩阵和对角阵,试通过数值计算验证22E R R S A OS +??=。

解: M 文件如下;输出结果:S =1 0 02 A =1.0000 0 0 0.5383 0.4427 0 1.0000 0 0.9961 0.1067 0 0 1.0000 0.0782 0.9619 0 0 0 1.0000 0 0 0 0 02.0000 a =1.0000 0 0 1.0767 1.3280 0 1.0000 0 1.9923 0.3200 0 0 1.0000 0.15642.8857 0 0 0 1.0000 0 0 0 0 0 4.0000 ans =0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0由ans,所以22E R R S A O S +??=?2. 产生5阶希尔伯特矩阵H 和5阶帕斯卡矩阵P ,且求其行列式的值Hh 和Hp 以及它们的条件数Th 和Tp ,判断哪个矩阵性能更好。

MATLAB实验三答案

MATLAB实验三答案

MATLAB实验三答案1.1 判断以下表达式的值(1) a=20, b=-2, c=0, d=1, 计算下面表达式的值:a>b, b>d,a>b&c>d, a==b, a&b>c, ~~b, d|b>a, a*b^2>a*c.>> format compact>> a=20;b=-2;c=0;d=1;>> b>dans =>> a>b&c>dans =>> a==bans =>> a&b>cans =>> ~~bans =1ans =1>> a*b^2>a*c ans =1(2)1021a⎡⎤=⎢⎥-⎣⎦,0221b⎡⎤=⎢⎥--⎣⎦,计算a>=b,a|b>> a=[1 0;-2 1];b=[0 2;-2 -1]; >> a>=bans =1 01 1>> a|bans =1 11 1(3)12012122,,,01020010a b c d--⎡⎤⎡⎤⎡⎤====⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦,计算~(a>b),a>c&b>c, c<=d>> format compact>> a=2;b=[1 -2;0 10];c=[0 1;2 0];d=[-2 1 2;0 1 0];ans =0 00 1>> a>c&b>cans =1 00 1>> c<=dError using ==> leMatrix dimensions must agree.根据结果总结关系和逻辑运算符用于数组的运算规律及优先级顺序.关系运算和逻辑运算的结果只有0和1两种可能。

矩阵进行关系运算时,应该保证两个矩阵的维数一致或其中一个矩阵为标量。

Matlab作业3(数值分析)答案

Matlab作业3(数值分析)答案

Matlab作业3(数值分析)机电工程学院(院、系)专业班组学号姓名实验日期教师评定1.计算多项式乘法(x2+2x+2)(x2+5x+4)。

答:2. (1)将(x-6)(x-3)(x-8)展开为系数多项式的形式。

(2)求解在x=8时多项式(x-1)(x-2) (x-3)(x-4)的值。

答:(1)(2)3. y=sin(x),x从0到2π,∆x=0.02π,求y的最大值、最小值、均值和标准差。

4.设x=[0.00.30.8 1.1 1.6 2.3]',y=[0.500.82 1.14 1.25 1.351.40]',试求二次多项式拟合系数,并据此计算x1=[0.9 1.2]时对应的y1。

解:x=[0.0 0.3 0.8 1.1 1.62.3]'; %输入变量数据xy=[0.50 0.82 1.14 1.25 1.35 1.40]'; %输入变量数据yp=polyfit(x,y,2) %对x,y用二次多项式拟合,得到系数px1=[0.9 1.2]; %输入点x1y1=polyval(p,x1) %估计x1处对应的y1p =-0.2387 0.9191 0.5318y1 =a) 1.29095.实验数据处理:已知某压力传感器的测试数据如下表p为压力值,u为电压值,试用多项式dcpbpappu+++=23)(来拟合其特性函数,求出a,b,c,d,并把拟合曲线和各个测试数据点画在同一幅图上。

解:>> p=[0.0,1.1,2.1,2.8,4.2,5.0,6.1,6.9,8.1,9.0,9.9];u=[10,11,13,14,17,18,22,24,29,34,39];x=polyfit(p,u,3) %得多项式系数t=linspace(0,10,100);y=polyval(x,t); %求多项式得值plot(p,u,'*',t,y,'r') %画拟和曲线x =0.0195 -0.0412 1.4469 9.8267。

实验三 matlab程序流程控制习题答案

实验三 matlab程序流程控制习题答案

英文回复:In Experiment III, we will learn how to use Matlab to develop practical answers to process control questions。

