最新海淀一模数学试卷及答案
2023年北京海淀区高三一模数学试题及答案
海淀区2022—2023学年第二学期期中练习高三数学参考答案一、选择题二、填空题 (11)(,2)(1,)−∞−+∞(12)2(13)2π (答案不唯一,[,]62ϕππ∈) (14)1;(,0][2,)−∞+∞(15)①③三、解答题共6小题,共85分。
解答应写出文字说明、演算步骤或证明过程。
(16)(本小题13分)解:(Ⅰ)由直三棱柱111−ABC A B C 可知1BC CC ⊥,又因为AC BC ⊥,且1ACCC C =,所以BC ⊥平面11CC A A .由1C D ⊂平面11CC A A ,所以1BC C D ⊥.在矩形11CC A A 中,111,2AD DA CC ===,所以1DC DC ==.可得22211C C C D CD =+,所以1C D CD ⊥.又因为BC CD C =, 所以1C D ⊥平面BCD .(Ⅱ)由题意可知,1,,CA CB CC 两两垂直,如图建立空间直角坐标系C xyz −,则(0,0,0)C ,(1,0,1)D ,(0,1,0)B ,1(0,0,2)C ,(1,1,1)BD =−,1(0,1,2)BC =−,(1,0,1)CD =. 设平面1BC D 的一个法向量为(,,)x y z =n ,则10,0,BD BC ⎧⋅=⎪⎨⋅=⎪⎩n n 即0,20.x y z y z −+=⎧⎨−+=⎩令1z =,则2y =,1x =, 得(1,2,1)=n . 设直线CD 与平面1BC D 所成角为θ,则sin |cos ,|θ⋅=<>==CD CD CD n n n ,所以直线CD 与平面1BC D 所成角的正弦值为3.(17)(本小题14分)解:(Ⅰ)由sin 23sin b A a B 及正弦定理,得sin sin 23sin sin B A A B .由倍角公式得2sin sin cos 3sin sin B A A A B .在ABC △中,sin 0,sin 0A B , 得3cos 2A .因为π(0,)2A ,所以π6A .(Ⅱ)记ABC △的面积为ABC S △.选条件②:由(Ⅰ)知π6A ,又由题知33ABC S △, 可得1sin 2△ABC S bc A 得123bc . 又由条件②,即334b c ,解得33,4b c .由余弦定理,得2222cos 32716233427a b c bc A,所以7.a选条件③:又由条件③,即cos C =(0,π)C ∈,可得sin C =. 所以sin sin()sin cos cossin B A C AC A C =+=+12=+= 由(Ⅰ)知π6A, 又由题知33ABCS △,可得1sin 2△ABC S bc A . 得123bc .由正弦定理得::sin :sin :sin 7:a bc A B C ==.可设7,,a kbc ===.由bc =k =.得a =(18)(本小题14分) 解:(Ⅰ)设该户网购生鲜蔬菜次数超过20次为事件C ,在A 组10户中超过20次的有3户,由样本频率估计总体概率,则3()10P C =.(Ⅱ)由样本频率估计总体概率,一单元参与网购家庭随机抽取1户的网购生鲜蔬菜次数超过20次概率为310,二单元参与网购家庭随机抽取1户的网购生鲜蔬菜次数超过20次概率为710. X 的取值范围为{}0,1,2.3721(0)(1)(1)1010100P X ==−⨯−=, 373729(1)(1)(1)1010101050P X ==⨯−+−⨯=, 3721(2)1010100P X ==⨯=. 212921()012110050100E X =⨯+⨯+⨯=.(Ⅲ)12()()D D ξξ=.19. (本小题14分)解:(Ⅰ)依题意可得:22,b =⎧⎪⎨=⎪⎩解得 1.a b ⎧⎪⎨=⎪⎩椭圆E 的方程为2215x y +=.(Ⅱ)依题意, 可设直线l 方程为(0)y kx m km =+≠,1122(,),(,)M x y N x y . 联立方程221,5.x y y kx m ⎧+=⎪⎨⎪=+⎩得222(51)10550k x kmx m +++−=.22222(10)4(51)(55)10020200km k m k m ∆=−⋅+−=−+>,即2251k m >−.1221051km x x k +=−+,21225551m x x k −=+. 在直线l 方程y kx m =+中,令0y =,得m x k=−,得(,0)m P k −.依题意得11'(,)M x y −,得直线'M N 方程为211121()y y y x x y x x −=+++. 令0x =,得122112Q x y x y y x x +=+.所以△OPQ 的面积为1221121122OPQ P Q x y x y m S x y k x x ∆+=⋅=⋅+. 122112211212()()2()x y x y x kx m x kx m kx x m x x +=+++=++222225510102515151m km k k k k k −−=⋅−=+++. 即1102210OPQ m k S k km=⋅=△,解得14k =±,经检验符合题意. 所以k 的值为14±.解:(Ⅰ)当1a =时,()e x f x x =−.则(0)1f =.求导得'()e 1x f x =−,得'(0)0f =.所以曲线()y f x =在(0,(0))f 处的切线方程为1y =. (Ⅱ)求导得'()e 1ax f x a =−.当0a ≤时,'()0f x <恒成立,此时()f x 在R 上单调递减.当0a >时,令'()0f x =,解得ln =a x a −.()f x 与()f x '的变化情况如下:由上表可知,()f x 的减区间为ln (,)a a −∞−,增区间为ln (,)a a−+∞. 综上,当0a ≤时,()f x 的减区间为(,)−∞+∞,无增区间; 当0a >时,()f x 的减区间为ln (,)a a −∞−,增区间为ln (,)a a −+∞. (Ⅲ)将()f x 在区间[1,1]−上的最大值记为max ()f x ,最小值记为min ()f x .由题意,若[1,1]x ∃∈−,使得|()|3f x ≥成立,即max ()3f x ≥或min ()3f x ≤−. 当[1,1]x ∈−时,()e 1ax f x x x =−>−≥−.所以若[1,1]x ∃∈−,使得|()|3f x ≥成立,只需max ()3f x ≥. 由(Ⅱ)可知()f x 在区间[1,1]−上单调或先减后增,故max ()f x 为(1)f −与(1)f 中的较大者, 所以只需当(1)3f −≥或(1)3f ≥即可满足题意.即(1)e 13a f −−=+≥或(1)e 13a f =−≥.解得ln2a ≤−或ln 4a ≥.综上所述,a 的取值范围是(,ln 2][ln 4,)−∞−+∞.解:(Ⅰ)(ⅰ)不满足.令3i j ==,16i j a a =不是数列{}n a 中的项.(ⅱ)满足. 对于任意()i j b b i j ,≥,(21)(21)2(21)1i j b b i j ij i j =−−=−−+−.由于211ij i j −−+≥,故令21k ij i j =−−+即可.(Ⅱ)(1)对于有穷数列{}n a 记其非零项中,绝对值最大的一项为p a ,绝对值最小的一项为q a .故令i j p ==时,存在一项2||||k i j p a a a a ==.又p a 是数列{}n a 非零项中绝对值最大的,所以2||p p a a ≥,即0||1p a <≤. 再令i j q ==时,存在一项2||||k i j q a a a a ==.又q a 是数列{}n a 非零项中绝对值最小的,所以2||q q a a ≤,即||1q a ≥. 又1||||1q p a a ≤≤≤,所以数列所有非零项的绝对值均为1.又数列{}n a 的各项均不相等,所以其至多有0,1,1−共3项.所以3m ≤.(2)构造数列{}:0,1,1n a −.其任意两项乘积均为0,1,1−之一,满足性质①. 其连续三项满足0(1)10−−−=,满足性质②. 又其各项均不相等,所以该数列满足条件,此时3m =.(3)由(1)(2),m 的最大值为3.(Ⅲ)(1)首先证明:当120,1a a ><−时,数列满足2120,0,t t a a −><且2||||,1,2,3,t t a a t +<=.(*)因为对于任意数列的连续三项12,,n n n a a a ++,总有12121()()02n n n n n n a a a a a a ++++−−−−=. 即21n n n a a a ++=−或2112n n n a a a ++=−. 不论是哪种情形,均有 当10n n a a +>>时,21102n n n n a a a a ++≥−>>,即2||||n n a a +>. 当10n n a a +<<时,21102n n n n a a a a ++≤−<<,亦有2||||n n a a +>. 又1201a a >>−>,故性质(*)得证.(2)考虑123,,a a a 三项,有312a a a =−或31212a a a =−. 若312a a a =−, 则1321a a a =+<,此时令1i j ==,有211a a <,由性质(*)知不存在k 使得0k a >,且211k a a a =<.高三数学参考答案 第7页(共7页) 故只有31212a a a =−,此时1321322a a a =+<. 因为534323311155()22242a a a a a a a ≥−≥−−>=, 所以令1i j ==时,21594a a <<. 由性质(*)知,只有211a a =或213a a =. 当213a a =时,12132()4a a a a ==−=,此时令2,1i j ==,214a a =−但423152a a a ≤−=,即421||||a a a >,由性质(*)知不存在k 使得21k a a a =. 所以211a a =,即11a =,从而22a =−.(3)经验证,数列{}n a :1222,2,nn n n a n −⎧⎪=⎨⎪−⎩是奇数,是偶数满足条件,下面证这是唯一满足条件的数列. 假设s a 是第一个不满足上述通项公式的项,4s ≥.当21,2s t t =+≥时,只能为11212122(2)32t t t t t t a a a −−+−=−=−−=⋅. 令21,3i t j =−=,则2t i j a a =.但21212t t t a a −+<<,由性质(*),不存在k 使得i j k a a a =.当2,2s t t =≥时,只能为11222221112232222t t t t t t t a a a −−−−−=−=−−=−⋅>−. 则2222122122211115119()222224216t t t t t t t t t t a a a a a a a a ++−−≤−≤−−=−=−⋅<−. 令22,3i t j =−=,则2t i j a a =−,但2222t t t a a +>−>,由性质(*),不存在k 使得i j k a a a =. 故不存在不满足上述通项公式的项.综上,数列{}n a 的通项公式为1222,2,nn n n a n −⎧⎪=⎨⎪−⎩是奇数,是偶数.。
北京市海淀区2024-2025学年九年级数学第一学期开学统考模拟试题【含答案】
北京市海淀区2024-2025学年九年级数学第一学期开学统考模拟试题题号一二三四五总分得分批阅人A 卷(100分)一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、(4分)的结果是()A .2B .﹣2C .±2D .±42、(4分)如图,已知数轴上点P 表示的数为1-,点A 表示的数为1,过点A 作直线l 垂直于PA ,在l 上取点B ,使1AB =,以点P 为圆心,以PB 为半径作弧,弧与数轴的交点C 所表示的数为()A .B 1-C 1D .13、(4分)数据42.610-⨯用小数表示为()A .0.0026B .0.00026C .0.00026-D .0.0000264、(4分)已知关于x 的一元二次方程......()222340m x x m -++-=的一个根是0,则m 的值为()A .2m =±B .2m =C .2m =-D .1m =5、(4分)下列代数式属于分式的是()A .2xB .3yC .1xx -D .2x+y6、(4分)下列各式中,不是二次根式的是()A B C .D .7、(4分)方程20x x -=的根是()A .1x =B .120x x ==C .121x x ==D .10x =,21x =8、(4分)服装店为了解某品牌外套销售情况,对各种码数销量进行统计店主最应关注的统计量是()A .平均数B .中位数C .方差D .众数二、填空题(本大题共5个小题,每小题4分,共20分)9、(4分)若式子有意义,则x 的取值范围为___________.10、(4分)如图,在菱形ABCD 中,∠ABC =∠EAF =60,∠BAE =20,则∠CEF =________.11、(4分)如图,在Rt △ABC 中,D 是斜边AB 的中点,AB=2,则CD 的长为_____.12、(4分)如图,双曲线3(0)y x x =>经过四边形OABC 的顶点A 、C ,∠ABC =90°,OC平分OA 与x 轴正半轴的夹角,AB ∥x 轴,将△ABC 沿AC 翻折后得到△AB 'C ,B '点落在OA 上,则四边形OABC 的面积是_____.13、(4分)若分式2x x x 的值为零,则x=___________。
2023年北京市海淀区中考数学一模试卷及答案解析
2023年北京市海淀区中考数学一模试卷及答
案解析
(正文部分)
一、选择题(每小题3分,共30分)
1. 题目内容
答案解析
2. 题目内容
答案解析
3. 题目内容
答案解析
...
二、填空题(每小题4分,共40分)
1. 题目内容
答案解析
2. 题目内容
答案解析
3. 题目内容
...
三、解答题(每小题10分,共50分)
1. 题目内容
解答思路及步骤
2. 题目内容
解答思路及步骤
3. 题目内容
解答思路及步骤
...
四、应用题(共30分)
1. 题目内容
解答思路及步骤
2. 题目内容
解答思路及步骤
3. 题目内容
解答思路及步骤
...
本次数学一模试卷共计150分,包括选择题、填空题、解答题和应
用题四个部分。
试卷难度适中,内容覆盖了中考数学知识的各个方面,旨在考察学生的数学运算能力、问题解决能力以及应用数学知识的能力。
希望同学们能够认真答题,按照题目要求进行解答,展现自己的
数学水平。
答案解析部分所提供的解题思路仅供参考,同学们在解答题目时应
充分发挥自己的思维能力,灵活运用所学的知识进行分析和解决。
通
过认真研究试卷中的各个题目,可以更好地理解数学的知识点,并为
今后的学习提供帮助。
祝愿同学们在中考数学科目上取得优异的成绩!
以上为2023年北京市海淀区中考数学一模试卷及答案解析,请同
学们参考。
2022年北京市海淀区中考数学一模试卷(附答案详解)
2022年北京市海淀区中考数学一模试卷一、选择题(本大题共8小题,共16.0分)1.如图是一个拱形积木玩具,其主视图是()A. B.C. D.2.2022年北京打造了一届绿色环保的冬奥会.张家口赛区按照“渗、滞、蓄、净、用、排”的原则,在古杨树场馆群修建了250000立方米雨水收集池,用于收集雨水和融雪水,最大限度减少水资源浪费.将250000用科学记数法表示应为()A. 0.25×105B. 2.5×105C.2.5×104 D. 25×1043.如图,∠AOB=160°,∠COB=20°.若OD平分∠AOC,则∠AOD的大小为()A. 20°B. 70°C. 80°D. 140°4.若一个多边形的每个外角都是30°,则这个多边形的边数为()A. 6B. 8C. 10D. 125.不透明的袋子中装有2个红球,3个黑球,这些球除颜色外无其他差别.从袋子中随机摸出一个球,则摸出红球的概率是()A. 25B. 35C. 23D. 126.实数a,b在数轴上的对应点的位置如图所示,下列结论中正确的是()A. a<−1B. |a|<|b||C. a+b<0D. b−a<07.北京2022年冬奥会的开幕式上,各个国家和地区代表团入场所持的引导牌是中国结和雪花融合的造型,如图1是中国体育代表团的引导牌.观察发现,图2中的图案可以由图3中的图案经过对称、旋转等变换得到.下列关于图2和图3的说法中,不正确的是()A. 图2中的图案是轴对称图形B. 图2中的图案是中心对称图形C. 图2中的图案绕某个固定点旋转60°,可以与自身重合D. 将图3中的图案绕某个固定点连续旋转若干次,每次旋转120°,可以设计出图2中的图案8.某校举办校庆晚会,其主舞台为一圆形舞台,圆心为O.A,B是舞台边缘上两个固定位置,由线段AB及优弧AB⏜围成的区域是表演区.若在A处安装一台某种型号的灯光装置,其照亮区域如图1中阴影所示.若在B处再安装一台同种型号的灯光装置,恰好可以照亮整个表演区,如图2中阴影所示.若将灯光装置改放在如图3所示的点M,N或P处,能使表演区完全照亮的方案可能是()①在M处放置2台该型号的灯光装置②在M,N处各放置1台该型号的灯光装置③在P处放置2台该型号的灯光装置A. ①②B. ①③C. ②③D. ①②③二、填空题(本大题共8小题,共16.0分)9.若代数式2有意义,则实数x的取值范围是______.x−310.已知√2<m<√11,且m是整数,请写出一个符合要求的m的值______.11.分解因式:3m2−3n2=______ .12.如图,PA,PB是⊙O的切线,A,B为切点.若∠APB=60°,则∠AOP的大小为______.13.若关于x的一元二次方程x2−4x+m=0没有实数根,则m的取值范围是______.14.在平面直角坐标系xOy中,直线y=ax与双曲线y=kx交于点A(−1,2)和点B,则点B 的坐标为______.15.如图,在4×4的正方形网格中,A,B,C,D,E是网格线交点,请画出一个△DEF,使得△DEF与△ABC全等.16.甲、乙在如下所示的表格中从左至右依次填数.已知表中第一个数字是1,甲、乙轮流从2,3,4,5,6,7,8,9中选出一个数字填入表中(表中已出现的数字不再重复使用).每次填数时,甲会选择填入后使表中数据方差最大的数字,乙会选择填入后使表中数据方差最小的数字.甲先填,请你在表中空白处填出一种符合要求的填数结果.1______ ______ ______ ______三、计算题(本大题共1小题,共5.0分)17.计算:√3tan60°−√8+|−√2|−(1−π)0.四、解答题(本大题共11小题,共63.0分)18.解不等式组:{4(x−1)<3x 5x+32>x.19.已知m2−2mn−3=0.求代数式(m−n)2+(m+n)(m−n)−m2的值.20.《元史⋅天文志》中记载了元朝名天文学家郭守敬主持的一次大规模观测,称为“四海测验”、这次观测主要使用了“立杆测影”的方法,在二十七个观测点测量出的各地的“北极出地”与现在人们所说的“北线”完全吻合,利用类似的原理,我们也可以测量出所在地的纬度.如图1所示.①春分时,太阳光直射赤道,此时在M地直立一根杆子MN,在太阳光照射下,杆子MN会在地面上形成影子,通过测量杆子与它的影子的长度,可以计算出太阳光与杆子MN所成的夹角α;②由于同一时刻的太阳光线可以近似看成是平行的.所以根据太阳光与杆子MN所成的夹角α可以推算得到M地的纬度,即∠MOB的大小.(1)图2是①中在M地测算太阳光与杆子MN所成夹角α的示意图.过点M作MN的垂线与直线CD交于点Q,则线段MQ可以看成是杆子MN在地面上形成的影子.使用直尺和圆规,在图2中作出影子MQ(保留作图痕迹);(2)依据图1完成如下证明.