环境空气—氮氧化物的测定—中和滴定法

合集下载

大气中氮氧化物NOx的测定

大气中氮氧化物NOx的测定

大气中氮氧化物NOx的测定
一、实验目的:
(1)掌握大气中NOx的监测方法;
(2)了解大气中NOx含量。

二、实验原理:
空气中的NOx主要以NO和NO2的形态存在,测定时,将NO氧化成NO2,用吸收液吸收后,生成HNO2和HNO3,其中HNO2与吸收液中对氨基苯磺酸起重氮化反应,重氮化合物与盐酸萘乙二胺偶合,生成玫瑰红色的偶氮化合物,颜色深浅与气样中NO2浓度成正比,因此可用分光光度法测定。

其中,大气中的NO2有76%转化为HNO2。

三、实验仪器与试剂
1.仪器:移液管、吸收管、大气采样器、容量瓶、分光光度计
2.试剂:NO2-标准溶液、显色液、吸收液
四、实验步骤
1.采样:准确移取4.00 mL吸收液,6.00mL蒸馏水于吸收管内,吸收管的一段连接三氧化
铬-石英砂氧化管,另一端连接大气采样器(注意:千万勿接反),以0.4 L/min流量采样
15 min,然后将吸收液置于暗处保持15 min,待测。

2.配制NO2-标准溶液:取6支25.00 mL容量瓶,按如下参数配制标准溶液,并计算其中
NO2-的浓度。

3. 标液和样液的测定:测定标准溶液,用蒸馏水做参比,1 cm比色皿,于540nm处测其吸光度,以[NO2-]为横坐标,ABS为纵坐标,作标准曲线,并求出回归方程,得到a和b 五、实验数据记录与处理(自己绘制表格,记录实验数据)。

大气中氮氧化物的测定实验报告

大气中氮氧化物的测定实验报告

大气中氮氧化物的测定实验报告一、实验目的。

本实验旨在通过实验方法测定大气中氮氧化物的含量,进一步了解大气污染情况,为环境保护和治理提供科学依据。

二、实验原理。

大气中的氮氧化物主要包括一氧化氮(NO)和二氧化氮(NO2),这两种氮氧化物是大气污染的主要来源之一。

本实验采用化学吸收法,通过将大气中的氮氧化物溶解在吸收液中,再通过化学反应得到的产物进行测定,从而得到氮氧化物的含量。

三、实验步骤。

1. 准备实验设备和试剂,包括吸收瓶、吸收液、分析仪器等;2. 在大气污染较为严重的地区选择实验点,设置吸收瓶,将大气中的氮氧化物吸收到吸收液中;3. 将吸收液中的氮氧化物与试剂进行反应,生成化学物质;4. 采用分析仪器对生成的化学物质进行测定,得出氮氧化物的含量;5. 对实验结果进行统计分析,得出大气中氮氧化物的含量数据。

四、实验结果。

经过实验测定,我们得到了大气中氮氧化物的含量数据。

根据统计分析,我们发现在工业区和交通密集区,氮氧化物的含量明显高于其他地区。

尤其是在高峰时段,氮氧化物的含量更是达到了较高水平,这表明工业排放和交通尾气是大气中氮氧化物的主要来源。

五、实验分析。

大气中的氮氧化物是一种有害的气体污染物,其对人体健康和环境造成了严重的影响。

高浓度的氮氧化物不仅会导致雾霾天气的形成,还会对人体的呼吸系统造成危害,引发呼吸道疾病。

因此,我们需要采取有效的措施来减少氮氧化物的排放,保护大气环境和人民健康。

六、实验总结。

通过本次实验,我们成功测定了大气中氮氧化物的含量,并对其来源和危害进行了分析。

我们应当加强对工业和交通尾气排放的治理,推广清洁能源,减少氮氧化物的排放。

同时,也需要加强大气环境监测,及时掌握大气污染情况,采取有效措施保护环境和人民健康。

七、参考文献。

1. 环境保护部. 大气环境质量标准[S]. GB 3095-2012.2. 郭美玲, 张晓英. 大气污染物的化学测定[M]. 北京: 化学工业出版社, 2008.以上就是本次实验的全部内容,希望对大家有所帮助。

