2000-2012年苏州大学高等代数试题
完整word版,苏州大学期末高数样卷(附答案)
苏州大学微积分课程样卷一. 填空题:(每题3分,共30分)1.函数ln y x =+的定义域是 . 2. 极限=→xx x 4sin lim 0 . 3. 已知ln 3y =,则y '= .4. 不定积分=⎰dx x 5sin .5.定积分 12 0e )x dx ⎰= . 6. 设11002A -⎛⎫= ⎪⎝⎭ ,13112B -⎛⎫= ⎪⎝⎭,则1()AB -= . 7. 已知21,1,()11,1x x f x x a x ⎧-≠⎪=-⎨⎪+=⎩是连续函数,则常数a = .8. 微分3e x d x ⎛⎫= ⎪⎝⎭. 9. 袋中有红、黑二种彩球,已知随机取出一球为黑球的概率是13,且有红球6个,则袋中黑球个数为 .10. 已知随机变量ξ服从标准正态分布(0,1)N ,那么(0)P ξ<<+∞= .二.解下列各题:(每题5分,共30分)1.计算极限:03sin 3sin lim x x x x x→-+.2.求2sin 34y x x =+的二阶导数.3.求函数e x y x =-的极值.4.计算不定积分:()2cos sin x x xdx +⎰.5.计算定积分: 1 02⎰.6. 求行列式123231312D =的值.三.(10分)求矩阵1001011001000001A ⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦的逆矩阵.四.( 10分)求由曲线3y x =和直线2y x =围成的图形的面积.五.(10分)用消元法解线性方程组1231231232262435728x x x x x x x x x +-=⎧⎪-+=⎨⎪++=⎩.六.(10分)已知随机变量ξ的概率密度函数sin,0π, ()20,ax xp x⎧<<⎪=⎨⎪⎩其他,求常数a的值,并计算π(0)2Pξ<<.。
线代12答案 线性代数试题库
苏州大学《线性代数》课程(第十二卷)答案 共3页 院系 专业一、填空题:(30%)1、21=x ,32=x ,44=x2、=X ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--610115243 3、=-*1)(A A 31 4、=t 15 5、=--1)2(E A )3(21E A + 6、8=t 7、=-1)(AB 61-8、2)(=A r 9、=Λ⎥⎦⎤⎢⎣⎡00025或⎥⎦⎤⎢⎣⎡25000 10、1=+E A二、判断题:(10%)(1)√ (2) √ (3) × (4) × (5)× 三、(8%)解: A A 21])21[(11=--, (2%) ⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡-→→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---=⎥⎦⎤⎢⎣⎡-02121102321121001100211101310,)21(1 E A (4%) =A 2=--11)]21[(A ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-011031100 (2%) 四、(8%)解:⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎪⎪⎪⎭⎫ ⎝⎛=000630321987654321321αααA 2)(=A r , 21,αα为极大无关组 (3%) 321211 , ,αααααα+++由321,,ααα线性表示≤+++) , ,(321211ααααααr ),,(321αααr又因21,αα为极大无关组,故211 ,ααα+也线性无关,所以2) , ,(321211=+++ααααααr ,且211 ,ααα+是极大无关组(5%)五、(10%)解:,)(T T T T B C BC AXB == 又,0≠B T B B ,都可逆,T T C A X C AX 1-=⇒= (4%)=-1A ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--100210121, =X ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----111211110 (6%) 六、(10%)解:[]⎪⎪⎪⎭⎫ ⎝⎛--→→=000011001112a aa b A A (2%) (1) 当,1≠a 且1-≠a ,方程组有无穷多组解,一般解为,1121x a x -+= ( 1123x ax +=为自由未知量) (4%) (2) 当,1=a 方程组有无穷组解,一般解为:, ( 132321x x x x x --=是自由未知量) (4%)七、(14%)解:(1) 3)-(1)( 2λλλ+=-A E ,,12,1-=λ33=λ (2%)对,12,1-=λ得特征向量()T 0,1,11-=ξ, ()T1,0,02=ξ 所有特征向量为 212211,( k k k k ξξ+为不全为零的任意常数)(2%) 对33=λ,得特征向量()T 0,1,13=ξ,所有特征向量为 333( k k ξ是任意非零常数) (2%)(2) λ是A 的特征值,X 是对应的特征向量,则122++λλ是E A A ++22的特征值,且X 仍是对应的特征向量。
高等代数习题及答案
高等代数试卷一、判断题(下列命题你认为正确的在题后括号内打“√”,错的打“×”;每小题1分,共10分)1、)(x p 若是数域F 上的不可约多项式,那么)(x p 在F 中必定没有根。
( )2、若线性方程组的系数行列式为零,由克莱姆法则知,这个线性方程组一定是无解的。
( )3、实二次型),,,(21n x x x f 正定的充要条件是它的符号差为n 。
( )4、(){}321321;3,2,1,,,x x x i R x x x x W i ===∈=是线性空间3R 的一个子空间。
( )5、数域F 上的每一个线性空间都有基和维数。
( )6、两个n 元实二次型能够用满秩线性变换互相转化的充要条件是它们有相同的正惯性指数和负惯性指数。
( )7、零变换和单位变换都是数乘变换。
( ) 8、线性变换σ的属于特征根0λ的特征向量只有有限个。
( ) 9、欧氏空间V 上的线性变换σ是对称变换的充要条件为σ关于标准正交基的矩阵为实对称矩阵。
( )10、若{}n ααα,,,21 是欧氏空间V 的标准正交基,且∑==ni i i x 1αβ,那么∑==ni ix12β。
( )二、单项选择题(从下列各题四个备选答案中选出一个正确答案,并将其号码写在题干后面的括号内。
答案选错或未作选择者,该题无分。
每小题1分,共10分) 1、关于多项式的最大公因式的下列命题中,错误的是( ) ①()()()()()()n n nx g x f x g x f,,=;②()()()n j i j i f f f f f j i n ,,2,1,,,1,1,,,21 =≠=⇔=; ③()()()()()()()x g x g x f x g x f ,,+=;④若()()()()()()()()1,1,=-+⇒=x g x f x g x f x g x f 。
2、设D 是一个n 阶行列式,那么( )①行列式与它的转置行列式相等; ②D 中两行互换,则行列式不变符号; ③若0=D ,则D 中必有一行全是零; ④若0=D ,则D 中必有两行成比例。
2012年苏州大学自主招生数学试题-有答案
F2012年苏州大学自主招生数学试题一、选择题1、如果关于x 的方程2230x ax a -+-=至少有一个正根,则实数a 的取值范围是( )A 、22<<-aB 、23≤<aC 、23≤<-aD 、23≤≤-a 2、如图,已知:点E 、F 分别是正方形ABCD 的边BC AB 、的中点,DF BD 、分别交CE 于点HG 、,若正方形ABCD 的面积是240,则四边形BFHG 的面积等于……………………( )A 、26B 、28C 、24D 、303 、设z y x 、、是两两不等的实数,且满足下列等式:66633633)()(z x x y x z x x y x ---=-+-,则代数式xyz z y x 3333-++的值是………………… ( )A 、0B 、1C 、3D 、条件不足,无法计算4、如图,四边形BDCE 内接于以BC 为直径的⊙A ︒=∠=∠=30,53cos ,10BCE BCD BC ,则线段DE 的长是………………… ( )A 、89B 、73C 、4+33D 、3+435、某学校共有3125名学生,一次活动中全体学生被排成一个n 排的等腰梯形阵,且这n 排学生数按每排都比前一排多一人的规律排列,则当n 取到最大值时,排在这等腰梯形阵最外面的一周的学生总人数是………………… ( )A 、296B 、221C 、225D 、641二、填空题:6、已知:实常数d c b a 、、、同时满足下列两个等式:⑴0cos sin =-+c b a θθ; ⑵0sin cos =+-d b a θθ(其中θ为任意锐角),则d c b a 、、、之间的关系式是:。
7、函数4433221-+-+-+-=x x x x y 的最小值是 。
8、已知一个三角形的周长和面积分别是84、210,一个单位圆在它的内部沿着三边匀速无摩擦地滚动一周后回到原来的位置(如图)被单位圆滚过的部分的面是 。
苏州大学数学分析试题集锦(2000-2012年)
7. 设 f 在0, 上单调递减,且 f x dx 收敛。证明 lim xf x 0 。
0
ቤተ መጻሕፍቲ ባይዱ
x
8.