证明:∵AB//CD,∴∠MOB=______=α(______)(填推理的依据)∴M地的纬度为α.21.如图,在△ABC中,AB=AC,D是BC的中点,点E,F在射线AD上,且DE=DF.(1)求证:四边形BECF是菱形;(2)若AD=BC=6,AE=BE,求菱形BECF的面积.x的图象22.在平面直角坐标系xOy中,一次函数y=kx+b(k≠0)的图象由函数y=12平移得到,且经过点(−2,0).(1)求这个一次函数的解析式;(2)当x>m时,对于x的每一个值,函数y=3x−4的值大于一次函数y=kx+b的值,直接写出m的取值范围.23.数学学习小组的同学共同探究体积为330mL圆柱形有盖容器(如图所示)的设计方案.他们想探究容器表面积与底面半径的关系.具体研究过程如下,请补充完整:(1)建立模型:设该容器的表面积为Scm2,底面半径为x cm,高为y cm,则330=πx2y,①S=2πx2+2πxy,②由①式得y=330,代入②式得πx2S=2πx2+660,③x可知,S是x的函数,自变量x的取值范围是x>0.(2)探究函数:根据函数解析式③,按照如表中自变量x的值计算(精确到个位),得到了S与x的几组对应值:x/cm…1 1.52 2.53 3.54 4.55 5.56…S…666454355303277266266274289310336…/cm2在下面平面直角坐标系中,描出了以上表中各对对应值为坐标的点,根据描出的点,画出该函数的图象;(3)解决问题:根据图表回答,①半径为2.4cm的圆柱形容器比半径为4.4cm的圆柱形容器表面积______(填“大”或“小”);②若容器的表面积为300cm2,容器底面半径约为______cm(精确到0.1).24.如图,⊙O是△ABC的外按,B是⊙O的直径,点D为AC⏜的中点,⊙O的切线DE交OC的延长线于点E.(1)求证:DE//AC;(2)连接BD交AC于点P,若AC=8,cosA=4,求DE5和BP的长.25.为增进学生对营养与健康知识的了解,某校开展了两次知识问答活动,从中随机抽取了20名学生两次活动的成绩(百分制),并对数据(成绩)进行整理、描述和分析.如图是这20名学生第一次活动和第二次活动成绩情况统计图.(1)①学生甲第一次成绩是85分,则该生第二次成绩是______分,他两次活动的平均成绩是______分;②学生乙第一次成绩低于80分,第二次成绩高于90分,请在图中用“〇”圈出代表乙的点;(2)为了解每位学生两次活动平均成绩的情况,A,B,C三人分别作出了每位学生两次活动平均成绩的频数分布直方图(数据分成6组:70≤x<75,75≤x<80,80≤x<85,85≤x<90,90≤x<95,95≤x≤100):已知这三人中只有一人正确作出了统计图,则作图正确的是______;(3)假设有400名学生参加此次活动,估计两次活动平均成绩不低于90分的学生人数为______.26.在平面直角坐标系xOy中,二次函数y=ax2−2ax(a≠0)的图象经过点A(−1,3).(1)求该二次函数的解析式以及图象顶点的坐标;(2)一次函数y=2x+b的图象经过点A,点(m,y1)在一次函数y=2x+b的图象上,点(m+4,y2)在二次函数y=ax2−2ax的图象上.若y1>y2,求m的取值范围.27.在Rt△ABC中,∠ABC=90°,∠BAC=30°,D为边BC上一动点,点E在边AC上,CE=CD.点D关于点B的对称点为点F,连接AD,P为AD的中点,连接PE,PF,EF.(1)如图1,当点D与点B重合时,写出线段PE与PF之间的位置关系与数量关系;(2)如图2,当点D与点B,C不重合时,判断(1)中所得的结论是否仍然成立?若成立,请给出证明,若不成立,请举出反例.在平面直角坐标系xOy中,对于点P(x1,y1),给出如下定义:当点Q(x2,y2)满足x1+x2=y1+y2时,称点Q是点P的等和点.已知点P(2,0).(1)在Q1(0,2),Q2(−2,−1),Q3(1,3)中,点P的等和点有______;(2)点A在直线y=−x+4上,若点P的等和点也是点A的等和点,求点A的坐标;(3)已知点B(b,0)和线段MN,对于所有满足BC=1的点C,线段MN上总存在线段PC上每个点的等和点.若MN的最小值为5,直接写出b的取值范围.答案和解析1.【答案】C【解析】解:从正面看得到的图形是下面有一半圆的图形.故选:C.从正面观察得到的图形是主视图.本题考查了简单组合体的三视图的知识,从正面看所得到的图形是主视图.2.【答案】B【解析】解:250000=2.5×105.故选:B.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正整数,当原数绝对值<1时,n是负整数.此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.【答案】B【解析】解:∵∠AOB=160°,∠COB=20°,∴∠AOC=∠AOB−∠BOC=140°,∵OD平分∠AOC,∠AOC=70°,∴∠AOD=12故选:B.由∠AOB=160°,∠COB=20°,得∠AOC=∠AOB−∠BOC=140°,又OD平分∠AOC,∠AOC=70°.即得∠AOD=12本题考查角的和差,解题的关键是掌握角平分线的定义及角的加减.4.【答案】D【解析】解:多边形的外角的个数是360÷30=12,所以多边形的边数是12.故答案为:D.利用任何多边形的外角和是360°除以外角度数即可求出答案.本题主要考查了多边形的外角和定理,已知外角求边数的这种方法是需要熟记的内容.5.【答案】A【解析】解:∵不透明的袋子中装有2个红球,3个黑球,共5个球,∴从袋子中随机摸出一个球是红球的概率是2,5故选A.用红球的个数除以球的总数即可.考查了概率的基本计算,用到的知识点为:概率等于所求情况数与总情况数之比.6.【答案】B【解析】解:由数轴知:−1<a<0,1<b<2.∴a<−1,|a|<|b|,a+b>0,b−a>0,∴B符合题意.故选:B.由数轴知:−1<a<0,1<b<2,进而解决此题.本题主要考查数轴上的点表示的实数以及绝对值,熟练掌握数轴上的点表示的实数以及绝对值是解决本题的关键.7.【答案】D【解析】解:图2是中心对称图形,原式轴对称图形,图2绕对称中心性质60°可以与自身重合,故选项A,B,C正确,将图3中的图案绕某个固定点连续旋转若干次,每次旋转60°,可以设计出图2中的图案,故D错误,故选D.根据中心对称图形,轴对称图形的定义一一判断即可.本题考查作图利用旋转设计图案,中心对称图形,轴对称图形的定义等知识,解题的关键是理解题意中心对称图形,轴对称图形的定义,属于中考常考题型.8.【答案】A【解析】解:①在M处放置2台该型号的灯光装置,如图:摄像装置的视角为∠CAB,∠CBA,∵∠CAB=∠CMB,∠AMC=∠CBA,∴在M处放置2台该型号的灯光装置,能使表演区完全照亮;②在M,N处各放置1台该型号的灯光装置,如图:∵∠CMB=∠CAB,∠ANC=∠ABC,∴在M,N处各放置1台该型号的灯光装置,能使表演区完全照亮;③在P处放置2台该型号的灯光装置,如图:∵∠CPB=CAB,∴由图可知,在P处放置2台该型号的灯光装置,不能使表演区完全照亮;故选:A.由摄像装置的视角,画出图形观察可得答案.本题考查圆周角定理,解题的关键是理解题意,学会添加常用辅助线,借助图形解决问题.9.【答案】x≠3【解析】解:根据题意得x−3≠0,解得x≠3,故答案为:x≠3.根据分式有意义的条件:分母不等于0即可得出答案.本题考查了分式有意义的条件,掌握分式有意义的条件:分母不等于0是解题的关键.10.【答案】2或3(写一个即可)【解析】解:∵1<√2<2,3<√11<4,又√2<m<√11,且m是整数,∴m=2或m=3,故答案为:2或3(写一个即可).按要求写出一个符合条件的m的值即可.本题考查无理数大小的估算,解题的关键是能能正确估算√2、√11的近似值.11.【答案】3(m+n)(m−n)【解析】解:3m2−3n2=3(m2−n2)=3(m+n)(m−n).故答案为:3(m+n)(m−n).首先提取公因式3,进而利用平方差公式进行分解即可.此题主要考查了提取公因式法和公式法分解因式,熟练运用平方差公式是解题关键.12.【答案】60°【解析】解:∵PA,PB是⊙O的切线,A,B为切点,∴OP平分∠APB,OA⊥PA,∴∠OAP=90°,∵∠APB=60°,∴∠APO=30°,∴∠AOP=90°−∠APO=60°.故答案为:60°.根据切线长定理得到OP平分∠APB,根据切线的性质得到OA⊥PA,则利用角平分线的定义得到∠APO=30°,然后利用互余计算出∠AOP的度数.本题考查了切线的性质:圆的切线垂直于经过切点的半径.也考查了切线长定理.13.【答案】m>4【解析】【分析】本题考查根的判别式,解题的关键是熟练运用根的判别式,本题属于基础题型.根据根的判别式列出不等式即可求出答案.【解答】解:由题意可知:△<0,∴16−4m<0,∴m>4故答案为m>414.【答案】(1,−2)交于点A(−1,2)和点B,【解析】解:∵直线y=ax与双曲线y=kx∵点A、B关于原点对称,∴B(1,−2),故答案为:(1,−2).根据双曲线的中心对称性即可求得点B的坐标.本题是正比例函数与反比例函数的交点问题,考查了反比例函数的性质,应用反比例函数的中心对称性是解题的关键.15.【答案】解:如图,△DEF为所作.【解析】利用全等三角形的判定方法画图.本题考查了作图−复杂作图:解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.也考查了全等三角形的判定.16.【答案】9528【解析】解:根据题意,开始数字是1,∵甲填入后数据方差最大,结合方差的公式可知,填入的数据距离平均数越远越好,∴甲填入的是9,即第2个方格填9,∵乙填入后数据方差最小,结合方差的公式可知,填入的数据越接近平均数越好,∴乙应该填入5,即第3个方格填5,∴甲需要再填入2,即第4个方格填2,此时的四位数为1,9,5,2,∴乙需要再填入8,即第4个方格填8,∴依次填入的数字是9,5,2,8,故答案为:9,5,2,8.根据开始数是1,甲填入后数据方差最大,结合方差的公式可知,填入的数据距离平均数越远越好,可以判断甲填9,乙填入后数据方差最小,结合方差的公式可知,填入的数据越接近平均数越好,可以判断乙填5,依次类推即可.本题主要考查方差的概念及应用,熟练掌握方差公式是解答此题的关键.17.【答案】解:原式=√3×√3−2√2+√2−1=3−2√2+√2−1=2−√2.【解析】代入特殊角的三角函数值,化简算术平方根,绝对值,零指数幂,然后算乘法,再算加减.本题考查实数的混合运算,理解a0=1(a≠0),熟记特殊角的三角函数值是解题关键.18.【答案】解:解不等式4(x−1)<3x,得:x<4,>x,得:x>−1,解不等式5x+32则不等式组的解集为−1<x<4.【解析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小找不到确定不等式组的解集.本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.19.【答案】解:(m−n)2+(m+n)(m−n)−m2=m2−2mn+n2+m2−n2−m2=m2−2mn,∵m2−2mn−3=0,∴m2−2mn=3,当m2−2mn=3时,原式=3.【解析】先根据完全平方公式和平方差公式进行计算,再合并同类项,求出m2−2mn= 3,最后代入求出答案即可.本题考查了整式的化简求值,能正确根据整式的运算法则进行化简是解此题的关键,注意运算顺序.20.【答案】∠OND两直线平行,内错角相等【解析】(1)解:如图2中,线段MQ即为所求;(2)证明:∵AB//CD,∴∠MOB=∠OND=α(两直线平行,内错角相等),∴M地的纬度为α.故答案为:∠OND,两直线平行,内错角相等.(1)过点M作MQ⊥MN交ND于点Q,线段MQ可即为所求;(2)利用平行线的性质求解即可.本题考查作图−应用与设计作图,平行投影等知识,解题的关键是理解题意,灵活运用所学知识解决问题,属于中考常考题型.21.【答案】(1)证明:∵AB=AC,D是BC的中点,∴AD⊥BC,BD=CD,∵DE=DF,∴四边形BECF是菱形;(2)解:设DE=x,则AE=BE=AD−DE=6−x,∵BD=CD=12BC=3,∴BD2+DE2=BE2,∴32+x2=(6−x)2,∴x=94,∴EF=2DE=92,∴菱形BECF的面积=12×BC⋅EF=12×6×92=272.【解析】(1)根据对角线互相平分且垂直即可证明四边形AECF是菱形;(2)设DE=x,则AE=BE=AD−DE=6−x,根据勾股定理列式32+x2=(6−x)2,计算可得x的值,然后利用菱形面积等于对角线乘积的一半即可解决问题.本题考查了菱形的判定与性质,全等三角形的判定与性质,等腰三角形的性质,勾股定理,解决本题的关键是掌握菱形的性质.22.【答案】解:(1)∵一次函数y=kx+b(k≠0)的图象由函数y=12x的图象平移得到,∴k=12,又∵一次函数y=12x+b的图象经过点(−2,0),∴−1+b=0.∴b=1,∴这个一次函数的表达式为y=12x+1;(2)解{y =12x +1y =3x −4得{x =2y =2, ∴直线y =3x −4与直线y =12x +1的交点为(2,2),∵当x >m 时,对于x 的每一个值,函数y =3x −4的值大于一次函数y =kx +b 的值, ∴m ≥2.【解析】(1)先根据直线平移时k 的值不变得出k =1,再将点A(1,2)代入y =x +b ,求出b 的值,即可得到一次函数的解析式;(2)根据点(1,2)结合图象即可求得.本题考查了一次函数图象与几何变换,一次函数与系数的关系,数形结合是解题的关键. 23.【答案】大 2.5【解析】解:(2)函数图象如图所示:(3)①根据图表可知,半径为2.4cm 的圆柱形容器比半径为4.4cm 的圆柱形容器表面积大,故答案为:大.②根据图表可知,x =2时,s =255;x =2.5时,s =303;并且图象是连续的, ∴当s =300cm 2,x ≈2.5cm ,故答案为:2.5.(2)根据图象上点连线即可;(3)根据图表即可求出答案.本题考查了函数图象,根据结合图象和表格信息是解题的关键.24.【答案】(1)证明:连接OD,∵DE与⊙O相切于点D,∴OD⊥DE,∵点D为AC⏜的中点,∴OD⊥AC,∴DE//AC;(2)解:连接OD与AC交于点H,连接AD,∵AB是直径,∴∠ACB=90°,∴AB=ACcosA =845=10,∴BC=√AB2−AC2=6,∵点D为AC⏜的中点,∴AH=CH=4,OD//BC,∴OH=12BC=3,∵OD=12AB=5,∴DH=OD−OH=5−3=2,∴AD=√AH2+DH2=√42+22=2√5,∵AB为直径,∴∠ADB=90°,∴BD=√AB2−AD2=√102−(2√5)2=4√5,∵OD//BC,∴△OPD∽△CBP,∴DPBP =ODCB,即4√5−BPBP=56,∴BP=2411√5,∵HC//DE,∴△OHC∽△ODE,∴OHOD =CHDE,即35=4DE,∴DE=203.【解析】(1)连接OD,根据切线的性质得OD⊥DE,根据垂径定理的推论得OD⊥AC,便可得AC//DE;(2)连接OD与AC交于点H,连接AD,在△ABC中,解直角三角形得AB,进而由勾股定理求得BC,再由中位线定理求得OH,在△ADH中由勾股定理求得AB,在△ABD中由勾股定理求得BD,最后由△PDO∽△PCB求得BP,由△OHC∽△ODE求得DE.本题是圆的综合题,主要考查了垂径定理的推论,相似三角形的性质与判定,勾股定理,关键是运用相似三角形的知识解题.25.【答案】9087.5B180【解析】解:(1)①由统计图可以看出横坐标为85的直线上只有一个点,其纵坐标为90,因此这两次的平均分是(85+90)÷2=87.5,故答案为:90,87.5;②如图所示,符合题目要求的范围在直线x=80的左边,直线y=90以上,在图中圈出的就是所求.(2)由统计图可以看出,第一次成绩70≤x<75的点有6个,75≤x<80的点有2个,80≤x<85的点有2个,85≤x<90的点有2个,90≤x<95的点有5个,95≤x≤100的点有4个,第二次成绩70≤x<75的点有4个,75≤x<80的点有3个,80≤x<85的点有1个,85≤x<90的点有1个,90≤x<95的点有5个,95≤x≤100的点有6个,∴B作图正确.故答案为:B;(3)400名学生参加此次活动,估计两次活动平均成绩不低于90分的学生人数为:=180(人).400×920故答案为:180.(1)①根据图象直接得到,再求平均即可;②符合题目要求的范围在直线x=80的左边,直线y=90以上,圈出即可;(2)根据统计图数出落在各区间的频数,再与在直方图上表示的数对照即可求解;(3)用总人数乘以抽样中两次活动平均成绩不低于90分的占比即可.本题考查了看图知识,求平均数,频数分布直方图,解题的关键是掌握频数分布直方图知识.26.【答案】解:(1)将点A(−1,3)代入y=ax2−2ax得:a+2a=3,解得:a=1,∴y=x2−2x=(x−1)2−1,∴图象顶点的坐标为(1,−1);(2)∵一次函数y=2x+b的图象经过点A,∴−2+b=3,∴b=5,∴y=2x+5,∵点(m,y1)在一次函数y=2x+5的图象上,∴y1=2m+5,∵点(m+4,y2)在二次函数y=x2−2x的图象上,∴y2=(m+4)2−2(m+4)=m2+6m+8,∵y1>y2,∴2m+5>m2+6m+8,即m2+4m+3<0,令y=m2+4m+3,当y=0时,m2+4m+3=0,解得:x1=−1,x2=−3,∴抛物线与x轴交点为(−1,0)和(−3,0),∵抛物线开口项上,∴m2+4m+3<0的解为:−3<m<−1,∴m的取值范围是−3<m<−1.【解析】(1)把点A(−1,3)代入y=ax2−2ax得出关于a的方程,解方程求出a的值,进而求出二次函数的解析式,将二次函数的解析式化为顶点式,即可求出顶点坐标;(2)先求出一次函数的解析式,把点(m,y1)代入一次函数解析式得出y1=2m+5,把点(m+4,y2)代入二次函数解析式得出y2=m2+6m+8,再由y1>y2得出2m+5>m2+6m+8,即m2+4m+3<0,利用二次函数的性质求出不等式的解集,即可得出m的取值范围.本题考查了待定系数法求二次函数解析式,二次函数的性质,掌握待定系数法,利用二次函数的性质求一元二次不等式的解集是解决问题的关键.27.【答案】解:(1)PE⊥PF,PEPF =√33.理由如下:由题意知,D,B,F三点重合,∴CD=BC,PF=PD=PB,∵∠ABC=90°,∠BAC=30°,∴∠ACB=60°,BC=12AC,∵CE=CD,∴CE=CD=BC=12AC,∴点E为线段AC的中点,∵点P是AD的中点,∴PE是△ADC的中位线,∴PE⊥PF,PE=12CD=12BC,∴PF=12AB=√32BC,∴,PEPF =12BC√32BC=√33.(2)PE⊥PF,PEPF =√33的关系仍成立.证明:如图,连接DE,作PM⊥⊥BC于M,PG//x轴,过E作GN⊥BC交BC于N,交PG于G,由题意可知,PM是△ABD的中位线,BD=FB,△CDE是等边三角形,四边形PMNG是矩形,设DC=c,FD=BD=b,∴BC=BD+DC=b+c,AB=√3(b+c),PM=√32(b+c),BM=b2,FM=32b,DN=1 2DC=12c,EN=√32c,GE=PM−EN=√32b,PG=MN=12(b+c),FN=FB+BD+DN=2b+12c,在Rt△PFM中,由勾股定理得PF2=FM2+PM2=(32b)2+[√32(b+c)]2=94b2+34(b+c)2,在Rt△PEG中,由勾股定理得PE2=GE2+PG2=(√32b)2+[12(b+c)]2=34b2+14(b+c)2,在Rt△EFN中,由勾股定理得EF2=EN2+FN2=(√32c)2+[2b+12c)]2=3b2+(b+c)2,∴PE2PF2=34b2+14(b+c)294b2+34(b+c)2=13,∴PEPF =√33,∵PE2+PF2=34b2+14(b+c)2+94b2+34(b+c)2=3b2+(b+c)2=EF2,∴∠EPF=90°.