环境中氮氧化物的分析和监测方法综述

环境中氮氧化物的分析和监测方法综述

环境中氮氧化物的分析和监测方法综述氮氧化物的分析方法主要分为定量分析和定性分析两类。

定量分析方法主要包括化学法、色谱法和光谱法等,而定性分析方法则主要基于氮氧化物的特征反应。

化学法是氮氧化物分析的常用方法之一、其中,格里瓦德法是一种常见的定量分析方法,通过与硫酸铜反应生成蓝色络合物来测定一氧化氮的含量。

显色反应可与吸收光谱法结合使用,通过分析吸收光强的变化来测定氮氧化物的浓度。

此外,氮氧化物也可以通过盐酸反应生成二氧化氮,进而使用色谱法进行测定。

色谱法是一种高效的氮氧化物分析方法。

气相色谱法可以通过循环固定相法和比色法来测定氮氧化物的浓度。

化学发光法也是一种常用的色谱分析方法,通过氮氧化物与荧光染料生成化学发光反应来测定氮氧化物的含量。

光谱法是另一种常见的氮氧化物分析方法。

红外光谱法和紫外-可见吸收光谱法是常用的光谱分析方法,可以通过测量氮氧化物在红外和紫外-可见光区域的吸收光谱来测定其浓度。

除了上述的定量分析方法外,还有一些定性分析方法可以用于检测氮氧化物。

一氧化氮可以通过与氯化铜反应生成棕色络合物来定性分析。

此外,一氧化氮还可以通过与铁盐反应生成暗蓝色络合物来进行定性分析。

氮氧化物的监测方法主要分为在线监测和离线监测两类。

在线监测方法直接在氮氧化物的排放源或分布区域进行监测,包括毛细管电泳法、电子学传感器法和傅里叶变换红外光谱法等。

离线监测方法则是将气样收集后再进行分析,包括采样法和检测法。

采样法主要是将氮氧化物与其他成分分离并进行收集,然后使用适当的分析方法进行定量分析。

常用的采样方法包括薄膜袋采样法、活性碳吸附法和液相吸附法等。

检测方法包括染色法、光谱法和电化学法等。

染色法是最常用的离线监测方法之一,可以通过氮氧化物与染料反应生成色素,然后根据色素的强度来定量分析其浓度。

光谱法与前文提到的定量分析方法类似,可以通过检测氮氧化物在红外和可见光区域的吸收和发射光谱进行定量分析。

电化学法则是通过检测氮氧化物的电化学性质来测定其浓度,常用的方法包括极谱法和电导法等。

大气中氮氧化物的测定

大气中氮氧化物的测定

大气中氮氧化物的测定一.实验目的1.掌握大气主要污染物之一氮氧化物的测定方法;2.了解氮氧化物的测定原理。

二、实验原理二氧化氮被吸收液吸收后,生成亚硝酸和硝酸,其中亚硝酸与对氨基苯磺酸起重氮化反应,再与盐酸萘乙二胺偶合,呈微红色,根据颜色深浅,用分光光度法测定。

空气中的氮氧化物包括一氧花氮及二氧化氮等。

在测定氮氧化物时,应先用三氧化铬将一氧化氮氧化成二氧化氮,然后测定二氧化氮的浓度。

三.仪器设备与试剂仪器a)多孔玻板吸收管;b)双球玻璃管;c)空气采样器;d)分光光度计。

试剂1.吸收原液;2.采样吸收液:按4份吸收原液和1份水的比例混合;3.三氧化铬-海沙(或河沙氧化管);4.硝酸钠标准贮备液;5.亚硝酸钠标准贮备液。

四.实验步骤1.采样:在一支内装5.00ml吸收液的多孔板吸收管,进样口接氧化管,并使关口微向下倾斜,以免湿空气进入氧化管,流入采样管污染式样。

采样以0.5ml/min的流量进行,采样时间控制在30min。

2. 标准曲线的绘制取7支10ml具塞比色管,按下表配置标准系列表亚硝酸钠标准系列亚硝酸钠标准吸收液(ml ) 00.10 0.20 0.30 0.40 0.50 0.60吸收原液(ml) 4.00 4.00 4.00 4.00 4.00 4.00 4.00 水(ml)1.00 0.90 0.80 0.70 0.60 0.50 0.40亚硝酸根含量(ug) 00.51.01.52.02.503.0各管摇匀后,避开直射阳光,放置15min,在波长540nm 处,用1cm 比色皿,以试剂空白为参比,测定吸光度。

以吸光度对亚硝酸根含量(ug )绘制标准曲线。

2.样品测定采样后,放置15min ,将样品溶液移入1cm 比色皿中,用绘制标准曲线的方法测定试剂空白液和样品溶液的吸光度。

五.数据处理1.原始数据记录管号 0 1 2 3 4 5 6 7 NO -2含量(ug ) 00.51.01.52.02.503.0吸光度(A ) 0.017 0.051 0.071 0.096 0.120 0.145 0.174 0.048采样流量Q=0.2 L/min,采样时间30min,采样温度15℃,采样点大气压力765mmHg2.校准曲线3.计算由样品吸光值0.048查得浓度C = 0.6ug 根据公式:氮氧化物(NO 2)mg/m 3=nV C76.0 升3.6676076515273298760273)25273(=⨯⨯+=⨯⨯++=t n V P t V氮氧化物(NO 2)mg/m 3=3.676.06.0⨯=0.13mg/m 3六.思考题1.氧化管在使用一段时间后,其中的三氧化铬由棕黄色变绿了,为什么?这根氧化管还能继续使用吗?答:不能使用,因为氧化管已经失效,六价铬变成了三价铬,要重新更换氧化管。

大气中氮氧化物的测定

大气中氮氧化物的测定
大气中氮氧化物的 测定
(盐酸萘乙二胺分光光度法)
一、实验目的
1. 掌握溶液吸收法采集大气污染物的采样方法。 2.掌握二氧化氮测定的基本原理和测定方法。 2.掌握二氧化氮测定的基本原理和测定方法。 3. 学会大气采样器的使用方法。
二、实验原理
大气中的氮氧化物主要是一氧化氮和二氧化氮。 NO为无色、无臭、微溶于水的气体, NO为无色、无臭、微溶于水的气体,在空气中易被 为无色 氧化成NO 氧化成NO2。 二氧化氮被吸收液吸收后,生成亚硝酸和硝酸。 在冰乙酸存在的条件下,亚硝酸与对氨基苯磺酸发 在冰乙酸存在的条件下,亚硝酸与对氨基苯磺酸发 生重氮化反应,然后再与盐酸萘乙二胺偶合,生成 玫瑰红色偶染料,其颜色深浅与样品中的二氧化氮 的浓度成正比。因此,可用分光光度法测定。
3. 样品测定: 样品测定:
采样完毕,将吸收管带回实验室放置15~20min,将样品溶液 采样完毕,将吸收管带回实验室放置15~20min,将样品溶液 转移到1cm比色皿中,在波长540nm处测定吸光度。 转移到1cm比色皿中,在波 用最小二乘法计算标准曲线的回归方程:
空气中NO 空气中NO2 浓度限值
(GB3095-96) GB3095-96)
污染物 名称
取样 时间
浓度限值
浓度 单位
一级标准 二级标准 三级标准
氮氧化物 (NO2)
年平均
0.04
0.08
0.08 mg/m3
日平均
0.08
0.12
0.12
小时平均
0.12
0.24
0.24
采样点位置图
七、思考题 七、思考题
将 各 管 摇 匀 , 避 开 阳 光 直 射 , 放置 15 ~ 20min , 在 波 长 20min 540nm处 540nm处,用1cm比色皿,以水为参比,测定吸光度。 cm比色皿,以水为参比,测定吸光度。

环境监测实验三 空气中氮氧化物(NOx)的测定

环境监测实验三 空气中氮氧化物(NOx)的测定

实验五空气中氮氧化物(NOx)的测定一、实验目的及要求掌握盐酸萘乙二胺分光光度法测定大气中NOX的原理。

掌握大气NOx采样器的使用方法及注意事项。

二、实验原理用冰醋酸、对氨基苯磺酸和盐酸萘乙二胺配制成吸收-显色液,吸收氮氧化物,在三氧化铬作用下,一氧化氮被氧化成二氧化氮,二氧化氮与吸收液作用生成亚硝酸,在冰醋酸存在下,亚硝酸与对氨基苯磺酸重氮化后再与盐酸萘乙二胺偶合,显玫瑰红色,于波长540nm处,测定吸光度,同时以试剂空白作参比,得到大气中NOx的浓度。

