数学建模实验答案数学规划模型二
数学建模实验报告
湖南城市学院数学与计算科学学院《数学建模》实验报告专业:学号:姓名:指导教师:成绩:年月日实验一 初等模型实验目的:掌握数学建模的基本步骤,会用初等数学知识分析和解决实际问题。
实验内容:A 、B 两题选作一题,撰写实验报告,包括问题分析、模型假设、模型构建、模型求解和结果分析与解释五个步骤。
A 题 飞机的降落曲线在研究飞机的自动着陆系统时,技术人员需要分析飞机的降落曲线。
根据经验,一架水平飞行的飞机,其降落曲线是一条S 形曲线。
如下图所示,已知飞机的飞行高度为h ,飞机的着陆点为原点O ,且在整个降落过程中,飞机的水平速度始终保持为常数u 。
出于安全考虑,飞机垂直加速度的最大绝对值不得超过g /10,此处g 是重力加速度。
(1)若飞机从0x x 处开始下降,试确定出飞机的降落曲线; (2)求开始下降点0x 所能允许的最小值。
B 题 铅球的投掷问题众所周知,铅球的投掷运动是运动员单手托住7.264kg(16磅)重的铅球在直径为2.135m 的投掷圆内将铅球掷出并且使铅球落入开角为45o 的有效扇形区域内。
以铅球的落地点与投掷圆间的距离度量铅球投掷的远度,并以铅球投掷远度的大小评定运动员的成绩。
在铅球的训练和比赛中,铅球投掷距离的远与近是人们最关心的问题。
而对于教练和运动员最为关心的问题是如何使铅球掷得最远。
影响铅球投掷远度的因素有哪些?建立一个数学模型,将预测的投掷距离表示为初始速度和出手角度的函数。
最优的出手角度是什么?如果在采用你所建议的出手角度时,该运动员不能使初始速度达到最大,那么他应该更关心出手角度还是出手速度?应该怎样折中?哪些是影响远度的主要因素?在平时训练中,应该更注意哪些方面的训练?试通过组建数学模型对上述问题进行分析,给教练和运动员以理论指导。
参考数据资料如下:实验报告:一、问题分析在研究飞机下落过程中,需要分析飞机下降的降落曲线,根据经验应该是一条五次多项式。
以降落点为原点O建立直角坐标系。
《数学建模实验》
《数学建模》上机作业信科05-3韩亚0511010305实验1 线性规划模型一、实验名称:线性规划模型—设备的最优配备问题。
二、实验目的:掌握线性规划模型的建模方法,并能用数值算法或MATLAB 库函数求解。
三、实验题目:某商店拟制定某种商品7—12月的进货、售货计划,已知商店仓库最大容量为1500件,6月底已存货300件,年底的库存以不少于300件为宜,以后每月初进货一次,假设各月份该商品买进、售出单价如下表。
四、实验要求:1、若每件每月的库存费用为0.5元,问各月进货、售货各为多少件,才能使净收益最多?建立数学模型。
2、利用相应的数值方法求解此问题的数学模型。
3、谈一谈你对这类线性规划问题的理解。
4、举一个简单的二维线性规划问题,并针对此问题将你所了解的线性规划的求解方法作出总结。
5、用软件lindo 或lingo 求解上述问题。
(选做题)6、编写单纯形算法的MATLAB 程序。
(选做题) 五、实验内容:解:设第i 个月进货xi 件,销售yi 件,则下半年总收益为销售收入减去进货费和仓库储存费之和,所以目标函数为:1211109871211109711109871211109875.232427252628252528262729)2345(5.0)2345)300(6(5.07x x x x x x y y y y y y y y y y y x x x x x x z y ------+++++++++++++++++-=整理后得:90024255.28275.2831255.25295.27295.31121110987121110987-------+++++=x x x x x x y y y y y y z由于仓库的容量为1500件,每个月的库存量大于0,小于1500,所以有如下约束条件150030001500300015003000150030001500300015003000111210119108978710119108978791089787897877877≤-+-+-+-+-++≤≤-+-+-+-++≤≤-+-+-++≤≤-+-++≤≤-++≤≤+≤y x y x y x y x y x x y x y x y x y x x y x y x y x x y x y x x y x x x又有年底库存量不少于300则:300300121112101191089787≥--+-+-+-+-++y y x y x y x y x y x x化为抽象的线性规划模型为:90024255.28275.2831255.25295.27295.31max 121110987121110987-------+++++=x x x x x x y y y y y y z ,;12,,8,7;0,0120030012003001200300120030012003001200300121112101191089787111210119108978710119108978791089787897877877 =≥≥--+-+-+-+-+≤-+-+-+-+-+≤-≤-+-+-+-+≤-≤-+-+-+≤-≤-+-+≤-≤-+≤-≤≤-i y x y y x y x y x y x y x x y x y x y x y x y x x y x y x y x y x x y x y x y x x y x y x x y x x x STi i线性规划目标函数的系数:f = [31; 28.5; 27; 28.5;25;24;-31.5;-29;-27.5;-29;-25.5;-25]; 约束方程的系数及右端项: A=[1,0,0,0,0,0,0,0,0,0,0,0 1,1,0,0,0,0,-1,0,0,0,0,0 1,1,1,0,0,0,-1,-1,0,0,0,0 1,1,1,1,0,0,-1,-1,-1,0,0,0 1,1,1,1,1,0,-1,-1,-1,-1,0,0 1,1,1,1,1,1,-1,-1,-1,-1,-1,0 -1,0,0,0,0,0,0,0,0,0,0,0 -1,-1,0,0,0,0,1,0,0,0,0,0 -1,-1,-1,0,0,0,1,1,0,0,0,0 -1,-1,-1,-1,0,0,1,1,1,0,0,0 -1,-1,-1,-1,-1,0,1,1,1,1,0,0 -1,-1,-1,-1,-1,-1,1,1,1,1,1,0 -1,-1,-1,-1,-1,-1,1,1,1,1,1,1];b=[1200;1200;1200;1200;1200;1200; 300; 300; 300; 300; 300; 300;0]; lb=zeros(12,1);[x,fval,exitflag,output,lambda] = linprog(f,A,b,[],[],lb);实验2 非线性规划模型一、实验名称:非线性规划模型。
数学建模实验报告
《数学建模实验》实验报告学院名称数学与信息学院专业名称提交日期课程教师实验一:数学规划模型AMPL求解实验内容1. 用AMPL求解下列问题并作灵敏度分析:一奶制品加工厂用牛奶生产A1和A2两种奶制品,1桶牛奶可以在甲类设备上用12小时加工成3公斤A1或者在乙类设备上用8小时加工成4公斤A2,且都能全部售出,且每公斤A1获利24元,每公斤A2获利16元。
先加工厂每天能得到50桶牛奶的供应,每天工人总的劳动时间为480小时,并且甲类设备每天至多加工100公斤A1,乙类设备的加工能力没有限制,试为该厂制定一个计划,使每天的获利最大。