(1) 设 f 在有限闭区间a, b 上连续。证明 f 可以连续地延拓到 上,即存在 上
的连续函数 F ,使 x a,b 时,有 F x f x 。
(2) 设二元函数 f x, y 在闭圆盘 B x, y : x2 y2 1 上连续。证明存在 2 上
(2) x R , f x 2 。
2
2008 年攻读硕士学位研究生入学考试数学分析试题 1. 求下列极限。
(1) lim
1
1
1
;
n n2 1 n2 2
n2 n
(2) lim ex3 1 x3 。 x0 sin2 2x
2.
计算积分
2 0
a2
cos2
dt t
b2
sin2
苏州大学
2012 年攻读硕士学位研究生入学考试数学分析试题 一、下列命题中正确的给予证明,错误的举反例或说明理由。共 4 题,计 30 分。
1.
设
f
x
在
a,
b
上连续,且
b
a
f
x dx 0 ,则 x a,b ,
f
x 0。
2. 在有界闭区间a,b 上可导的函数 f x 是一致连续的。
3. 设 f x 的导函数 f x 在有限区间 I 上有界,则 f x 也在 I 上有界。
1. 设 f x 在a,b 上可微,证明:存在 a,b ,使成立
2 f b f a b2 a2 f 。
2. 设 f x ex2 sin x ,求 f 2012 0 。
苏州大学历年高等代数真题
2000年真题1.(14分)设f (x),g (x),h (x)都是数域P 上的一元多项式,并且满足:4(1)()(1)()(2)()0x f x x g x x h x ++-+-= (1)4(1)()(1)()(2)()0x f x x g x x h x +++++= (2) 证明:41x+能整除()g x 。
2.(14分)设A 是n ⨯r 的矩阵,并且秩(A )= r ,B ,C 是r ⨯m 矩阵,并且AB=AC ,证明:B=C 。
3(15分)求矩阵321222361A -⎛⎫ ⎪=-- ⎪ ⎪-⎝⎭的最大的特征值0λ,并且求A 的属于0λ的特征子空间的一组基。
4(14分)设⨯-2,3,-1是33矩阵A的特征值,计算行列式611n A A E -+3.5(14分)设A,B 都是实数域R 上的n n ⨯矩阵,证明:AB,BA 的特征多项式相等.证明:要证明AB,BA 的特征多项式相等,只需证明:E A E B λλ-=-6.(14分)设A 是n n ⨯实对称矩阵,证明:257n A A E -+是一个正定矩阵.证明:A 是实对称矩阵,则A的特征值均为实数.7.(15分)设A 是数域P 上的n 维线性空间V 的一个线性变换,设1,n V A α-∈≠使0,但是()n A α=0,其中n>1.证明:21{,,,,}n A A A αααα-是V的一组基.并且求线性变换A在此基下的矩阵,以及A的核的维数.2000年真题答案1、证明:1(2)(1):2()4()0()()2g x h x h x g x -+=⇒=- (3) 将(3)带入(1)中,得到:41(1)()()2x f x xg x +=- 441()x x x g x ∴++1与互素,.注:本题也可以把g,h 作为未知量对线性方程求解,用克莱姆法则导出结果。
2、证明:,()0.AB AC A B C =∴-=(),A n r R A r A ⨯=∴是的矩阵,是列满秩的矩阵,即方程0AX =只有零解.0,B C B C∴-==即3、解:()()224E A λλλ-=-+,02λ∴= 当02λ=时,求出线性无关的特征向量为()()12101012ξξ==,,',,,', 则()120,,L ξξλ构成的特征子空间12ξξ,是0λ的特征子空间的一组基.4、解:⨯-2,3,-1是33矩阵A的特征值,不妨设1232,3,1,λλλ=-==- 则矩阵611n A A E -+3对应的特征值为:12315,20,16ξξξ=== 故6111520164800n A A E -+=⨯⨯=35、利用构造法,设0λ≠,令1E B H A E λ=, 11010E BE E B A E A E E AB λλλ⎛⎫⎛⎫ ⎪⎛⎫ ⎪= ⎪ ⎪ ⎪- ⎪ ⎪⎝⎭- ⎪⎝⎭⎝⎭,两边取行列式得 11()n H E AB E AB λλλ=-=-.(1) 11100E E B E BA B A E A E E λλλ⎛⎫⎛⎫-⎛⎫ ⎪ ⎪= ⎪ ⎪ ⎪- ⎪ ⎪⎝⎭⎝⎭⎝⎭,两边取行列式得11()n H E BA E BA λλλ=-=-.(2)由(1),(2)两式得1()n E AB λλ-=1()n E BA λλ-E AB E BA λλ∴-=-.(3) 上述等式是假设了0λ≠,但是(3)式两边均为λ的n 次多项式,有无穷多个值使它们成立(0λ≠),从而一定是恒等式. 注:此题可扩展为A是m n ⨯矩阵,B是n m ⨯矩阵,AB,BA的特征多项式有如下关系:n m m n E AB E BA λλλλ-=-,这个等式也称为薛尔佛斯特(Sylvester )公式.6、设λ为A的任意特征值,则257n A A E -+的特征值为225357()024ξλλλ=-+=-+>.故257n A A E -+是一个正定矩阵.7、证明:1n n A A α-≠0,=0.令()()10110n n l l A l A ααα--+++=.(1) 用1n A -左乘(1)式两边,得到10()0n l A α-=.由于1n A -≠0,00l ∴=,带入(1)得()()1110n n l A l A αα--++=.(2) 再用2n A -左乘(2)式两端,可得10l =.这样继续下去,可得到0110n l l l -====. 21,,,,n A A A αααα-∴线性无关.21,,,,)n A A A A αααα-(=21,,,,)n A A A αααα-(0000100001000010⎛⎫ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭. ∴A在此基下的矩阵为0000100001000010⎛⎫ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭, 可见,()1R A n =-,dimker(1)1A n n ∴=--=即A 的核的维数为1.2001年真题2002年真题1.(15分)设A =1111101111001110001100001⎛⎫ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭,123101221001320001200001n n n n n n B -⎛⎫ ⎪-- ⎪ ⎪--= ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭都是n n ⨯矩阵。
苏州大学考研真题—苏州大学