三、实验仪器分光光度计空气采样器多孔玻板吸收管三氧化铬-石英砂氧化管四、实验试剂1、N-(1-萘基)乙二胺盐酸盐储备液:称取0.50g N-(1-萘基)乙二胺盐酸盐[C10H7NH(CH2)2NH2·2HCl]于500 mL容量瓶中,用水稀释至刻度。

此溶液贮于密闭棕色瓶中冷藏,可稳定三个月。

2、显色液:称取5.0g对氨基苯磺酸[NH2C6H4SO3H]溶解于200 mL热水中,冷至室温后转移至1000 mL容量瓶中,加入50.0 mL N-(1-萘基)乙二胺盐酸盐储备液和50 mL冰乙酸,用水稀释至标线。

此溶液贮于密闭的棕色瓶中,25℃以下暗处存放可稳定三个月。

若呈现淡红色,应弃之重配。

3、吸收液:使用时将显色液和水按4+1(V/V)比例混合而成。

4、亚硝酸钠标准储备液:称取0.3750 g优级纯亚硝酸钠(NaNO2,预先在干燥器放置24h)溶于水,移入1000 mL容量瓶中,用水稀释至标线。

此标液为每毫升含250μgNO2-,贮于棕色瓶中于暗处存放,可稳定三个月。

5、亚硝酸钠标准使用溶液:吸取亚硝酸钠标准储备液 1.00 mL于100 mL容量瓶中,用水稀释至标线。

此溶液每毫升含2.5μg NO2-,在临用前配制。

五、实验步骤1、标准曲线的绘制:取6支10mL 具塞比色管,按下表配制NO 2-标准溶液色列。

NO 2-标准溶液色列将各管溶液混匀,于暗处放置20 min(室温低于20℃时放置40 min 以上),用1 cm 比色皿于波长540 nm 处以水为参比测量吸光度,扣除试剂空白溶液吸光度后,用最小二乘法计算标准曲线的回归方程。

[精华]大气中氮氧化合物的测定

[精华]大气中氮氧化合物的测定

大气中氮氧化合物的测定一、实验原理大气中的氮氧化物主要是一氧化氮和二氧化氮。

在测定氮氧化物浓度时,应先用三氧化铬将一氧化氮氧化成二氧化氮。

3NO+2CrO3→3NO2+Cr2O3(1—1)二氧化氮被吸收液吸收后,生成亚硝酸和硝酸,其中,亚硝酸与对氨基苯磺酸发生重氮化反应,再与盐酸萘乙二胺偶合,生成玫瑰红色偶氮染料,据其颜色深浅,用分光光度法定量。

因为NO2(气)转变为NO2-(液)的转换系数为0.76,故在计算结果时应除以0.76。

二、实验仪器和试剂仪器:多孔玻板吸收管、大气采样器、三氧化铬氧化管、棕色瓶、分光光度计、20-40目筛子、容量瓶、烧杯等。

药品试剂:对氨基苯磺酸、冰乙酸、盐酸萘乙二胺、三氧化铬-砂子、粒状亚硝酸钠、盐酸等。

三、试剂的配置1.吸收液:称取5.0g 对氨基苯磺酸,置于1000mL 容量瓶中,加入50mL冰乙酸和900mL 水的混合溶液,盖塞振摇使其完全溶解,继之加入0.050g盐酸萘乙二胺,溶解后,用水稀释至标线,此为吸收原液,贮于棕色瓶中,在冰箱内可保存两个月。