【解析】(1)由题意知D,B,F三点重合,则CD=BC,PF=PD=PB,含30°的直角三角形中BC=12AC,由CE=CD,可知CE=CD=BC=12AC,PE是△ADC的中位线,有PE⊥PF,PE=12CD=12BC,PF=12AB=√32BC,然后求出比值即可;(2)如图2,连接DE,作PM⊥BC于M,PG//x轴,过E作GN⊥BC交BC于N,交PG于G,由题意知,PM是△ABD的中位线,BD=FB,△CDE是等边三角形,四边形PMNG是矩形,设DC=c,FD=BD=b,则BC=BD+DC=b+c,AB=√3(b+c),PM=√3 2(b+c),BM=b2,FM=32b,DN=12DC=12c,EN=√32c,GE=PM−EN=√32b,PG=MN=12(b+c),FN=FB+BD+DN=2b+12c,在Rt△PFM中,由勾股定理得PF2=FM2+PM2,求出用a,b表示的PF2的值,在Rt△PEG中,由勾股定理得PE2= GE2+PG2,求出用a,b表示的PE2的值,在Rt△EFN中,由勾股定理得EF2=EN2+FN2,求出用a.,b表示的EF2的值,求出可得PE2PF2的值,进而可得PEPF的值,根据PE2+PF2与EF2的数量关系判断PE与PF的位置关系即可.本题属于三角形综合题,涉及勾股定理,中位线定理,等边三角形的性质与判定,含30°角的直角三角形等知识.计算比较复杂,作出正确的辅助线是解题关键.28.【答案】Q1,Q3【解析】解:(1)Q1(0,2),则2+0=0+2,∴Q1(0,2)是点P的等和点;Q2(−2,−1),则2+(−2)≠0+(−1),∴Q2(−2,−1)不是点P的等和点;Q3(1,3),则2+1=0+3,∴Q3(1,3)是点P的等和点;故答案为:Q1,Q3;(2)设点P(2,0)的等和点为(m,n),∴2+m=n,设A(t,−t+4),则A点的等和点为(m,n),∴t+m=−t+4+n,∴t=3,∴A(3,1);(3)∵B(b,0),BC=1,∴C点在以B为圆心,半径为1的圆上,∵线段MN上总存在线段PC上每个点的等和点,∴线段MN上的点与线段PC上的点相对应,∵MN的最小值为5,∴PC的最小值为5,当P点在B点的左侧时,b−2−1≥5,∴b≥8;当P点在B点的右侧时,2−b−1≥5,∴b≤−4;综上所述:b≥8或b≤−4.(1)根据定义判断即可;(2)设点P(2,0)的等和点为(m,n),则2+m=n,设A(t,−t+4),则A点的等和点为(m,n),则t+m=−t+4+n,即可求A(3,1);(3)由题意可知C点在以B为圆心,半径为1的圆上,PC的最小值为5,当P点在B点的左侧时,b−2−1≥5,b≥8;当P点在B点的右侧时,2−b−1≥5,b≤−4.本题考查一次函数的综合应用,熟练掌握一次函数的图象及性质,理解新定义,将所求问题与圆相结合是解题的关键.。
北京市海淀区2024届高三下学期期中练习(一模)数学试题(解析版)
海淀区2023—2024学年第二学期期中练习高三数学本试卷共6页,150分.考试时长120分钟.考生务必将答案答在答题卡上,在试卷上作答无效.考试结束后,将本试卷和答题卡一并交回.第一部分(选择题共40分)一、选择题共10小题,每小题4分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1.已知全集{|22}U x x =-≤≤,集合{}12A x x =-≤<,则U A =ð()A.(2,1)--B.[2,1]--C.(2,1){2}-- D.[2,1){2}-- 【答案】D 【解析】【分析】根据给定条件,利用补集的定义求解即得.【详解】全集{|22}U x x =-≤≤,集合{}12A x x =-≤<,所以[2,1){2}U A =-- ð.故选:D2.若复数z 满足i 1i z =+,则z 的共轭复数是()A.1i --B.1i +C.1i -+D.1i-【答案】B 【解析】【分析】根据复数代数形式的除法运算求出复数z 即可求解结果.【详解】解:复数z 满足i 1i z =+,所以()21i 1i 1i1i i i i 1z ++-+====--.所以z 的共轭复数是1i +.故选:B .3.已知{}n a 为等差数列,n S 为其前n 项和.若122a a =,公差0,0m d S ≠=,则m 的值为()A.4B.5C.6D.7【答案】B 【解析】【分析】利用等差数列的通项公式求出1a 和d 的关系,代入0m S =计算可得m 的值.【详解】由已知()12122a a a d ==+,得12a d =-,又()()1112022m m m m m S ma d md d --=+=-+=,又0d ≠,所以()1202m m m --+=,解得5m =或0m =(舍去)故选:B.4.已知向量,a b 满足||2,(2,0)a b ==,且||2a b += ,则,a b 〈〉= ()A.π6B.π3C.2π3 D.5π6【答案】C 【解析】【分析】将||2a b +=两边同时平方,将条件带入计算即可.【详解】由已知||2,2a b ==,所以()22224222cos ,44a b a b a b a b +=+⋅+=+⨯⨯⨯〈〉+=r r r r r r r r,得1cos ,2a b 〈〉=- ,又[],0,πa b 〈〉∈ ,所以2π,3a b 〈〉= .故选:C.5.若双曲线22221(0,0)x y a b a b-=>>上的一点到焦点(的距离比到焦点的距离大b ,则该双曲线的方程为()A.2214x y -= B.2212x y -= C.2212y x -= D.2214y x -=【答案】D 【解析】【分析】根据题意及双曲线的定义可知2a b =,c =,再结合222+=a b c ,求出,a b ,即可求出结果.【详解】由题知c =,根据题意,由双曲线的定义知2a b =,又222+=a b c ,所以255a =,得到221,4a b ==,所以双曲线的方程为2214y x -=,故选:D.6.设,αβ是两个不同的平面,,l m 是两条直线,且,m l αα⊂⊥.则“l β⊥”是“//m β”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件【答案】A 【解析】【分析】通过面面平行的性质判断充分性,通过列举例子判断必要性.【详解】l β⊥,且l α⊥,所以//αβ,又m α⊂,所以//m β,充分性满足,如图:满足//m β,,m l αα⊂⊥,但l β⊥不成立,故必要性不满足,所以“l β⊥”是“//m β”的充分而不必要条件.故选:A .7.已知()()3,0lg 1,0x x f x x x ⎧≤⎪=⎨+>⎪⎩,函数()f x 的零点个数为m ,过点(0,2)与曲线()y f x =相切的直线的条数为n ,则,m n 的值分别为()A.1,1B.1,2C.2,1D.2,2【答案】B 【解析】【分析】借助分段函数性质计算可得m ,借助导数的几何意义及零点的存在性定理可得n .【详解】令()0f x =,即0x ≤时,30x =,解得0x =,0x >时,()lg 10x +=,无解,故1m =,设过点(0,2)与曲线()y f x =相切的直线的切点为()00,x y ,当0x <时,()23f x x '=,则有()320003y x x x x -=-,有()3200023x x x -=-,整理可得301x =-,即01x =-,即当00x <时,有一条切线,当0x >时,()lg e1f x x '=+,则有()()000lg 1e lg 1y x x x x -=-++,有()()000l 2g elg 11x x x -+=-+,整理可得()()()000221lg 10lg e x x x ++-++=,令()()()()()2l 0g 2l 1e 1g g x x x x x =++-++>,则()()2lg 1g x x '=-+,令()0g x '=,可得99x =,故当()0,99x ∈时,()0g x '>,即()g x 在()0,99上单调递增,当()99,x ∈+∞时,()0g x '<,即()g x 在()99,∞+上单调递减,由()()992lg e 99220099lg e 0g =+⨯+-=>,()02020g =-=>,故()g x 在()0,99x ∈上没有零点,又()()9992lg e 999210003999lg e 10000g =+⨯+-⨯=-<,故()g x 在()99,999上必有唯一零点,即当00x >时,亦可有一条切线符合要求,故2n =.故选:B.8.在平面直角坐标系xOy 中,角α以Ox 为始边,终边在第三象限.则()A.sin cos tan ααα-≤B.sin cos tan ααα-≥C.sin cos tan ααα⋅<D.sin cos tan ααα⋅>【答案】C 【解析】【分析】对A 、B :举出反例即可得;对C 、D :借助三角函数的商数关系及其值域计算即可得.【详解】由题意可得sin 0α<、cos 0α<,tan 0α>,对A :当sin 0α-→时,cos 1α→-,则sin cos 1αα-→,tan 0α→,此时sin cos tan ααα->,故A 错误;对B :当5π4α=时,1sin cos sinc 5π5π5π0tan 44os 4αα-=-=<=,故B 错误;对C 、D :22sin sin cos cos cos tan cos ααααααα⋅=⋅=⋅,由1cos 0α-<<,故()2cos 0,1α∈,则2cos tan tan ααα⋅<,即sin cos tan ααα⋅<,故C 正确,D 错误.故选:C.9.函数()f x 是定义在(4,4)-上的偶函数,其图象如图所示,(3)0f =.设()f x '是()f x 的导函数,则关于x 的不等式(1)()0f x f x '+⋅≥的解集是()A.[0,2]B.[3,0][3,4)-C.(5,0][2,4)-D.(4,0][2,3)- 【答案】D 【解析】【分析】借助函数图象与导数的关系计算即可得.【详解】由(3)0f =,且()f x 为偶函数,故(3)0f -=,由导数性质结合图象可得当()4,0x ∈-时,()0f x '<,当()0,4x ∈时,()0f x '>,当0x =时,即()00f '=,则由(1)()0f x f x '+⋅≥,有41444x x -<+<⎧⎨-<<⎩,解得43x -<<,亦可得()()100f x f x ⎧+>>'⎪⎨⎪⎩,或()()100f x f x ⎧+<<'⎪⎨⎪⎩,或()10f x +=,或()0f x '=,由()()100f x f x ⎧+>>'⎪⎨⎪⎩可得41304x x -<+<-⎧⎨<<⎩或31404x x <+<⎧⎨<<⎩,即23x <<,由()()100f x f x ⎧+<<'⎪⎨⎪⎩可得31340x x -<+<⎧⎨-<<⎩,即40x -<<,由()10f x +=,可得13x +=±,即2x =或4x =-(舍去,不在定义域内),由()0f x '=,可得0x =,综上所述,关于x 的不等式(1)()0f x f x '+⋅≥的解集为(4,0][2,3)- .故选:D.10.某生物兴趣小组在显微镜下拍摄到一种黏菌的繁殖轨迹,如图1.通过观察发现,该黏菌繁殖符合如下规律:①黏菌沿直线繁殖一段距离后,就会以该直线为对称轴分叉(分叉的角度约为60︒),再沿直线繁殖,…;②每次分叉后沿直线繁殖的距离约为前一段沿直线繁殖的距离的一半.于是,该组同学将整个繁殖过程抽象为如图2所示的一个数学模型:黏菌从圆形培养皿的中心O 开始,沿直线繁殖到11A ,然后分叉向21A 与22A 方向继续繁殖,其中21112260A A A ∠=︒,且1121A A 与1122A A 关于11OA 所在直线对称,112111221112A A A A OA ==….若114cm OA =,为保证黏菌在繁殖过程中不会碰到培养皿壁,则培养皿的半径r (*N r ∈,单位:cm )至少为()A.6B.7C.8D.9【答案】C 【解析】【分析】根据黏菌的繁殖规律可得每次繁殖在11OA 方向上前进的距离,结合无穷等比递缩数列的和的计算公式,即可判断答案.【详解】由题意可知,114cm OA =,只要计算出黏菌沿直线一直繁殖下去,在11OA 方向上的距离的范围,即可确定培养皿的半径的范围,依题意可知黏菌的繁殖规律,由此可得每次繁殖在11OA 方向上前进的距离依次为:1114,2,222482⨯⨯⨯ ,则31353842155722244+⨯++⨯=+>+=,黏菌无限繁殖下去,每次繁殖在11OA 方向上前进的距离和即为两个无穷等比递缩数列的和,即1311432164316841+281142282331144++⎛⎫⎛⎫++++++≈+⨯= ⎪ ⎪⎝⎭⎝⎭--,综合可得培养皿的半径r (*N r ∈,单位:cm )至少为8cm ,故选:C【点睛】关键点点睛:本题考查了数列的应用问题,背景比较新颖,解答的关键是理解题意,能明确黏菌的繁殖规律,从而求出每次繁殖在11OA 方向上前进的距离的和,结合等比数列求和即可.第二部分(非选择题共110分)二、填空题共5小题,每小题5分,共25分.11.已知ln 2ab=,则22ln ln a b -=_______.【答案】4【解析】【分析】直接利于对数的运算性质求解.【详解】因为ln2ab=,所以22222ln ln ln ln 2ln 4a a a a b b b b ⎛⎫-==== ⎪⎝⎭.故答案为:4.12.已知22:(1)3C x y -+= ,线段AB 是过点(2,1)的弦,则AB 的最小值为_______.【答案】2【解析】【分析】借助直径与弦AB 垂直时,AB 有最小,计算即可得.【详解】由22(21)123-+=<,故点(2,1)在圆的内部,且该圆圆心为()1,0设圆心到直线AB 的距离为d ,由垂径定理可得2222AB r d ⎛⎫=- ⎪⎝⎭,即AB =,故当d 取最大值时,AB 有最小值,又max d ==故2AB =≥=.故答案为:2.13.若443243210(2)x a x a x a x a x a -=++++,则0a =_______;13024a a a a a +=++_______.【答案】①.16②.4041-【解析】【分析】借助赋值法,分别令0x =、1x =、=1x -计算即可得.【详解】令0x =,可得40(02)a -=,即40216a ==,令1x =,可得443210(12)a a a a a -=++++,即()44321011a a a a a ++++=-=,令=1x -,可得443210(12)a a a a a --=-+-+,即()443210381a a a a a -+-+=-=,则()()()4321043210420218182a a a a a a a a a a a a a +++++-+-+=++=+=,即42082412a a a ++==,则()42103114140a a a a a =-++==-+-,故130244041a a a a a +=-++.故答案为:16;4041-.14.已知函数π()sin sin 24f x x x ⎛⎫=+ ⎪⎝⎭,则5π4f ⎛⎫= ⎪⎝⎭_________;函数()f x 的图象的一个对称中心的坐标为_______.【答案】①.1-②.π(,0)4-(答案不唯一)【解析】【分析】根据函数表达式,代入即可求出5π4f ⎛⎫ ⎪⎝⎭的函数值,根据条件,先求出使()0f x =的一个取值π4x =-,再证明π(,0)4-是()f x 的一个对称中心即可.【详解】因为π()sin sin 24f x x x ⎛⎫=+⎪⎝⎭,所以55ππππsin()sin(214444f ⎛⎫=+⨯=- ⎪⎝⎭,因为()f x 定义域为R ,当π4x =-时,ππππ()sin sin()04442f ⎛⎫-=-+-= ⎪⎝⎭,下证π(,0)4-是()f x 的一个对称中心,在π()sin sin 24f x x x ⎛⎫=+ ⎪⎝⎭上任取点()00,P x y ,其关于π(,0)4-对称的点为00π(,)2P x y '---,又00000000ππππππ()sin sin 2()sin()sin(π2)sin()sin(2)224244f x x x x x x x y ⎛⎫--=--+--=----=-+=- ⎪⎝⎭,所以函数()f x 的图象的一个对称中心的坐标为π(,0)4-,故答案为:1-;π(,0)4-(答案不唯一)15.已知函数()f x =①函数()f x 是奇函数;②R k ∀∈,且0k ≠,关于x 的方程0()f x kx -=恰有两个不相等的实数根;③已知P 是曲线()y f x =上任意一点,1,02A ⎛⎫-⎪⎝⎭,则12AP ≥;④设()11,M x y 为曲线()y f x =上一点,()22,N x y 为曲线()y f x =-上一点.若121x x +=,则1MN ≥.其中所有正确结论的序号是_________.【答案】②③④【解析】【分析】对①:计算定义域即可得;对②:对0k >与0k <分类讨论,结合二次函数求根公式计算即可得;对③:借助两点间的距离公式与导数求取最值计算即可得;对④:结合函数性质与③中所得结论即可得.【详解】对①:令30x x -≥,即有()()110x x x +-≥,即[][]1,01,x ∞∈-⋃+,故函数()f x 不是奇函数,故①错误;对②:0()f x kx kx -=-=kx =,当0x =00-=,故0是该方程的一个根;当0x ≠,0k >kx =,故0x >,结合定义域可得[]1,x ∞∈+,有322x x k x -=,即()2210x x k x --=,令2210x k x --=,440k ∆=+>,有242k x +=或242k x -=(负值舍去),则20122k x ++=>=,故2210x k x --=必有一个大于1的正根,即0()f x kx -=必有一个大于1的正根;当0x ≠,0k <kx =,故0x <,结合定义域有[)1,0∈-x ,有322x x k x -=,即()2210x x k x --=,令2210x k x --=,440k ∆=+>,有242k x =或242k x +=(正值舍去),令244k t +=>,即24k t =-,则22211711744242412222k t x ⎫⎛⎫---⎪ ⎪--⎝⎭⎝⎭===>=-,即212k x =>-,故2210x k x --=在定义域内亦必有一根,综上所述,R k ∀∈,且0k ≠,关于x 的方程0()f x kx -=恰有两个不相等的实数根,故②正确;对③:令(),P x y,则有y =222321124AP x x x ⎛⎫=++=++⎪⎝⎭,令()3214g x x x =++,[][]1,01,x ∞∈-⋃+,()()23232g x x x x x =='++,当()21,1,3x ∞⎛⎫∈--⋃+ ⎪⎝⎭时,()0g x '>,当2,03x ⎛⎫∈- ⎪⎝⎭时,()0g x '<,故()g x 在21,3⎛⎫--⎪⎝⎭、()1,∞+上单调递增,在2,03⎛⎫- ⎪⎝⎭上单调递减,又()1111144g -=-++=,()110044g =+=,故()14g x ≥恒成立,即214AP ≥,故12AP ≥,故③正确;对④:当12x x =时,由[][]1,01,x ∞∈-⋃+,121x x +=,故1212x x ==-,此时,124y y =-==,则12MN =≥,当12x x ≠时,由()y f x =与()y f x =-关于x 轴对称,不妨设12x x <,则有1210x x -≤<≤或121012x x -≤≤<≤≤,当121012x x -≤≤<≤≤时,由2121x x x -≥≥,有121MN x x =≥-≥,故成立;当1210x x -≤<≤时,即有211x x =-,由③知,点M 与点N 在圆2211:24A x y ⎛⎫++= ⎪⎝⎭上或圆外,设点()1,M x m '与点()2,N x n '在圆上且位于x 轴两侧,则1M N ''=,故1MN M N ''≥=;综上所述,1MN ≥恒成立,故④正确.