Process flow control refers to the implementation of different segments of the process under different conditions or the revolving execution of specific segments。

In Matlab, program flow control can be achieved using f, switch and circular (for,while)。

Let us look at a simple example of if words。

Assuming there's a variable x, we want to implement different segments based on the value of x。

This can be achieved by using the following phrase:If x 》 0, execute "x is possible";If x 《 0, execute "x is negative";If x equals 0, execute "x is zero"。

The code, which implements the corresponding section of the procedure according to specific conditions, reflects the practical,prehensive and objective scientific spirit promoted by our party in the field of science and technology, as well as the methods of work of maintaining an in—depth analysis of the problem and tailoring policies to local conditions。

matlab部分实验题答案

matlab部分实验题答案

这些答案不一定正确,大家可以参考参考,还有部分没完成的,希望有人能快点做出来。

实验一1、(1)>> z1=(2*sin(85*pi/180))/(1+exp(2))z1 =0.2375(2)>> x=[2,1+2i;-0.45,5]x =2.0000 1.0000 + 2.0000i-0.4500 5.0000>> z2=1/2*log(1+sqrt(1+x^2))z2 =0.5738 - 0.0333i 0.7952 + 0.2117i0.2869 + 0.4861i 0.9005 - 0.0073i2、>> A=[12,34,-4;34,7,87;3,65,7]A =12 34 -434 7 873 65 7>> B=[1,3,-1;2,0,3;3,-2,7]B =1 3 -12 0 33 -2 7>> I=eye(3)I =1 0 00 1 00 0 1>> A+6*Bans =18 52 -1046 7 10521 53 49>> A-B+Ians =12 31 -332 8 840 67 1>> A*Bans =68 44 62309 -72 596154 -5 241>> A.*Bans =12 102 468 0 2619 -130 49>> A^3ans =37226 233824 48604247370 149188 60076678688 454142 118820>> A.^3ans =1728 39304 -6439304 343 65850327 274625 343 >> A/Bans =16.4000 -13.6000 7.600035.8000 -76.2000 50.200067.0000 -134.0000 68.0000>> B\Aans =109.4000 -131.2000 322.8000-53.0000 85.0000 -171.0000-61.6000 89.8000 -186.2000>> [A,B]ans =12 34 -4 1 3 -134 7 87 2 0 33 65 7 3 -2 7 >> [A([1,3],:);B^2]ans =12 34 -43 65 74 5 111 0 1920 -5 40>>3、>> A=[1,2,3,4,5;6,7,8,9,10;11,12,13,14,15;16,17,18,19,20;21,22,23,24,25]A =1 2 3 4 56 7 8 9 1011 12 13 14 1516 17 18 19 2021 22 23 24 25>> B=[3,0,16;17,-6,9;0,23,-4;9,7,0;4,13,11]B =3 0 1617 -6 90 23 -49 7 04 13 11>> C=A*BC =93 150 77258 335 237423 520 397588 705 557753 890 717>> D=C(3:5,2:3)D =520 397705 557890 717实验二2、(1)>> syms xs=(x*(exp(sin(x))+1)-2*(exp(tan(x))-1))/(sin(x)^3) Lsk=limit(s,x,0)s =(x*(exp(sin(x)) + 1) - 2*exp(tan(x)) + 2)/sin(x)^3 Lsk =-1/2(2)>> syms a t x>> A=[a^x,t^3;t*cos(x),log(x)]A =[ a^x, t^3][ t*cos(x), log(x)]>> df=diff(A)dfdt2=diff(A,t,2)dfdxdt=diff(diff(A,x),t)df =[ a^x*log(a), 0][ -t*sin(x), 1/x]dfdt2 =[ 0, 6*t][ 0, 0]dfdxdt =[ 0, 0][ -sin(x), 0]>>实验三1、(3)>> a=-3.0:0.1:3.0z3=exp(0.3*a).