保存时应密封瓶口,防止空气与吸收液接触。

采样时,按4 份吸收原液与1 份水的比例混合配成采样用吸收液。

2.三氧化铬-砂子氧化管:筛取20—40 目河砂,用(1+2)的盐酸溶液浸泡一夜,用水洗至中性,烘干。

将三氧化铬与砂子按重量比(1+20)混合,加少量水调匀,放在红外灯下或烘箱内于105℃烘干,烘干过程中应搅拌几次。

称取约8g 三氧化铬-砂子装入双球玻璃管内,两端用少量脱脂棉塞好,用乳胶管或塑料管制的小帽将氧化管两端密封,备用。

采样时将氧化管与吸收管用一小段乳胶管相接。

3.亚硝酸钠标准贮备液:称取0.1500g 粒状亚硝酸钠(NaNO2,预先在干燥器内放置24h 以上),溶解于水,移入1000mL 容量瓶中,用水稀释至标线。

此溶液每毫升含100.0μgNO2-,贮于棕色瓶内,冰箱中保存。

4.亚硝酸钠标准溶液:吸取贮备液5.00mL 于100mL 容量瓶中,用水稀释至标线。

环境空气 氮氧化物的测定

环境空气 氮氧化物的测定

环境空气氮氧化物的测定环境空气中的氮氧化物(NOx)是一类重要的空气污染物,包括一氧化氮(NO)和二氧化氮(NO2)两种形式。

它们主要来源于燃烧过程、工业排放和交通尾气等,对大气环境和人类健康造成严重影响。

测定环境空气中的氮氧化物含量是监测和评估空气质量的重要手段之一。

常用的测定方法包括化学分析法和仪器分析法。

化学分析法是一种传统的测定氮氧化物的方法。

它基于氮氧化物与试剂之间的化学反应,通过反应产生的色谱变化来测定氮氧化物的含量。

常用的试剂有硫酸铁铵和二氧化硫等。

这种方法操作简单且成本较低,但由于试剂的选择限制,其准确性和灵敏度有一定局限性。

仪器分析法是现代环境监测中常用的测定氮氧化物的方法。

其中,最常用的是气相色谱法和光谱法。

气相色谱法是一种基于气相色谱仪的测定方法。

它利用气相色谱仪分离氮氧化物的不同组分,再通过检测器测定其含量。

这种方法能够准确测定氮氧化物的浓度,并且对不同形式的氮氧化物有较好的分辨能力。

但是,气相色谱法的设备较为昂贵,操作技术要求较高。

光谱法是一种基于光谱仪的测定方法。

它利用氮氧化物在特定波长下的吸收特性来测定其含量。

常用的光谱方法有紫外-可见光谱法和红外光谱法。

这种方法具有测定速度快、操作简便的优点,但对样品的制备和环境条件要求较高。

除了上述常用的测定方法外,还有一些新兴的技术被应用于氮氧化物的测定。

例如,质谱法、电化学法和传感器技术等。

这些方法在测定灵敏度、准确性和便携性等方面有所突破,为氮氧化物的实时监测提供了新的途径。

测定环境空气中的氮氧化物含量对于评估空气质量和制定相应的环境保护政策具有重要意义。

化学分析法和仪器分析法是常用的测定方法,而气相色谱法和光谱法是其中最常用的技术。

随着科技的进步,新的测定方法也不断涌现,为氮氧化物的测定提供了更多选择。

未来,我们可以期待更加准确、快速和便携的氮氧化物测定技术的发展,为环境保护工作提供更有力的支持。

空气中氮氧化物含量测定方法

空气中氮氧化物含量测定方法

空气中氮氧化物含量测定方法本文主要介绍了空气中氮氧化物的来源与危害。

氮的氧化物有一氧化氮、二氧化氮、三氧化二氮、四氧化三氮和五氧化二氮等多种形式。

大气中的氮氧化物主要以一氧化氮(NO)和二氧化氮(NO2)形式存在。

一氧化氮为无色、无臭、微溶于水的气体,在大气中易被氧化为NO2。

NO2为棕红色气体,具有强刺激性臭味,是引起支气管炎等呼吸道疾病的有害物质。

大气中的NO和NO2可以分别测定,也可以测定二者的总量。

它们主要来源于石化燃料高温燃烧和硝酸、化肥等生产排放的废气,以及汽车排气。

测定方法化学发光法,盐酸萘乙二胺分光光度法,传感器法,库仑原电池法,阐述了这几种方法的原理,并从优缺点,适用的范围等方面进行了分析对比,为测定以及防治氮氧化物提供了依据。

氮氧化物是评价空气质量的控制标准之一。

空气中的氮氧化物主要包括一氧化氮(NO)和二氧化氮(NO2)。

据有关部门统计,随着工业化生产的迅猛发展,特别是煤炭、石油、天然气的大量开采使用,我国多数城市已呈现出NOx深度增加的趋势。

因此,了解氮氧化物的来源及危害机理,建立适合的氮氧化物的分析方法,了解其变化规律,对环保管理及环境整治,保障人类的生存环境具有重大意义。

1.氮氧化物危害NOx对环境的损害作用极大,它既是形成酸雨的主要物质之一,也是形成大气中光化学烟雾的主要物质和消耗臭氧的一个重要因子。

氮氧化物对眼睛和上呼吸道粘膜刺激较轻,主要侵入呼吸道深部的细支气管及肺泡。

当NOx进入肺泡后,因肺泡的表面湿度增加,反应加快,在肺泡内约可阻留80%,一部分变为N2O4。

N2O4与NO2均能与呼吸道粘膜的水分作用生成亚硝酸与硝酸,对肺组织产生强烈的刺激及腐蚀作用,从而增加毛细血管及肺泡壁的通透性,引起肺水肿。

亚硝酸盐进入血液后还可引起血管扩张,血压下降,并可与血红蛋白作用生成高铁血红蛋白,引起组织缺氧。

高浓度的NO亦可使血液中的氧和血红蛋白变为高铁血红蛋白,引起组织缺氧。

2021环境监测上岗考试真题模拟及答案(2)

2021环境监测上岗考试真题模拟及答案(2)

2021环境监测上岗考试真题模拟及答案(2)1、环境监测网由各环境监测要素的点位(断面)组成。

环境监测点位(断面)的设置、变更、运行,应当按照()。

(单选题)A. 国家环境保护总局有关规定执行B. 按当地政府需要执行C. 点位(断面)处水质优劣程度选择试题答案:A2、中气相色谱法测定公共场所空气中甲醛时,称取一定量的2,4-二硝基苯肼于容量瓶中,用()稀释至刻度线,配成2,4-二硝基苯肼溶液。

(单选题)A. 二硫化碳B. 正己烷C. 二氯甲烷D. 苯试题答案:C3、气相色谱法适用于()中三氯乙醛的测定。

(单选题)A. 地表水和废水B. 地表水C. 废水D. 地下水试题答案:A4、硫酸浓缩尾气硫酸雾的测定铬酸钡比色法测定硫酸雾,采样前要测定()状态参数,并()等速采样在转子流量计上读数。

(单选题)A. 烟气,测定B. 尾气,测量C. 烟气,计算试题答案:C5、《水质采样技术指导》(HJ494-2009)规定,下列哪种情况适合瞬间采样()。

(单选题)A. 连续流动的水流B. 水和废水特性不稳定时C. 在制定小范围的采样方案前D. 测定某些参数,如溶解气体.余氯.可溶性硫化物.微生物.油脂.有机物和pH时试题答案:D6、根据《水质氰化物的测定第一部分总氰化物的测定》(GB/T7486—1987),加热蒸馏时向水样中加入磷酸和Na2EDTA是为了()。

(单选题)A. 保持溶液的酸度B. 络合氰化物C. 使络合氰化物离解出氰离子试题答案:C7、3,5-Br2-PADAP分光光度法测定水中银时,水样中相对于银含量()倍的铝(Ⅲ)对银的测定无影响。

(单选题)A. 200B. 500C. 1000D. 1200试题答案:C8、根据《固定污染源排气中氮氧化物的测定紫外分光光度法》(HJ/T42-1999)进]行测定时,对于()的样品,可以在采样前降低吸收瓶的抽真空程度,或减少取出进行分析的样品溶液体积。

(单选题)A. 浓度适中B. 浓度过高C. 浓度过低试题答案:B9、《生活饮用水标准检验方法有机物指标(13.1微囊藻毒素高压液相色谱法)》(GB/T 5750.8-2006)适用于()中微囊藻毒素的测定。

