人教版高中数学知识网络板块图(脉络清晰详细)
高中数学必修1-5知识网络结构图
高一数学必修1知识网络集合123412n x A x B A B A B A n A ∈∉⎧⎪⎪⎨⎪⎪⎩∈⇒∈⊆()元素与集合的关系:属于()和不属于()()集合中元素的特性:确定性、互异性、无序性集合与元素()集合的分类:按集合中元素的个数多少分为:有限集、无限集、空集()集合的表示方法:列举法、描述法(自然语言描述、特征性质描述)、图示法、区间法子集:若 ,则,即是的子集。
、若集合中有个元素,则集合的子集有个, 注关系集合集合与集合{}00(2-1)23,,,,.4/nA A ABC A B B C A C A B A B x B x A A B A B A B A B A B x x A x B A A A A A B B A A B ⎧⎪⎧⎪⎪⎪⊆⎪⎪⎨⎪⊆⊆⊆⎨⎪⎪⎪⎩⎪⎪⊆≠∈∉⎪⊆⊇⇔=⎪⎩⋂=∈∈⋂=⋂∅=∅⋂=⋂⋂⊆真子集有个。
、任何一个集合是它本身的子集,即 、对于集合如果,且那么、空集是任何集合的(真)子集。
真子集:若且(即至少存在但),则是的真子集。
集合相等:且 定义:且交集性质:,,,运算{}{},/()()()-()/()()()()()()U U U U U U U U A A B B A B A B A A B x x A x B A A A A A A B B A A B A A B B A B A B B Card A B Card A Card B Card A B C A x x U x A A C A A C A A U C C A A C A B C A C B ⎧⎪⎨⋂⊆⊆⇔⋂=⎪⎩⎧⋃=∈∈⎪⎨⋃=⋃∅=⋃=⋃⋃⊇⋃⊇⊆⇔⋃=⎪⎩⋃=+⋂=∈∉=⋂=∅⋃==⋂=⋃,定义:或并集性质:,,,,, 定义:且补集性质:,,,, ()()()U U U C A B C A C B ⎧⎪⎪⎪⎪⎪⎪⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎧⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⋃=⋂⎪⎪⎩⎩⎩⎩函数,,,A B A x B y f B A B x y x f y y x y →映射定义:设,是两个非空的集合,如果按某一个确定的对应关系,使对于集合中的任意一个元素, 在集合中都有唯一确定的元素与之对应,那么就称对应:为从集合到集合的一个映射传统定义:如果在某变化中有两个变量并且对于在某个范围内的每一个确定的值,定义 按照某个对应关系都有唯一确定的值和它对应。
高中数学必修1-5知识网络结构图
高一数学必修1知识网络集合123412n x A x B A B A B A n A ∈∉⎧⎪⎪⎨⎪⎪⎩∈⇒∈⊆()元素与集合的关系:属于()和不属于()()集合中元素的特性:确定性、互异性、无序性集合与元素()集合的分类:按集合中元素的个数多少分为:有限集、无限集、空集()集合的表示方法:列举法、描述法(自然语言描述、特征性质描述)、图示法、区间法子集:若 ,则,即是的子集。
、若集合中有个元素,则集合的子集有个, 注关系集合集合与集合{}00(2-1)23,,,,.4/nA A ABC A B B C A C A B A B x B x A A B A B A B A B A B x x A x B A A A A A B B A A B ⎧⎪⎧⎪⎪⎪⊆⎪⎪⎨⎪⊆⊆⊆⎨⎪⎪⎪⎩⎪⎪⊆≠∈∉⎪⊆⊇⇔=⎪⎩⋂=∈∈⋂=⋂∅=∅⋂=⋂⋂⊆真子集有个。
、任何一个集合是它本身的子集,即 、对于集合如果,且那么、空集是任何集合的(真)子集。
真子集:若且(即至少存在但),则是的真子集。