苏州大学政治与公共管理学院哲学概论2007公共管理基础理论2007(A卷),2007(B卷)公共部门管理(行政管理)2007(A卷)公共部门管理(社会医学与卫生事业理论)2007管理学(行政管理专业)2000,2001,2002,2003(A卷),2003(B卷),管理学原理(行政管理专业)2004(A卷)行政法学与管理学原理2006管理学与行政法学2005行政管理学1998,2000,2001,2002,2003(A卷),2003(B卷),2004(B卷),2005,2006管理学原理(行政管理学专业)2000——2004行政管理学2003年复试试卷(含行政法学、政治学原理)教育学专业基础综合(全国统考试卷)2007教育学2000——2005马克思主义基本原理2007马克思主义哲学原著2005——2006马克思主义哲学经典著作2002马克思主义哲学原理2002马克思主义哲学1999——2000西方哲学史1999——2000,2002,2004——2006现代西方哲学2006西方现代美学与哲学2005中国哲学原著解读2006伦理学原理1999——2000辩证唯物主义原理1999——2000历史唯物主义原理1999——2000政治学原理1998,2000,2004——2007西方政治思想史1998,2000,2004,2006中西政治思想史2007思想政治教育学2004,2006——2007邓小平理论2000法学院专业基础课(法学各专业)2007(A卷),2007(B卷)基础课(法学)2000——2001基础课(国际法专业)2002基础课(国际法专业)(含法理学、民法学、经济法)2004——2005基础课(诉讼法学专业)(含法理学、民法学、刑法学)2003——2006基础课二(法理学、民法学、经济法)2006(A卷)专业课(国际法学专业)2007(A卷),2007(B卷)专业课B(法律史专业)2007(A卷),2007(B卷)专业课C(宪法学与行政法学专业)2007(A卷),2007(B卷)专业课D(刑法学专业)2007(A卷)专业课E(民商法学专业)2007(A卷)中国法律史2006(A卷)西方法律思想史2006(B卷)行政法学(含行政诉讼法学)2006(A卷)经济法学专业(经济法学)2007(A卷),2007(B卷)中国刑法学2002国际法学与国际私法学2005(B卷),2006(B卷)国际公法和国际私法2000——2002法理学1999——2002,2004——2006国际经济法学2000——2002民法学2000——2002,2004——2006民商法学2002民事诉讼法学2002刑事诉讼法学与民事诉讼法学2003——2006法理学与经济犯罪学2004——2006(A卷)刑法总论与刑法分则2004——2006(A卷)行政法学与行政诉讼法学2005行政法学(含行政诉讼法学)2006(A卷)法理学与宪法学2006(A卷)中国刑事诉讼法2002宪法学2000——2002行政法学2000,2002综合卷(法学、法学理论专业)1999——2001综合卷(理论法学)2002综合卷(行政法专业)2002综合课(民事诉讼法专业)2002法学综合(国经方向)2002综合法学2000,2002体育学院体育学专业基础综合2007(A卷),2007(B卷)运动生理学2002——2005人体生理学2005运动训练学2002,2004——2005运动解剖学2005体育概论2003——2005体育社会学2005教育学院教育学专业基础综合(全国统考试卷)2007——2008教育学2000——2005教学论2000——2001中外教育史2000——2005高等教育2000——2001教育心理学2000——2002,2004教育心理学(课程与教学论专业)2005教育心理学(含发展心理学)(发展与教育心理学专业)2005——2006心理学研究方法2007(A卷),2008(A卷)普通心理学(含实验心理学)2000——2007心理统计与测量2003——2004心理统计2002管理心理学2000——2002公共管理基础理论2007(A卷),2007(B卷)教育经济学2005教育管理学2000——2002,2005文学院文学基础综合2007(A卷),2007(B卷),2008(A卷)评论写作(1)(美学、文艺学、中国古代文学、中国现当代文学、比较文学与世界文学、戏剧戏曲学专业)2007(A卷),2008(A卷)评论写作(戏剧戏曲专业)2004评论写作(中国古代文学专业)2003评论写作(2)(中国现当代文学专业)2000,2002评论写作(2)(新闻学、传播学专业)2007(A卷),2007(B卷)评论写作(3)(文艺学专业)2002评论写作(5)(新闻学、传播学专业)1999——2002新闻传播基础2007(B卷)新闻传播理论2004——2006新闻学基础1999——2006大众传播理论1999——2006古代汉语2001——2008现代汉语2002——2008语言学概论2002,2005(复试)中外文学与比较文学综合考试2005中外文学综合知识2002中国现当代文学史2000,2003——2004,2006中国现代文学史2002文学理论2003——2006文学概论2002中国古代文学2001——2006中国文论2003——2006中国文学史2002外国文学史2002——2006文艺理论2000,2002,2003比较文学原理2002——2006美学原理2004——2005中西美学史2004——2005,2007戏剧理论基础2005,2007中国戏剧2005中国戏剧(古典戏曲或现代戏剧)2006中国现代戏剧史2004语文教学论2004——2005教学论2000——2001教育学专业基础综合(全国统考试卷)2007——2008教育学2000——2005社会学院社会学原理2002——2005,2006(A卷),2007(A卷),2007(B卷)社会研究方法2002——2005,2006(A卷),2007(A卷),2007(B卷)社会调查方法2002中国历史文选2004——2005中国通史2004历史学专业基础(全国统考试卷)2007公共管理基础理论2007(A卷),2007(B卷)公共部门管理(社会保障学)2007(A卷),2007(B卷)管理学原理(旅游管理)2007管理学原理A(社会保障专业)2004(A卷),2004(B卷),2005(A卷),2006(B卷)西方经济学(社会保障专业)2004(A卷),2004(B卷),2005(A卷),2006(A卷)信息检索2007(A卷),2007(B卷)信息资源管理2007(A卷),2007(B卷)档案管理学2004——2005档案学原理2004——2005外国语学院二外法语2001——2002,2004——2008二外日语2000,2002——2008二外俄语2005——2006基础英语1997,1999——2008(1997有答案)翻译与写作1997,2003——2008(1997有答案)英汉双语翻译1999——2002英文写作1999——2002英美文学1997(1997有答案)英语语言学1997(1997有答案)二外英语2005——2007基础俄语2004——2007现代俄语2004——2005综合俄语2006——2007日语写作与翻译2008日语翻译与写作2007综合日语2007——2008教育学专业基础综合(全国统考试卷)2007——2008教育学2000——2005数学科学学院高等代数2000——2002,2004——2007数学分析2000——2002,2004——2007(2004——2005有答案)数学分析与高等代数2003(A卷),2003(B卷)教育学专业基础综合(全国统考试卷)2007教育学2000——2005物理科学与技术学院信号系统与数字逻辑2003——2007数字电子技术基础1999——2002信号与线性系统1997——2002自动控制原理2004——2007(其中2005试卷共3页,缺P3)高等数学2003——2007普通物理2004——2007教育学专业基础综合(全国统考试卷)2007教育学2000——2005信息光学工程、现代光学技术研究