实验12 大气中氮氧化物的测定

实验12 大气中氮氧化物的测定

实验十二大气中氮氧化物—盐酸萘乙二胺分光光度法一、实验目的1.了解大气污染物分析的特点和意义。

2.掌握二氧化氮测定的基本原理和测定方法。

二、实验原理在测定氮氧化物时,先把空气中的一氧化氮等用三氧化铬氧化管氧化成二氧化氮。

二氧化氮与吸收液中的对氨基苯磺酸进行重氮化反应,再与盐酸萘乙二胺作用,生成粉红色的偶氮染料,在540nm波长处,测定吸光度。

三、仪器大气采样器、分光光度计、多孔玻板吸收管(10mL)、双球玻璃管、比色管(10毫升)四、试剂1.吸收原液称取5.0克对氨基苯磺酸,通过玻璃小漏斗直接加入1000ml容量瓶中,加入50ml冰乙酸和900ml水的混合溶液,盖塞振摇使其溶解,待完全溶解后,加入0.050g盐酸萘乙二胺溶解后,用水稀释至标线。

此为吸收原液,贮于棕色瓶中,并用聚四氟乙烯胶带封口,以防止空气与吸收液接触,在冰箱中可保存2个月。

2.采样用吸收液按4份吸收原液和1份水的比例混合配制。

3.三氧化铬—海砂氧化管(课前已制备好)筛取20~40目海砂,用(1:2)盐酸浸泡一夜,用水洗至中性并烘干。

把三氧化铬及海沙按重量比(1:20)混合,加少量水调匀,放在烘箱中于105℃烘干,烘干过程中应搅拌几次,制备好的三氧化铬—海沙应是松散的。

将此海沙装入双球玻璃管中,两端用少量脱脂棉塞好,用乳胶管或塑料管制的小帽将氧化管两端密封,放在干燥器中保存,使用时氧化管与吸收管之间用一小段乳胶管连接。

4.亚硝酸钠标准贮备液(预先在干燥器内放置24h以上),溶于水后移称取0.1500g亚硝酸钠NaNO2-,贮于棕色瓶入1000ml容量瓶中,用水稀释至标线。

此溶液每毫升含0.1mgNO2保存在冰箱中,可稳定3个月。

5.亚硝酸钠标准溶液临用前,吸取上述贮备液5.00ml于100ml容量瓶中,用水稀释至标线,此溶液每毫升含5.0μgNO2-。

五、实验步骤1、采样用一支内装5.00ml采样用吸收液的多孔玻板吸收管,进气口接氧化管,并使管口略微向下倾斜,以免湿空气将氧化剂弄湿时而污染后面的吸收液。

环境空气氮氧化物的测定

环境空气氮氧化物的测定

环境空气氮氧化物的测定环境空气氮氧化物的测定是一项重要的环境监测工作,对于保护大气环境和人类健康具有重要意义。

氮氧化物主要由氮氧化物(NOx)和一氧化氮(NO)组成,它们是重要的大气污染物之一。

本文将介绍环境空气氮氧化物的测定方法以及相关的仪器设备。

环境空气氮氧化物的测定方法有多种,其中常用的包括化学法、物理法和仪器法。

化学法是通过反应将氮氧化物转化为可测量的化合物,常用的方法包括化学吸收法、化学发光法和化学显色法。

物理法则是利用物理性质差异进行测定,常用的方法包括吸收光谱法和电化学法。

仪器法则是利用专用的仪器设备进行直接测定,常用的方法包括气相色谱法和质谱法。

化学吸收法是常用的氮氧化物测定方法之一。

它通过将空气中的氮氧化物与吸收剂反应,生成可测量的化合物。

常用的吸收剂包括硫酸和碱性溶液。

通过测量反应前后吸收剂的浓度变化,可以得到氮氧化物的浓度。

化学发光法则是利用氮氧化物与发光试剂反应产生光信号,通过测量光信号的强度来测定氮氧化物的浓度。

化学显色法则是通过氮氧化物与显色试剂反应产生有色化合物,通过测量有色化合物的光吸收特性来测定氮氧化物的浓度。

物理法中,吸收光谱法是常用的方法之一。

它通过测量氮氧化物的吸收光谱来确定其浓度。

吸收光谱法具有快速、灵敏度高的特点,广泛应用于大气环境的监测。

电化学法是利用氮氧化物在电化学电极上的电化学反应测定其浓度。

电化学法具有响应快、准确度高的特点,被广泛应用于大气环境监测和工业排气中氮氧化物的测定。

仪器法中,气相色谱法是一种常用的测定氮氧化物的方法。

气相色谱法通过分离和定量分析氮氧化物,具有灵敏度高、选择性好的特点,广泛用于氮氧化物的测定。

质谱法则是利用氮氧化物的质谱特性进行测定,具有高灵敏度和高分辨率的优点,可以准确测定氮氧化物的浓度。

除了上述方法,还有许多其他的测定环境空气氮氧化物的方法和技术。

例如,流动气溶胶质谱仪可以用于监测氮氧化物颗粒物的浓度和组成。

还有基于光学传感器的氮氧化物测定方法,它们通过测量氮氧化物对光信号的吸收、散射等特性来确定其浓度。

空气中氮氧化物的测定实验报告

空气中氮氧化物的测定实验报告

空气中氮氧化物的测定实验报告一、实验目的氮氧化物(NOx)是大气中的主要污染物之一,对人体健康和生态环境都有严重的危害。

本实验的目的是掌握空气中氮氧化物的测定方法,了解其在环境中的浓度水平,为环境保护和空气质量监测提供科学依据。

二、实验原理空气中的氮氧化物主要包括一氧化氮(NO)和二氧化氮(NO₂)。

在测定过程中,先用三氧化铬石英砂氧化管将一氧化氮氧化为二氧化氮,然后用吸收液吸收二氧化氮,生成亚硝酸和硝酸。

通过显色反应,使溶液呈现出特定的颜色,在一定波长下测量其吸光度,从而计算出氮氧化物的浓度。

三、实验仪器和试剂1、仪器多孔玻板吸收管空气采样器分光光度计比色管移液管2、试剂吸收液:称取 50g 对氨基苯磺酸,溶解于约 200ml 热水中,冷却后加入50ml 冰乙酸和0050g 盐酸萘乙二胺,用水稀释至1000ml,摇匀,避光保存。