(1)建立模型文件:milk.modset Products ordered;param Time{i in Products }>0;param Quan{i in Products}>0;param Profit{i in Products}>0;var x{i in Products}>=0;maximize profit: sum{i in Products} Profit [i]* Quan [i]*x[i];subject to raw: sum{i in Products}x[i] <=50;subject to time:sum{i in Products}Time[i]*x[i]<=480;subject to capacity: Quan[first(Products)]*x[first(Products)]<=100;(2)建立数据文件milk.datset Products:=A1 A2;param Time:=A1 12 A2 8;param Quan:=A1 3 A2 4;param Profit:=A1 24 A2 16;(3) 建立批处理文件milk.runmodel milk.mod;data milk.dat;option solver cplex;solve;display x;(4)运行运行结果:CPLEX 11.0.0: optimal solution; objective 33602 dual simplex iterations (1 in phase I)x [*] :=A1 20A2 30;(5)灵敏度分析:model milk.mod;data milk.dat;option solver cplex;option cplex_options 'sensitivity';solve;display x;display x.rc, x.down, x.up;display raw, time, capacity;display raw.down, raw.up,raw.current, raw.slack;得到结果:【灵敏度分析】: x.rc x.down x.up:=A1 -3.55271e-15 64 96A2 0 48 72;raw = 48time = 2capacity = 0raw.down = 43.3333raw.up = 60raw.current = 50raw.slack = 0某公司有6个建筑工地,位置坐标为(a i, b i)(单位:公里),水泥日用量d i (单位:吨)1) 现有j j j吨,制定每天的供应计划,即从A, B两料场分别向各工地运送多少吨水泥,使总的吨公里数最小。
数学建模作业及答案
数学建模作业姓名:叶勃学号:班级:024121一:层次分析法1、 分别用和法、根法、特征根法编程求判断矩阵1261/2141/61/41A ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦11/2433217551/41/711/21/31/31/52111/31/5311A ⎡⎤⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎣⎦的特征根和特征向量(1)冪法求该矩阵的特征根和特征向量 程序为:#include<iostream> #include<math.h> using namespace std;#define n 3 //三阶矩阵#define N 20 #define err 0.0001 //幂法求特征值特征向量 void main(){cout<<"**********幂法求矩阵最大特征值及特征向量***********"<<endl; int i,j,k;double A[n][n],X[n],u,y[n],max;cout<<"请输入矩阵:\n"; for(i=0;i<n;i++) for(j=0;j<n;j++)cin>>A[i][j]; //输入矩阵 cout<<"请输入初始向量:\n"; for(i=0;i<n;i++)cin>>X[i]; //输入初始向量 k=1; u=0;while(1){ max=X[0]; for(i=0;i<n;i++) {if(max<X[i]) max=X[i]; //选择最大值 }for(i=0;i<n;i++)y[i]=X[i]/max; for(i=0;i<n;i++)X[i]=0;for(j=0;j<n;j++)X[i]+=A[i][j]*y[j]; //矩阵相乘}if(fabs(max-u)<err){cout<<"A的特征值是 :"<<endl; cout<<max<<endl; cout<<"A的特征向量为:"<<endl; for(i=0;i<n;i++) cout<<X[i]/(X[0]+X[1]+X[2])<<" ";cout<<endl;break;}else{if(k<N) {k=k+1;u=max;} else {cout<<"运行错误\n";break;}}} }程序结果为:(2)和法求矩阵最大特征值及特征向量程序为:#include<stdio.h>#include<iostream>#include<math.h> using namespace std;#define n 3 //三阶矩阵#define N 20void main(){int i,j,k;double A[n][n],w[n],M[n],u[n],W[n][n],max;cout<<"********和法求矩阵的特征根及特征向量*******"<<endl;cout<<"请输入矩阵:\n";for(i=0;i<n;i++)for(j=0;j<n;j++)cin>>A[i][j]; //输入矩阵 //计算每一列的元素和M[0]=0;M[1]=0;M[2]=0;for(i=0;i<n;i++)for(j=0;j<n;j++){M[i]+=A[j][i];}//将每一列向量归一化for(i=0;i<n;i++)for(j=0;j<n;j++){W[j][i]=A[j][i]/M[i];}//输出按列归一化之后的矩阵Wcout<<"按列归一化后的矩阵为:"<<endl;for(i=0;i<n;i++)for(j=0;j<n;j++){cout<<W[i][j]<<" ";if(j==2)cout<<endl;} //求特征向量w[0]=0;w[1]=0;w[2]=0;for(i=0;i<n;i++)for(j=0;j<n;j++){w[i]+=W[i][j];}cout<<"特征向量为:"<<endl; for(i=0;i<n;i++){u[i]=w[i]/(w[0]+w[1]+w[2]);cout<<u[i]<<" "<<endl;}//求最大特征值max=0;for(i=0;i<n;i++){w[i] = 0;for(j=0;j<n;j++){w[i] += A[i][j]*u[j];}}for(i = 0;i < n;i++){max += w[i]/u[i];}cout<<"最大特征根为:"<<endl;cout<<max/n<<endl; }运行结果为:(3)根法求矩阵最大特征值及特征向量:程序为:#include<stdio.h>#include<iostream>#include<math.h>using namespace std;#define n 3 //三阶矩阵#define N 20void main(){int i,j;double A[n][n],w[n],M[n],u[n],W[n][n],max;cout<<"********根法求矩阵的特征根及特征向量*******"<<endl; cout<<"请输入矩阵:\n";for(i=0;i<n;i++)for(j=0;j<n;j++)cin>>A[i][j]; //输入矩阵//计算每一列的元素和M[0]=0;M[1]=0;M[2]=0;for(i=0;i<n;i++)for(j=0;j<n;j++){M[i]+=A[j][i];}//将每一列向量归一化for(i=0;i<n;i++)for(j=0;j<n;j++){W[j][i]=A[j][i]/M[i];}//输出按列归一化之后的矩阵Wcout<<"按列归一化后的矩阵为:"<<endl;for(i=0;i<n;i++)for(j=0;j<n;j++){cout<<W[i][j]<<" ";if(j==2)cout<<endl;}//求特征向量//w[0]=A[0][0];w[1]=A[0][1];w[2]=A[0][2];w[0]=1;w[1]=1;w[2]=1;for(i=0;i<n;i++){for(j=0;j<n;j++){w[i]=w[i]*W[i][j];}w[i]=pow(w[i], 1.0/3);}cout<<"特征向量为:"<<endl;for(i=0;i<n;i++){u[i]=w[i]/(w[0]+w[1]+w[2]);cout<<u[i]<<" "<<endl;}//求最大特征值max=0;for(i=0;i<n;i++){w[i] = 0;for(j=0;j<n;j++){w[i] += A[i][j]*u[j];}}for(i = 0;i < n;i++){max += w[i]/u[i];}cout<<"最大特征值为:"<<endl; cout<<max/n;}运行结果为:2、编程验证n阶随机性一致性指标RI:运行结果:3、考虑景色、费用、居住、饮食、旅途五项准则,从桂林、黄山、北戴河三个旅游景点选择最佳的旅游地。