集合相等:且 定义:且交集性质:,,,运算{}{},/()()()-()/()()()()()()U U U U U U U U A A B B A B A B A A B x x A x B A A A A A A B B A A B A A B B A B A B B Card A B Card A Card B Card A B C A x x U x A A C A A C A A U C C A A C A B C A C B ⎧⎪⎨⋂⊆⊆⇔⋂=⎪⎩⎧⋃=∈∈⎪⎨⋃=⋃∅=⋃=⋃⋃⊇⋃⊇⊆⇔⋃=⎪⎩⋃=+⋂=∈∉=⋂=∅⋃==⋂=⋃,定义:或并集性质:,,,,, 定义:且补集性质:,,,, ()()()U U U C A B C A C B ⎧⎪⎪⎪⎪⎪⎪⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎧⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⋃=⋂⎪⎪⎩⎩⎩⎩函数,,,A B A x B y f B A B x y x f y y x y →映射定义:设,是两个非空的集合,如果按某一个确定的对应关系,使对于集合中的任意一个元素, 在集合中都有唯一确定的元素与之对应,那么就称对应:为从集合到集合的一个映射传统定义:如果在某变化中有两个变量并且对于在某个范围内的每一个确定的值,定义 按照某个对应关系都有唯一确定的值和它对应。
高中数学知识网络结构图
集合与简易逻辑
三角函数
平面向量
不等式
不
实 数 的 性 质
等 式 的 性
质
均 值 不 等 式
不 等 式 的 解 法
比较法
综合法
不
分析法
等 式 的反Βιβλιοθήκη 法 换元法证放缩法
明
判别式法
一元一次不等式(组) 一元二次不等式 分式、高次不等式 绝对值不等式
不 等
函数的定义域
式
函数的值域
的
函数的单调性
应
方程根的分布
用
最值问题
应用题
取值范围问题
直线与圆
直线的倾斜角和斜率
直线
直线的方程 两直线的位置关系
五种形式 两直线垂直 两直线平行 两直线相交
应用
夹角及公式 交点
点到直线的距离公式
两平行直线的距离公式
圆的方程
圆的标准方程
圆与圆的位置关系
圆
圆的一般方程
圆与直线的位置关系
相交弦
圆的切线
圆锥曲线
直线和方程
曲线上的点 对应 方程的实数解
曲线的交点
椭圆定义
标准方程
几何性质
作图
第二定义
由
圆
锥
曲
统
线
双曲线定义
标准方程
几何性质
作图
一
求
定
方
义
程
第二定义
抛物线定义
标准方程
几何性质
直线与圆锥曲线的位置关系
作图
立体几何
直 线 平 面 简 单 几 何 体
平面 空间两 条直线
空间直线 与平面
三个公理三个推论 平行直线 相交直线 异面直线
高中数学必修1-5知识网络结构图
高一数学必修1知识网络集合函数 附:一、函数的定义域的常用求法:1、分式的分母不等于零;2、偶次方根的被开方数大于等于零;3、对数的真数大于零;4、指数函x 中x k π≠11法1123则y 45六、函数奇偶性的常用结论:1、如果一个奇函数在0x =处有定义,则(0)0f =,如果一个函数()y f x =既是奇函数又是偶函数,则()0f x =(反之不成立)2、两个奇(偶)函数之和(差)为奇(偶)函数;之积(商)为偶函数。
3、一个奇函数与一个偶函数的积(商)为奇函数。
4、两个函数()y f u =和()u g x =复合而成的函数,只要其中有一个是偶函数,那么该复合函数就是偶函数;当两个函数都是奇函数时,该复合函数是奇函数。
5、若函数()f x 的定义域关于原点对称,则()f x 可以表示为11()[()()][()()]22f x f x f x f x f x =+-+--,该式的特点是:右端为一个奇函数和一个偶函数高中数学必修2知识点一、直线与方程(1)直线的倾斜角定义:x 轴正向与直线向上方向之间所成的角叫直线的倾斜角。
特别地,当直线与x 轴平行或重合时,我们规定它的倾斜角为0度。
因此,倾斜角的取值范围是0°≤α<180°(2)直线的斜率①定义:倾斜角不是90°的直线,它的倾斜角的正切叫做这条直线的斜率。
直线的斜率常用k 表示。
即tan k α=。
斜率反映直线与轴的倾斜程度。
当[) 90,0∈α时,0≥k ;当() 180,90∈α时,0<k ;当 90=α时,k 不存在。
②过两点的直线的斜率公式:)(211212x x x x y y k ≠--=(2)k 与(4)(3注意:上每一注意:平行于(50=(C (ⅰ(ⅱ()()0222111=+++++C y B x A C y B x A λ(λ为参数),其中直线2l 不在直线系中。