三氧化铬石英砂氧化管亚硝酸钠标准溶液:准确称取 01500g 干燥的亚硝酸钠,溶于水,移入 1000ml 容量瓶中,用水稀释至刻度,摇匀。

此溶液每毫升含1000μg 亚硝酸根(NO₂⁻)。

四、实验步骤1、采样将两支内装 100ml 吸收液的多孔玻板吸收管串联,以 05L/min 的流量采气 5-30L。

采样过程中,应注意记录采样时间、地点、气温、气压等参数。

2、标准曲线的绘制取 7 支 10ml 比色管,按下表配制标准系列:|管号| 0 | 1 | 2 | 3 | 4 | 5 | 6 |||||||||||亚硝酸钠标准溶液(ml)| 0 | 010 | 020 | 030 | 040 |050 | 060 ||吸收液(ml)| 100 | 99 | 98 | 97 | 96 | 95 | 94 ||亚硝酸根含量(μg)| 0 | 10 | 20 | 30 | 40 | 50 | 60 |向各管中加入40ml 显色剂,摇匀,放置15min。

用10mm 比色皿,在波长 540nm 处,以水为参比,测定吸光度。

环境空气氮氧化物的测定作业指导书

环境空气氮氧化物的测定作业指导书

环境空气氮氧化物的测定作业指导书一、执行标准环境空气氮氧化物(一氧化氮和二氧化氮)的测定盐酸萘乙二胺分光光度法HJ 479-2009。

二、适用范围1、本标准适用于环境空气中氮氧化物、二氧化氮、一氧化氮的测定。

2、本标准的方法检出限为0.36µg/10ml 吸收液。

当吸收液总体积为10ml,采样体积为24L时,空气中氮氧化物的检出限为0.015mg/m3。

当吸收液总体积为 50ml,采样体积288L 时,空气中氮氧化物的检出限为0.006mg/m3,本标准测定环境空气中氮氧化物的测定范围为 0.024 mg/m3~2.0mg/m3。

三、干扰及消除1、空气中二氧化硫浓度为氮氧化物浓度 30 倍时,对二氧化氮的测定产生负干扰。

2、空气中过氧乙酰硝酸酯(PAN)对二氧化氮的测定产生正干扰。

3、空气中臭氧浓度超过 0.25mg/m3时,对二氧化氮的测定产生负干扰。

采样时在采样瓶入口端串接一段(15~20)cm 长的硅橡胶管,可排除干扰。

四、测定原理空气中的二氧化氮被串联的第一支吸收瓶中的吸收液吸收并反应生成粉红色偶氮染料。

空气中的一氧化氮不与吸收液反应,通过氧化管时被酸性高锰酸钾溶液氧化为二氧化氮,被串联的第二支吸收瓶中的吸收液吸收并反应生成粉红色偶氮染料。

生成的偶氮染料在波长 540nm 处的吸光度与二氧化氮的含量成正比。

分别测定第一支和第二支吸收瓶中样品的吸光度,计算两支吸收瓶内二氧化氮和一氧化氮的质量浓度,二者之和即为氮氧化物的质量浓度(以二氧化氮计)。

五、仪器设备1、常用的实验室仪器。

2、分光光度计。

3、空气采样器:流量范围 0.1L/min~1.0L/min。

采样流量为 0.4L/min 时,相对误差小于±5%。

4、恒温、半自动连续空气采样器:采样流量为 0.2L/min 时,相对误差小于±5%,能将吸收液温度保持在 20℃±4℃。

采样管:硼硅玻璃管、不锈钢管、聚四氟乙烯管或硅胶管,内径约为 6mm,尽可能短些,任何情况下不得超过 2m,配有朝下的空气入口。

氮氧化物检测法

氮氧化物检测法

环境空气氮氧化物〔一氧化氮和二氧化氮〕的测定盐酸萘乙二胺分光光度法方法一:高锰酸钾氧化法1 适用范围本法规定了测定环境空气中氮氧化物的分光光度法,适用于环境空气中氮氧化物、二氧化氮、一氧化氮的测定。

本标准的方法检出限为0.12 µg/10 ml 吸收液。

当吸收液总体积为10 ml,采样体积为24 L 时,空气中氮氧化物的检出限为0.005 mg/m3。

当吸收液总体积为50 ml,采样体积288 L 时,空气中氮氧化物的检出限为0.003 mg/m3。

当吸收液总体积为10 ml,采样体积为12~24 L 时,环境空气中氮氧化物的测定范围为0.020~2.5 mg/m3。

2 方法原理空气中的二氧化氮被串联的第一支吸收瓶中的吸收液吸收并反响生成粉红色偶氮染料。

空气中的一氧化氮不与吸收液反响,通过氧化管时被酸性高锰酸钾溶液氧化为二氧化氮,被串联的第二支吸收瓶中的吸收液吸收并反响生成粉红色偶氮染料。

生成的偶氮染料在波长540 nm 处的吸光度与二氧化氮的含量成正比。

分别测定第一支和第二支吸收瓶中样品的吸光度,计算两支吸收瓶内二氧化氮和一氧化氮的质量浓度,二者之和即为氮氧化物的质量浓度〔以NO2计〕3 试剂和材料除非另有说明,分析时均使用符合国家标准或专业标准的分析纯试剂和无亚硝酸根的蒸馏水、去离子水或相当纯度的水。

必要时,实验用水可在全玻璃蒸馏器中以每升水参加0.5g 高锰酸钾〔KMnO4〕和0.5g氢氧化钡[Ba(OH)2]重蒸。

3.1 冰乙酸。

3.2 盐酸羟胺溶液,ρ =0.2~0.5 g/L。

3.3 硫酸溶液,c(1/2H2SO4)=1 mol/L:取15 ml 浓硫酸〔ρ20=1.84 g/ml〕,徐徐加到500 ml 水中,搅拌均匀,冷却备用。

3.4 酸性高锰酸钾溶液,ρ (KMnO4)=25 g/L:称取25g 高锰酸钾于1 000 ml 烧杯中,参加500 ml 水,稍微加热使其全部溶解,然后参加 1 mol/L 硫酸溶液〔3.3〕500 ml,搅拌均匀,贮于棕色试剂瓶中。

环境空气 氮氧化物(一氧化氮和二氧化氮)的测定 盐酸萘乙二胺分光光度法(HJ 479—2009 )

环境空气 氮氧化物(一氧化氮和二氧化氮)的测定 盐酸萘乙二胺分光光度法(HJ 479—2009 )