*sin(a+0.3)a =Columns 1 through 8-3.0000 -2.9000 -2.8000 -2.7000 -2.6000 -2.5000 -2.4000 -2.3000Columns 9 through 16-2.2000 -2.1000 -2.0000 -1.9000 -1.8000 -1.7000 -1.6000 -1.5000Columns 17 through 24-1.4000 -1.3000 -1.2000 -1.1000 -1.0000 -0.9000 -0.8000 -0.7000Columns 25 through 32-0.6000 -0.5000 -0.4000 -0.3000 -0.2000 -0.1000 0 0.1000Columns 33 through 400.2000 0.3000 0.4000 0.5000 0.6000 0.7000 0.8000 0.9000Columns 41 through 481.0000 1.1000 1.2000 1.3000 1.4000 1.5000 1.6000 1.7000Columns 49 through 561.8000 1.90002.0000 2.1000 2.2000 2.3000 2.40002.5000Columns 57 through 612.6000 2.7000 2.8000 2.90003.0000z3 =Columns 1 through 8-0.1738 -0.2160 -0.2584 -0.3005 -0.3418 -0.3819 -0.4202 -0.4561Columns 9 through 16-0.4891 -0.5187 -0.5442 -0.5653 -0.5813 -0.5918 -0.5962 -0.5943Columns 17 through 24-0.5856 -0.5697 -0.5465 -0.5157 -0.4772 -0.4310 -0.3771 -0.3157Columns 25 through 32-0.2468 -0.1710 -0.0885 0.0000 0.0940 0.1928 0.2955 0.4013Columns 33 through 400.5091 0.6178 0.7264 0.8334 0.9378 1.0381 1.13291.2209Columns 41 through 481.3007 1.3707 1.4297 1.4764 1.5093 1.5273 1.5293 1.5142Columns 49 through 561.4813 1.4296 1.3588 1.2683 1.1579 1.0278 0.8780 0.7092Columns 57 through 610.5219 0.3172 0.0963 -0.1393 -0.3880>>(4)>> syms tt=0:0.5:2.5if t>=0t<1z4=t.^2;elseif t>=1t<2z4=t.^2-1;elseif t>=2t<3z4=t.^2-2.*t+1;endt =0 0.5000 1.0000 1.5000 2.0000 2.5000 ans =1 1 0 0 0 0>>4(1)>> m=100:999;n=find(mod(m,21)==0);length(n)ans =43(2)>> M=100+magic(5)M =117 124 101 108 115123 105 107 114 116104 106 113 120 122110 112 119 121 103111 118 125 102 109实验四1、>> x=rand(1,30000); mu=mean(x)sig=std(x)[max_num,weizhi1]=max(x) [min_num,weizhi2]=min(x)y=length(find(x>0.5));p=y/30000mu =0.5020sig =0.2893max_num =1.0000weizhi1 =731min_num =1.2354e-004weizhi2 =9617p =0.5017>>2、>> t=45+50*rand(100,5);P=fix(t);[x,l]=max(P)[y,k]=min(P)mu=mean(P)sig=std(P)s=sum(P,2)[X,m]=max(s)[Y,n]=min(s)[zcj,xsxh]=sort(s)x =94 94 94 92 94l =12 25 6 17 42y =45 45 45 45 45k =1 24 18 80 46mu =68.1300 70.4700 69.1900 67.1900 70.6800 sig =14.7290 14.5806 15.2532 13.8285 13.2702 s =326 342 338 376 375 333 394 339 317 359 338 380 302 379 369 391 378 342 366 363 315 348 383 303 335 313 334 302 296 370 319 350 329 322 365 399 326 391 318 328 335 374 305352 293 363 380 348 336 353 364 342 381 369 349 285 398 344 379 373 359 324 356 332 327 294 311 319 361 357 379 353 366 318 351 327 330 390 329 329 292 348 360 323 297 349335371323372358343363336393332337354 X =399 m =36 Y =285 n =57 zcj =285292293294296297302303 305 