故答案为:②③④.【点睛】关键点点睛:结论④中的关键点在于借助结论③,结合函数的对称性,从而得到当1x 、2x 都小于零时,MN 的情况.三、解答题共6小题,共85分.解答应写出文字说明,演算步骤或证明过程.16.在ABC 中,sin cos 2b C B c =.(1)求B ∠;(2)若4a b c =+=,求ABC 的面积.【答案】(1)π6(2【解析】【分析】(1)根据条件,利用正弦定理边转角得到sin 2B B +=,再利用辅助角公式及特殊角的三角函数值,即可求出结果;(2)根据(1)中π6B =及条件,由余弦定理得到22126c b c +-=,再结合4b c +=,即可求出2c =,再利用三角形面积公式,即可求出结果.【小问1详解】因为sin cos 2b C B c =,由正弦定理可得sin sin cos 2sin B C C B C =,又(0,π)C ∈,所以sin 0C ≠,得到sin 2B B +=,即π2sin(23B +=,所以πsin()13B +=,又因为(0,π)B ∈,所以2ππ3B +=,得到π6B =.【小问2详解】由(1)知π6B =,所以2223cos 22a cb B ac +-==,又a =,得到22126c b c +-=①,又4b c +=,得到4b c =-代入①式,得到2c =,所以ABC 的面积为11πsin 2sin 226ABC S ac B ==⨯⨯= .17.如图,在四棱锥P ABCD -中,,AD BC M //为BP 的中点,//AM 平面CDP .(1)求证:2BC AD =;(2)若,1PA AB AB AP AD CD ⊥====,再从条件①、条件②、条件③这三个条件中选择一个作为已知,使四棱锥P ABCD -存在且唯一确定.(i )求证:PA ⊥平面ABCD ;(ⅱ)设平面CDP ⋂平面BAP l =,求二面角C l B --的余弦值.条件①:BP DP =;条件②:AB PC ⊥;条件③:CBM CPM ∠=∠.注:如果选择的条件不符合要求,第(1)问得0分;如果选择多个符合要求的条件分别解答,按第一个解答计分.【答案】(1)证明见解析(2)(i )证明见解析;(ⅱ)77【解析】【分析】(1)借助线面平行的性质定理与中位线的性质即可得;(2)(i )借助线面垂直的判定定理即可得;(ⅱ)结合所给条件建立适当的空间直角坐标系后借助空间向量计算即可得.【小问1详解】取PC 的中点N ,连接,MN ND ,因为M 为BP 的中点,所以1,//2MN BC MN BC =,因为//AD BC ,所以//AD MN ,所以,,,M N D A 四点共面,因为//AM 平面CDP ,平面MNDA 平面CDP DN =,AM ⊂平面MNDA ,所以//AM DN ,所以四边形AMND 为平行四边形,所以MN AD =,所以2BC AD =;【小问2详解】(i )取BC 的中点E ,连接,AE AC ,由(1)知2BC AD =,所以EC AD =,因为//EC AD ,所以四边形AECD 是平行四边形,所以1,EC AD AE CD ===,因为1AB CD ==,所以112AE BC ==,所以90BAC ∠= ,即AB AC ⊥,选条件①:BP DP =,因为1,AB AD PA PA ===,所以PAB 与PAD 全等,所以PAB PAD ∠=∠,因为AB PA ⊥,所以90PAB ∠=o ,所以90PAD ∠= ,即AP AD ⊥,又因为AB AC A ⋂=,AB 、AC ⊂平面ABCD ,所以AP ⊥平面ABCD ;(ⅱ)由(i )知AP ⊥平面ABCD ,而AC ⊂平面ABCD ,所以AP AC ⊥,因为,1PA AB AP ⊥=,建立如图所示空间直角坐标系A xyz -,则()()10,0,1,0,,,22P C D ⎛⎫- ⎪ ⎪⎝⎭,所以()1313,,0,,,12222CD PD AC ⎛⎫⎛⎫=--=--= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭,,设平面PDC 的法向量为(),,n x y z = ,则0n CD n PD ⎧⋅=⎪⎨⋅=⎪⎩,即102213022x y x y z ⎧--=⎪⎪⎨⎪-+-=⎪⎩,令x =,则1,y z =-=,于是1,n =-,因为AC 为平面PAB 的法向量,且7cos ,7AC n AC n AC n ⋅===-⋅,所以二面角C l B --的余弦值为77.选条件③:CBM CPM ∠=∠,(i)因为CBM CPM ∠=∠,所以CB CP =,因为1,AB AP CA CA ===,所以ABC 与APC △全等,所以90∠=∠= PAC BAC ,即PA AC ⊥,因为PA AB ⊥,又因为AB AC A ⋂=,AB 、AC ⊂平面ABCD ,所以PA ⊥平面ABCD ;(ii)同选条件①.不可选条件②,理由如下:由(i )可得AB AC ⊥,又PA AB ⊥,PA AC A = ,PA 、AC ⊂平面PAC ,所以AB ⊥平面PAC ,又因为PC ⊂平面PAC ,所以AB PC ⊥,即AB PC ⊥是由已知条件可推出的条件,故不可选条件②.18.某学校为提升学生的科学素养,要求所有学生在学年中完成规定的学习任务,并获得相应过程性积分.现从该校随机抽取100名学生,获得其科普测试成绩(百分制,且均为整数)及相应过程性积分数据,整理如下表:科普测试成绩x科普过程性积分人数90100x ≤≤4108090x ≤<3a 7080x ≤<2b 6070x ≤<123060x ≤<02(1)当35a =时,(i )从该校随机抽取一名学生,估计这名学生的科普过程性积分不少于3分的概率;(ⅱ)从该校科普测试成绩不低于80分的学生中随机抽取2名,记X 为这2名学生的科普过程性积分之和,估计X 的数学期望()E X ;(2)从该校科普过程性积分不高于1分的学生中随机抽取一名,其科普测试成绩记为1Y ,上述100名学生科普测试成绩的平均值记为2Y .若根据表中信息能推断12Y Y ≤恒成立,直接写出a 的最小值.【答案】(1)(i )0.45;(ⅱ)589;(2)7.【解析】【分析】(1)(i )求出科普过程性积分不少于3分的学生数,再求出频率,并用频率估计概率即得;(ⅱ)求出X 的所有可能值,由(i )的结论结合独立重复试验的概率问题求出各个取值的概率,再求出期望即得.(2)求出1Y 的最大值,再求出100名学生科普测试成绩的平均值2Y 的最小值,由题设信息列出不等式求解即得.【小问1详解】当35a =时,(i )由表知,科普过程性积分不少于3分的学生人数为103545+=,则从该校随机抽取一名学生,这名学生的科普过程性积分不少于3分的频率为450.45100=,所以从该校随机抽取一名学生,这名学生的科普过程性积分不少于3分的概率估计为0.45.(ⅱ)依题意,从样本中成绩不低于80分的学生中随机抽取一名,这名学生的科普过程性积分为3分的频率为35735109=+,所以从该校学生科普测试成绩不低于80分的学生中随机抽取一名,这名学生的科普过程性积分为3分的概率估计为79,同理,从该校学生科普测试成绩不低于80分的学生中随机抽取一名,这名学生的科普过程性积分为4分的概率估计为29,X 的所有可能值为6,7,8,7749(6)9981P X ==⨯=,7228(7)29981P X ==⨯⨯=,224(8)9981P X ==⨯=,所以X 的数学期望4928458()6788181819E X =⨯+⨯+⨯=.【小问2详解】由表知,10232100a b ++++=,则65b a =-,从该校科普过程性积分不高于1分的学生中随机抽取一名,其科普测试成绩记为1Y ,则1Y 的最大值为69,100名学生科普测试成绩的平均值记为2Y ,要12Y Y ≤恒成立,当且仅当2min ()69Y ≥,显然2Y 的最小值为各分数段取最小值求得的平均分,因此2min 1683()108070(65)602302]10010a Y a a +=⨯++-+⨯+⨯=,则6836910a+≥,解得7a ≥,所以根据表中信息能推断12Y Y ≤恒成立的a 的最小值是7.19.已知椭圆22:G x my m +=的离心率为12,,2A A 分别是G 的左、右顶点,F 是G 的右焦点.(1)求m 的值及点F 的坐标;(2)设P 是椭圆G 上异于顶点的动点,点Q 在直线2x =上,且PF FQ ⊥,直线PQ 与x 轴交于点M .比较2MP 与12MA MA ⋅的大小.【答案】(1)2m =,()1,0F (2)122MA A MP M <⋅【解析】【分析】(1)借助离心率计算即可得;(2)设()00,P x y ,表示出M 与Q 点坐标后,可得2MP 、12MA MA ⋅,借助作差法计算即可得.【小问1详解】由22:G x my m +=,即22:1x G y m+=,由题意可得1m >,故2=,解得2m =,故22:12x G y +=1=,故()1,0F ;【小问2详解】设()00,P x y ,00,0x y ≠,0x <<,有220012x y +=,由PF FQ ⊥,则有()()001210Q x y y -⋅-+⋅=,即01Q x y y -=,由0PQ k ≠,故有0002Q My y y x x x -=--,即有()()()2000000000200000022211M Q y x y x y x x x x x x y y x y y y ---=-=-=------()200320000022000012222422x x x x x x x x x x x ⎛⎫-- ⎪--+⎝⎭=-=---()()32320000002200000002222242222x x x x x x x x x x x x x ----+=-==---,由22:12x G y +=可得()1A、)2A ,则22222222000000022200002444441322x x MP x y x y x x x x x ⎛⎫=-+=-++=-++-=-+ ⎪⎝⎭,1220002242MA MA x x x ⎛⋅==- ⎝,则222001222004432122x x MP MA MA x x -⋅=-+-+=-,由0x <<,故20102x -<,即212MP MA MA <⋅.20.已知函数12()ea x f x x -=.(1)求()f x 的单调区间;(2)若函数2()()e ,(0,)g x f x a x -=+∈+∞存在最大值,求a 的取值范围.【答案】(1)()f x 的增区间为(),2∞-,减区间为(2,)+∞(2)1a ≥-【解析】【分析】(1)对函数求导,得到121(1))e 2(a x f x x -=-',再求出()0f x '>和()0f x '<对应的x 取值,即可求出结果;(2)令2()()e h x f x a -=+,对()h x 求导,利用导数与函数单调性间的关系,求出()h x 的单调区间,进而得出()h x 在(0,)+∞上取值范围,从而将问题转化成1222ee e a a a ---+≥成立,构造函数12()e e x m x x --=+,再利用()m x 的单调性,即可求出结果.【小问1详解】易知定义域为R ,因为12()ea x f x x -=,所以11122211(1)()e2e e 2a x a x a x x x x f ----=-'=,由()0f x '=,得到2x =,当2x <时,()0f x '>,当2x >时,()0f x '<,所以,函数()f x 的单调递增区间为(),2∞-,单调递减区间为()2,∞+.【小问2详解】令2()()e h x f x a -=+,则()()h x f x ''=,由(1)知,函数()f x 的单调递增区间为(),2∞-,单调递减区间为()2,∞+,所以()h x 在2x =时取得最大值12(2)2e e a h a --=+,所以当2x >时,1222()e e e (0)a x h x x a a h ---=+>=,当02x <<时,()(0)h x h >,即当,()0x ∈+∞时,(]()(0),(2)h x h h ∈,所以函数122()ee a x g x x a --=+在(0,)+∞存在最大值的充要条件是1222e e e a a a ---+≥,即122122e e e e +e 02a a a a a -----++=≥,令12()e e x m x x --=+,则12()e e 0x m x --'=+>恒成立,所以12()e e x m x x --=+是增函数,又因为22(1)e e 0m ---=-=,所以12()e e 0a m a a --=+≥的充要条件是1a ≥-,所以a 的取值范围为[)1,-+∞.【点睛】关键点点晴:本题的关键在于第(2)问,构造函数122()e e a x h x x a --=+,利用函数单调性得到,()0x ∈+∞时,(]()(0),(2)h x h h ∈,从而将问题转化成1222e e e a a a ---+≥,构造函数12()e e x m x x --=+,再利用()m x 的单调性来解决问题.21.已知:()2*12:,,,2,m Q a a a m m ≥∈N为有穷正整数数列,其最大项的值为m ,且当0,1,,1k m =- 时,均有(1)km i km j a a i j m ++≠≤<≤.设00b =,对于{0,1,,1}t m ∈- ,定义{}1min ,t t n b n n b a t +=>>,其中,min M 表示数集M 中最小的数.(1)若:3,1,2,2,1,3,1,2,3Q ,写出13,b b 的值;(2)若存在Q 满足:12311b b b ++=,求m 的最小值;(3)当2024m =时,证明:对所有2023,20240Q b ≤.【答案】(1)11b =,36b =(2)4(3)证明见解析【解析】【分析】(1)结合定义逐个计算出1b 、2b 、3b 即可得;(2)当3m =时,可得12310b b b ++≤,故4m ≥,找到4m =时符合要求的数列Q 即可得;(3)结合题意,分两段证明,先证10122024b ≤,定义1120251012,2k k C C C ++⎡⎤==⎢⎥⎣⎦,再证得2024k C b k ≤,即可得证,【小问1详解】由:3,1,2,2,1,3,1,2,3Q ,00b =,则{}1min 0,0n b n n a =>>,故11b =,则{}2min 1,1n b n n a =>>,故23b =,则{}3min 3,2n b n n a =>>,故36b =;【小问2详解】由题意可知,3m ≥,当3m =时,由1n a ≥,{}1min 0,0n b n n a =>>,故11b =,则{}2min 1,1n b n n a =>>,由题意可得123a a a ≠≠,故2a 、3a 总有一个大于1,即22b =或23b =,{}32min ,2n b n n b a =>>,由456a a a ≠≠,故4a 、5a 、6a 总有一个大于2,故36b ≤,故当3m =时,12310b b b ++≤,不符,故4m ≥,当4m =时,取数列:4,1,3,2,1,2,3,4,1,2,3,4,1,2,3,4Q ,有11b =,23b =,37b =,即12311b b b ++=,符合要求,故m 的最小值为4;【小问3详解】因为{}11min ,,0,1,,2023t n b nn b a t t +=>>= ∣,所以11,0,1,,2023i b b t +>= ,(i)若12024t b +≤,则当1t n b +<时,至少以下情况之一成立:①n a t ≤,这样的n 至少有t 个,②存在,i i t b n ≤=,这样的n 至多有t 个,所以小于1t b +的n 至多有2t 个,所以1121t b t t t +≤++=+,令212024t +≤,解得11012t +≤,所以10122024b ≤,(ii)对*k ∈N ,若12024t t b k b +≤<,且()1202420241t l k b k ++<≤+,因为{}1min ,t l t l n b nn b a t l +++=>>+∣,所以当()12024,t l n k b ++∈时,至少以下情况之一成立:①n a t l ≤+,这样的n 至多有t l +个;②存在,i t i i l <≤+且i b n =,这样的n 至多有l 个,所以120241202421t l b k t l l k t l ++≤++++=+++,令212024t l ++≤,解得20232t l -⎡⎤≤⎢⎥⎣⎦,即202512t t l +⎡⎤++≤⎢⎥⎣⎦,其中[]x 表示不大于x 的最大整数,所以当12024t t b k b +≤<时,()2025220241t b k +⎡⎤⎢⎥⎣⎦≤+;综上所述,定义1120251012,2k k C C C ++⎡⎤==⎢⎥⎣⎦,则2024k C b k ≤,依次可得:2345671518,1771,1898,1961,1993,2009C C C C C C ======,89102017,2021,2023C C C ===,所以202320241020240b ≤⨯=.【点睛】关键点点睛:涉及数列新定义问题,关键是正确理解所给出的定义,由给定数列结合新定义探求出数列的相关性质,进行合理的计算、分析、推理等方法综合解决.。
北京市海淀区2022届高三高考一模数学试卷(解析版)
综上所述函数 存在最小值, 的取值范围 .
20.已知椭圆 的下顶点 和右顶点 都在直线 上.
(1)求椭圆方程及其离心率;
(2)不经过点 的直线 交椭圆 于两点 ,过点 作 轴的垂线交 于点 ,点 关于点 的对称点为 .若 三点共絨,求证:直线 经过定点.
因此,双曲线 的离心率为 .
故选:C.
4.在 的展开式中, 的系数为()
A. B. 1C. D. 4
【4题答案】
【答案】B
【解析】
【分析】利用二项展开式的通项公式可求 的系数.
【详解】 的展开式的通项公式为 ,
令 ,则 ,故 的系数为 ,
故选:B.
5.下列说法中正确的是
A.平行于同一直线的两个平面平行B.垂直于同一直线的两个平面平行
【详解】如果 ,由于B是三角形的内角,并且 ,则 ,
, 是钝角三角形,
所以 是充分条件;
如果 是钝角三角形,不妨设 ,则 ,
所以 不是必要条件;
故选:A.
10.甲医院在某段时间内累计留院观察的某病疑似患者有98人.经检测后分为确诊组和排除组,患者年龄分布如下表:
年龄(岁)
总计
确诊组人数
0
3
7
4
0
14
,
因为 ,所以 ;
当 时,
则 ,
当 时, 的最小值为 ,
故答案为: , .
15.已知函数 ,给出下列四个结论:① 是偶函数;② 有无数个零点;③
的最小值为 ;④ 的最大值为1.其中,所有正确结论的序号为___________.
【15题答案】
【答案】①②④
【解析】
【分析】根据偶函数定义、零点的定义,结合导数的性质逐一判断即可.