目次前言 (iv)1 适用范围 (1)2 术语和定义 (1)3 方法原理 (1)4 试剂和材料 (1)5 仪器和设备 (2)6 干扰及消除 (2)7 样品 (3)8 分析步骤 (4)9 结果表示 (4)10 精密度和准确度 (5)附录A(规范性附录)吸收瓶的检查与采样效率的测定 (6)附录B(资料性附录) Saltzman实验系数的测定 (7)环境空气氮氧化物(一氧化氮和二氧化氮)的测定盐酸萘乙二胺分光光度法1 适用范围本标准规定了测定环境空气中氮氧化物的分光光度法。

本标准适用于环境空气中氮氧化物、二氧化氮、一氧化氮的测定。

本标准的方法检出限为0.12 µg/10 ml吸收液。

当吸收液总体积为10 ml,采样体积为24 L时,空气中氮氧化物的检出限为0.005 mg/m3。

当吸收液总体积为50 ml,采样体积288 L时,空气中氮氧化物的检出限为0.003 mg/m3。

当吸收液总体积为10 ml,采样体积为12~24 L时,环境空气中氮氧化物的测定范围为0.020~2.5 mg/m3。

2 术语和定义2.1 氮氧化物 nitrogen oxides指空气中以一氧化氮和二氧化氮形式存在的氮的氧化物(以NO2计)。

2.2 Saltzman实验系数 Saltzman-factor用渗透法制备的二氧化氮校准用混合气体,在采气过程中被吸收液吸收生成的偶氮染料相当于亚硝酸根的量与通过采样系统的二氧化氮总量的比值(测定方法见附录B)。

2.3 氧化系数 oxidation coefficient空气中的一氧化氮通过酸性高锰酸钾溶液氧化管后,被氧化为二氧化氮且被吸收液吸收生成偶氮染料的量与通过采样系统的一氧化氮的总量之比。

3 方法原理空气中的二氧化氮被串联的第一支吸收瓶中的吸收液吸收并反应生成粉红色偶氮染料。

空气中的一氧化氮不与吸收液反应,通过氧化管时被酸性高锰酸钾溶液氧化为二氧化氮,被串联的第二支吸收瓶中的吸收液吸收并反应生成粉红色偶氮染料。

空气中氮氧化物的测定

空气中氮氧化物的测定

空气中氮氧化物(NOx)的测定(盐酸萘乙二胺分光光度法)摘要:本文采用盐酸萘乙二胺分光光度法测定室内空气中氮氧化物(NOx),根据配置标准溶液用分光光度计测定其吸光度,绘制标准曲线,分析空气中氮氧化物的含量结果。

关键词:氮氧化物分光光度法含量综述大气中氮氧化物主要包括一氧化氮和二氧化氮,其中绝大部分来自于化石燃料的燃烧过程,包括汽车及一切内燃机所排放的尾气,也有一部分来自与生产和使用硝酸的化工厂、钢铁厂、金属冶炼厂等排放的废气中。

动物实验证明,氮氧化物对呼吸道和呼吸器官有刺激作用,是导致目前支气管哮喘等呼吸道疾病不断增加的原因之一,二氧化氮与二氧化硫和浮游颗粒物共存时,其对人体的影响不仅比单独二氧化氮对人体的影响严重的多,而且也大于各自污染物之和。

对人体的实际影响是各污染物之间的协同作用。

因此大气氮氧化物的监测分析是环境保护部门日常工作的重要项目之一。

采用化学发光法测定空气中氮氧化物较以往的盐酸禁乙二胺分光光度法具有灵敏度高、反应速度快、选择性好等特点, 现已被很多国家和世界卫生组织全球监测系统作为监测氮氧化物的标准方法, 也已引起我国环保部门的注意和重视, 相信不久将来, 此方法也会成为我国环境空气监测氮氧化物的首推方法1、实验目的(1)熟悉、掌握小流量大气采样器的工作原理和使用方法;(2)熟悉、掌握分光光度计的工作原理及使用方法。

(3)掌握大气监测工作中监测布点、采样、分析等环节的工作内容及方法。

2、实验原理大气中的氮氧化物(NOX主要是一氧化氮(NO和二氧化氮(NQ,测定氮氧化物浓度时,先用三氧化铬(CrQ3)氧化管将一氧化氮成二氧化氮。

二氧化氮被吸收在溶液中形成亚硝酸(HNQ,与对氨基苯磺酸起重氧化反应,再与盐酸萘乙二胺偶合,生成玫瑰红色偶氮染料。

于波长540〜545之间测定显色溶液的吸光度,根据吸光度的数值换算出氮氧化物的浓度,测定结果以二氧化氮表示。

本法检出限为0.05卩g/5mL,当采样体积为6L时,最低检出浓度为0.01卩g /m3。

氮氧化物检测法

氮氧化物检测法

环境空气氮氧化物(一氧化氮和二氧化氮)的测定盐酸萘乙二胺分光光度法方法一:高锰酸钾氧化法1 适用范围本法规定了测定环境空气中氮氧化物的分光光度法,适用于环境空气中氮氧化物、二氧化氮、一氧化氮的测定。

本标准的方法检出限为0.12 µg/10 ml 吸收液。

当吸收液总体积为 10 ml,采样体积为 24 L 时,空气中氮氧化物的检出限为 0.005 mg/m3。

当吸收液总体积为 50 ml,采样体积 288 L 时,空气中氮氧化物的检出限为 0.003 mg/m3。

当吸收液总体积为 10 ml,采样体积为 12~24 L 时,环境空气中氮氧化物的测定范围为 0.020~2.5 mg/m3。

2 方法原理空气中的二氧化氮被串联的第一支吸收瓶中的吸收液吸收并反应生成粉红色偶氮染料。

空气中的一氧化氮不与吸收液反应,通过氧化管时被酸性高锰酸钾溶液氧化为二氧化氮,被串联的第二支吸收瓶中的吸收液吸收并反应生成粉红色偶氮染料。

生成的偶氮染料在波长540 nm 处的吸光度与二氧化氮的含量成正比。

分别测定第一支和第二支吸收瓶中样品的吸光度,计算两支吸收瓶内二氧化氮和一氧化氮的质量浓度,二者之和即为氮氧化物的质量浓度(以NO2计)3 试剂和材料除非另有说明,分析时均使用符合国家标准或专业标准的分析纯试剂和无亚硝酸根的蒸馏水、去离子水或相当纯度的水。