数学建模实验报告2
糖果问题题目:某糖果厂用原料A,B,C,加工成三种不同牌号的糖果甲,乙,丙。
已知各种糖果中A,B,C的含量、原料成本、各种原料的每月限制用量、三种牌号的单位加工费及销售如下表所示。
甲 乙 丙 原料成本/元kg 每月限制用量/kg A 》60% 》15% 2 2000 B 1.5 2500 C《20% 《60% 《50% 1 1200 加工费/元kg 0.5 0.4 0.3 售价3.42.852.25问该厂每月生产这三种牌号的糖果各多少千克,使该厂获利最大?是建立这个问题的先行规划模型。
问题分析:由于甲、乙、丙三种糖果中A,B,C 的含量是未知的,我们若只设生产三种牌号的糖果各x, y, z 千克,要解决问题还要设出A,B,C 三种原料在他们当中所占的百分比,如此下来,在建立线性规划模型列方程时,方程中会出现二次式,很不利于我们解决问题。
为此,我们就想怎么设变量才能把各个变量都统一起来,并且使方程都是线性的。
经过思考之后,我们可以假设每个品牌的糖果当中只含A,B,C 三种原料,设甲中A,B,C 的含量分别为x1,x2,x3 ,乙中A,B,C 的含量分别为y1,y2,y3 , 丙中A,B,C 的含量分别z1,z2,z3 ,那么由假设我们知道x=x1+x2+x3 ,y=y1+y2+y3 ,z=z1+z2+z3 ,在由表中的各个约束条件我们可列出如下方程:甲: 乙: 丙:60%20%aa b c ca b cX X X X X X X X ≥++≤++ 15%60%aa b cc a b c Y Y Y Y Y Y Y Y ≥++≤++ 50%a a b c Z Z Z Z ≤++有每月限制用量:200025001200a b c a b c a b c X X X Y Y Y Z Z Z ++≤++≤++≤利润函数:()()(,,)()(3.40.5)()(2.850.4)()(2.250.3)2.00,1.50,1.00,,,,13.40.5,2.250.4,2.250.3,,11,,a b c a b c a a c a a a b b b c c c Ta a a a ab b bc c c f X Y Z X X X Y Y Y Z Z Z X Y Z X Y Z X Y Z X Y Z X YX Y Z X Y Z =++-+++-+++--++⎛⎫ ⎪++ ⎪ ⎪++⎝⎭⎛⎫⎛⎫ ⎪ ⎪=---- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭()()()1,,1 2.00,1.50,1.001,,,,,,3.40.511,1,1,, 2.250.4,,1 2.00,1.50,1.002.250.31,,,,a b b b c c c a a a a a a b b b b b b c c c c c c Z X Y Z X Y Z X Y Z X Y Z X Y Z X Y Z X Y Z X Y Z ⎛⎫⎛⎫ ⎪ ⎪⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭-⎛⎫⎛⎫⎛⎫⎛⎫ ⎪⎪ ⎪ ⎪=-- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎪ ⎪-⎝⎭⎝⎭⎝⎭⎝⎭程序源代码:clear; x=[];A=[-0.4,0.6,0.6,0,0,0,0,0,0 -0.2,-0.2,0.8,0,0,0,0,0,0 0,0,0,-0.85,0.15,0.15,0,0,0 0,0,0,-0.6,-0.6,0.4,0,0,0 0,0,0,0,0,0,-0.5,-0.5,0.5 1,0,0,1,0,0,1,0,00,1,0,0,1,0,0,1,00,0,1,0,0,1,0,0,1];B=[0;0;0;0;0;2000;2500;1200];C=[0.9,1.4,1.9,0.45,0.95,1.45,-0.05,0.45,0.95];xl=[0;0;0;0;0;0;0;0;0];xu=[2000;2500;1200;2000;2500;1200;2000;2500;1200];x=linprog(-C,A,B,A,B,xl,xu);x运行结果:x =1.0e+003 *2.00050.66680.66680.00020.00010.00000.00010.53400.5336问题结果有上述分析,通过matlab命令,我们求得最优解为甲乙丙使用总量A 2000.5 0.2 0.1 2000.8B 666.8 0.1 534 1200.9C 666.8 0 533.6 1200.4此时的利润为4748.5元。
数学建模第三版习题答案
数学建模第三版习题答案数学建模是一门应用数学的学科,通过建立数学模型来解决实际问题。
《数学建模第三版》是一本经典的教材,其中的习题对于学生来说是非常重要的练习材料。
在这篇文章中,我将为大家提供《数学建模第三版》习题的答案,希望能够帮助大家更好地理解和应用数学建模的知识。
第一章:数学建模的基础知识1. 数学建模的定义:数学建模是指将实际问题转化为数学问题,并通过建立数学模型来解决问题的过程。
2. 数学建模的基本步骤:问题的分析与理解、建立数学模型、求解数学模型、模型的验证与应用。
3. 数学建模的分类:确定性建模和随机建模。
4. 数学建模的特点:抽象性、理想化、简化性和应用性。
第二章:线性规划模型1. 线性规划模型的基本形式:目标函数和约束条件都是线性的。
2. 线性规划模型的求解方法:图形法、单纯形法和对偶理论。
3. 线性规划模型的应用:生产计划、资源分配、运输问题等。
第三章:整数规划模型1. 整数规划模型的基本形式:目标函数是线性的,约束条件中包含整数变量。
2. 整数规划模型的求解方法:分枝定界法、割平面法、动态规划法等。
3. 整数规划模型的应用:项目选择、装配线平衡问题、旅行商问题等。
第四章:动态规划模型1. 动态规划模型的基本思想:将一个大问题分解为若干个子问题,通过求解子问题的最优解来求解整个问题的最优解。
2. 动态规划模型的求解方法:递推法、备忘录法和自底向上法。
3. 动态规划模型的应用:背包问题、最短路径问题、最长公共子序列问题等。
第五章:非线性规划模型1. 非线性规划模型的基本形式:目标函数和约束条件中包含非线性函数。
2. 非线性规划模型的求解方法:牛顿法、拟牛顿法、全局优化法等。
3. 非线性规划模型的应用:经济增长模型、生态系统模型、医学诊断模型等。
第六章:图论模型1. 图论模型的基本概念:顶点、边、路径、回路等。
2. 图论模型的求解方法:深度优先搜索、广度优先搜索、最短路径算法等。
数学建模报告数学规划求解模型过程
2012——20 13 学年第二学期合肥学院数理系实验报告 课程名称:数学模型实验项目: 数学规划模型求解过程实验类别:综合性□设计性□验证性□专业班级:10级数学与应用数学(1)班姓名: 汪勤学号:1007021004实验地点:35#611 实验时间:2013年4月25日指导教师: 闫老师成绩:一.实验目的:了解线性规划的基本内容及求解的基本方法,学习MATLAB,LINDO,LI NGO求解线性规划命令,掌握用数学软件包求解线性规划问题;了解非线性规划的基本内容,掌握数学软件包求解非线性规划问题。