2024海淀区九年级一模数学参考答案
海淀区九年级第二学期期中练习数学试卷参考答案第一部分 选择题一、选择题 (共16分,每题2分)第二部分 非选择题二、填空题(共16分,每题2分)9.1x ≥ 10.(2)(2)a a a −+11.1x = 12.0 13.8 14.94015.180α︒−16.(1)鲁班锁;(2)1,2,3三、解答题(共68分,第17-19题,每题5分,第20-21题,每题6分,第22-23题,每题5分,第24题6分,第25题5分,第26题6分,第27-28题,每题7分)解答应写出文字说明、演算步骤或证明过程.17. 解:原式212=++− 12=+−3=18. 解:原不等式组为435212.3x x x −<⎧⎪⎨+>−⎪⎩,①②解不等式①,得2x <.解不等式②,得1x >. ∴原不等式组的解集为12x <<. 19. 解: 原式241212a b b b +=−++2411a b +=+.∵240b a−=,∴24b a=.∴原式41 41aa+ =+1 =.20.(1)证明:∵四边形ABCD为平行四边形,∴AD // BC.∴AFO CEO∠=∠,FAO ECO∠=∠.∵O为AC的中点,∴AO CO=.∴△AOF≌△COE.∴AF EC=.∵AF//EC,∴四边形AECF为平行四边形.∵AE AF=,∴四边形AECF为菱形.(2)解:∵O为AC的中点,4AC=,∴122OA AC==.∵四边形AECF为菱形,∴AC EF⊥.∴90AOE∠=︒.∴在Rt△AOE中,由勾股定理得OE=.∵E为BC的中点,∴2AB OE==.21. 解:设每平方米木地板的价格为5x元,则每平方米瓷砖的价格为3x元.由题意可得,123(3615)5100001270x x⨯++⨯=−.解得30x=.∴5150x=,390x=.答:每平方米木地板的价格为150元,每平方米瓷砖的价格为90元.22.解:(1)∵函数(0)y kx b k =+≠的图象经过点(1,2)A 和(0,1)B ,∴21.k b b +=⎧⎨=⎩,解得11.k b =⎧⎨=⎩,∴该函数的解析式为1y x =+. (2)13m ≤≤.23.解:(1)32,25;(2) 60,四; (3) >.24.(1)证明:∵BE BE =,∴BAE BDE ∠=∠. ∵45EDB EAD ∠+∠=︒,∴45BAE EAD ∠+∠=︒,即45BAD ∠=︒. ∵AB 为O 的直径, ∴90ADB ∠=︒. ∴AD BG ⊥. ∵AB AG =,∴45BAD GAD ∠=∠=︒. ∴90BAG ∠=︒. ∴AB AG ⊥.∵AB 为O 的直径, ∴AG 与O 相切.(2)解:连接BE ,如图.∵AB AG =,AD BG ⊥,BG =∴12BD BG == 在Rt △ADB 中,90ADB ∠=︒,45BAD ∠=︒,可得AB =∴12OA AB ==. ∵BAE BDE ∠=∠, ∴1tan tan 3BAE BDE ∠=∠=.∵AB 为O 的直径,∴90AEB ∠=︒.在Rt △AEB 中,1tan 3BAE ∠=,可得13BE AE =.由勾股定理得 222BE AE AB +=.∴2221()3AE AE +=.∴6AE =. ∵290BOD BAD ∠=∠=︒. ∴90AOF ∠=︒.在Rt △AOF 中,1tan 3BAE ∠=,OA =OF =.由勾股定理得 103AF =. ∴108633EF AE AF =−=−=. 25.解:(1)60n ,525n ⨯−;(2) a ,7; (3)1535t <≤.26.解:(1)由题意可知,点(40),在抛物线2(0)y ax bx a =+>上,∴1640a b +=. ∴4b a =−. ∴4222b aa a−==−−. ∴抛物线的对称轴为直线2x =.(2)① 法一:令0y =,则20(0)ax bx a +=>. 解得0x =或b x a=−. ∴抛物线2(0)y ax bx a =+>与x 轴交于点(00),,(0)b a−,. ∵0a >,∴抛物线开口向上. (ⅰ)当0b <时,0ba−>.∴当0bx a <<−时,0y <;当0x <或b x a>−时,0y >. ∵当04m <<时,总有0n <. ∴4ba−≥.∵0a >, ∴40a b +≤. (ⅱ)当0b >时,0ba−<. ∴当0bx a −<<时,0y <;当b x a<−或0x >时,0y >. ∴当04m <<时,0n >,不符合题意. 综上,40a b +≤. 法二:∴由题意可知,2am bm n +=.若0n <,则2()0am bm m am b +=+<. ∵0m >, ∴0am b +<. ∵0a >, ∴b m a<−. ∴当0bm a<<−时,0n <. ∵当04m <<时,总有0n <. ∴4ba−≥.∵0a >, ∴40a b +≤. ② 存在.设抛物线的对称轴为x t =,则2b t a=−. ∵,∴当x t ≥时,y 随x 的增大而增大;当x t ≤时,y 随x 的增大而减小. ∵12k <<,∴336k <<,3k k <. (ⅰ)当1t ≤时,∵3t k k ≤<. ∴12y y <,符合题意. (ⅱ)当12t <≤时,当2t k ≤<时, ∵3t k k <<. ∴12y y <. 当1k t <<时,设点1()P k y ,关于抛物线对称轴x t =的对称点为点01'(,)P x y , 则0x t >,0t k x t −=−. ∴02x t k =−. ∵1k t <<,12t <≤, ∴23t k −<. ∴03t x <<. ∵336k <<. ∴03t x k <<. ∴12y y <.∴当12t <≤时,符合题意. (ⅲ)当23t <≤时,令12k t =,332k t =,则12y y =,不符合题意.(ⅳ)当36t <<时,令3k t =,则3k k t <≤. ∴12y y >,不符合题意. (ⅴ)当6t ≥时,∵3k k t <<,∴12y y >,不符合题意. ∴ 当2t ≤,即22ba−≤时,符合题意. ∵0a >, ∴40a b +≥. 由①可得40a b +≤. ∴40a b +=.27.(1)线段AE 与BD的数量关系:AE .证明:连接BE ,如图1.∵点D ,E 关于直线BC 对称, ∴直线BC 是线段DE 的垂直平分线. ∴BD BE =.∴30DBC EBC ∠=∠=. ∴60DBE ∠=.∴△DBE 是等边三角形.∴BD BE DE ==,60BDE BED ∠=∠=. ∵△ABC 中,90ACB ∠=,30ABC ∠=, ∴2AB AC =.依题意,得AD AC =,点D 在AB 上. ∴2AB AD =. ∴.BD AD = ∴.DE AD =∴30.DAE DEA ∠=∠= ∴90.BEA ∠= ∴在Rt △ABE 中,tan tan 60 3.AEABE BE=∠== ∴AE. ∴.AE =(2)依题意补全图2,如图.B图1方法一:解:延长AC 至F ,使CF AC =,连接BF ,BE ,EF ,CD ,CE ,如图2. ∵90ACB ∠=, ∴.AB BF = ∵60BAC ∠=,∴△ABF 是等边三角形. ∴AB AF BF ==,60BFC ∠=. ∵点D ,E 关于直线BC 对称, ∴直线BC 是线段DE 的垂直平分线. ∴BD BE =,CD CE =. ∴DCB ECB ∠=∠. ∵90ACB DCF ∠=∠=, ∴DCA ECF ∠=∠. ∵AC FC =, ∴△DAC ≌△EFC . ∴CAD CFE ∠=∠. ∵AE BD =, ∴BE AE =.∵EF EF =,BF AF =, ∴△BEF ≌△AEF .∴30BFE AFE ∠=∠=. ∴30CAD AFE ∠=∠=. ∴30.α= 方法二:解:如图3,取AB 中点F ,连接DF ,BE ,CD ,CE ,设DBC β∠=.F∵点D ,E 关于直线BC 对称, ∴直线BC 是线段DE 的垂直平分线. ∴BD BE =,CD CE =. ∴DBC EBC β∠=∠=.∴30EBA β∠=︒+,30DBA β∠=︒−. ∵AE BD =, ∴AE BE =.∴30EAB EBA β∠=∠=︒+. ∵90ACB ∠=︒,30ABC ∠=︒, ∴60BAC ∠=︒. ∴30EAC β∠=︒−. ∴EAC DBA ∠=∠. 由(1)可得2.AB AC = ∵F 为AB 中点, ∴22.AB AF BF == ∴.AC AF BF ==∵AC BF =,EAC DBA ∠=∠,AE BD =, ∴△ACE ≌△BFD . ∴CE FD =. ∴CD FD =.∵AD AD =,AF AC =, ∴△ADF ≌△ADC . ∴30FAD CAD ∠=∠=︒. ∴30α=︒.28.(1)①如图,线段B'C'即为所求.②4t ≤−或2t ≥.图3FD≤≤+. (2)d a。
2023年北京市海淀区高三一模考试数学试卷+答案解析(附后)
2023年北京市海淀区高三一模考试数学试卷1. 已知集合,则( )A. B. C.D.2. 若,其中i 是虚数单位,则( )A.B. 1C.D. 33. 在等差数列中,,,则( )A. 9B. 11C. 13D. 154. 已知抛物线的焦点为F ,点P 在该抛物线上,且P 的横坐标为4,则( )A. 2B. 3C. 4D. 55. 若,则( )A.B. 1C. 15D. 166. 已知直线与圆交于A ,B 两点,且为等边三角形,则m 的值为( )A. B. C.D.7.在中,,的平分线交BC 于点若,则( )A.B.C. 2D. 38. 已知二次函数,对任意的,有,则的图象可能是( )A.B. C. D.9. 已知等比数列的公比为q 且,记、则“且”是“为递增数列”的( )A. 充分而不必要条件B. 必要而不充分条件C. 充分必要条件D. 既不充分也不必要条件10. 刘老师沿着某公园的环形道周长大于按逆时针方向跑步,他从起点出发、并用软件记录了运动轨迹,他每跑1km ,软件会在运动轨迹上标注出相应的里程数.已知刘老师共跑了11km,恰好回到起点,前5km的记录数据如图所示,则刘老师总共跑的圈数为( )A. 7B. 8C. 9D. 1011. 不等式的解集为_________.12. 已知双曲线的渐近线方程为,则它的离心率为________.13. 已知函数若在区间上单调递减,则的一个取值可以为_________.14. 设函数①当时,_________;②若恰有2个零点,则a的取值范围是_________.15. 在中,,D是边AC的中点,E是边AB上的动点不与A,B重合,过点E作AC的平行线交BC于点F,将沿EF折起,点B折起后的位置记为点P,得到四棱锥如图所示.给出下列四个结论:①平面PEF;②不可能为等腰三角形;③存在点E,P,使得;④当四棱锥的体积最大时,其中所有正确结论的序号是_________.16. 如图,直三棱柱中,,,,D是的中点.证明:平面BCD;求直线CD与平面所成角的正弦值.17. 在中,求;若的面积为,再从条件①、条件②、条件③这三个条件中选择一个作为已知,使存在且唯一确定,求a的值.条件①:;条件②:;条件③:注:如果选择的条件不符合要求,第问得0分;如果选择多个符合要求的条件分别解答,按第一个解答计分.18. 网购生鲜蔬菜成为很多家庭日常消费的新选择.某小区物业对本小区三月份参与网购生鲜蔬菜的家庭的网购次数进行调查,从一单元和二单元参与网购生鲜蔬菜的家庭中各随机抽取10户,分别记为A组和B组,这20户家庭三月份网购生鲜蔬菜的次数如下图:假设用频率估计概率,且各户网购生鲜蔬菜的情况互不影响从一单元参与网购生鲜蔬菜的家庭中随机抽取1户,估计该户三月份网购生鲜蔬菜次数大于20的概率;从一单元和二单元参与网购生鲜蔬菜的家庭中各随机抽取1户,记这两户中三月份网购生鲜蔬菜次数大于20的户数为X,估计X的数学期望;从A组和B组中分别随机抽取2户家庭,记为A组中抽取的两户家庭三月份网购生鲜蔬菜次数大于20的户数,为B组中抽取的两户家庭三月份网购生鲜蔬菜次数大于20的户数,比较方差与的大小.结论不要求证明19. 已知椭圆:的左、右顶点分别为,上、下顶点分别为,,四边形的周长为求椭圆E的方程;设斜率为k的直线l与x轴交于点P,与椭圆E交于不同的两点M,N,点M关于y轴的对称点为、直线与y轴交于点若的面积为2,求k的值.20. 已知函数当时,求曲线在点处的切线方程;求的单调区间;若存在,使得,求a的取值范围.21. 已知数列给出两个性质:①对于中任意两项,在中都存在一项,使得;②对于中任意连续三项,均有分别判断以下两个数列是否满足性质①,并说明理由:有穷数列:;无穷数列:若有穷数列满足性质①和性质②,且各项互不相等,求项数m的最大值;若数列满足性质①和性质②,且,求的通项公式.答案和解析1.【答案】A【解析】解:因为集合,所以故选:分析:求交集可得答案.2.【答案】B【解析】解:由题设,故,,所以故选:B分析:利用复数乘法及相等求a,b,即可得结果.3.【答案】C【解析】解:设等差数列的公差为d,则,则故选:分析:设等差数列的公差为d,求出2d的值,即可得出,即可得解.4.【答案】D【解析】解:抛物线的准线方程为,因为点P在抛物线上,P的横坐标为4,抛物线的焦点为F,所以等于点P到直线的距离,所以,故选:分析:直接根据抛物线焦半径公式计算得到答案.5.【答案】C【解析】解:因为,令得,,令得,,所以,故选:分析:利用赋值法结合条件即得.6.【答案】D【解析】解:圆的圆心为,半径,若直线与圆O交于A,B两点,且为等边三角形,则圆心O到直线的距离,又由点到直线的距离公式可得,解得,故选:分析:根据圆的方程求出圆心坐标以及半径,由等边三角形的性质可得到圆心到直线的距离d,结合点到直线的距离公式列出方程求出m的值即可.7.【答案】B【解析】解:设,因为,,所以,又AD是的平分线,所以,,,又,所以,,所以故选:分析:设,由角平分线定理求得,然后由向量的线性运算可用,表示出,从而求得,,得出结论.8.【答案】A【解析】解:因为对任意的,有,令,则,所以,排除C,即,设二次函数,所以,,由可得,则,所以任意的恒成立,则,,故排除故选:分析:令中,则,排除C,又由可得,任意的恒成立,则,,排除B ,即可得出答案.9.【答案】B【解析】解:由题设且,要为递增数列,只需在上恒成立,当,不论取何值,总存在,不满足要求;当,,则,不满足要求;,总存在,不满足要求;当,,则,不满足;,若,,显然,即,不满足;,则在上恒成立,满足.所以为递增数列有且综上,“且”是“为递增数列”的必要不充分条件.故选:B分析:由等比数列及已知,要为递增数列只需在上恒成立,讨论、,,结合的符号,再根据充分必要性的定义即可得答案.10.【答案】B【解析】解:设公园的环形道的周长为t ,刘老师总共跑的圈数为x ,,则由题意,所以,所以,因为,所以,又,所以,即刘老师总共跑的圈数为故选:B分析:利用环形道的周长与里程数的关系建立不等关系求出周长的范围,再结合跑回原点的长度建立方程,即可求解.11.【答案】或【解析】解:根据分式不等式解法可知等价于,由一元二次不等式解法可得或所以不等式的解集为或故答案为:或分析:将分式不等式转化成整式不等式,再利用一元二次不等式解法即可求得结果.12.【答案】2【解析】解:由题意,得13.【答案】不唯一【解析】解:由,因为在区间上单调递减,且,所以有,因此的一个取值可以为,故答案为:分析:根据正弦型函数的单调性进行求解即可.14.【答案】【解析】解:当时,所以,所以,令,可得当时,,所以或,当或时,方程在上有唯一解,当或时,方程在上的解为或,当时,,所以当时,,当时,方程在上无解,综上,当时,函数有两个零点,,当时,函数有两个零点,1,当时,函数有三个零点,,,当时,函数有两个零点,,因为恰有2个零点,所以或,所以a的取值范围是故答案为:分析:由分段函数解析式先求,再求的值,结合零点的定义分段求零点,由条件求a 的取值范围.15.【答案】①③【解析】解:①因为,平面PEF,平面PEF,所以平面PEF,故①正确;②因为是等腰直角三角形,所以PEF也是等腰直角三角形,则,因为,,所以,且当时,≌,所以,此时是等腰三角形,故②错误;③因为,且,,且平面PCF,平面PCF,所以平面PCF,平面ABC,所以平面平面PEF,且平面平面,如图,过点P作,连结DM,则平面ABC,平面ABC,所以,若,,平面PDM,平面PDM,所以平面PDM,平面PDM,所以,如图,,延长MD,交AB于点N,则和都是等腰直角三角形,则,点N到直线AC的距离等于,这样在翻折过程中,若能构成四棱锥,则,设,则,则,则存在点E,P,使得,故③正确;④当底面ACFE的面积一定时,平面平面PEF时,即平面ABC时,四棱锥的体积最大,设,,,得舍或,当,,函数单调递增,当,,函数单调递减,所以当时,函数取得最大值,此时,故④错误;故答案为:①③分析:根据线面平行的判断定理,判断①证明≌,即可判断②利用垂直关系转化,结合反证法,即可判断③表示四棱锥的体积后,利用导数计算最值,即可判断④点睛:思路点睛:本题考查几何体的线线,线面位置关系,以及动点问题,和导数相联系的最值问题,本题的关键是第三问,需在变化过程中找到位置关系,建立不等式,即可判断.16.【答案】解:证明:在直三棱柱中,平面ABC,且,以点C为坐标原点,CA、CB、所在直线分别为x、y、z轴建立如下图所示的空间直角坐标系,则点、、、,、、,所以,,,则,,又因为,CB、平面BCD,因此,平面解:设平面的法向量为,,则,取,可得,所以,,,因此,CD与平面所成角的正弦值为【解析】分析:以点C为坐标原点,CA、CB、所在直线分别为x、y、z轴建立空间直角坐标系,利用空间向量法证明出,,再利用线面垂直的判定定理可证得结论成立;利用空间向量法可求得直线CD与平面所成角的正弦值.17.【答案】解:因为,由正弦定理得,,又,所以,得到,又,所以,又,所以,得到,所以选条件①由知,,根据正弦定理知,,即,所以角C有锐角或钝角两种情况,存在,但不唯一,故不选此条件.选条件②因为,所以,又,得到,代入,得到,解得,所以,由余弦定理得,,所以选条件③因为,所以,由,得到,又,由知,所以又由正弦定理得,,得到,代入,得到,解得,所以,由余弦定理得,,所以【解析】分析:利用正弦定理:边转角,再利用正弦的二倍角公式,即可求出结果;条件①,由,角C可以是锐角或钝角,不满足题设中的条件,故不选①条件②,利用条件建立,边b与c的方程组,求出b与c,再利用余弦定理,即可求出结果;条件③,利用正弦定理,先把角转边,再结合条件建立,边b与c的方程组,求出b与c,再利用余弦定理,即可求出结果;18.【答案】解:设“该户三月份网购生鲜蔬菜次数大于20”为事件C,在A组10户中超过20次的有3户,由样本频率估计总体概率,则由样本频率估计总体概率,一单元参与网购家庭随机抽取1户的网购生鲜蔬菜次数超过20次概率为,二单元参与网购家庭随机抽取1户的网购生鲜蔬菜次数超过20次概率为,X的可能取值为0,1,2,所以,,,,依题可知,,的可能取值为0,1,2,且,服从超几何分布,,,,,,,因为,,所以,,,所以,【解析】分析:根据古典概型的概率公式即可求出;由题可知,X的可能取值为0,1,2,再分别求出对应的概率,由期望公式即可求出;根据方差公式计算可知,19.【答案】解:由,得,即,由四边形的周长为,得,即,所以椭圆的方程为设直线l的方程为,,,则,,联立方程组,消去y得,,,得,,,直线MN的方程为,令,得,又因为,所以,的面积,得,经检验符合题意,所以k的值为【解析】分析:由短轴长,即四边形的周长得a,b的值,得椭圆的方程;设直线l的方程为,由题,,与椭圆联立方程,得,,表示出的面积,解得k的值.20.【答案】解:当时,,则,得,,所以曲线在点处的切线方程为由,则,当时,恒成立,此时在R上单调递减;当时,令,解得,此时与的变化情况如下:x-0+↘极小值↗由上表可知,的减区间为,增区间为,综上,当时,的减区间为,无增区间;当时,的减区间为,增区间为将在区间上的最大值记为,最小值记为,因为存在,,使得,所以,使得成立,即或,当时,,若,使得成立,只需,由可知在区间上单调或先减后增,故为与中的较大者,所以只需当或即可满足题意,即只需或,解得或,综上所述,a的取值范围是【解析】分析:当时,求出函数的导数,求出曲线在点处切线的斜率,然后求解切线的方程即可;先求出函数的导数,分和两种情况讨论即可得到单调区间;将题中条件转化为若,使得成立,再结合函数放缩得到若,使得成立,再根据中的单调情况可知为与中的较大者,从而得到当或即可满足题意,进而求解即可.点睛:关键点点睛:函数不等式恒成立问题,要进行适当转化.解答小问的关键在于转化为若,使得成立,再结合函数放缩得到若,使得成立,再根据中的单调情况求解即可得到a的取值范围.21.【答案】解:不满足.令,则不是数列n中的项,故有穷数列不满足性质①满足.对于任意,,有,由于,令即可,故无穷数列满足性质①对于有穷数列,记其非零项中绝对值最大的一项为,绝对值最小的一项为,故令时,存在一项,又是数列非零项中绝对值最大的,所以,即再令时,存在一项,又是数列非零项中绝对值最小的,所以,即,又,所以数列所有非零项的绝对值均为1,又数列的各项均不相等,所以其至多有0,,1共3项,所以,构造数列,,1,其任意两项乘积均为0,,1之一,满足性质①其连续三项满足,满足性质②又其各项均不相等,所以该数列满足条件,此时,综上,m的最大值为首先证明:当,时,数列满足,且,,2,因为对于任意数列的连续三项,,,总有,即或,不论是哪种情形,均有当时,,即当时,,亦有,又,故性质得证.考虑,,三项,有或,若,则,此时令,有,由性质知不存在k 使得,且,故只有,此时,因为,所以令时,,由性质知,只有或,当时,,,此时令,,,但,即,由性质知不存在k 使得,所以,即,从而,经验证,数列满足条件,下面证这是唯一满足条件的数列,假设是第一个不满足上述通项公式的项,,当,时,只能为,令,,则,但,由性质,不存在k 使得,当,时,只能为,则,令,,则,但,由性质,不存在k使得,故不存在不满足上述通项公式的项,综上,数列的通项公式为【解析】分析:令,代入求解即可判断对于任意,,直接相乘得到即可判断;对于有穷数列,记其非零项中绝对值最大的一项为,绝对值最小的一项为,令时,得到再令时,得到,从而得到数列至多有0,,1共3项,再构造数列,,1,证明其满足性质①和性质②,进而即可求得项数m的最大值;首先证明:当,时,数列满足,且,,2,,再考虑,,三项,结合性质得到,从而,最后经验证,数列满足条件,再通过反证法证明这是唯一满足条件的数列即可.点睛:与数列的新定义有关的问题的求解策略:①通过给出一个新的数列的定义,或约定一种新的运算,或给出几个新模型来创设新问题的情景,要求在阅读理解的基础上,依据题目提供的信息,联系所学的知识和方法,实心信息的迁移,达到灵活解题的目的;②遇到新定义问题,应耐心读题,分析新定义的特点,弄清新定义的性质,按新定义的要求,“照章办事”,逐条分析,运算,验证,使得问题得以解决.。