311 313 315 317 318 318 319 319 322 323 323 324 326 326 327 327 328 329 329 329 330 332 332 333 334 335 335 335 336 336 337 338 338 339 342 342 342 343 344 345 347348 348 349 349 350 351 352 353 353 354 356 357 358 359 359 360 361 363 363 363 364 365 366 366 369 369 370 371 372 373 374 375 376 378 379 379 379 380 380 381 383 390 391393394398399 xsxh =578246672986132824436826219397531693485916313766774033808178659862741 89 50 96 99 3 11 8 2 18 53 94 59 88 44 22 49 83 56 87 32 76 45 51 73 100 64 71 93 10 62 84 70 20 47 95 52 35 19 74 15 55 309261425417146072124854237916389775836>>3、>> A=randn(10,5)mu=mean(A)sig=std(A)m=max(A)n=min(A)p=sum(A,2)sum(p)A =-0.3316 -1.9682 -0.9379 0.0635 -0.19361.2900 0.8745 -0.3664 0.3067 -0.3796-0.3743 1.2308 -0.9529 1.2654 -0.0922 -0.8671 -0.3518 0.1797 0.9860 1.26620.7588 0.5268 0.1264 -1.2862 -0.0425-1.9617 1.0806 0.2758 1.0919 -2.9548 -0.3597 -0.3459 1.0738 1.0266 -0.44910.1221 -0.1111 0.4171 -0.9018 0.8893-1.5787 -0.1213 0.4899 0.8433 -0.5266-1.5737 1.2627 -1.3792 -1.2064 -0.3800 mu =-0.4876 0.2077 -0.1074 0.2189 -0.2863 sig =1.0449 1.0018 0.7746 1.0040 1.1116 m =1.2900 1.2627 1.0738 1.2654 1.2662 n =-1.9617 -1.9682 -1.3792 -1.2862 -2.9548 p =-3.36781.72511.07681.21300.0832-2.46820.94570.4156-0.8935-3.2766ans =-4.5466>>4、>> x=0:15*pi/180:pi/2;>> sin(x)ans =0 0.2588 0.5000 0.7071 0.8660 0.9659 1.0000>> tan(x)ans =1.0e+016 *0 0.0000 0.0000 0.0000 0.0000 0.0000 1.6331>> format long>> interp1(x,sin(x),'spline')ans =Columns 1 through 4-0.261799387799149 -0.194040720240549 -0.130899693899575 -0.076679265375884Columns 5 through 7-0.035074467269872 -0.008920597817284 0>> interp1(x,tan(x),'spline')ans =1.0e+032 *Columns 1 through 4-0.000000000000000 -0.000000000000000 -0.000000000000000 -0.000000000000000Columns 5 through 70.000000000000000 0.000000000000000 7.2536888214463725、>> N=[1 4 9 16 25 36 49 64 81 100]N =1 4 9 16 25 36 49 64 81 100>> n=sqrt(N)n =1 2 3 4 5 6 7 8 9 10>> format long>> interp1(N,n,'cubic')ans =1 4 9 16 25 36 49 64 81 100>>6(1)>> syms x>> y=(sin(x))^2+(cos(x))^2;>> dy=diff(y);>> x=[pi/6,pi/4,pi/3,pi/2];>> eval(dy)ans =(2)>> syms x>> y=sqrt(1+x^2);>> dy=diff(y);>> x=1x =1>> eval(dy)ans =0.7071 >> x=2x =2>> eval(dy) ans =0.8944 >> x=3x =3>> eval(dy) ans =0.9487 >>实验五1、>> x1=-2:0.1:2;y1=exp(x1);x2=0.1:0.1:5;y2=log(x2);plot(x1,y1,'r',x2,y2,'g');title('二维图');legend('y=exp(x)','y=logx');xlabel('X轴数据');ylabel('Y轴数据'); grid on;>>3、>> t=-pi:pi/100:pi;x=t.*cos(3*t);y=t.*sin(t).*sin(t);plot(x,y);title(date);legend(strvcat('x=tcos(3t)','y=tsin2t')); xlabel('T轴数据');ylabel('X,Y轴数据'); >>。