二。
实验内容:1、加工奶制品的生产计划问题一奶制品加工厂用牛奶生产A1、A2两种奶制品,1桶牛奶可以在设备甲上用12小时加工成3公斤A1,或者在设备乙上用8小时加工成4公斤A2。
根据市场需求,生产的A1、A2能全部售出,且每公斤A1获利24元每公斤A2获利16元。
现在加工厂每天能得到50桶牛奶的供应,每天正式工人总的劳动时间为480小时,并且设备甲每天至多能加工100公斤A1,设备乙的加工能力没有限制。
试为该厂制定一个生产计划,使每天获利最大,并进一步讨论以下3个附加问题:(1)若用35元可以购买到1桶牛奶,应否作这项投资?若投资,每天最多购买多少桶牛奶?(2)若可以聘用临时工人以增加劳动时间,付给临时工人的工资最多是每小时几元?(3)由于市场需求变化,每公斤A1的获利增加到30元,应否改变生产计划?2、奶制品的生产销售计划问题第1题给出的A1,A2两种奶制品的生产条件、利润及工厂的“资源"限制全都不变。
为增加工厂的获利,开发了奶制品的深加工技术:用2小时和3元加工费,可将1千克A1加工成0.8千克高级奶制品B1,也可将1千克A2加工成0.75千克高级奶制品B2,每千克B1能获利44元,每千克B2能获利32元。
试为该厂制订一个生产销售计划,使每天的净利润最大,并讨论以下问题:(1)若投资30元可以增加供应1桶牛奶,投资3元可以增加1小时劳动时间,应否作这些投资?若每天投资150元可赚回多少?(2)每公斤高级奶制品B1,B2的获利经常有10%的波动,对制订的生产销售计划有无影响?若每公斤B1的获利下降10%,计划应该变化吗?(3)若公司已经签订了每天销售10千克 A1的合同并且必须满足,该合同对公司的利润有什么影响?3、货机装运某架货机有三个货舱:前仓、中仓、后仓。
数学建模习题及答案课后习题
第一部分课后习题1.学校共1000名学生,235人住在A宿舍,333人住在B宿舍,432人住在C宿舍。
学生们要组织一个10人的委员会,试用下列办法分配各宿舍的委员数:(1)按比例分配取整数的名额后,剩下的名额按惯例分给小数部分较大者。
(2)节中的Q值方法。
(3)d’Hondt方法:将A,B,C各宿舍的人数用正整数n=1,2,3,…相除,其商数如下表:将所得商数从大到小取前10个(10为席位数),在数字下标以横线,表中A,B,C行有横线的数分别为2,3,5,这就是3个宿舍分配的席位。
你能解释这种方法的道理吗。
如果委员会从10人增至15人,用以上3种方法再分配名额。
将3种方法两次分配的结果列表比较。
(4)你能提出其他的方法吗。
用你的方法分配上面的名额。
2.在超市购物时你注意到大包装商品比小包装商品便宜这种现象了吗。
比如洁银牙膏50g装的每支元,120g装的元,二者单位重量的价格比是:1。
试用比例方法构造模型解释这个现象。
(1)分析商品价格C与商品重量w的关系。
价格由生产成本、包装成本和其他成本等决定,这些成本中有的与重量w成正比,有的与表面积成正比,还有与w无关的因素。
(2)给出单位重量价格c与w的关系,画出它的简图,说明w越大c越小,但是随着w的增加c减少的程度变小。
解释实际意义是什么。
3.一垂钓俱乐部鼓励垂钓者将调上的鱼放生,打算按照放生的鱼的重量给予奖励,俱乐部只准备了一把软尺用于测量,请你设计按照测量的长度估计鱼的重量的方法。
假定鱼池中只有一种鲈鱼,并且得到8条鱼的如下数据(胸围指鱼身的最大周长):先用机理分析建立模型,再用数据确定参数4.用宽w的布条缠绕直径d的圆形管道,要求布条不重叠,问布条与管道轴线的夹角 应多大(如图)。
若知道管道长度,需用多长布条(可考虑两端的影响)。
如果管道是其他形状呢。
5.用已知尺寸的矩形板材加工半径一定的圆盘,给出几种简便、有效的排列方法,使加工出尽可能多的圆盘。
数学建模例题和答案
数学建模例题和答案
题目:
一个汽车公司拥有两个工厂,分别生产两种型号的汽车,A型和B型,每种型号的汽车都有一定的销售价格。
现在,该公司需要在两个工厂中生产A型和B型汽车,使得总收入最大。
答案:
1、建立数学模型
设A型汽车在第一个工厂生产的数量为x,在第二个工厂生产的数量为y,A型汽车的销售价格为a,B型汽车的销售价格为b,则该公司的总收入可以表示为:
总收入=ax+by
2、确定目标函数
由于题目要求使得总收入最大,因此可以将总收入作为目标函数,即:
最大化Z=ax+by
3、确定约束条件
由于两个工厂的生产能力有限,因此可以设置约束条件:
x+y≤M,其中M为两个工厂的总生产能力
4、求解
将上述模型转化为标准的数学规划模型:
最大化Z=ax+by
s.t. x+y≤M
x≥0,y≥0
由于该模型是一个线性规划模型,可以使用数学软件进行求解,得到最优解:
x=M,y=0
即在第一个工厂生产M件A型汽车,在第二个工厂不生产B型汽车,此时该公司的总收入最大,为Ma。
数学建模作业及答案
数学建模作业姓名:叶勃学号:班级:024121一:层次分析法1、 分别用和法、根法、特征根法编程求判断矩阵1261/2141/61/41A ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦11/2433217551/41/711/21/31/31/52111/31/5311A ⎡⎤⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎣⎦的特征根和特征向量(1)冪法求该矩阵的特征根和特征向量 程序为:#include<iostream> #include<math.h> using namespace std;#define n 3 //三阶矩阵#define N 20 #define err 0.0001 //幂法求特征值特征向量 void main(){cout<<"**********幂法求矩阵最大特征值及特征向量***********"<<endl; int i,j,k;double A[n][n],X[n],u,y[n],max;cout<<"请输入矩阵:\n"; for(i=0;i<n;i++) for(j=0;j<n;j++)cin>>A[i][j]; //输入矩阵 cout<<"请输入初始向量:\n"; for(i=0;i<n;i++)cin>>X[i]; //输入初始向量 k=1; u=0;while(1){ max=X[0]; for(i=0;i<n;i++) {if(max<X[i]) max=X[i]; //选择最大值 }for(i=0;i<n;i++)y[i]=X[i]/max; for(i=0;i<n;i++)X[i]=0;for(j=0;j<n;j++)X[i]+=A[i][j]*y[j]; //矩阵相乘}if(fabs(max-u)<err){cout<<"A的特征值是 :"<<endl; cout<<max<<endl; cout<<"A的特征向量为:"<<endl; for(i=0;i<n;i++) cout<<X[i]/(X[0]+X[1]+X[2])<<" ";cout<<endl;break;}else{if(k<N) {k=k+1;u=max;} else {cout<<"运行错误\n";break;}}} }程序结果为:(2)和法求矩阵最大特征值及特征向量程序为:#include<stdio.h>#include<iostream>#include<math.h> using namespace std;#define n 3 //三阶矩阵#define N 20void main(){int i,j,k;double A[n][n],w[n],M[n],u[n],W[n][n],max;cout<<"********和法求矩阵的特征根及特征向量*******"<<endl;cout<<"请输入矩阵:\n";for(i=0;i<n;i++)for(j=0;j<n;j++)cin>>A[i][j]; //输入矩阵 //计算每一列的元素和M[0]=0;M[1]=0;M[2]=0;for(i=0;i<n;i++)for(j=0;j<n;j++){M[i]+=A[j][i];}//将每一列向量归一化for(i=0;i<n;i++)for(j=0;j<n;j++){W[j][i]=A[j][i]/M[i];}//输出按列归一化之后的矩阵Wcout<<"按列归一化后的矩阵为:"<<endl;for(i=0;i<n;i++)for(j=0;j<n;j++){cout<<W[i][j]<<" ";if(j==2)cout<<endl;} //求特征向量w[0]=0;w[1]=0;w[2]=0;for(i=0;i<n;i++)for(j=0;j<n;j++){w[i]+=W[i][j];}cout<<"特征向量为:"<<endl; for(i=0;i<n;i++){u[i]=w[i]/(w[0]+w[1]+w[2]);cout<<u[i]<<" "<<endl;}//求最大特征值max=0;for(i=0;i<n;i++){w[i] = 0;for(j=0;j<n;j++){w[i] += A[i][j]*u[j];}}for(i = 0;i < n;i++){max += w[i]/u[i];}cout<<"最大特征根为:"<<endl;cout<<max/n<<endl; }运行结果为:(3)根法求矩阵最大特征值及特征向量:程序为:#include<stdio.h>#include<iostream>#include<math.h>using namespace std;#define n 3 //三阶矩阵#define N 20void main(){int i,j;double A[n][n],w[n],M[n],u[n],W[n][n],max;cout<<"********根法求矩阵的特征根及特征向量*******"<<endl; cout<<"请输入矩阵:\n";for(i=0;i<n;i++)for(j=0;j<n;j++)cin>>A[i][j]; //输入矩阵//计算每一列的元素和M[0]=0;M[1]=0;M[2]=0;for(i=0;i<n;i++)for(j=0;j<n;j++){M[i]+=A[j][i];}//将每一列向量归一化for(i=0;i<n;i++)for(j=0;j<n;j++){W[j][i]=A[j][i]/M[i];}//输出按列归一化之后的矩阵Wcout<<"按列归一化后的矩阵为:"<<endl;for(i=0;i<n;i++)for(j=0;j<n;j++){cout<<W[i][j]<<" ";if(j==2)cout<<endl;}//求特征向量//w[0]=A[0][0];w[1]=A[0][1];w[2]=A[0][2];w[0]=1;w[1]=1;w[2]=1;for(i=0;i<n;i++){for(j=0;j<n;j++){w[i]=w[i]*W[i][j];}w[i]=pow(w[i], 1.0/3);}cout<<"特征向量为:"<<endl;for(i=0;i<n;i++){u[i]=w[i]/(w[0]+w[1]+w[2]);cout<<u[i]<<" "<<endl;}//求最大特征值max=0;for(i=0;i<n;i++){w[i] = 0;for(j=0;j<n;j++){w[i] += A[i][j]*u[j];}}for(i = 0;i < n;i++){max += w[i]/u[i];}cout<<"最大特征值为:"<<endl; cout<<max/n;}运行结果为:2、编程验证n阶随机性一致性指标RI:运行结果:3、考虑景色、费用、居住、饮食、旅途五项准则,从桂林、黄山、北戴河三个旅游景点选择最佳的旅游地。
大学生数学建模:作业-线性规划的实验
实验课题:(一)线性规划问题1.用lingo求解下列线性规划问题:2. 某班男同学30人、女同学20人,植树。
工作效率(个/人、天)如下表。
如何安排,植树最多?3.某牧场饲养一批动物,平均每头动物至少需要 700g 蛋白质、30g 矿物质和100g 维生素。
现有A、B、C、D、E五种饲料可供选用,每千克饲料的营养成分(单位:g)与价格(单位:元/kg)如下表所示:试求能满足动物生长营养需求又最经济的选用饲料方案。
4.在以色列,为分享农业技术服务和协调农业生产,常常由几个农庄组成一个公共农业社区。
在本课题中的这个公共农业社区由三个农庄组成,我们称之为南方农庄联盟。
南方农庄联盟的全部种植计划都由技术协调办公室制订。
当前,该办公室正在制订来年的农业生产计划。
南方农庄联盟的农业收成受到两种资源的制约。
一是可灌溉土地的面积,二是灌溉用水量。
这些数据由下表给出。
注:英亩-英尺是水容积单位,1英亩-英尺就是面积为1英亩,深度为1英尺的体积;1英亩-英尺≈1233.48立方米。
南方农庄联盟种植的作物是甜菜、棉花和高粱,这三种作物的纯利润及耗水量不同。
农业管理部门根据本地区资源的具体情况,对本联盟农田种植规划制定的最高限额数据由下表给出。
三家农庄达成协议:各家农庄的播种面积与其可灌溉耕地面积之比相等;各家农庄种植何种作物并无限制。
所以,技术协调办公室面对的任务是:根据现有的条件,制定适当的种植计划帮助南方农庄联盟获得最大的总利润,现请你替技术协调办公室完成这一决策。
对于技术协调办公室的上述安排,你觉得有何缺陷,请提出建议并制定新的种植计划。
5.有一艘货轮,分前、中、后三个舱位,它们的容积与最大允许载重量如下表所示:前舱中舱后舱最大允许载重量(t)2000 3000 1000容积(m3)4000 5400 1000现有三种货物待运,已知有关数据如下表所示:商品数量(件)每件体积(m3/件)每件重量(t/件)运价(元/件)A 600 10 8 1000B 1000 5 6 700C 800 7 5 600又为了航运安全,要求前、中、后舱在实际载重量上大体保持各舱最大允许载重量的比例关系。
数学建模数学规划
数模第二阶段培训(数学规划)例1 油品混合问题一种汽油的特性可用两个指标来描述,其点火性用“辛烷比率”来描述,其挥发性用“蒸汽压”来描述。
某石油炼制厂生产两种汽油,这两种汽油的特性及产量如表1所示表1 某厂炼制的汽油特性辛烷比率蒸汽压(10-2克/cm2)可供数量(万公升)第一种汽油104 4 3第二种汽油94 9 7用这两种汽油可以合成航空汽油与车用汽油两种最终产品,其性能如表2所示表2 航空汽油与车用汽油性能要求辛烷最小比率最大蒸汽压(10-2克/cm2)最大需要量(万公升)售价(万元/万公升)航空汽油102 5 2 1.2车用汽油96 8 不限0.7 根据油品混合工艺知道,当两种汽油混合时,其产品汽油的蒸汽压及辛烷比率与其组成成分的体积及相应指标成正比。
问该厂应如何混合油品才能获得最大收益?例2企业季度生产计划问题某厂甲、乙两种产品,第一季度的最大需求量及单位产品利润和每月的库存成本如表1所示。
表1 产品需求量、利润及库存成本需求量利润(未计库存成本)(元/单位产品)每月库存成本(元/单位产品)一月二月三月甲产品250 540 700 3.0 0.2 乙产品180 150 700 4.5 0.3 生产这两种产品都必须经过由两道工序,分别使用A、B两类机器。
A类机器有4台,B类机器有5台,每台机器每月运转180工时。
生产单位甲产品需机器A0.9工时,机器B1.0工时;生产单位乙产品需机器A0.5工时,机器B0.75工时。
该厂仓库容量为100平方米,存贮每单位甲产品需占面积0.75平方米,每单位乙产品需占面积1.2平方米。
该季度开始时无库存量,计划在本季度结束时甲、乙两种产品各库存40单位。
分别求解以下两个问题:(1)假定一月和二月A、B两类机器各有一台检修,三月份有一台A类机器和两台B 类机器检修,A类机器检修需100工时,B类机器检修需150工时。
该厂应如何安排生产计划,才能使本季度获利最大?(2)规定A、B类机器在本季度内需检修的总台数同(1),确定合理的检修计划,使该厂在本季度获利最大?例3投资问题某银行经理计划用一笔资金进行有价证券的投资,可供购进的证券及其信用等级、到期年限、收益如附表所示。