必要时,实验用水可在全玻璃蒸馏器中以每升水加入0.5g 高锰酸钾(KMnO4)和0.5g氢氧化钡[Ba(OH)2]重蒸。

3.1 冰乙酸。

3.2 盐酸羟胺溶液,ρ =0.2~0.5 g/L。

3.3 硫酸溶液,c(1/2H2SO4)=1 mol/L:取15 ml 浓硫酸(ρ20=1.84 g/ml),徐徐加到500 ml 水中,搅拌均匀,冷却备用。

3.4 酸性高锰酸钾溶液,ρ (KMnO4)=25 g/L:称取25g 高锰酸钾于1 000 ml 烧杯中,加入500 ml 水,稍微加热使其全部溶解,然后加入 1 mol/L 硫酸溶液(3.3)500 ml,搅拌均匀,贮于棕色试剂瓶中。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

FHZHJDQ0110a环境空气氮氧化物的测定中和滴定法
F-HZ-HJ-DQ-0110a
环境空气—氮氧化物的测定—中和滴定法
1范围
本方法规定了火炸药工业硝烟尾气中氮氧化物测定的中和滴定法。

本方法适用于火炸药工业硝烟尾气中氮氧化物的测定。

本方法测定范围为1000~20000mg/m3。

本方法受其他酸碱性气体(如:二氧化硫、氨等)的干扰。

2原理
氮氧化物被过氧化氢溶液吸收后,生成硝酸,用氢氧化钠标准溶液滴定,根据其消耗量求得氮氧化物浓度。

3试剂
在测定过程中,除另有说明外均使用符合国家标准的分析纯试剂和蒸馏水或同等纯度的水。

3.1过氧化氢:30%。

3.2过氧化氢:30g/L。

取过氧化氢(3.1)100mL。

用水稀释至1000mL。

3.3氢氧化钠标准溶液:c(NaOH)=0.0100mol/L。

3.4甲基红-次甲基蓝混合指示液:称取0.10g甲基红和0.10g次甲基蓝,溶解在100mL 95%乙醇溶液中,装入棕色瓶中,于暗处保存,此溶液有效期为一周。

3.5氟橡管或厚壁胶管:Ø5~8mm。

3.6采样瓶布套。

4仪器
实验室常用仪器及下列专用仪器:
4.1真空采样瓶:容积为2000mL左右,形状如图1。

图1 真空采样瓶
4.2加热采样管:形状如图2。

图2 加热采样管
4.3移液管:100mL。

4.4滴定管:25mL。

4.5锥形瓶:250mL。

5 采样
将长度为100mm 左右的乳胶管(3.5)连接于采样瓶细口处,用真空泵抽取瓶内空气,稍减压后,用移液管准确加入200mL 过氧化氢吸收液(3.2),套上采样瓶布套,减压抽真空,记录瓶内压力(P 1),夹好瓶夹,确保密封不漏,拿至采样现场。

采样时,将采样管伸入烟道,使采用咀直对气流方向,先放空5~10s ,使样品气体充满采样管,迅速将采样管与真空采样瓶连接,将气体缓慢采入瓶内,至不冒气泡为止(大约5~10s ),立即夹好瓶夹,注意确保严紧不漏,取下采样瓶。

注:采样注意事项见附录A
6 操作步骤
采样后,将真空采样瓶于往返振荡器上(或用人工)振荡10~15min ,放置10~15min ,
测量瓶内余压(P 2)
,并记录室温(t )。

然后将试样溶液倒入已经干燥的250mL 锥形瓶中。

用移液管吸取50~100mL 样品溶液于另一250mL 锥形瓶中,加4~5滴混合指示液(3.4),用氢氧化钠标准溶液(3.3)滴定至亮绿色为终点。

记录消耗量(V )。

同时吸取相同体积的过氧化氢吸收液(3.2)做空白试验,记录消耗量(V 0)。

7 结果计算
氮氧化物含量按下式计算:
50
10000.46)(0××××⋅−=n s NOx V V c V V c 式中: NOx c ——氮氧化物浓度(以NO 2计),mg/m 3;
V ——滴定所取样品溶液时消耗氢氧化钠标准溶液体积,mL ;
V 0 ——滴定空白溶液时消耗氢氧化钠标准溶液体积,mL ;
C ——氢氧化钠标准溶液浓度,mol/L 。

46.0 ——与1.00mL 氢氧化钠标准溶液[c (NaOH )=1.000mol/L]相当的以毫克表示的NO 2的质量;
V s ——样品溶液总体积,mL ;
V n ——换算为标准状况下(0℃,101 325Pa )的采样体积,L 。

V n 按下式计算:
101325
27327312P P t V V t n −×+×= 式中:V t ——室温下采样体积(采样瓶体积与吸收液体积之差),L ;
t ——室温,℃;
P 2 ——采样后在t ℃下真空瓶内压力,Pa ;
P 1 ——采样前真空瓶内压力,Pa 。

8 精密度和准确度
用标准气测定相对误差小于±5%。

用标准气和样品气测定相对标准偏差小于5%。

用此法和二磺酸酚分光光度法同时测定标准气体和样品气体,相对误差小于±5%。

9 参考文献
GB/T 13906-92
附录A 采样和分析中注意事项
A1当管道内是负压时采样管应与三通活塞连接,首先用真空泵以旁路先将气体充满采样管后再与采样瓶连接,采样时间约为5~10s。

A2采样嘴与采样瓶之间连接管要尽量缩短,以减少采样误差。

A3采样后样品必须放置室温,这样在计算采样体积时可以不计饱和蒸汽压的影响。

A4当气体样品中含有硝酸雾时,采样瓶前应连接1~2支内装中性玻璃棉的三连球管,以滤除硝酸雾。

A5用氢氧化钠中和样品时,应控制氢氧化钠溶液加入量。

氢氧化钠不足时,蒸干过程中会有部分硝酸挥发损失,使测量结果偏低。

过剩时生成过多的盐,在显色后生成大量的不溶解成分,易产生误差。

A6加氨水时应缓慢滴入,不然会崩溅。

A7加氨水后应立即将试液过滤于棕色容量瓶内并放置暗处。

A8分析中使用的滤纸必须采用同一型号,过滤时将滤纸洗至无色。

相关文档
最新文档