2023北京海淀初三一模数学(教师版)
2023北京海淀初三一模数 学2023.04学校 姓名 准考证号一、选择题(共16分,每题2分)第1-8题均有4个选项,符合题意的选项只有一个. 1. 下列几何体中,主视图为右图的是(A ) (B ) (C ) (D )2. 北京植物园从上世纪五十年代开始建设种子库,目前库中已有种子83 000余份,总量位居世界第二位.将83 000用科学记数法表示应为 (A )38310⨯(B )48.310⨯ (C )58.310⨯ (D )50.8310⨯3. 在一条沿直线MN 铺设的电缆两侧有甲、乙两个小区,现要求在MN 上选取一点P ,向两个小区铺设电缆.下面四种铺设方案中,使用电缆材料最少的是(A ) (B ) (C )(D)4.不透明的袋子中装有2个红球和3个黄球,两种球除颜色外无其他差别,从中随机摸出一个小球,摸到黄球的概率是 (A )23(B )34(C )25(D )355. 实数m ,n 在数轴上的对应点的位置如图所示,下列结论中正确的是(A )m n <(B )0m n +> (C )0m n −< (D )0mn >6. 已知关于x 的一元二次方程220x x a −+=有两个相等的实数根,则实数a 的值是 (A )1−(B )0(C )1(D )27. 小明制作简易工具来测量物体表面的倾斜程度,方法如下:将刻度重新设计的量角器固定在等腰直角三角板上,使量角器的90°刻度线与三角板的底边平行.将用细线和铅锤做成的重锤线顶端固定在量角器中心点O 处,现将三角板底边紧贴被测物体表面,如图所示,此时重锤线在量角器上对应的刻度为27°,那么被测物体表面的倾斜角α为 (A )63°(B )36°(C )27°(D )18°8. 图1是变量y 与变量x 的函数关系的图象,图2是变量z 与变量y 的函数关系的图象,则z 与x 的函数关系的图象可能是图1 图2(A ) (B ) (C ) (D )第二部分 非选择题二、填空题(共16题,每题2分) 9. x 的取值范围是.10. 分解因式:244a b ab b ++= . 11. 方程123x x =+的解为 .12.13. 若AC =4,BD =8,则OM 的长为______.14. 在平面直角坐标系xOy 中,反比例函数2y x=的图象与正比例函数y mx =的图象交于A ,B 两点,点A 的坐标为(1,a ),则点B 的坐标为______.15. 如图,点M 在正六边形的边EF 上运动. 若ABM x ∠=,写出一个符合条件的x 的值 .16. 某陶艺工坊有A 和B 两款电热窑,可以烧制不同尺寸的陶艺品. 两款电热窑每次可同时放置陶艺品的尺寸和数量如下表所示.烧制一个大尺寸陶艺品的位置可替换为烧制两个中尺寸或六个小尺寸陶艺品,但烧制较小陶艺品的位置不能替换为烧制较大陶艺品.某批次共生产了10个大尺寸陶艺品,50个中尺寸陶艺品,76个小尺寸陶艺品. (1)烧制这批陶艺品,A 款电热窑至少使用_______次;(2)若A 款电热窑每次烧制成本为55元,B 款电热窑烧每次烧制成本为25元,则烧制这批陶艺品成本最低为________元.三、解答题(共68分,第17-20题,每题5分,第21题6分,第22题5分,第23-24题,每题6分,第25题5分,第26题6分,第27-28题,每题7分) 解答应写出文字说明、演算步骤或证明过程.17.计算:()112023π2cos 452−⎛⎫−++ ⎪⎝⎭.18. 解不等式组:22135.2x x x x +<−⎧⎪⎨−<⎪⎩,19. 已知2210x x +−=,求代数式()()22123x x +−−的值.MDCBAO20. 下面是小明同学证明定理时使用的两种添加辅助线的方法,选择其中一种,完成证明.21.如图,在四边形ABCD =∠C =90°,过点B 作BE ∥AD 交CD于点E ,点F 为AD 边上一点,AF =BE ,连接EF . (1)求证:四边形ABEF 为矩形; (2)若AB =6,BC =3,CE =4,求ED 的长.22. 在平面直角坐标系xOy 中,一次函数y kx b =+的图象过点(1,3),(2,2). (1)求这个一次函数的解析式;(2)当2x >时,对于x 的每一个值,一次函数y mx =的值大于一次函数y kx b =+的值,直接写出m 的取值范围.FEDCBA23. 如图,AB 为☉O 的直径,C 为☉O 上一点,D 为BĈ的中点,DE ⊥AC 交AC 的延长线于点E .(1)求证:直线DE 为☉O 的切线;(2)延长AB ,ED 交于点F . 若BF =2,sin ∠AFE =13,求AC 的长.24. 某小组对当地2022年3月至10月西红柿与黄瓜市场价格进行调研,经过整理、描述和分析得到了部分信息.a . 西红柿与黄瓜市场价格的折线图:b . 西红柿与黄瓜价格的众数和中位数:(1)m= ,n = ;(2)在西红柿与黄瓜中, 的价格相对更稳定;(3)如果这两种蔬菜的价格随产量的增大而降低,结合题中信息推测这两种蔬菜在月的产量相对更高.25. “兔飞猛进”谐音成语“突飞猛进”.在自然界中,野兔善于奔跑跳跃,“兔飞猛进”名副其实. 野兔跳跃时的空中运动路线可以看作是抛物线的一部分. (1)建立如图所示的平面直角坐标系.B A通过对某只野兔一次跳跃中水平距离x (单位:m )与竖直高度y (单位:m )进行的测量,得到以下数据:① 野兔本次跳跃的最远水平距离为 m ,最大竖直高度为 m ; ② 求满足条件的抛物线的解析式;(2)已知野兔在高速奔跑时,某次跳跃的最远水平距离为3m ,最大竖直高度为1m.若在野兔起跳点前方2m 处有高为0.8m 的篱笆,则野兔此次跳跃______(填“能”或“不能”) 跃过篱笆.26.在平面直角坐标系xOy 中,点0()A x m ,,0(4)B x n +,在抛物线221y x bx =−+上.(1)当5b =,03x =时,比较m 与n 的大小,并说明理由;(2)若对于034x ≤≤,都有m <n <1,求b 的取值范围.27. 如图,正方形ABCD 中,点E ,F 分别在BC ,CD 上,BE=CF ,AE ,BF 交于点G . (1)求∠AGF 的度数;(2)在线段AG 上截取MG=BG ,连接DM ,∠AGF 的角平分线交DM 于点N .① 依题意补全图形;② 用等式表示线段MN 与ND 的数量关系,并证明.备用图28. 在平面直角坐标系xOy 中,对于点P (m ,n ),我们称直线y =mx +n 为点P 的关联直线. 例如,点P(2,4)的关联直线为y =2x +4. (1)已知点A (1,2)① 点A 的关联直线为____________;② 若⊙O 与点A 的关联直线相切,则⊙O 的半径为_________; (2)已知点C (0,2),点D (d ,0). 点M 为直线CD 上的动点.① 当d =2时,求点O 到点M 的关联直线的距离的最大值;② 以T (﹣1,1)为圆心,3为半径的⊙T . 在点M 运动过程中,当点M 的关联直线与⊙T 交于E ,F 两点时, EF 的最小值为4,请直接写出d 的值.FD CBA G FEDCBA参考答案第一部分 选择题一、选择题 (共16分,每题2分)二、填空题(共16分,每题2分) 9.5x ≥10.()22b a+11.3x =12.16.41314.(12−−,) 15.35(答案不唯一) 16.2,135三、解答题(共68分,第17-20题,每题5分,第21题6分,第22题5分,第23-24题,每题6分,第25题5分,第26题6分,第27-28题,每题7分)解答应写出文字说明、演算步骤或证明过程. 17.(本题满分5分)解:原式12=++………………………………………………………………4分3=+. ………………………………………………………………………5分18.(本题满分5分)解:原不等式组为221 35. 2x x x x +<−⎧⎪⎨−<⎪⎩,①② 解不等式①,得3x >. …………………………………………………………2分 解不等式②,得5x <. …………………………………………………………4分 ∴ 原不等式组的解集为35x <. ……………………………………………5分19.(本题满分5分)解:原式=244126x x x ++−+ ……………………………………………………2分 =2427x x ++. ………………………………………………………………3分∵ 2210x x +−=,∴ 221x x +=. …………………………………………………………………4分 ∴ 原式 =22(2)7x x ++=9. ……………………………………………………………………5分20.(本题满分5分)方法一证明:在△ABC 中,∠ACB =90°,∴ AC ⊥BD . ∵ CD =BC ,∴ AB =AD .……………………………………2分 ∵ ∠BAC =30°,∴ ∠B =90°−∠BAC =60°.………………3分 ∴ △ABD 是等边三角形.…………………4分 ∴ AB =BD .D CBA∴ 1122BC BD AB ==.…………………………………………………………5分方法二证明:在△ABC 中,∠ACB =90°,∠BAC =30°,∴ ∠B =90°−∠BAC =60°. …………………1分 ∵ BD =BC ,∴ △BCD 是等边三角形. ……………………2分 ∴ ∠BDC =60°,BD =CD.∴ ∠DCA =∠BDC −∠A =30°=∠A.∴ CD =AD. ………………………………………………………………………4分 ∴ AD =BD =BC.∴ 12BC AB =. …………………………………………………………………5分 21. (本题满分6分)(1)证明:∵ BE ∥AD 且AF =BE ,∴ 四边形ABEF 为平行四边形. …………………………………………2分 ∵ ∠A =90°,∴ 四边形ABEF 为矩形. …………………………………………………3分(2)解:∵ 四边形ABEF 为矩形,AB =6,∴ ∠AFE =90°,EF =AB =6.在△BCE 中,∠C =90°,BC =3,CE =4,∴ BE…………………………………………………4分 ∴ sin ∠BEC =BC BE =35. ∵ BE ∥AD , ∴ ∠BEC =∠D . ∴ sin D =sin ∠BEC =35. 在△EFD 中,∠EFD =180°−∠AFE =90°, ∴ DE =sin EFD=10. ………………………………………………………6分 22.(本题满分5分)(1)解:∵ 一次函数y kx b =+的图象过点(1,3),(2,2),∴ 32 2.k b k b +=⎧⎨+=⎩,………………………………………………………………2分解得14.k b =−⎧⎨=⎩,∴ 这个一次函数的解析式为4y x =−+. …………………………………3分(2)1m ≥. ……………………………………………………………………………5分 23.(本题满分6分)(1)证明:连接OD ,AD.∵ 点D 是BC 的中点, ∴ BD CD =.DCBAFDC BAA∴ ∠BAD =∠CAD. ………………………………………………………1分 ∵ OA =OD , ∴ ∠OAD =∠ODA. ∴ ∠CAD =∠ODA.∴ OD ∥AC. ………………………………………………………………2分 ∵ DE ⊥AC , ∴ ∠E =90°,∴ ∠ODE =180°−∠E =90°. ∵ 点D 为⊙O 上一点,∴ 直线DE 是⊙O 的切线. ………………………………………………3分(2)解:连接BC.设OA =OB =OD =r. ∵ BF =2,∴ OF =OB +BF =r +2. 在△ODF 中,∠ODF =90°, ∴ sin 13AFE OD OF ==∠. 即123r r =+,解得r =1. …………………………………………………4分∴ AB =2r =2. ∵ AB 是⊙O 的直径, ∴ ∠ACB =90°=∠E. ∴ BC ∥EF . ∴ ∠ABC =∠AFE.∴ sin sin 13ABC ∠∠==.∴ sin 23AC AB ABC ⋅∠==. ………………………………………………6分24.(本题满分6分)(1)6.5,6; ……………………………………………………………………………2分 (2)西红柿; ……………………………………………………………………………4分 (3)6. ……………………………………………………………………………………6分 25.(本题满分5分)(1)① 2.8,0.98; ………………………………………………………………………2分② 由题意可知,抛物线的顶点为(1.4,0.98).∴ 设抛物线解析式为2( 1.4)0.98y a x =−+. ………………………………3分 ∵ 当x =0时,y =0,∴ 20(0 1.4)0.98a =−+,解得 0.5a =−.∴ 抛物线的解析式为20.5( 1.4)0.98y x =−−+. ……………………………4分(2)能. ……………………………………………………………………………………5分 26.(本题满分6分)(1)m =n . …………………………………………………………………………………1分理由如下:FA∵ b =5,∴ 抛物线解析式为y =x 2−10x +1, ∴ 对称轴为x =5. ∵ x 0=3,∴ A (3,m ),B (7,n )关于直线x =5对称.∴ m =n . ………………………………………………………………………………2分 (2)当03x =时,∵ ()0A x m ,,()04B x n +,在抛物线221y x bx =−+上, ∴ 106m b =−,5014n b =−. ∵ 1m n <<, ∴ 10650141b b −<−<.∴752b <<. 当04x =时,∵ ()0A x m ,,()04B x n +,在抛物线221y x bx =−+上, ∴ 178m b =−,6516n b =−. ∵ 1m n <<,∴ 17865161b b −<−<. ∴ 46b <<.∵ 对于034x ≤≤,都有1m n <<, ∴ 45b <<. 当45b <<时,设点()04x n +,关于抛物线的对称轴x b =的对称点为()1x n ,, ∵ 点()04x n +, ∴ 点()1x n ,在抛物线上.由014x b b x +−=−,得1024x b x =−−. ∵ 034x ≤≤,45b <<, ∴ 103x <<.∵ 抛物线221y x bx =−+, ∴ 抛物线与y 轴交于(0,1). 当x b <时,y 随x 的增大而减小.∵ 点(0,1),()1x n ,,()0x m ,在抛物线上,且100x x b <<<, ∴ 1m n <<.综上所述,45b <<. ………………………………………………………………6分27.(本题满分7分)(1)∵ 四边形ABCD 是正方形, ∴ AB =BC ,∠ABE =∠BCF =90°. 又∵ BE =CF ,∴ △ABE ≌△BCF (SAS ). ………………………………………………………1分∴ ∠BAE =∠FBC .∵ ∠FBC +∠ABG =90°,∴ ∠BAE +∠ABG =90°.∴ ∠AGF =90°. …………………………………………………………………2分 (2)① 依题意补全图形.…………………………………………………………………………………3分② 线段MN 与ND 的数量关系为MN =ND . …………………………………4分 证明:过点A 作AH ⊥AE 交GN 延长线于点H ,连接DH .∵ ∠AGF =90°,GN 平分∠AGF ,∴ ∠AGN =12∠AGF =45°. ∵ AH ⊥AE , ∴ ∠GAH =90°. ∴ ∠AHG =∠AGH =45°. ∴ AG =AH . ∵ 四边形ABCD 是正方形,∴ ∠BAD =90°,AB =AD .∵ ∠GAH =90°,∴ ∠BAG =∠DAH .∴ △BAG ≌△DAH (SAS ).∴ BG =DH ,∠AHD =∠AGB =90°.∵ BG =GM ,∠AHG =45°,∴ GM =DH ,∠DHN =∠NGM =45°.∵ ∠HND =∠GNM ,∴ △HND ≌△GNM (AAS ). ∴ MN =ND . ……………………………………………………………7分28.(本题满分7分)(1)① y =x +2;……………………………………………………………………………1分② √2; ……………………………………………………………………………2分(2)① 当d =2时,直线CD 过点(0,2),(2,0),∴ 直线CD 解析式为y =−x +2.MNGF E D C B AH MNGF E D CB A∵ 点M 在直线CD 上,∴ 设M 点坐标为(m ,−m +2).∴ 点M 的关联直线为l :y =mx −m +2.∴ 直线l 过定点H (1,2),则OH =∵ 点O 到直线l 的距离h OH ≤,∴ h ≤OH ⊥l ,即12m =−时,h =∴ 点O 到点M …………………………5分 ② d =2或d =23−. …………………………………………………………………7分。
北京市海淀区2022届高三一模数学试题(含答案解析)
北京市海淀区2022届高三一模数学试题(含答案解析)北京市海淀区2022届高三一模数学试题学校:___________ 姓名:___________ 班级:___________ 考号:___________一、单选题1.已知集合 $A=\{x-1\leq x\leq 2\}$,$B=\{x|x>0\}$,则$A\cup B=$()A。
$\{x|x\leq 2\}$B。
$\{x|x\geq -1\}$C。
$\{x|x>-1\}$D。
$\{x|x>0\}$2.在复平面内,复数 $z$ 对应的点为 $(1,-1)$,则$z(1+i)=$()A。
$2$B。
$2i$C。
$-2i$D。
$-2$3.双曲线 $-y^2=1$ 的离心率为()A。
$\sqrt{3}$B。
$\sqrt{6}$C。
$\frac{\sqrt{23}}{3}$D。
$3$4.在 $(x-x_0)^4$ 的展开式中,$x^2$ 的系数为()A。
$-1$B。
$1$C。
$-4$D。
$4$5.下列说法中正确的是A。
平行于同一直线的两个平面平行B。
垂直于同一直线的两个平面平行C。
平行于同一平面的两条直线平行D。
垂直于同一平面的两个平面平行6.已知直线 $l:ax+by=1$ 是圆 $x^2+y^2-2x-2y=0$ 的一条对称轴,则 $ab$ 的最大值为()A。
$\frac{1}{4}$B。
$\frac{1}{2}$C。
$1$D。
$2$7.已知角 $\alpha$ 的终边绕原点 $O$ 逆时针旋转 $\pi$ 后与角 $\beta$ 的终边重合,且 $\cos(\alpha+\beta)=1$,则$\alpha$ 的取值可以为()A。
$\frac{\pi}{6}$B。
$\frac{\pi}{3}$C。
$\frac{2\pi}{3}$D。
$\frac{5\pi}{6}$8.已知二次函数 $f(x)$ 的图象如图所示,将其向右平移$2$ 个单位长度得到函数 $g(x)$ 的图象,则不等式$g(x)>\log_2x$ 的解集是()A。
北京市海淀区北京师大附中2025届高考数学一模试卷含解析