所信号系统与数字逻辑2003——2007数字电子技术基础1999——2002信号与线性系统1997——2002自动控制原理2004——2007(其中2005试卷共3页,缺P3)普通物理2004——2007化学化工学院有机化学和仪器分析2007(A卷)有机化学1999,2001,2003,2004,2005(第1种,代码为456),2005(第2种,代码为360),2006有机化学(1)2001——2002化学原理2007(A卷)化学(2)2004——2005化学(3)2003——2006化学四(含无机、分析)2005分析化学2003分析化学(含定量分析、仪器分析)2005无机化学(1)2001——2002无机化学2003——2005物理化学2000——2002,2004——2005高分子化学1999,2003——2007教育学专业基础综合(全国统考试卷)2007教育学2000——2005计算机科学与技术学院数据结构与操作系统2003——2007数据结构与编译原理2005操作系统原理1998——2002数据结构及程序设计1998——2002数据库2003年复试电子信息学院半导体物理与集成电路设计原理2006——2007半导体物理2004信号系统与数字逻辑2003——2007数字电子技术基础1999——2002信号与线性系统1997——2002自动控制原理2004——2007(其中2005试卷共3页,缺P3)机电工程学院理论力学2000——2001,2004——2007自动控制原理2004——2007(其中2005试卷共3页,缺P3)电子技术基础2007材料工程学院材料结构与性能(含高分子物理、无机非金属材料概论,两者任选一门考)2007 专业课程考试(高分子物理或无机非金属材料概论)2005纺织材料学1999,2004——2007纺织工艺学1999服装材料学2004——2005高分子材料成形工艺学1999有机化学和仪器分析2007(A卷)化学原理2007(A卷)有机化学1999,2001,2003,2004,2005(第1种,代码为456),2005(第2种,代码为360),2006有机化学(1)2001——2002高分子化学1999,2003——2005化学(2)2004——2005化学(3)2003——2006化学四(含无机、分析)2005自动控制原理2004——2007(其中2005试卷共3页,缺P3)商学院管理学(企业管理专业)2004——2006管理学(会计学、企业管理、农业经济管理专业)2007(A卷),2007(B卷)管理学原理(企业管理专业)2002——2003微观与宏观经济学2007(A卷),2007(B卷)经济学原理2004——2005经济学(含西方经济学)2002经济学A2002世界经济1998(B卷),1999(A卷),1999(B卷),2000 世界经济理论2003——2005国际经济合作1999——2000财政学2002——2005金融学联考2002——2007(2002——2005有答案)会计学(含财务管理)2002——2005区域经济学2005企业管理专业复试试题2003艺术学院绘画基础(色彩画)2007绘画基础(美术学专业)2003——2006(设计系)色彩2003——2005艺术史2007设计艺术史2005美术史2003——2005医学院基础医学系病理学1994——2005流行病学2005儿科学2002妇产科学2001内科学2002生理B2002生理学2003——2008生物化学2008生物化学(生)2003——2007生物化学B 2001——2002,2004——2005药理学2002药学综合2002,2007肿瘤学2002生命科学学院生物化学2008生物化学(生)2003——2007生物化学B 2001——2002,2004——2005细胞生物学2004——2007遗传学2005动物生理学2007教育学专业基础综合(全国统考试卷)2007——2008 教育学2000——2005放射医学与公共卫生病理学1994——2005预防综合2007流行病学2005儿科学2002妇产科学2001内科学2002生理B2002生理学2003——2008生物化学2008生物化学(生)2003——2007生物化学B 2001——2002,2004——2005药理学2002药学综合2002,2007肿瘤学2002普通物理2004——2007医学院临床医学儿科系病理学1994——2005流行病学2005儿科学2002妇产科学2001内科学2002生理B2002生理学2003——2008生物化学2008生物化学(生)2003——2007生物化学B 2001——2002,2004——2005药理学2002药学综合2002,2007肿瘤学2002医学院临床医学系病理学1994——2005流行病学2005儿科学2002妇产科学2001内科学2002生理B2002生理学2003——2008生物化学(生)2003——2007生物化学B 2001——2002,2004——2005药理学2002药学综合2002,2007肿瘤学2002药学院药学综合2002,2007药理学2002生物化学2008生物化学(生)2003——2007生物化学B 2001——2002,2004——2005化学(2)2004——2005化学(3)2003——2006化学四(含无机、分析)2005有机化学和仪器分析2007(A卷)化学原理2007(A卷)有机化学1999,2001,2003,2004,2005(第1种,代码为456),2005(第2种,代码为360),2006有机化学(1)2001——2002城市科学学院生物化学2008生物化学(生)2003——2007生物化学B 2001——2002,2004——2005。
(完整word版)高等代数试卷及答案(二),推荐文档
一、填空题 (共10题,每题2分,共20 分)1.只于自身合同的矩阵是 矩阵。
2.二次型()()11212237,116x f x x x x x ⎛⎫⎛⎫= ⎪⎪⎝⎭⎝⎭的矩阵为__________________。
3.设A 是实对称矩阵,则当实数t _________________,tE A +是正定矩阵。
4.正交变换在标准正交基下的矩阵为_______________________________。
5.标准正交基下的度量矩阵为_________________________。
6.线性变换可对角化的充要条件为__________________________________。
7.在22P ⨯中定义线性变换σ为:()a b X X c d σ⎛⎫= ⎪⎝⎭,写出σ在基11122122,,,E E E E 下的矩阵_______________________________。
8.设1V 、2V 都是线性空间V 的子空间,且12V V ⊆,若12dim dim V V =,则_____________________。
9.叙述维数公式_________________________________________________________________________。
10.向量α在基12,,,n ααα⋅⋅⋅(1)与基12,,,n βββ⋅⋅⋅(2)下的坐标分别为x 、y ,且从基(1)到基(2)的过渡矩阵为A ,则x 与y 的关系为_____________________________。
二、判断题 (共10 题,每题1分,共10分)1.线性变换在不同基下的矩阵是合同的。