Matlab实验指导书(含答案)汇总

Matlab实验指导书(含答案)汇总

实验Matlab 操作环境熟悉、实验目的1.初步了解Matlab 操作环境。

2.学习使用图形函数计算器命令funtool 及其环境。

二、实验内容熟悉Matlab 操作环境,认识命令窗口、内存工作区窗口、历史命令窗口;学会使用format 命令调整命令窗口的数据显示格式;学会使用变量和矩阵的输入,并进行简单的计算;学会使用who 和whos 命令查看内存变量信息;学会使用图形函数计算器funtool ,并进行下列计算:1.单函数运算操作。

求下列函数的符号导数(1) y=sin(x);(2) y=(1+x)A3*(2-x); 求下列函数的符号积分(1) y=cos(x);(2) y=1/(1+x^2);(3) y=1/sqrt(1-x^2);(4) y=(x-1)/(x+1)/(x+2);求反函数(1) y=(x-1)/(2*x+3);(2) y=exp(x);(3) y=log(x+sqrt(1+x^2));代数式的化简(1) (x+1)*(x-1)*(x-2)/(x-3)/(x-4);(2) sin (x)A2+cos(x)A2;(3) x+sin(x)+2*x-3*cos(x)+4*x*sin(x);2.函数与参数的运算操作。

从y=xA2通过参数的选择去观察下列函数的图形变化(1) y1=(x+1)A2⑵ y2=(x+2)A2(3) y3=2*x^2⑷ y4=x^2+2(5) y5=x^4⑹ y6=x^2/23.两个函数之间的操作求和(1) sin(x)+cos(x)(2) 1+x+x^2+x^3+x^4+x^5乘积(1) exp(-x)*sin(x)(2) sin(x)*x商(1) sin(x)/cos(x);⑵ x/(1+x^2);(3) 1/(x-1)/(x-2);求复合函数(1) y=exp(u) u=sin(x)(2) y=sqrt(u) u=1+exp(xA2)(3) y=sin(u) u=asin(x)(4) y=sinh(u) u=-x三、设计提示1.初次接触Matlab 应该注意函数表达式的文本式描述。

MATLAB全部实验及答案

MATLAB全部实验及答案
2)A*B和A.*B
3)A^3和A.^3
4)[A,B]和[A([1,3],:);B^2]
2、设有矩阵A和B,A=[1 2 3 4 5;6 7 8 9 10;11 12 13 14 15;16 17 18 19 20;21 22 23 24 25],B=[3 0 16;17 -6 9;0 23 -4;9 7 0;4 13 11]
使用Windows的“开始”菜单。
运行MATLAB系统的启动程序matlab.exe。
利用桌面上的快捷方式。
MATLAB主窗口
命令窗口(Command Window)
当前目录窗口(Current Directory)
工作空间窗口(Workspace)
命令历史窗口(Command History)
2、下列符号中哪些是MATLAB的合法变量名?用给变量赋值的方法在机器上验证你的答案(3vars、global、help、My_exp、sin、X+Y、_input、E-4、AbCd、AB_C_。)
6、利用MATLAB提供的rand函数和圆整函数随机生成4X3整数矩阵A,进行如下操作
1)A各列元素的平均值和中值
平均值
>> A_mean=mean(A)
A_mean =
0.5000 0.7500 0.7500
中值
>> A_median=median(A)
A_median =
0.5000 1.0000 1.0000
整数类型的运算函数
创建逻辑类型数据的函数
MATLAB的逻辑运算
MATLAB的关系运算
格式化字符
三、主要仪器及耗材
计算机
四、实验内容和步骤
1、已知A=[12 34 -4;34 7 87;3 65 7],B=[1 3 -1;2 0 3;3 -2 7],求下列表达式的值:
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
z=sin(r)./r;
mesh(z);
surface(z);
结果截图:
3.用ezplot绘制函数 和 的图像,两幅图像按照两行一列排列在同一个图形窗口中。
实验程序:subplot(211)
ezplot('abs(sin(x)^3)*cos(5*x)')
subplot(212)
ezplot('cos(3*t)','sin(5*t)')
结果截图:
4.绘制极坐标函数曲线: 和 ,两幅图像按照两行一列排列在同一个图形窗口中。。
实验程序:theta=0:0.01:2*pi;
rho1=cos(theta)+2;
subplot(211)
polar(theta,rho1);
rho2=2*(theta).^3;
subplot(212)
polar(theta,rho2);
实验三图形绘制专业 Nhomakorabea学号姓名
成绩
电气工程及其自动化
201409140305
杨诚
100
1.在同一坐标系下,用不同的颜色和线形画出下面三条曲线: , , ,其中 。
实验程序:clear;clc;
t=0:0.1:3*pi;
x=sin(t);
y=cos(3*t);
z=cos(t);
plot(t,x,'m*-.')
holdon
plot(t,y,'rs:')
plot(t,z,'kh--')
holdoff
legend('sin(t)','cos(3t)','cos(t)')
结果截图:
2.绘制墨西哥草帽: , 。
实验程序:clc;clear;
[x y]=meshgrid(-8:0.5:8);
r=sqrt(x.^2+y.^2)+eps;
结果截图:
相关文档
最新文档