北京市海淀区北京师大附中2025届高考数学一模试卷注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置. 3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B 铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效. 5.如需作图,须用2B 铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知函数()sin()(0,||)2f x x πωϕωϕ=+>≤,4πx =-为()f x 的零点,4x π=为()y f x =图象的对称轴,且()f x 在区间(,)43ππ上单调,则ω的最大值是( )A .12B .11C .10D .92.直线0(0)ax by ab +=>与圆221x y +=的位置关系是( ) A .相交B .相切C .相离D .相交或相切3.2020年是脱贫攻坚决战决胜之年,某市为早日实现目标,现将甲、乙、丙、丁4名干部派遺到A 、B 、C 三个贫困县扶贫,要求每个贫困县至少分到一人,则甲被派遣到A 县的分法有( ) A .6种B .12种C .24种D .36种4.已知12,F F 分别为双曲线2222:1x y C a b-=的左、右焦点,点P 是其一条渐近线上一点,且以12F F 为直径的圆经过点P ,若12PF F ∆2,则双曲线的离心率为( )A B .2C D .35.已知复数z 满足i •z =2+i ,则z 的共轭复数是() A .﹣1﹣2iB .﹣1+2iC .1﹣2iD .1+2i6.已知定义在R 上函数()f x 的图象关于原点对称,且()()120f x f x ++-=,若()11f =,则()1(2)(3)(2020)f f f f ++++=( )A .0B .1C .673D .6747.已知圆224210x y x y +-++=关于双曲线()2222:10,0x y C a b a b-=>>的一条渐近线对称,则双曲线C 的离心率为( )A .5B .5C .52D .548.函数()2sin()f x x ωϕ=+(0,0)ωϕπ><<的部分图像如图所示,若5AB =,点A 的坐标为(1,2)-,若将函数()f x 向右平移(0)m m >个单位后函数图像关于y 轴对称,则m 的最小值为( )A .12B .1C .3π D .2π 9.已知函数32,0()ln ,0x x x f x x x ⎧-≤=⎨>⎩,则1(())f f e =( )A .32B .1C .-1D .010.复数1z 在复平面内对应的点为()22,3,2,z i =-+则12z z =( ) A .1855i -+ B .1855i -- C .815i -+D .815i --11.ABC 的内角,,A B C 的对边分别为,,a b c ,若(2)cos cos a b C c B -=,则内角C =( )A .6π B .4π C .3π D .2π 12.已知()y f x =是定义在R 上的奇函数,且当0x >时,2()3f x x x=+-.若0x ≤,则()0f x ≤的解集是( ) A .[2,1]--B .(,2][1,0]-∞-⋃-C .(,2][1,0)-∞-⋃-D .(,2)(1,0]-∞-⋃-二、填空题:本题共4小题,每小题5分,共20分。
2023年北京市海淀区中考一模数学试卷(含答案解析)
2023年北京市海淀区中考一模数学试卷学校:___________姓名:___________班级:___________考号:___________A....【答案】A【分析】在正面内得到的由前向后观察物体的视图,叫做主视图;再结合常见几何体的主视图特征判断即可【详解】解:.主视图为矩形,符合题意;.主视图为三角形,不符合题意;.主视图为有一公共边的两个三角形,不符合题意;.主视图为圆,不符合题意;..C..【分析】根据两点之间线段最短即可得出答案.甲、乙位于直线MN的两侧,A .m n<B .0m n +>C .【答案】B 【分析】根据数轴上点的位置可知21n -<<-<【详解】解:由题意得,2134n m -<<-<<<,A .63︒B .36︒【答案】C【分析】如解析图所示,Rt △ABD 中,9090BAD ACD =︒=︒∠,∠,27CAD ∠=︒,由此利用直角三角形两锐角互余即可求出答案.【详解】解:如图所示,在Rt △ABD 中,9090BAD ACD =︒=︒∠,∠,27CAD ∠=︒,∴90CAD ADC ABD ADB +=︒=+∠∠∠∠,∴27ABD CAD ==︒∠∠,∴被测物体表面的倾斜角α为27︒,故选C .【点睛】本题主要考查了直角三角形两锐角互余,正确理解题意是解题的关键.8.图1是变量y 与变量x 的函数关系的图象,图2是变量z 与变量y 的函数关系的图象,则z 与x 的函数关系的图象可能是()A .B .C .D .【答案】C【分析】设两个直线关系式,再表示出z ,x 之间的关系式,即可得出图象.【详解】根据图像可知y 与x 是一次函数,z 和y 是正比例函数,设关系式为y kx b =+,1z k y =,所以1111()z k y k kx b k kx k b ==+=+,可知z 与x 是一次函数,所以图像C 符合题意.故选:C .【点睛】本题主要考查了函数图像的判断,表示出各函数关系式是解题的关键.二、填空题【答案】5【分析】由菱形的性质可得出结合勾股定理即可求出BC =【详解】解:∵四边形ABCD ∴142OB OD BD ===,OC ∴2225BC OB OC =+=.【答案】31︒(答案不唯一)当点M 在点E 处时,延长EF 交∵120AFE FAB ∠∠==︒,AFE ∠∴60AFH FAH ∠∠==︒,∴AH HF =,∴AHF 是正三角形,∴60H ∠=︒,AB烧制一个大尺寸陶艺品的位置可替换为烧制两个中尺寸或六个小尺寸陶艺品,小陶艺品的位置不能替换为烧制较大陶艺品.某批次需要生产10个大尺寸陶艺品,(1)烧制这批陶艺品,(2)若A款电热窑每次烧制成本为这批陶艺品成本最低为【答案】2【分析】(1)根据需要生产品,B款电热窑每次烧制故答案为:135.【点睛】本题主要考查了一元一次不等式的实际应用,正确理解题意是解题的关键.方法一证明:如图,延长BC 到点得CD BC =,连接AD .【答案】证明见解析【分析】方法一:如图,延长BC 到点CD BC =,连接AD ,先证明ACB 得到AB AD =,进而证明ABD △是等边三角形,得到AB BD =,由此即可证明方法二:如图,在线段AB 上取一点,使得BD BC =,连接CD ,先求出进而证明BCD △是等边三角形,得到CD BD =,60BCD ∠=︒,进一步证明(1)求证:四边形ABEF 为矩形;(2)若634AB BC CE ===,,,求ED 【答案】(1)见解析(2)10【分析】(1)由题意易证四边形ABEF 边形是矩形即可判定;(2)由题意易证BEC EDF ∽,即得出后由勾股定理即可求解.【详解】(1)证明:∵BE AD ∥,即∴四边形ABEF 为平行四边形.∵90A ∠=︒,∴四边形ABEF 为矩形;(2)解:∵BE AD ∥,∴BEC D ∠=∠.∵四边形ABEF 为矩形,∴90C EFD ∠=∠=︒,6EF AB ==,∴BEC EDF ∽,∴CE BC DF EF=,即436DF =,【点睛】本题考查矩形的判定和性质,平行线的性质,相似三角形的判定和性质,勾股定理.熟练掌握上述知识是解题关键.22.在平面直角坐标系xOy 中,一次函数y kx b =+的图象过点()()1,3,2,2.(1)求这个一次函数的解析式;(2)当2x >时,对于x 的每一个值,一次函数y mx =的值大于一次函数y kx b =+的值,直接写出m 的取值范围.【答案】(1)一次函数的解析式+4y x =-;(2)1m ≥【分析】(1)用待定系数法求解即可;(2)根据题意列出关于m 的不等式即可求解.【详解】(1)解:∵一次函数y kx b =+的图象过点()()1,3,2,2,∴把()()1,3,2,2代入得:+32+2k b k b =⎧⎨=⎩,解得:14k b =-⎧⎨=⎩,∴一次函数的解析式+4y x =-;(2)解:由(1)得:一次函数的解析式+4y x =-,当2x =时,2y =,当2x >时,对于x 的每一个值,一次函数y mx =的值大于一次函数y kx b =+的值,把2x =代入y mx =得:2y m =,∴22m ≥,解得:1m ≥.【点睛】本题考查了一次函数的应用,灵活掌握所学知识是解题关键.23.如图,AB 为O 的直径,C 为O 上一点,D 为 BC的中点,DE AC ⊥交AC 的延长线于点E .(1)求证:直线DE 为O (2)延长,AB ED 交于点F 【答案】(1)证明见解析(2)23【分析】(1)连接BC ,连接根据垂径定理可得CFD ∠(2)设O 的半径为r ,则1r =,则2AB =,再证明【详解】(1)证明:连接∵AB 是O 的直径,∴90ACB ∠=︒,∵点D 是 BC的中点,∴OD BC ⊥,又∵DE AC ⊥,∴四边形CEDF 是矩形,∴90ODE ∠=︒,【点睛】本题考查了切线的性质判定,垂径定理,矩形的性质与判定,解直角三角形,圆周角定理,正确的作出辅助线是解题的关键.24.某小组对当地2022年3月至述和分析得到了部分信息.a.西红柿与黄瓜市场价格的折线图:b.西红柿与黄瓜价格的众数和中位数:(1)建立如图所示的平面直角坐标系.通过对某只野兔一次跳跃中水平距离x (单位:m 测量,得到以下数据:水平距离/mx 00.41 1.42 2.4竖直高度/m y 00.480.90.980.80.48根据上述数据,回答下列问题:①野兔本次跳跃的最远水平距离为_________m ,最大竖直高度为②求满足条件的抛物线的解析式;(2)已知野兔在高速奔跑时,某次跳跃的最远水平距离为在野兔起跳点前方2m 处有高为0.8m 的篱笆,则野兔此次跳跃能”)跃过篱笆.【答案】(1)①2.8,0.98;②()20.5 1.40.98y x =--+(2)能(1)求AGF ∠的度数;(2)在线段AG 上截取MG BG =,连接,DM AGF ∠的角平分线交DM 于点N .①依题意补全图形;②用等式表示线段MN 与ND 的数量关系,并证明.【答案】(1)90︒(2)①见解析②MN ND =,证明见解析【分析】(1)根据正方形的性质,得90AB BC ABE BCF ∠∠ =,==,利用SAS 证明ABE BCF ≌得出角相等,再将角进行等量代换便可得结论.(2)①根据题意画出图形即可,②作AH AG ⊥交GN 的延长线于点H ,构造全等三角形,得出BG MG DH DHN MGN ==∠=∠,,再证MGN DHN ≅ ,问题即可解决.【详解】(1)∵四边形ABCD 是正方形,∴90AB BC ABE BCF =∠=∠=︒,,在ABE 和BCF 中,,AB BC ABE BCF BE CF =⎧⎪∠=∠⎨⎪=⎩∴ABE BCF SAS ≌(),∴BAE CBF∠=∠∴90AGF BAE ABG CBF ABG ABE ∠=∠+∠=∠+∠=∠=︒.(2)①根据题意画图如下②MN ND =,理由如下作AH AG ⊥交GN 的延长线于点∵GN 平分AGF ∠,AGF ∠=∴1452AGH AGF ∠=∠=︒∴AGH 为等腰直角三角形∴,AG AH AGH AHG =∠=∠∵四边形ABCD 为正方形(2)解:①设直线CD 的解析式为由题意得,点()02C ,,点D ∴202k b b +=⎧⎨=⎩,∴12k b =-⎧⎨=⎩,∴直线CD 的解析式为y =-设点M 的坐标为(2m m -+,∴点M 的关联直线为y mx =∴点M 的关联直线经过定点②同理可得直线CD 的解析式为设点M 的坐标为2n n d ⎛- ⎝,∴点M 的关联直线为y =∴点M 的关联直线经过定点如图所示,过点T 作TN ⊥∴222EF NF TF TN ==-∴要想EF 最小,则要使TN ∵EF 的最小值为4,即NF ∴22TN TF NF =-=最大由(2)①可知,当点N 与点∴()(222112d ⎛⎫--+-= ⎪⎝⎭∴244115d d +++=,∴23440d d --=,∴()()3220d d +-=,解得2d =或23d =-.正确推出点M的关联直线经过定点是解题的关键.。
北京海淀人大附2025届高三第一次模拟考试数学试卷含解析
北京海淀人大附2025届高三第一次模拟考试数学试卷注意事项1.考生要认真填写考场号和座位序号。
2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。
第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。
3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知复数()11z ai a R =+∈,212z i =+(i 为虚数单位),若12z z 为纯虚数,则a =( ) A .2- B .2 C .12- D .122.已知椭圆2222:1(0)x y a b a bΓ+=>>的左、右焦点分别为1F ,2F ,上顶点为点A ,延长2AF 交椭圆Г于点B ,若1ABF 为等腰三角形,则椭圆Г的离心率e =A .13B.3 C .12 D.23.已知集合{}10A x x =+≤,{|}B x x a =≥,若AB R =,则实数a 的值可以为( ) A .2 B .1C .0D .2-4.设02x π≤≤sin cos x x =-,则( )A .0x π≤≤B .744x ππ≤≤ C .544x ππ≤≤ D .322x ππ≤≤ 5.方程()()f x f x '=的实数根0x 叫作函数()f x 的“新驻点”,如果函数()ln g x x =的“新驻点”为a ,那么a 满足( )A .1a =B .01a <<C .23a <<D .12a <<6.已知3sin 2cos 1,(,)2παααπ-=∈,则1tan 21tan 2αα-=+( ) A .12- B .2- C .12 D .2 7.如图所示,直三棱柱的高为4,底面边长分别是5,12,13,当球与上底面三条棱都相切时球心到下底面距离为8,则球的体积为 ( )A .B .C .D .8.秦九韶是我国南宁时期的数学家,普州(现四川省安岳县)人,他在所著的《数书九章》中提出的多项式求值的秦九韶算法,至今仍是比较先进的算法.如图所示的程序框图给出了利用秦九韶算法求某多项式值的一个实例.若输入n 、x 的值分别为3、1,则输出v 的值为( )A .7B .8C .9D .109.若将函数()2sin 16f x x π⎛⎫=+- ⎪⎝⎭的图象上各点横坐标缩短到原来的12(纵坐标不变)得到函数()g x 的图象,则下列说法正确的是( )A .函数()g x 在0 6π⎛⎫ ⎪⎝⎭,上单调递增 B .函数()g x 的周期是2π C .函数()g x 的图象关于点 012π⎛⎫- ⎪⎝⎭,对称 D .函数()g x 在0 6π⎛⎫ ⎪⎝⎭,上最大值是110.已知A ,B 是函数()2,0ln ,0x x a x f x x x a x ⎧++≤=⎨->⎩图像上不同的两点,若曲线()y f x =在点A ,B 处的切线重合,则实数a 的最小值是( )A .1-B .12-C .12D .111.已知正方体1111ABCD A B C D -的棱长为2,点M 为棱1DD 的中点,则平面ACM 截该正方体的内切球所得截面面积为( )A .3πB .23πC .πD .43π 12.设集合{}1,2,3A =,{}220B x x x m =-+=,若{3}A B ⋂=,则B =( )A .{}1,3-B .{}2,3-C .{}1,2,3--D .{}3 二、填空题:本题共4小题,每小题5分,共20分。
2025届北京海淀高三下学期一模考试数学试题含解析
2025届北京海淀高三下学期一模考试数学试题注意事项:1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。
2.选择题必须使用2B 铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。
3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。
4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合{1,3,5}A =,{1,2,3}B =,{2,3,4,5}C =,则()A B C ⋂⋃=( ) A .{1,2,3,5} B .{1,2,3,4}C .{2,3,4,5}D .{1,2,3,4,5}2.函数1()f x ax x=+在(2,)+∞上单调递增,则实数a 的取值范围是( ) A .1,4⎛⎫+∞ ⎪⎝⎭B .1,4⎡⎫+∞⎪⎢⎣⎭C .[1,)+∞D .1,4⎛⎤-∞ ⎥⎝⎦ 3.已知函数f (x )=e b ﹣x ﹣e x ﹣b +c (b ,c 均为常数)的图象关于点(2,1)对称,则f (5)+f (﹣1)=( )A .﹣2B .﹣1C .2D .44.已知集合{|lg }M x y x ==,2{|40}N x N x =∈-≥,则M N ⋂为( ) A .[1,2]B .{0,1,2}C .{1,2}D .(1,2)5.甲、乙两名学生的六次数学测验成绩(百分制)的茎叶图如图所示.①甲同学成绩的中位数大于乙同学成绩的中位数; ②甲同学的平均分比乙同学的平均分高; ③甲同学的平均分比乙同学的平均分低; ④甲同学成绩的方差小于乙同学成绩的方差. 以上说法正确的是( ) A .③④B .①②C .②④D .①③④6.对某两名高三学生在连续9次数学测试中的成绩(单位:分)进行统计得到折线图,下面是关于这两位同学的数学成绩分析.①甲同学的成绩折线图具有较好的对称性,故平均成绩为130分; ②根据甲同学成绩折线图提供的数据进行统计,估计该同学平均成绩在区间内;③乙同学的数学成绩与测试次号具有比较明显的线性相关性,且为正相关; ④乙同学连续九次测验成绩每一次均有明显进步. 其中正确的个数为( ) A .B .C .D .7.用电脑每次可以从区间(0,3)内自动生成一个实数,且每次生成每个实数都是等可能性的.若用该电脑连续生成3个实数,则这3个实数都小于1的概率为( ) A .427B .13C .127D .198.以下关于()sin 2cos 2f x x x =-的命题,正确的是 A .函数()f x 在区间20,3π⎛⎫⎪⎝⎭上单调递增 B .直线8x π=需是函数()y f x =图象的一条对称轴C .点,04π⎛⎫⎪⎝⎭是函数()y f x =图象的一个对称中心D .将函数()y f x =图象向左平移需8π个单位,可得到22y x =的图象 9.甲乙两人有三个不同的学习小组A , B , C 可以参加,若每人必须参加并且仅能参加一个学习小组,则两人参加同一个小组的概率为( ) A .13 B .14 C .15 D .1610.在ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,D 是AB 的中点,若1CD =,且1sin 2a b A ⎛⎫-⎪⎝⎭()()sin sin c b C B =+-,则ABC 面积的最大值是( ) A .155B .15C 15D 21511.已知A 类产品共两件12,A A ,B 类产品共三件123,,B B B ,混放在一起,现需要通过检测将其区分开来,每次随机检测一件产品,检测后不放回,直到检测出2件A 类产品或者检测出3件B 类产品时,检测结束,则第一次检测出B 类产品,第二次检测出A 类产品的概率为( ) A .12B .35C .25D .31012.若,x y 满足320020x y x y x y --≤⎧⎪-≥⎨⎪+≥⎩,且目标函数2(0,0)z ax by a b =+>>的最大值为2,则416a b +的最小值为( )A .8B .4C .22D .6二、填空题:本题共4小题,每小题5分,共20分。
2022年北京海淀区高三一模数学试题和答案
【详解】平行于同一直线的两个平面可以平行、相交,故不正确,垂直于同一直线的两个平面平行正确,平行于同
一平面的两条直线平行错误,因为也可以相交也可以是异面直线,垂直于同一平面的两个平面平行错误,因为也可
以相交,故选 B.
6. 已知直线 l : ax + by = 1是圆 x2 + y2 − 2x − 2 y = 0 的一条对称轴,则 ab 的最大值为( )
= − 3
+ k , k Z
,
当 k = 1 时, = 2 , 3
故选:C.
8. 已知二次函数 f ( x) 的图象如图所示,将其向右平移 2 个单位长度得到函数 g ( x) 的图象,则不等式
g ( x) log2 x 的解集是( )
A. (−, 2)
B. (2, +)
C. (0, 2)
D. (0,1)
20.