( ) 2.设σ为n 维线性空间V 上的线性变换,则()10V V σσ-+=。
( ) 3.平面上不平行于某一向量的全部向量所成的集合,对于向量的加法和数量乘法,构成实数域上的线性空间。
( ) 4.设1V 与2V 分别是齐次线性方程组120n x x x ++⋅⋅⋅+=与12n x x x ==⋅⋅⋅=的解空间,则12n V V P ⊕= ( )5.2211nn i i i i n x x ==⎛⎫- ⎪⎝⎭∑∑为正定二次型。
(完整word版)免费-高等代数试卷二及答案
高等代数试卷二一、 单项选择题(每小题2分,共10分)【 】1、设)(x f 为3次实系数多项式,则A.)(x f 至少有一个有理根B. )(x f 至少有一个实根C.)(x f 存在一对非实共轭复根D. )(x f 有三个实根.【 】2、设,A B 为任意两个n 级方阵,则如下等式成立的是 A. 222()2A B A AB B +=++ B. A B A B +=+ C. AB B A = D. A B A B -=-【 】3、设向量组12,αα线性无关,则向量组1212,a b c d αααα++线性无关的充分必要条件为A. ad bc ≠B. ad bc =C. ab cd ≠D. ab cd = 【 】4.一个(2)n ≥级方阵A 经过若干次初等变换之后变为B , 则一定有A. A B =B. 0Ax =与0Bx =同解C. 秩()A =秩()BD. **A B =【 】5、设矩阵A 和B 分别是23⨯和33⨯的矩阵,秩()2A =,秩()3B =,则秩()AB 是A. 1B. 2C. 3D. 4二、填空题(每小题2分,共20分)1.多项式)(x f 没有重因式的充要条件是 . 2 .若()()1f x g x +=,则((),())f x g x = .3. 设1230231002A ⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎣⎦,则*1()A -= .4. 行列式1230000a a a 的代数余子式之和:313233A A A ++为______________. 5.设3级方阵1211222,2A B ααββββ⎛⎫⎛⎫ ⎪ ⎪== ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭,其中,i i αβ均为3维行向量。
若16,2A B ==,则A B -= .6. 若矩阵A 中有一个r 级子式不为0, 则 r(A)= .7.线性方程组 121232343414x x a x x a x x a x x a -=⎧⎪-=⎪⎨-=⎪⎪-=⎩, 有解的充要条件是 .8. 若向量组12,,r ααα可由12,,s βββ线性表示,且12,,r ααα线性无关,则r s.9.设A 为3级矩阵, 且12A =, 则 1*A A --= 10. 设001200373*******A ⎛⎫⎪⎪= ⎪⎪⎪⎝⎭, 则1A -= .三、判断题(每小题2分,共10分)【 】1、若不可约多项式p(x)是()f x '的2重因式,则p(x)是)(x f 的3重因式.【 】2、设n 级方阵A 为可逆矩阵,则对任意的n 维向量β,线性方程组Ax β=都有解。
江苏大学高等代数考研试题汇编(2004-2012)
机密★启用前江苏大学2004年硕士研究生入学考试试题考试科目:高等代数考生注意:答案必须写在答题纸上,写在试题及草稿纸上无效! 一、[本题12分]计算行列式x x x xD n αααααααααααααααα−−−−−−−= 之值。
二、[本题12分]设n 阶矩阵A=⎟⎟⎟⎟⎟⎟⎠⎞⎜⎜⎜⎜⎜⎜⎝⎛00001100000010000010 , 求:1)A 的特征多项式2)A 的不变因子、行列式因子、初等因子3)A 的Jordan 标准形三、[本题12分]1、 证明:s ααα,,,21 (其中1α0≠)线性相关 ⇔ 至少有一个i α(1s i ≤<)可被121,,,−i ααα 线性表示。
2、证明:一个向量组的任何一个线性无关组都可以扩充为该向量组的一个极大线性无关组。
四、[本题12分]若设W={}n x R x f f x f ][)(,0)1()(∈=(1) 试证:W 是n x R ][的子空间(2) 求出W 的一组基及维数五、[本题12分] 1、 设A 、B 均为n 阶矩阵,证明:如果AB=O ,则秩(A)+秩(B)n ≤。
2、 设A 是一个n 阶矩阵,且秩(A)=r ,证明:存在一个n 阶可逆矩阵P ,使PAP -1的后n-r 行全为零。
共 2 页第 1 页设是有限维线性空间的子空间。
W维(W维(维线性空间的所有线性变换构成的集合。
设1,2证明:1≤2∃3,使2=31机密★启用前江苏大学2005年硕士研究生入学考试试题 考试科目:高等代数考生注意:答案必须写在答题纸上,写在试题及草稿纸上无效!共3页,第1页共3页,第2页共3页,第3页。
2000-2012年苏州大学高等代数试题
2012年苏州大学高等代数考研试题1. ('18)设()f x 是n 次多项式次多项式,,则()f x 有n 重根的充要条件是()()'f x f x .2. ('18)设A 为n 阶实矩阵矩阵,,证明: ()()rank A rank A A Τ=.3. ('18),A J 为n 阶矩阵.证明证明::(1)AJ JA =的充要条件条件是211112131++++n n n A a E a J a J a J −=L .其中0000110001010010000100011J =L L L MM M O M M L L . (2)令(){}|C J A AJ JA ==,求()C J 的维数.4. ('18)设n 维列向量12=n a a a βM ,且=2ββΤ. (1)求n E ββΤ−.(2)求()1n E ββ−Τ−. 5. ('18)设,A B 分别为,m n 阶矩阵阶矩阵,,并且,A B 没有公共特征值没有公共特征值。
证明证明::矩阵方程AX XB =仅有零解仅有零解。
6. ('18)设σ是数域P 上的线性变换上的线性变换,,且2=σσ.证明证明::(1)(){}ker |V σασαα=−∈.(2)如果τ是V 的线性变换的线性变换,,ker σ和()V σ都是τ的不变子空间.7. ()'20设σ是欧氏空间V 的线性变换的线性变换,,且3+=0σσ.证明证明::σ的迹为0.8. ()'20设A 为n 阶实可逆矩阵.证明证明::存在正交矩阵12,Q Q ,使得12Q AQ 为对角阵.且对角线元素全大于0.1. 计算n 阶行列式21000001210000012000000001210000012。
2. 设实二次型()2221231213232f x x x t x x x x x x =+++++。
问当t 取何值时,f 是正定的、半正定的?3. 设300114311A =−。
《高等代数》习题与参考答案
《高等代数》习题与参考答案数学系第九章 欧氏空间1.设()ij a =A 是一个n 阶正定矩阵,而),,,(21n x x x Λ=α, ),,,(21n y y y Λ=β,在n R 中定义内积βαβα'A =),(,1) 证明在这个定义之下, n R 成一欧氏空间; 2) 求单位向量)0,,0,1(1Λ=ε, )0,,1,0(2Λ=ε, … , )1,,0,0(Λ=n ε,的度量矩阵;3) 具体写出这个空间中的柯西—布湿柯夫斯基不等式。