数学建模课程及答案
《数学建模课程》练习题一一、填空题一、填空题1.1. 设开始时的人口数为0x ,时刻t 的人口数为)(t x ,若人口增长率是常数r ,那麽人口增长问题的马尔萨斯模型应为长问题的马尔萨斯模型应为 。
2.2. 设某种商品的需求量函数是,1200)(25)(+-=t p t Q 而供给量函数是3600)1(35)(--=t p t G ,其中)(t p 为该商品的价格函数,那麽该商品的均衡价格是 。
3. 3. 某服装店经营的某种服装平均每天卖出某服装店经营的某种服装平均每天卖出110件,进货一次的手续费为200元,存储费用为每件0.01元/天,店主不希望出现缺货现象,则最优进货周期与最优进货量分别为 。
4. 4. 一个连通图能够一笔画出的充分必要条件是一个连通图能够一笔画出的充分必要条件是一个连通图能够一笔画出的充分必要条件是 .5.5.设开始时的人口数为设开始时的人口数为0x ,时刻t 的人口数为)(t x ,若允许的最大人口数为m x ,人口增长率由sx r x r -=)(表示,则人口增长问题的罗捷斯蒂克模型为表示,则人口增长问题的罗捷斯蒂克模型为 . 6. 在夏季博览会上,商人预测每天冰淇淋销量N 将和下列因素有关:将和下列因素有关:(1)参加展览会的人数n ; (2)气温T 超过C10; (3)冰淇淋的售价p .由此建立的冰淇淋销量的比例模型应为由此建立的冰淇淋销量的比例模型应为 . 7、若银行的年利率是x %,则需要则需要 时间,存入的钱才可翻番存入的钱才可翻番.. 若每个小长方形街路的路的8. . 如图是一个邮路,邮递员从邮局如图是一个邮路,邮递员从邮局A 出发走遍所有长方形街路后再返回邮局出发走遍所有长方形街路后再返回邮局.. 边长横向均为1km ,纵向均为2km ,则他至少要走,则他至少要走 km.. A9. 设某种新产品的社会需求量为无限,开始时的生产量为100件,且设产品生产的增长率控制在0.1,t 时刻产品量为)(t x ,则)(t x = . 10. 商店以10元/件的进价购进衬衫,若衬衫的需求量模型是802,Q p p =-是销售单价(元(元//件),为获得最大利润,商店的出售价是,为获得最大利润,商店的出售价是 . 二、分析判断题二、分析判断题1.从下面不太明确的叙述中确定要研究的问题,需要哪些数据资料.从下面不太明确的叙述中确定要研究的问题,需要哪些数据资料(至少列举(至少列举3个),要做些甚麽建模的具体的前期工作(至少列举3个)个) ,建立何种数学模型:一座高层办公楼有四部电梯,早晨上班时间非常拥挤,该如何解决。
数学建模作业数学规划模型----供应与选址的问题
再编写主程序liaochang2.m为:
clear
x0=[3 5 4 7 1 0 0 0 0 0 5 11 5 4 7 7];
A=[1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 1 1 1 1 1 0 0 0 0];
B=[20;20];
Aeq=[1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0];
使用临时料场的情形:
使用两个临时料场A(5,1),B(2,7).求从料场j向工地 的运送量 .在各工地用量必须满足和各料场运送量不超过日储量的条件下,使总的吨千米数最小,这是线性规划问题。线性规划模型为:
其中 ,i=1,2,…,6,j=1,2,为常数
设X11=X1,X21=X 2,,X31=X 3,X41=X 4,X51=X 5,,X61=X 6
程序截图如下:
程序的运行结果为:
xx =
3.0000
5.0000
0.0000
7.0000
0.0000
1.0000
0.0000
0.0000
4.0000
0.0000
6.0000
10.0000
fval =
136.2275
运行结果截图如下:
即由料场A、B向6个工地运料方案为:
数学建模报告数学规划求解模型过程
20 12 ——20 13 学年第二学期合肥学院数理系实验报告 课程名称:数学模型实验项目:数学规划模型求解过程实验类别:综合性□设计性□验证性□专业班级: 10级数学与应用数学(1)班姓名:汪勤学号:1007021004 实验地点: 35#611 实验时间: 2013年4月25日指导教师:闫老师成绩:一.实验目的:了解线性规划的基本内容及求解的基本方法,学习MATLAB,LINDO,LINGO求解线性规划命令,掌握用数学软件包求解线性规划问题;了解非线性规划的基本内容,掌握数学软件包求解非线性规划问题。
二.实验内容:1、加工奶制品的生产计划问题一奶制品加工厂用牛奶生产A1、A2两种奶制品,1桶牛奶可以在设备甲上用12小时加工成3公斤A1,或者在设备乙上用8小时加工成4公斤A2。
根据市场需求,生产的A1、A2能全部售出,且每公斤A1获利24元 每公斤A2获利16元。
现在加工厂每天能得到50桶牛奶的供应,每天正式工人总的劳动时间为480小时,并且设备甲每天至多能加工100公斤A1,设备乙的加工能力没有限制。
试为该厂制定一个生产计划,使每天获利最大,并进一步讨论以下3个附加问题:(1)若用35元可以购买到1桶牛奶,应否作这项投资?若投资,每天最多购买多少桶牛奶?(2)若可以聘用临时工人以增加劳动时间,付给临时工人的工资最多是每小时几元?(3)由于市场需求变化,每公斤A1的获利增加到30元,应否改变生产计划?2、奶制品的生产销售计划问题第1题给出的A1,A2两种奶制品的生产条件、利润及工厂的“资源”限制全都不变。
为增加工厂的获利,开发了奶制品的深加工技术:用2小时和3元加工费,可将1千克A1加工成0.8千克高级奶制品B1,也可将1千克A2加工成0.75千克高级奶制品B2,每千克B1能获利44元,每千克B2能获利32元。
试为该厂制订一个生产销售计划,使每天的净利润最大,并讨论以下问题:(1)若投资30元可以增加供应1桶牛奶,投资3元可以增加1小时劳动时间,应否作这些投资?若每天投资150元 可赚回多少?(2)每公斤高级奶制品B1,B2的获利经常有10%的波动,对制订的生产销售计划有无影响?若每公斤B1的获利下降10%,计划应该变化吗?(3)若公司已经签订了每天销售10千克 A1的合同并且必须满足,该合同对公司的利润有什么影响?3、货机装运某架货机有三个货舱:前仓、中仓、后仓。
数学建模——规划模型
假设:料 场和工地 之间有直 线道路
1)现有 2 料场,位于 A (5, 1), B (2, 7),记为 (xj,yj),j=1,2, 日储量 ej 各有 20 吨。
i 1 i
n
i
a ik x k bi , i 1, 2 ,..., n. s.t . k 1 x 0 , i 1, 2 ,..., n. i
(3)二次规划问题
目标函数为二次函数,约束条件为线性约束
1 n min u f ( x ) ci xi bij xi x j 2 i , j 1 i 1 n a ij x j bi , i 1, 2,..., n. s.t . j 1 x 0 .i 1, 2,..., n. i
改写为: S.t.
min z 13 9 10 11 12 8X
0 0 800 0.4 1.1 1 0 X 0 0 0 0 . 5 1 . 2 1 . 3 900
x1 x2 x 3 ,X 0 x4 x 5 x 6
编写M文件xxgh4.m如下: c = [40 36]; A=[-5 -3]; b=[-45]; Aeq=[]; beq=[]; vlb = zeros(2,1); vub=[9;15]; %调用linprog函数: [x,fval] = linprog(c,A,b,Aeq,beq,vlb,vub)
(一)规划模型的数学描述
u f ( x)
工程数学建模试验2
(1)将问题建立成一个线性规划模型,确定最优的生产方案。(2)对于操作1,假定超过它当前每天430分钟能力的任何附加时间必须依靠每小时50美元的加班获得。每小时成本包括劳动力和机器运行费两个方面。对于操作1,使用加班在经济上有利吗?如果有利,最多增加多少时间?