已知椭圆 C :
x2 a2
+
y2 b2
= 1(a
b
0)
的下顶点 A
和右顶点 B 都在直线 l1 :
y
=
1 (x − 2) 上. 2
(1)求椭圆方程及其离心率;
(2)不经过点 B 的直线 l2 : y = kx + m 交椭圆 C 于两点 P, Q ,过点 P 作 x 轴的垂线交 l1 于点 D ,点 P 关于点 D 的
1
5. 下列说法中正确的是
C. −4
D. 4
A. 平行于同一直线的两个平面平行
B. 垂直于同一直线的两个平面平行
C. 平行于同一平面的两条直线平行
D. 垂直于同一平面的两个平面平行
6. 已知直线 l : ax + by = 1是圆 x2 + y2 − 2x − 2 y = 0 的一条对称轴,则 ab 的最大值为( )
北京市海淀区2022届高三一模数学试题 (2)
一、单选题二、多选题1. 宋代制酒业很发达,为了存储方便,酒缸是要一层一层堆起来的,形成堆垛,用简便的方法算出堆垛中酒缸的总数,古代称之为堆垛术.有这么一道关于“堆垛”求和的问题:将半径相等的圆球堆成一个三角垛,底层是每边为个圆球的三角形,向上逐层每边减少一个圆球,顶层为一个圆球,我们发现,当,2,3,4时,圆球总个数分别为1,4,10,20,则时,圆球总个数为()A .30B .35C .40D .452.若,,则( )A.B.C.D.3. 已知在中,点D 为边BC 的中点,若,则( )A .1B .-1C .2D .-24. 已知集合,,那么正确的一项是( )A.B.C.D.5. 已知函数(a ,且)有且仅有3个零点,则a 的取值范围是( )A.B.C.D.6. 已知函数有两个零点,,函数有两个零点,,给出下列三个结论:;;.其中所有正确结论的序号是( )A .①②B .②③C .①③D .①②③7. 已知焦点在轴上的椭圆的焦距等于,则实数的值为( )A.或B .或C.D.8. 已知复数(为虚数单位),若,则实数a 的值为( )A.B .0C .1D .29. 在正方体中,P 是面对角线上的动点,Q是棱的中点,过、P 、Q 三点的平面与正方体的表面相交,所得截面多边形可能是()A .三角形B .四边形C .五边形D .六边形10. 下面描述正确的是( )A .已知,,且,则北京市海淀区2022届高三一模数学试题 (2)北京市海淀区2022届高三一模数学试题 (2)三、填空题四、解答题B.函数,若,且,则的最小值是C .已知,则的最小值为D.已知,则的最小值为11. 已知定义在上的函数是奇函数,函数为偶函数,当时,,则( )A.B.C.D.12. 已知函数(其中,,)的部分图象如图所示,则下列结论正确的是()A.函数的最小正周期为B .函数的图象关于点对称C .函数在区间上单调递减D .若,则的值为13.某校数学建模兴趣小组收集了一组恒温动物体重(单位:克)与脉搏率(单位:心跳次数/分钟)的对应数据,根据生物学常识和散点图得出与近似满足(为参数).令,,计算得,,.由最小二乘法得经验回归方程为,则的值为___________;为判断拟合效果,通过经验回归方程求得预测值,若残差平方和,则决定系数___________.(参考公式:决定系数)14. 已知、、、都是平面向量,且,若,则的最小值为____________.15. 如图所示,一圆形纸片的圆心为,是圆内一定点(不同于点),是圆周上一动点,把纸片折叠使与重合,然后抹平纸片,折痕为,设与交于点,则点的轨迹是_____16. 在中,角A ,B ,C 所对的边分别为a ,b ,c , 且.(1)若为锐角三角形,求的取值范围;(2)若,且,求面积的最小值.17.如图,四棱锥中,平面,,,,为线段上一点,且.(1)证明:平面平面;(2)求二面角的余弦值.18. 如图,直三棱柱中,,,D,E分别是,的中点.(1)证明:平面平面;(2)求三棱锥的高.19. 如图,已知某市穿城公路自西向东到达市中心后转向东北方向,,现准备修建一条直线型高架公路,在上设一出入口,在上设一出入口,且要求市中心到所在的直线距离为.(1)求,两出入口间距离的最小值;(2)在公路段上距离市中心点处有一古建筑(视为一点),现设立一个以为圆心,为半径的圆形保护区,问如何在古建筑和市中心之间设计出入口,才能使高架公路及其延长线不经过保护区?20. 在三棱柱中,底面,为正三角形,,是的中点.(1)求证:平面平面;(2)求二面角的余弦值.21. 已知数列是公比为的等比数列,前项和为,且满足,.(1)求数列的通项公式;(2)若数列满足,求数列的前项和.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
海淀区九年级第二学期期中练习数学2016.5学校班级___________姓名成绩考生须知1.本试卷共8页,共三道大题,29道小题,满分120分,考试时间120分钟。
2.在试卷和答题卡上准确填写学校名称、姓名和准考证号。
3.试题答案一律填涂或书写在答题卡上,在试卷上作答无效。
4.在答题卡上,选择题、画图题用2B铅笔作答,其他试题用黑色字迹签字笔作答。
5.考试结束,将本试卷、答题卡一并交回。
一、选择题(本题共30分,每小题3分)下面各题均有四个选项,其中只有一个..是符合题意的.1.“中华人民共和国全国人民代表大会”和“中国人民政治协商会议”于2016年3月3日在北京胜利召开.截止到2016年3月14日,在百度上搜索关键词“两会”,显示的搜索结果约为96 500 000条.将96 500 000用科学记数法表示应为A.96.5×107B.9.65×107 C.9.65×108 D.0.965×1092.如图是某个几何体的三视图,该几何体是A.长方体B.正方体C.圆柱D.三棱柱3.一个不透明的口袋中装有3个红球和12个黄球,这些球除了颜色外,无其他差别,从中随机摸出一个球,恰好是红球的概率为A.B.C.D.4.下列图形中,是轴对称图形但不是中心对称图形的是A.B.C.D.5.如图,在ABCD中,AB=3,BC=5,∠ABC的平分线交AD于点E,则DE的长为A.5B.4C.3D.26.如图,等腰直角三角板的顶点A,C分别在直线,b上.若∥b,,则的度数为A.B.C.D.14341545Yaa1=35∠︒2∠35︒15︒10︒5︒ECDBA7.初三(8)班体委用划记法统计本班40名同学投掷实心球的成绩,结果如下表所示:则这40名同学投掷实心球的成绩的众数和中位数分别是A.9,8 B.9,8.5 C.8,8 D.8,8.58.京津冀都市圈是指以北京、天津两座直辖市以及河北省的保定、廊坊、唐山、邯郸、邢台、秦皇岛、沧州、衡水、承德、张家口和石家庄为中心的区域.若“数(,)表示图中承德的位置,“数对”对”19043︒(,)表示图中保定的位置,则与图中张家口160238︒的位置对应的“数对”为(,)A.176145︒(,)B.17635︒(,)C.100145︒(,)D.10035︒9.油电混动汽车是一种节油、环保的新技术汽车.它将行驶过程中部分原本被浪费的能量回收储存于内置的蓄电池中.汽车在低速行驶时,使用蓄电池带动电动机驱动汽车,节约燃油.某品牌油电混动汽车与普通汽车的相关成本数据估算如下:油电混动汽车普通汽车购买价格(万元)17.48 15.98每百公里燃油成本(元)31 46 某人计划购入一辆上述品牌的汽车.他估算了未来10年的用车成本,在只考虑车价和燃油成本的情况下,发现选择油电混动汽车的成本不高于选择普通汽车的成本.则他在估算时,预计平均每年行驶的公里数至少..为A.5 000 B.10 000 C.15 000 D.20 00010.小明在暗室做小孔成像实验.如图1,固定光源(线段MN )发出的光经过小孔(动点K ) 成像(线段M'N')于足够长的固定挡板(直线l )上,其中MN// l .已知点K 匀速运动, 其运动路径由AB ,BC ,CD ,DA ,AC ,BD 组成.记它的运动时间为x ,M'N'的长度为 y ,若y 关于x 的函数图象大致如图2所示,则点K 的运动路径可能为 A .A→B→C→D→A B .B→C→D→A→B C.B→C→A→D→B D .D→A→B→C→D图1 图2二、填空题(本题共18分,每小题3分) 11. 分解因式:a 2b -2ab +b =________________.12.如图,AB 为⊙O 的弦,OC ⊥AB 于点C .若AB=8,OC =3,则⊙O 的半径长为________.13.埃及《纸草书》中记载:“一个数,它的三分之二,它的一半,它的七分之一,它的全部,加起来总共是33.”设这个数是x ,可列方程为. 14.在下列函数①;②;③;④中,与众不同的一 个是_____(填序号),你的理由是________.15.北京市2010~2015年高考报名人数统计如图所示.根据统计图中提供的信息,预估2016年北京市高考报名人数约为________万人,你的预估理由是____________.16.阅读下面材料: 21y x =+22y x x =+3y x=3y x =-在数学课上,老师提出如下问题:小云的作法如下:老师说:“小云的作法正确.”请回答:小云的作图依据是________________________________________.三、解答题(本题共72分,第17~26题,每小题5分,第27题7分,第28题7分,第29题8分)17.计算:.18.解不等式组并写出它的所有整数解....19.已知,求代数式的值.20.如图,在△ABC中,,AD BC⊥于点D,DE为AC边上的中线.求证:.21.目前,步行已成为人们最喜爱的健身方法之一,通过手机可以计算行走的步数与相应的)2016tan3012π-⎛⎫-︒++⎪⎝⎭41)3(2),14,2x xxx-≤+⎧⎪⎨-<-⎪⎩(250x x+-=2(1)(3)(2)(2)x x x x x---++-90BAC∠=︒BAD EDC∠=∠能量消耗.对比手机数据发现小琼步行12 000步与小博步行9 000步消耗的能量相同.若 每消耗1千卡能量小琼行走的步数比小博多10步,求小博每消耗1千卡能量需要行走多 少步.22.如图,矩形ABCD 的对角线AC ,BD 相交于点O ,过点B 作AC的平行线交DC 的延长线于点E . (1)求证:BD=BE ;(2)若BE =10,CE =6,连接OE ,求tan ∠OED 的值.23.在平面直角坐标系xOy 中,直线与双曲线ky x=(0k ≠)的一个交点为.(1)求k 的值;(2)将直线向上平移b (b>0)个单位长度后,与x 轴,y 轴分别交于点A ,点B ,与双曲线ky x =(0k ≠)的一个交点记为Q .若,求b 的值.24.如图,AB ,AD 是⊙O 的弦,AO 平分.过点B作⊙O 的切线交AO 的延长线于点C ,连接CD ,BO . 延长BO 交⊙O 于点E ,交AD 于点F ,连接AE ,DE . (1)求证:是⊙O 的切线; (2)若,求的长.y x =-(6,)P m y x =-2BQ AB =BAD ∠CD 3AE DE ==AF O ED ABC25.阅读下列材料:2015年中国内地电影市场票房总收入400亿元,动画电影成为了新崛起的热点, 票房占比为11.25%.2014年,中国内地动画电影市场6部破亿,只有一部《熊出没》为国产动画电影, 票房成绩为2.4亿元.而2015年中国内地动画电影市场共8部破亿,国产动画电影占3 部,分别是《大圣归来》,《熊出没2》和《十万个冷笑话》.其中,《大圣归来》以9.55 亿元票房夺冠,《熊出没2》比2014年第一部的票房又增长了20%,《十万个冷笑话》 以1.2亿元票房成绩勉强破亿.另外5部来自海外动画电影,其中美国两部全球热映的 动画电影《超能陆战队》和《小黄人大眼萌》在中国内地只拿下5.26亿元和4.36亿元 票房,而同样来自美国的《精灵旅社2》收获1.2亿元票房,日本的《哆啦A 梦之伴我 同行》和法国的《小王子》分别获得5.3亿和1.58亿元票房收入. 2015年中国内地动画电影市场中,国产动画电影共上映41部,其中票房在1000万元~5000万元、5000万元~1亿元的国产动画电影分别有12部和5部,票房金字塔结构分化更加明显,标志着中国国产动画电影市场的日趋成熟.根据以上材料解答下列问题:(1)2015年中国内地动画电影票房收入为亿元; (2)右图为2015年国产..动画电影票房金字塔,则B =; (3)选择统计表或.统计图将2015年中国内地动画电影市场票房收入前5名的票房成绩表示出来.26.有这样一个问题:探究函数的图象与性质. (1)(2)(3)y x x x =---小东对函数的图象与性质进行了探究. 下面是小东的探究过程,请补充完成:(1)函数的自变量x 的取值范围是全体实数; (2)下表是y 与x 的几组对应值. x …0 1 2 3 4 5 6 … y…m24-6-62460…①m =;②若M (7-,720-),N (,720)为该函数图象上的 两点,则;(3)在平面直角坐标系中, A (),B ()为该函数图象上的两点,且A 为范围内的最低点, A 点的位置如图所示. ①标出点B 的位置;②画出函数()的图象.27.在平面直角坐标系中,抛物线(0m ≠)的顶点为A ,与x 轴交于B ,C 两点(点B 在点C 左侧),与y 轴交于点D . (1)求点A 的坐标; (2)若BC =4,①求抛物线的解析式;②将抛物线在C ,D 之间的部分记为图象G (包含 C ,D 两点).若过点A 的直线 与图象G 有两个交点,结合函数的图象,求k 的取值范围.28.在△ABC 中,AB =AC ,∠BAC =,点D 在射线BC 上(与B 、C 两点不重合),以 (1)(2)(3)y x x x =---(1)(2)(3)y x x x =---2-1-n n =xOy ,A A x y ,B A x y -23x ≤≤(1)(2)(3)y x x x =---04x ≤≤xOy 224y mx mx m =-+-+(0)y kx b k =≠90︒AD 为边作正方形ADEF ,使点E 与点B 在直线AD 的异侧,射线BA 与射线CF 相交于点G . (1)若点D 在线段BC 上,如图1.①依题意补全图1;②判断BC 与CG 的数量关系与位置关系,并加以证明;(2)若点D 在线段BC 的延长线上,且G 为CF 中点,连接GE ,AB =,则GE 的长为_______,并简述求GE 长的思路.图1 备用图29.在平面直角坐标系中,⊙C 的半径为r ,P 是与圆心C不重合的点,点P 关于⊙C 的限距点的定义如下:若为 直线PC 与⊙C 的一个交点,满足,则称 为点P 关于⊙C 的限距点,右图为点P 及其关于⊙C 的限 距点的示意图.(1)当⊙O 的半径为1时.①分别判断点M ,N ,T 关 于⊙O 的限距点是否存在?若存在,求其坐标;②点D 的坐标为(2,0),DE ,DF 分别切⊙O 于点E ,点F ,点P 在△DEF 的 边上.若点P 关于⊙O 的限距点存在,求点的横坐标的取值范围;(2)保持(1)中D ,E ,F 三点不变,点P 在△DEF 的边上沿E →F →D →E 的方向运动,⊙C 的圆心C 的坐标为(1,0),半径为r .请从下面两个问题中任选一个作答. 温馨提示:答对问题1得2分,答对问题2得1分,两题均答不重复计分.问题1问题2若点P 关于⊙C 的限距点存在,且随点P 的运动所形成的路径长为,则r 的最小值为__________. 若点P 关于⊙C 的限距点不存在,则r 的取值范围为________.2xOy P '2r PP r '≤≤P 'P '(3,4)5(,0)2(1,2)P 'P 'P 'P 'r πP '海淀区九年级第二学期期中练习数学试卷参考答案一、选择题(本题共30分,每小题3分)三、解答题(本题共72分,第17~26题,每小题5分,第27题7分,第28题7分,第29题8分) 17.解:原式1641=-++ ……………………4分4=………………………5分解不等式①,得 10≤x .………………………2分解不等式②,得7>x . ………………………3分∴ 原不等式组的解集为107≤<x .………………………4分∴ 原不等式组的所有整数解为8,9,10.………………………5分19. 解:原式4312222-++-+-=x x x x x ………………………3分 32-+=x x .………………………4分∵ 250x x +-=, ∴ 52=+x x .∴ 原式=532-=. .………………………5分20.证明:∵ 90BAC ∠=︒,∴ 90BAD DAC ∠+∠=︒. ∵ AD BC ⊥, ∴ 90ADC ∠=︒.∴ 90DAC C ∠+∠=︒.∴ BAD C ∠=∠. ………………………2分 ∵ DE 为AC 边上的中线, ∴ DE EC =.∴ EDC C ∠=∠. .………………………4分 ∴ BAD EDC ∠=∠. ………………………5分21.解:设小博每消耗1千卡能量需要行走x 步.………………………1分由题意,得xx 90001012000=+ . ………………………3分 解得 30=x . ………………………4分 经检验,30=x 是原方程的解,且符合题意.答:小博每消耗1千卡能量需要步行30步. ………………………5分22.(1) 证明:∵ 四边形ABCD 为矩形,∴ AC BD =,AB ∥DC . ∵ AC ∥BE ,∴ 四边形ABEC 为平行四边形. ………………………2分 ∴ AC BE =.∴ BD BE =. ………………………3分 (2) 解:过点O 作OF ⊥CD 于点F .∵ 四边形ABCD 为矩形, ∴ 90BCD ∠=︒. ∵ 10BE BD ==, ∴ 6CD CE ==. 同理,可得132CF DF CD ===. ∴9EF =. ………………………4分 在Rt △BCE 中,由勾股定理可得8BC =. ∵ OB=OD ,∴ OF 为△BCD 的中位线. ∴ 142OF BC ==. ∴在Rt △OEF 中,4tan 9OF OED EF ∠==. ………………………5分F EDA C23. 解:(1)∵)P m 在直线y x =-上,∴m = ………………………1分∵P 在双曲线k y x =上,∴(6k ==-. ………………………2分图1 图2(2) ∵y x =-向上平移b (0b >)个单位长度后,与x 轴,y 轴分别交于A ,B ,∴(,0),(0,)A b B b . ………………………3分作QH ⊥x 轴于H ,可得△HAQ ∽△OAB .如图1,当点Q 在AB 的延长线上时,∵2BQ AB =, ∴3===ABAQ OA HA OB HQ . ∵OA OB b ==, ∴3HQ b =,2HO b =.∴Q 的坐标为(2,3)b b -.由点Q 在双曲线6y x=-上, 可得1b =. ………………………4分 如图2,当点Q 在AB 的反向延长线上时,同理可得,Q 的坐标为(2,)b b -.由点Q 在双曲线6y x=-上,可得b =综上所述,1b =或3b =. ………………………5分24. (1) 证明:如图,连接OD . ………………………1分∵BC 为⊙O 的切线,∴90CBO ∠=︒.∵AO 平分BAD ∠,∴12∠=∠.∵OA OB OD ==,∴1=4=2=5∠∠∠∠.∴BOC DOC ∠=∠.∴△BOC ≌△DOC .∴90CBO CDO ∠=∠=︒.∴CD 为⊙O 的切线. ……………2分(2) ∵AE DE =,∴»»AEDE =.∴34∠=∠. ………………………3分∵124∠=∠=∠,∴123∠=∠=∠.∵BE 为⊙O 的直径,∴90BAE ∠=︒.∴123430∠=∠=∠=∠=︒.………………………4分∴90AFE ∠=︒ .在Rt △AFE 中,∵3AE =,︒=∠303,∴332AF =. ………………………5分25. (1) 45;………………………2分(2) 21;………………………3分(3) 2.4(120%) 2.88⨯+=.2015年中国内地动画电影市场票房收入前5名的票房成绩统计表………………………5分或2015年中国内地动画电影市场票房收入前5名的票房成绩统计图………………………5分m=-;………………………1分26. (2) ①60n=;………………………2分②11(3)正确标出点B的位置,画出函数图象. …………………5分27. 解:(1)224y mx mx m =-+-2(21)4m x x =-+-2(1)4m x =--.∴ 点A 的坐标为(1,4)-. ………………………2分(2)①由(1)得,抛物线的对称轴为x =1.∵ 抛物线与x 轴交于B ,C 两点(点B 在点C 左侧),BC =4,∴ 点B 的坐标为 (1,0)-,点C 的坐标为 (3,0).………………………3分∴ 240m m m ++-=.∴ 1m =.∴ 抛物线的解析式为223y x x =--.……4分② 由①可得点D 的坐标为 (0,3)-.当直线过点A ,D 时,解得1k =-.………5分当直线过点A ,C 时,解得2k =. ………6分结合函数的图象可知,k 的取值范围为10k -≤<或02k <≤. …………7分28. 解:(1) ①补全图形,如图1所示. ………………………1分图1②BC 和CG 的数量关系:BC CG =,位置关系:BC CG ⊥.…………………2分证明: 如图1.∵︒=∠=90,BAC AC AB ,∴︒=∠=∠45ACB B ,︒=∠+∠9021.∵射线BA 、CF 的延长线相交于点G ,∴︒=∠=∠90BAC CAG .∵四边形ADEF 为正方形,∴︒=∠+∠=∠9032DAF ,AF AD =.∴31∠=∠.∴△ABD ≌△ACF .…………………3分∴︒=∠=∠45ACF B .∴45B G ∠=∠=︒,90BCG ∠=︒.∴BC CG =,BC CG ⊥.…………………4分(2) 10GE =.…………………5分 思路如下: a . 由G 为CF 中点画出图形,如图2所示. b . 与②同理,可得BD=CF ,BC CG =,BC CG ⊥;c . 由2=AB ,G 为CF 中点,可得2====CD FG CG BC ;d . 过点A 作AM BD ⊥于M ,过点E 作EN FG ⊥于N ,可证△AMD ≌△FNE ,可得1AM FN ==,NE 为FG 的垂直平分线,FE EG =;e . 在Rt △AMD 中,1AM =,3MD =,可得10AD =,即10GE FE AD ===. ……7分29.解:(1)①点M ,点T 关于⊙O 的限距点不存在;点N 关于⊙O 的限距点存在,坐标为(1,0).………………………2分②∵点D 的坐标为(2,0),⊙O 半径为1,DE ,DF 分别切⊙O 于点E ,点F , ∴切点坐标为13()22,,13()22,-.……………3分 如图所示,不妨设点E 的坐标为13()22,,点F 的坐标为13()2,-,EO ,FO 的延长线分别交⊙O 于点'E ,'F ,则13'()2E --,,13'()2F -,. 设点P 关于⊙O 的限距点的横坐标为x .Ⅰ.当点P 在线段EF 上时,直线PO 与¼''EF 的交点'P 满足2'1≤≤PP ,故点P 关于⊙O 的限距点存在,其横坐标x 满足112x -≤≤-.………5分 Ⅱ.当点P 在线段DE ,DF (不包括端点)上时,直线PO 与⊙O 的交点'P 满足1'0<<PP 或2'3PP <<,故点P 关于⊙O 的限距点不存在.Ⅲ.当点P 与点D 重合时,直线PO 与⊙O 的交点'(1,0)P 满足1'=PP ,故点P 关于⊙O 的限距点存在,其横坐标x =1.综上所述,点P 关于⊙O 的限距点的横坐标x 的范围为112x -≤≤-或x =1. ……………………6分(2)问题1: ………………8分 问题2:0 < r <16. ………………7分。