解 1)易见βαβα'A =),(是n R 上的一个二元实函数,且 (1) ),()(),(αβαβαββαβαβα='A ='A '=''A ='A =, (2) ),()()(),(αβαββαβαk k k k ='A ='A =,(3) ),(),()(),(γβγαγβγαγβαγβα+='A '+'A ='A +=+, (4) ∑='A =ji j i ijy x a,),(αααα,由于A 是正定矩阵,因此∑ji j i ij y x a,是正定而次型,从而0),(≥αα,且仅当0=α时有0),(=αα。
2)设单位向量)0,,0,1(1Λ=ε, )0,,1,0(2Λ=ε, … , )1,,0,0(Λ=n ε,的度量矩阵为)(ij b B =,则)0,1,,0(),()(ΛΛi j i ij b ==εε⎪⎪⎪⎪⎪⎭⎫⎝⎛nn n n n n a a aa a a a a a ΛM O MM ΛΛ212222211211)(010j ⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛M M =ij a ,),,2,1,(n j i Λ=, 因此有B A =。
4) 由定义,知∑=ji ji ij y x a ,),(βα,α==β==故柯西—布湿柯夫斯基不等式为2.在4R 中,求βα,之间><βα,(内积按通常定义),设: 1) )2,3,1,2(=α, )1,2,2,1(-=β, 2) )3,2,2,1(=α, )1,5,1,3(-=β, 3) )2,1,1,1(=α, )0,1,2,3(-=β。
2012级高等代数Ⅰ试题及答案
2012 级高等代数Ⅰ试题及答案一、单项选择题(每小题2分,共10分)1. 下列说法正确的是()A . 任何多项式都不整除零多项式B . 零多项式与任何多项式都互素C . 零次多项式与任何多项式都互素D . 零次多项式与零多项式不互素2. 设 (),(),()[] f x g x p x P x Î , 且 () p x 在数域P 上不可约,如果 ) ( ) ( ) ( x g x f x p ,则 一定成立的是 ( )A . ) ( ) ( x f x p 且 ) ( ) ( x g x pB . ) ( ) ( x f x p 但 ) ( | ) ( x g x p /C . ) ( | ) ( x f x p / 且 ) ( | ) ( xg x p / D . ) ( ) ( x f x p 或 )( ) ( x g x p 3. 设A 和B 都是n 阶方阵,O 表示零矩阵,若AB O = ,则一定成立的是( )A . A 和B 都是可逆矩阵 B .A O = 或B O =C . ||0AB = D .A 可逆,B 不可逆4.已知齐次线性方程组 O X A n m = ´ 只有零解,下列结论一定成立的是( )A . A 的秩为mB . A 的行秩为nC . A 的列向量组线性相关D . A 的行向量组线性无关5. 设A 是n 阶方阵,k 是一个非零常数,若 0 kA = ,则一定成立的是( )A . 0A =B . A 可逆C . A 是零矩阵D . A 的秩等于n二、判断题(每小题2分,共10分)6. 任意多项式都定义有次数.()7. 任意两个不全为零的多项式都有首项系数是1 的最大公因式.( )8. 任意矩阵经过一系列初等行变换总能变成阶梯形矩阵.( )9. 任意齐次线性方程组不一定总有解.()10. 任意一个极大线性无关组都与向量组本身等价.()三、填空题(每小题2分,共10分)11. 含有n 个未知量,系数矩阵的秩为r 的齐次线性方程组有非零解,则基础解系所 含解的个数等于____________.12.以纯虚数i 为根的非零实系数多项式中次数最低的首1多项式为_______________. 13. 如果一个 4 阶矩阵的秩为1,那么此矩阵的任意两行.14. 方程个数和未知量个数相等的齐次线性方程组有非零解的充分必要条件是系数行列 式_____ _____.15. 多项式 () f x 被x c - 所除得到的余式为.四、计算题(每小题10分,共50分)16. 如果 1 ) 1 ( 2 4 2 + + - Bx Ax x ,求 A ,B .17. 计算n 阶行列式:n aa a a na a a a na a a a n aaa a D + + + + = 1 3 2 1 3 1 2 1 32 1 13 2 1 1 L M O M M M L LL .18. 设 1(2,1,2,2,4) a =- , 2 (1,1,1,0,2) a =- , 3 (0,1,2,1,1) a =- , , 1 , 1 , 1 ( 4 - - - = a ), 1 , 1 - 5 (1,2,1,1,1) a = .试确定向量组 ,,,, 12345 a a a a a 的一个极大线性无关组与秩.19. 用导出组的基础解系表出下列非齐次线性方程组的全部解:31 22461 x y z w x y z w x y z w --+= ì ï-+-= í ï --+=- î. 20. 已知矩阵 100 011 111 A æö ç÷= ç÷ ç÷ - èø, 22 37 22 B æöç÷ =- ç÷ ç÷ èø,若( )A E XB += ,求矩阵X . 五、证明题(每小题10分,共20分)21. 证明: ) ( | ) ( 2 2 x f x g 当且仅当 ()|() g x f x .22. 设向量组 ,, 123 a a a 线性无关,向量组 ,, 234 a a a 线性相关,试证: 1 a 不能 由 ,, 234 a a a 线性表示.高等代数Ⅰ参考答案及评分标准一、单项选择题(每小题2分,共10分)1. C2. D 3. C 4. B5. A二、判断题(每小题2分,共10分)6. × 7. √ 8. √ 9. × 10. √三、填空题(每小题2分,共10分)11. rn - 12. 12+ x 13. 线性相关 14. 为零15. )(c f 四、计算题(每小题10分,共50分)16. 解 设 1 ) ( 24+ +Bx Ax x f = ,则 Bx Ax x f 2 4 ) ( 3+ = ¢ . (2分)由一次因式和根的关系及重因式知îíì = + = ¢ = + + = 0 2 4 ) 1 ( 0 1 ) 1( B A f B A f , (8 分) 解得 1 = A , 2 - = B .(10 分)17. 解n aaa n a a a naa a n a a a na aa n a a a n aaa n a a a D ncc c c c c + + + + + + + + + + + + + + + + + + + = + + + 1 32 2 1 1 31 2 2 1 1 3 2 1 2 1 1 3 2 2 1 1 131 21 L L M O MM M L L LL L L M (2分)n aaa naa a na aa n a aa na a a na a a c + + + + + + + = + + + + ¸ 1 32 13 1 2 1 3 2 1 1 3 2 1 ) 2 1 1 ( )1 ( 211L M O M M M L LL L L (8 分)na a a na a a c a c c a c c a c n n+ + + + = + + + + = - - - L L M O M M M L L L L M2 1 1 10 0 10 1 0 10 1 10 0 1) 2 1 1 ( 113 3 12 2 .