(3)假定操作2的操作员已同意每天加班工作2小时,其加班费是45美元一小时。还有,操作自身的成本是一小时10美元。这项活动对于每天收入的实际结果是什么?(4)操作3需要加班时间吗
运行结果为:
由运行结果可知,选x1、x2、x3、x5、x7、x9。即微积分,线性代数,最优化方法,应用统计,计算机编程,数学实验。
题目
某公司拿出15百万美元,最多建造7个发射台来覆盖15个相邻社区中尽可能多的人口。表2.7给出了各个社区的人口数目,表2.8给出了每个发射台可以覆盖的社区及建造这个发射台的费用,确定出哪几个发射台需要建造?
Y4+Y5>=X6;
Y3+Y5+Y6>=X7;
Y4>=X8;
Y3+Y4+Y5>=X9;
Y3+Y6>=X10;
Y5>=X11;
Y6+Y7>=X12;
Y7>=X13;
Y6+Y7>=X14;
Y7>=X15;
Xi,Yj为整数。
目标函数最大值即为最优解。
LINGO程序:
运行结果
由运行结果可知:
需要建造的发射台为2,4,5,6,7,只有1社区无法覆盖,覆盖最多人口为129千人。
解答:
设i为饲料类型,i=1为颗粒饲料,i=2为粉状饲料。J为营养成分,j=1为蛋白质,j=2为脂肪,j=3为纤维素。
数学建模实验答案__数学规划模型二.
实验05 数学规划模型㈡(2学时)(第4章数学规划模型)1.(求解)汽车厂生产计划(LP,整数规划IP)p101~102(1) (LP)在模型窗口中输入以下线性规划模型max z = 2x1 + 3x2 + 4x3s.t. 1.5x1 + 3x2 + 5x3≤ 600280x1 + 250x2 + 400x3≤ 60000x1, x2, x3≥ 0并求解模型。
★(1) 给出输入模型和求解结果(见[101]):(2) (IP)在模型窗口中输入以下整数规划模型max z = 2x1 + 3x2 + 4x3s.t. 1.5x1 + 3x2 + 5x3≤ 600280x1 + 250x2 + 400x3≤ 60000x1, x2, x3均为非负整数并求解模型。
LINGO函数@gin见提示。
★(2) 给出输入模型和求解结果(见[102]模型、结果):2.(求解)原油采购与加工(非线性规划NLP ,LP 且IP )p104~107模型:已知 ⎪⎩⎪⎨⎧≤≤+≤≤+≤≤=)15001000(63000)1000500(81000)5000(10)(x x x x x xx c注:当500 ≤ x ≤ 1000时,c (x ) = 10 × 500 + 8( x – 500 ) = (10 – 8 ) × 500 + 8x112112221112212211112112122211122122max 4.8() 5.6()()500100015000.50.6,,,,0z x x x x c x x x x x x x x x x x x x x x x x x =+++-+≤++≤≤≥+≥+≥2.1解法1(NLP )p104~106将模型变换为以下的非线性规划模型:1121122212311122122111121121222123122312311122122max4.8()5.6()(1086)50010000.50.6(500)0(500)00,,500,,,,0z x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x =+++-+++≤++≤≥+≥+=++-=-=≤≤≥LINGO 软件设置:局部最优解,全局最优解,见提示。
数学建模实验答案 数学规划模型二
数学建模实验答案数学规划模型二实验05 数学规划模型㈡(2学时)(第4章数学规划模型)1.(求解)汽车厂生产计划(LP,整数规划IP)p101_102(1) (LP)在模型窗口中输入以下线性规划模型ma_ z = 2_1 + 3_2 + 4_3 s.t. 1.5_1 + 3_2 + 5_3 ≤ 600280_1 + 250_2 + 400_3 ≤ 60000_1, _2, _3 ≥ 0并求解模型。
(1) 给出输入模型和求解结果(见[101]):model: TITLE汽车厂生产计划(LP); !文件名:p101.lg4; ma_=2__1+3__2+4__3;1.5__1+3__2+5__3ma_ z = 2_1 + 3_2 + 4_3 s.t. 1.5_1 + 3_2 + 5_3 ≤ 600 280_1 + 250_2 + 400_3 ≤ 60000_1, _2, _3均为非负整数1并求解模型。
LINGO函数@gin见提示。
(2) 给出输入模型和求解结果(见[102]模型、结果):model: TITLE汽车厂生产计划(IP); !文件名:p102.lg4; ma_=2__1+3__2+4__3;1.5__1+3__2+5__3模型:(0?_?500)?10_?已知 c(_)??1000?8_(500?_?1000)?3000?6_(1000?_?1500)?注:当500 ≤ _ ≤ 1000时,c(_) = 10 _ 500 + 8( _ – 500 ) = (10 – 8 ) _ 500 + 8_2ma_z?4.8(_11?_21)?5.6(_12?_22)?c(_)_11?_12?500?__21?_22?1000_?1500_11?0.5_11?_21_12?0.6_12?_22_11,_12,_21,_22,_?02.1解法1(NLP)p104_106将模型变换为以下的非线性规划模型:ma_z?4.8(_11?_21)?5.6(_12?_22)?(10_1?8_2?6_3)_11?_12?500?__21?_22?1000 _11?0.5_11?_21_12?0.6_12?_22_?_1?_2?_3(_1?500)_2?0(_2?500)_3?00?_1,_2, _3?500_11,_12,_21,_22,_?0LINGO软件设置:局部最优解,全局最优解,见提示。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验05 数学规划模型㈡(2学时)(第4章数学规划模型)1.(求解)汽车厂生产计划(LP,整数规划IP)p101~102(1) (LP)在模型窗口中输入以下线性规划模型max z = 2x1 + 3x2 + 4x3. + 3x2 + 5x3≤ 600280x1 + 250x2 + 400x3≤ 60000x1, x2, x3≥ 0并求解模型。
★(1) 给出输入模型和求解结果(见[101]):model:TITLE汽车厂生产计划(LP);!文件名:;max=2*x1+3*x2+4*x3;*x1+3*x2+5*x3<600;280*x1+250*x2+400*x3<60000;end(2) (IP)在模型窗口中输入以下整数规划模型max z = 2x1 + 3x2 + 4x3. + 3x2 + 5x3≤ 600280x1 + 250x2 + 400x3≤ 60000x1, x2, x3均为非负整数并求解模型。
LINGO函数@gin见提示。
★(2) 给出输入模型和求解结果(见[102]模型、结果):model:TITLE汽车厂生产计划(IP);!文件名:;max=2*x1+3*x2+4*x3;*x1+3*x2+5*x3<600;280*x1+250*x2+400*x3<60000;@gin(x1); @gin(x2); @gin(x3);!将x1,x2,x3限定为整数;end2.(求解)原油采购与加工(非线性规划NLP,LP且IP)p104~107模型:已知⎪⎩⎪⎨⎧≤≤+≤≤+≤≤=)15001000(63000)1000500(81000)5000(10)(xxxxxxxc注:当500 ≤x≤ 1000时,c(x) = 10 × 500 + 8( x– 500 ) = (10 – 8 ) × 500 + 8x112112221112212211112112122211122122max4.8()5.6()()500100015000.50.6,,,,0z x x x x c x x x x x x x x x x x x x x x x x x =+++-+≤++≤≤≥+≥+≥解法1(NLP )p104~106将模型变换为以下的非线性规划模型:1121122212311122122111121121222123122312311122122max4.8()5.6()(1086)50010000.50.6(500)0(500)00,,500,,,,0z x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x =+++-+++≤++≤≥+≥+=++-=-=≤≤≥LINGO 软件设置:局部最优解,全局最优解,见提示。