(10 分) 18. 解 按列拼成矩阵÷ ÷ ÷ ÷ ÷ ÷ øö ç ç çç ç ç èæ - - - - - - - = ¢ ¢ ¢ ¢ ¢ 1 11 2 4 1 1 1 0 2 1 1 2 1 2 2 1 1 1 11 1 0 12 ) , , , , ( 5 43 2 1 a a a a a . (2 分)用行初等变换化简得÷ ÷ ÷÷ ÷÷øöç ç çç ç ç è æ - - - - ® ¢ ¢ ¢ ¢ ¢ 0 0 0 0 0 0 0 0 0 0 3 1 3 0 0 0 0 1 1 02 1 1 1 1) , , , , ( 5 4 3 2 1 a a a a a . (8 分)由初等变换不改变列向量组的线性关系得原向量组的一个极大线性无关组为 3 2 1 , , a a a ,向 量组 ,,,, 12345 a a a a a 的秩为 3.(10 分)19. 解 构造增广矩阵并作行初等变换得÷ ÷÷ ÷ øö ç ç ç ç è æ - - - ® ÷ ÷ ÷ø ö ç ç ç è æ - - - - - - - = 0 0 0 0 0 2 1 2 1 0 0 2 1 1 0 1 1 1 6 4 2 2 1 3 1 1 1 0 1 1 1 1 A .(2分)得到原线性方程组的一般解为ï î ï í ì + = + + = w z wy x 2 212 1. 令 0 , 0 = = w y ,得原方程组的一个特解 ÷ ÷ ÷ ÷÷ øöç ç ç ç ç è æ = 0 2 1 0 2 1 0 g .(5 分)对应齐次线性方程组的一般解为î íì = + = w z wy x 2. 令 0 , 1 = = w y ,得 ÷ ÷ ÷ ÷ ÷ ø ö ç ç ç ç ç è æ = 0 0 1 1 1 h ,令 1 , 0 = = w y ,得 ÷ ÷ ÷ ÷÷ øöç ç ç ç ç è æ = 1 2 0 1 2 h .(9 分)原方程组的全部解为{} R k k k k Î + + = 2 1 2 21 1 0 ,h h g g . (10分)20. 解 构造分块矩阵÷ ÷ ÷øöç ç ç è æ - - = + 2 2 2 1 1 7 3 1 2 0 2 2 0 0 2 ) , ( B E A .(2 分)作初等行变换得÷ ÷ ÷øö ç ç ç è æ - - ® + 1 1 1 0 0 3 1 0 1 0 1 1 0 0 1 ) , ( B E A .(6 分)由初等变换与初等矩阵的联系知÷ ÷ ÷ øö ç ç ç è æ - - = 1 1 3 1 1 1 X .(10 分)五、证明题(每小题10分,共20分)21. 证 充分性 若 ()|() g x f x ,则存在多项式 ) (x h ,使得 ) ( ) ( ) ( x h x g x f = .两端 平方得 ) ( ) ( ) ( 2 2 2 x h x g x f = ,即 ) ( | ) ( 22 x f x g .(4 分)必要性 若 0 g = ,则 0 f = ,结论成立. 若g 为非零常数,易知结论也成立.若 1 ) ( ³ ¶ g ,由多项式的因式分解定理,设 f g , 标准分解式为12 12 s r r r s g ap p p = L , 12 12 , sm m m s f bp p p = L i p 是不可约多项式。
高等代数习题集
高等代数习题集苏州大学数学科学学院高等代数组收集2003, 4,301.设X = ,求X。
2.设二次型f(x1, x2,... , x n)是不定的,证明:存在n维向量X0,使X0'AX0= 0,其中A是该二次型的矩阵。
3.设W = {f (x)| f (x) P[x]4, f (2) = 0}。
a证明:W是P[x]4的子空间。
b求W的维数与一组基。
4.在R3中定义变换A:任意 (x1, x2, x3) R3, A(x1, x2, x3) = (2x2 + x3,x1 -4x2, 3x3)。
1,证明:A是Rr3上线性变换,2,求A在基xi1 = (1, 0, 0), xi2 = (0, 1, 0), xi3 = (1, 1, 1)下的矩阵。
5.设,求正交矩阵T,使T'AT成对角形。
6.设V是数域P上n维线性空间,A是V上可逆线性变换,W是A的不变子空间。
证明:W也是A-1的不变子空间。
7.设V是n维欧氏空间,A是V上变换。
若任意,V,有 (A, A)= (,)。
证明:A是V上线性变换,从而是V上正交变换。
8.设X = ,求X。
9.设A是奇数级的实对称矩阵,且| A| > 0,证明:存在实n维向量X00,使X0'AX0 > 0。
10.设A = ,W = {|R4, A = 0}。
证明:1.[1,]W是4的一个子空间。
2.[2,]求W的维数与一组基。
11.设B,C = ,在R2 x 2中定义变换A:任意X R2 x 2, A(X) = BXC。
1,证明:A是R2 x 2上线性变换。
2,求A在基E11, E12, E21, E22下的矩阵。
12.用正交线性替换,化实二次型f (x1, x2, x3) = 2x1x2 +2x1x3 -2x2x3为标准形。
13.设V为数域P上线性空间,A是V上线性变换,若 (A2)-1(0) = A-1(0),证明:V = AV.+A-1(0)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1. 设 A, B 均为 n 阶方阵, A 中的所有元素均为, B 中除左上角的元素为1外,其余元素均
为 0 。问: A 与 B 是否等价?是否合同?是否相似?为什么?
1 0 2
2. = 设 A 10
−3
5
。
λ
是
A
的最大特征值。求
A
的属于 λ
的特征子空间的一个基。
4 0 −1
25
的
Jordan
标准型。
0 −2 −7
3. 设α , β ∈ ℜn 且长度为 2 ,矩阵 A =En + αα T + ββ T 。求 A 的特征多项式。
4. 设 A 是 n 阶反对称矩阵, En 为单位矩阵。证明: (1) E + A 可逆;
(2) 设 Q =( E + A) ( E − )A −1 ,求证: Q 是正交矩阵。
AX = 0 与 BX = 0 同解。证明: A∗ 的非零列与 B∗ 的非零列成比例,其中 A∗ 和 B∗ 分别
是 A, B 的伴随矩阵。
7. 设σ ,τ 是 n 维欧氏空间V 的线性变换,对任意α , β ∈V ,都有 (σ (α ), β ) = (α ,τ (β )) 。
证明:σ 的核等于τ 的值域的正交补。
(2) 求正交矩阵 Q 和对角矩阵 B ,使得 QT AQ = B 。
7. 若 A 是 n 阶实矩阵, En 为 n 阶单位矩阵,且 AT + A =En ,其中 AT 是 A 的转置矩阵, 则 A 是可逆矩阵。
( ) 8. 设V 是有理数域 Q 上的线性空间,设σ 是V 的一个线性变换,设 g ( x=) x x2 + x −1 。
证明:如果σ 的多项式 g (σ ) = 0 ,则V 是σ 的核与值域的直和。
2007 年苏州大学高等代数考研试题
1. 化二次型 f ( x1, x2 , x3 ) = 2x1x2 − 2x2 x3 + 2x1x3 为标准型,并给出所用的非退化线性替换。
−1 2 6
2.