★(1) 给出输入模型(见[105]):注意:模型中不要出现变量相除的形式,转化! model:TITLE 原油采购与加工解法1(NLP ,非线性规划); !文件名:;max = *x11 + *x21 + *x12 + *x22 - 10*x1 - 8*x2 - 6*x3; x11 + x12 < x + 500; x21 + x22 < 1000;*x11 - *x21 > 0;*x12 - *x22 > 0;x = x1 + x2 + x3;( x1 - 500 )*x2 = 0;( x2 - 500 )*x3 = 0;x1 < 500;x2 < 500;x3 < 500;end★(2) 在缺省的局部最优解设置下运行。
给出求局部最优解(见[106]):★(3) 设置为全局最优解(见提示)后运行。
给出求全局最优解(见[106]):解法2(LP且IP)p104,107将模型变换为以下的整数规划模型:11211222123111221221111211212221232113223312312311122122max 4.8() 5.6()(1086)50010000.50.6500500500500500,,010,,500,,,,0z x x x x x x xx x xx xxx xxx xx x x xy x yy x yx yy y yx x xx x x x x=+++-+++≤++≤≥+≥+=++≤≤≤≤≤=≤≤≥或LINGO函数@bin见提示。
★给出输入模型(见[107])和运行结果(全局最优解)(比较[106]):model:TITLE 原油采购与加工解法2(LP,IP);!不允许用英文逗号;!文件名:;max= *x11 + *x21 + *x12 + *x22 - 10*x1 - 8*x2 - 6*x3;x11 + x12 < x + 500;x21 + x22 < 1000;*x11 - *x21 > 0;*x12 - *x22 > 0;x = x1 + x2 + x3;x1 < 500*y1;x2 < 500*y2;x3 < 500*y3 ;x1 > 500*y2;x2 > 500*y3;@bin(y1); @bin(y2); @bin(y3);!将y1,y2,y3限定为0 – 1 变量;end解法3(IP )p104,107~108将模型变换为以下的整数规划模型:1121122211122122111121121222111221221121232343123412312311max4.8()5.6()()500100015000.50.6,,,,0,,,1,0(1,2,3,4)1,,,01k z x x x x c x x x x x x x x x x x x x x x x x x z y z y y z y y z y z z z z z k y y y y y y x z b =+++-+≤++≤≤≥+≥+≥≤≤+≤+≤+++=≥=++===或22334411223344()()()()()z b z b z b c x z c b z c b z c b z c b +++=+++其中b 1=0, b 2=500, b 3=1000, b 4=1500c (b 1)=0, c (b 2)=5000, c (b 3)=9000, c (b 4)=12000 程序如下:★输入模型并给出运行结果(全局最优解)(比较[106]):附:输入模型sets:pn_1/1..3/: y;pn/1..4/: z,b,c;endsetsdata:b=0 500 1000 1500;c=0 5000 9000 12000;enddatamax= *x11 + *x21 + *x12 + *x22 - @sum(pn: c*z);x11 + x12 < x + 500;x21 + x22 < 1000;*x11 - *x21 > 0;*x12 - *x22 > 0;z(1)<y(1);@for(pn(I)|I#gt#1#and#I#lt#4: z(I)<y(I-1)+y(I));z(4)<y(3);@sum(pn: z)=1;@sum(pn_1: y)=1;@for(pn_1: @bin(y));x=@sum(pn: b*z);3.(验证)混合泳接力队的选拔(0-1规划)p108~111解法10-1规划模型:min Z=++87x13+++66x22++53x24+78x31++++70x41+++++71x52++subject tox11+x12+x13+x14<=1x21+x22+x23+x24<=1x31+x32+x33+x34<=1x41+x42+x43+x44<=1x11+x21+x31+x41+x51=1x12+x22+x32+x42+x52=1x13+x23+x33+x43+x53=1x14+x24+x34+x44+x54=1xij={0,1},i=1,2,3,4,5,j=1,2,3,4程序如下:★ 输入以上0-1规划模型。
给出运行结果(比较[110]):解法20-1规划模型:45114151min s.t. 1, 1,2,3,4,51, 1,2,3,4{0,1}ij ijj i ij j ij i ij z c x x i x j x =====≤====∑∑∑∑其中66.875.68758.657.26666.4537867.884.659.47074.269.657.267.47183.862.4c ⎡⎤⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎣⎦程序如下:★输入以上0-1规划模型(见[110])。
给出运行结果(比较[110]):model:sets:person/1..5/;position/1..4/;link(person,position): c,x;endsetsdata:c=, , 87, ,, 66, , 53,78, , ,70, , , ,, 71, , ;enddatamin=@sum(link: c*x);@for(person(i): @sum(position(j): x(i,j))<=1;);@for(position(i): @sum(person(j): x(j,i))=1;);@for(link: @bin(x));end4.(求解)选课策略(0-1规划)p111~1120-1规划模型:Min Z=x1+x2+x3+x4+x5+x6+x7+x8+x9x1+x2+x3+x4+x5≥2x3+x5+x6+x8+x9≥3x4+x6+x7+x9≥22x3-x1-x2≤0x4-x7≤02x5-x1-x2≤0x6-x7≤0x8-x5≤02x9-x1-x2≤0xi={0,1},i=1,2,…,9★给出输入模型和运行结果(比较[112]):model:TITLE例2 选课策略;!文件名:;min=x1+x2+x3+x4+x5+x6+x7+x8+x9;x1+x2+x3+x4+x5>=2; !最少2门数学课程;x3+x5+x6+x8+x9>=3; !最少3门运筹学课程;x4+x6+x7+x9>=2; !最少2门计算机课程;2*x3-x1-x2<=0;x4-x7<=0;2*x5-x1-x2<=0;x6-x7<=0;x8-x5<=0;2*x9-x1-x2<=0;@bin(x1); @bin(x2); @bin(x3); @bin(x4); @bin(x5);@bin(x6); @bin(x7); @bin(x8); @bin(x9);end5.(求解)销售代理的开发与中断(0-1规划)p114~1160-1规划模型:min +130x12++115x14++100x21+96x22+92x23+88x24+84x25++116x32++103x34++85x41+82x42+79x43+76x44+73x45st511, 1,2,3,4 ittx i =≤=∑350x11+250x21+300x31+200x41>=400350(x11+x12)+250(x21+x22)+300(x31+x32)+200(x41+x42)>=500350(x11+x12+x13)+250(x21+x22+x23)+300(x31+x32+x33)+200(x41+x42+x43)>=600350(x11+x12+x13+x14)+250(x21+x22+x23+x24)+300(x31+x32+x33+x34)+200(x41+x42+x43+x44)>=700350(x11+x12+x13+x14+x15)+250(x21+x22+x23+x24+x25)+300(x31+x32+x33+x34+x35)+200(x41+x42+x43+x44+x45)>=800 xij={0,1},i=1,2,3,4, j=1,2,3,4,5★(1) 按表达式形式输入0-1规划模型。