求三阶矩阵
1
7
5. 设 A , B 都是 m × n 矩阵,线性方程组 AX = 0 与 BX = 0 同解,则 A 与 B 的行向量组
等价。
6. 设三阶实对称矩阵 A 的各行元素之和均为 3 ,向量α =(−1, 2, −1)T , =β (0, −1,1)T 是
线性方程组 AX = 0 的两个解。 (1) 求 A 的特征值与特征向量;
且对角线元素全大于0.
2008 年苏州大学高等代数考研试题
1. 计算 n 阶行列式
2 1 00 0 0 0 1 2 10 0 0 0 01 20000
。
0 0 00 1 2 1 000001 2
( ) 2. 设实二次型 f = x12 + x22 + x32 + 2t x1x2 + x1x3 + x2 x3 。问当 t 取何值时,f 是正定的、
6. (18' )设σ 是数域 P 上的线性变换,且σ 2 =σ .证明:
(1) ker σ = {α −σ (α ) |α ∈V }.
(2)如果τ 是V 的线性变换, kerσ 和σ (V ) 都是τ 的不变子空间.
( ) 7. 20' 设σ 是欧氏空间V 的线性变换,且σ 3 +σ =0 .证明:σ 的迹为 0 . ( ) 8. 20' 设 A 为 n 阶实可逆矩阵.证明:存在正交矩阵 Q1,Q2 ,使得 Q1AQ2 为对角阵.
dimW1 ≠ dimW2 。
8. 设σ 是 n 维欧氏空间中的一个对称变换,= 则V kerσ ⊕σ (V ) 。
2006 年苏州大学高等代数考研试题
1. 用正交线性替换将实三元二次型 f (x1, x2 , x3 ) =x12 − 4x1x2 + 4x1x3 − 2x22 + 8x2 x3 − 2x32
5. 证明:实系数线性方程组 AX = B 有解的充要条件是用它的常数项依次构成的列向量 B 与齐次线性方程组 AX = 0 的解空间正交。
6. 设 A, B 是 n × n 实对称矩阵,且 A + B =E , E 为单位矩阵。证明下列结论等价:
(1) AB = 0 , 0 为零矩阵。(2) rank ( A) + rank ( B) = n 。
换。证明:α1,α2 ,,αs 线性无关。
( ) 5. 用正交线性替换化三元二次型 f x1, x2 , x3 =x12 − 2x22 − 2x32 − 4x1x2 + 4x1x3 + 8x2 x3
为标准型,并给出所用的正交线性替换。
6. 设 A, B 为两个 n 阶方阵, rank ( A) =rank ( B)= n −1 ,其中 n > 1 ,齐次线性方程组
5. 设三阶实对称矩阵 A 的各行元素之和均为 3 ,向量α =(−1, 2, −1)T , =β (0, −1,1)T 是
线性方程组 AX = 0 的两个解。 (3) 求 A 的特征值与特征向量; (4) 求正交矩阵 Q 和对角矩阵 B ,使得 QT AQ = B 。
6. 设 P 是一个数域,p ( x) 是 P[ x] 中次数大于零的多项式。证明:如果对于任意的 f ( x) ,
2012 年苏州大学高等代数考研试题
1. (18' )设 f ( x) 是 n 次多项式,则 f ( x) 有 n 重根的充要条件是 f ' ( x) f ( x) .
( ) 2. (18' )设 A 为 n 阶实矩阵,证明: rank ( A) = rank AΤ A .
3. (18' ) A, J 为 n 阶矩阵.证明:
(1) AJ = JA 的充要条件条件是 A = a11En +a12 J +a13 J 2 +L+a1n J n−1 .
0 0 0 L 0 1
1 0 0 L 0 1
其中
J
=
0 M
1 M
0 M
L O
0 M
1 . M
0 0 0 L 0 1
0 0 0 L 1 1
(2)令 C ( J ) = {A | AJ = JA} ,求 C ( J ) 的维数.
(3) 如果τ 是V 的线性变换,σ −1 (0) ,σ (V ) 都是τ 的不变子空间,则有στ = τσ 。
4. 设σ 是数域 P 上的向量空间V 的一个线性变换,α1 是σ 的属于特征值 λ 的特征向量,
向量组α1,α2 ,,αs 满足关系:(σ − λid )αi+1 = αi ,i = 1, 2,, s −1,其中 id 是恒等变
g ( x) ,由 p ( x) | f ( x) g ( x) 可以推出 p ( x) | f ( x) 或 p ( x) | g ( x) ,那么 p ( x) 是不可
约多项式。
7. 设 欧 氏 空 间 中 有 β ,α1,α2 ,,αn , β ≠ 0 , W1 = Span (α1,α2 ,,αn ) , W2 = Span ( β ,α1,α2 ,,αn ) 。 证 明 : 如 果 β ,α=i 0=,i 1, 2,, n , 那 么
明: A 和 B 至少有 r 个相同的特征值。
2004 年苏州大学高等代数考研试题
1 0 1
1.
1
求满足下列条件的
X
,
3
2
5
X
0 1
2 0
1 2
=
1 0
0 1
1
0
。
2. 设 P 是一个数域, p ( x) 是 P[ x] 中次数大于零的多项式。证明:如果对于任何的多项
变成标准形,并写出所用的非退化线性变换。
2 1 2. 设 A = −2 5
1 −1
−2
−4
。A
是否相似于一个对角矩阵?如果相似,则求出可逆矩阵
C
,
5
使得 C −1AC 为对角矩阵,且写出此对角矩阵。
3. 设 f (x)= an xn + an−1xn−1 + + a1x + a0 是一个整系数多项式,证明:如果 an + +a0 是
deg(r(x)) < 2 。
(1) (2)
证明映射 δ 是V 的一个线性变换。
{ } 求δ 在基 1, x, x2 , x3, x4 下的矩阵。
8.设 A, B 都是 n × n 矩阵,并且 AB = BA 。证明:如果 A, B 都相似于对角矩阵,则 A + B
也相似于对角矩阵。
2005 年苏州大学高等代数考研试题
一个奇数,则 f (x) 不能被 x −1整除,也不能被 x +1整除。
4. 设 A 是一个 n × n 矩阵,证明:如果 A 的秩等于 A2 的秩,则齐次线性方程组 AX = 0 与 齐次线性方程组 A2 X = 0 同解。
5. 设V 是有理数域 Q 上的线性空间, id 是V 的恒等变换。又设 δ 是V 的一个线性变换,
明:τ 与σ 可交换的充要条件τ 是 id ,σ ,σ 2 ,,σ n−1 的线性组合,其中 id 是恒等变换。
2003 年苏州大学高等代数考研试题
1.设 A 是 n × n 的实对称矩阵.证明:如果 λ0 是 A 的最小特征值,则 (1− λ0 )En + A 是正
定矩阵。
2.设 Ρ 是一个数域,V 是 Ρ 上 n 维的线性空间, Α 是V 的一个线性变换,记 W ={Αa | a ∈V}.证明: Α5 = 3Α2 − 6Α ,则V 是 Α 的核与W 的直和。