(6)两直线平行与垂直当111:b x k y l +=,222:b x k y l +=时,212121,//b b k k l l ≠=⇔;12121-=⇔⊥k k l l注意:利用斜率判断直线的平行与垂直时,要注意斜率的存在与否。
人教版高中数学知识网络板块图(脉络清晰详细)
共分七部分(脉络调理清晰)第一部分 集合、映射、函数、导数及微积分集合映射概念元素、集合之间的关系 运算:交、并、补 数轴、Venn 图、函数图象性质确定性、互异性、无序性 定义表示 解析法 列表法三要素图象法定义域对应关系值域 性质奇偶性周期性 对称性 单调性 定义域关于原点对称,在x =0处有定义的奇函数→f (0)=01、函数在某个区间递增(或减)与单调区间是某个区间的含义不同;2、证明单调性:作差(商)、导数法;3、复合函数的单调性 最值二次函数、基本不等式、双钩(耐克)函数、三角函数有界性、数形结合、导数.幂函数 对数函数 三角函数基本初等函数抽象函数 复合函数 赋值法、典型的函数函数与方程 二分法、图象法、二次及三次方程根的分布 零点函数的应用 建立函数模型使解析式有意义 导数函数基本初等函数的导数导数的概念导数的运算法则导数的应用表示方法 换元法求解析式分段函数 几何意义(切线问题)、物理意义单调性导数的正负与单调性的关系生活中的优化问题定积分与微积分定积分与图形的计算注意应用函数的单调性求值域周期为T 的奇函数→f (T )=f (T2)=f (0)=0 复合函数的单调性:同增异减三次函数的性质、图象与应用一次、二次函数、反比例函数指数函数图象、性质 和应用平移变换对称变换 翻折变换 伸缩变换图象及其变换最值极值第二部分 三角函数与平面向量角的概念 任意角的三角函数的定义 三角函数 弧度制 弧长公式、扇形面积公式三角函数线同角三角函数的关系 诱导公式 和角、差角公式 二倍角公式公式的变形、逆用、“1”的替换 化简、求值、证明(恒等变形)三角函数 的 图 象定义域奇偶性 单调性 周期性 最值对称轴(正切函数除外)经过函数图象的最高(或低)点且垂直x 轴的直线,对称中心是正余弦函数图象的零点,正切函数的对称中心为(k π2,0)(k ∈Z ).正弦函数y =sin x= 余弦函数y =cos x 正切函数y =tan x y =A sin(ωx +ϕ)+b①图象可由正弦曲线经过平移、伸缩得到,但要注意先平移后伸缩与先伸缩后平移不同;②图象也可以用五点作图法;③用整体代换求单调区间(注意ω的符号); ④最小正周期T =2π| ω |;⑤对称轴x =(2k +1)π-2ϕ2ω,对称中心为(k π-ϕω,b )(k ∈Z ). 平面向量 概念线性运算 基本定理 加、减、数乘几何意义坐标表示数量积几何意义模共线与垂直共线(平行)垂直 值域图象a →∥b →⇔b →=λa → ⇔ x 1y 2-x 2y 1=0 a →⊥b →⇔b →·a →=0 ⇔ x 1x 2+y 1y 2=0解三角形余弦定理 面积 正弦定理 解的个数的讨论实际应用 S △=12ah =12ab sin C =p (p -a )(p -b )(p -c )(其中p =a +b +c 2)投影b →在a →方向上的投影为|b →|cos θ=a →·b→——|a →|设a →与b →夹角θ,则cos θ=a →·b →——|a →|·|b →|对称性 |a →|=(x 2-x 1)2+(y 2-y 1)2夹角公式第三部分 数列与不等式概念 数列表示等差数列与等比数列的类比 解析法:a n =f (n )通项公式 图象法 列表法递推公式等差数列 通项公式 求和公式 性质 判断a n =a 1+(n -1)d a n =a 1q n -1a n +a m =a p +a r a n a m =a p a r 前n 项和S n =n (a 1+a n )2前n 项积(a n >0) T n =(a 1a n )n 常见递推类型及方法逐差累加法 逐商累积法构造等比数列{a n +qp -1} 构造等差数列①a n +1-a n =f (n ) ②a n + 1a n=f (n ) ③a n +1=pa n +q ④pa n +1a n =a n -a n +1 化为a n +1q n =p q ·a nq n -1+1转为③ ⑤a n + 1=pa n +q n等比数列 a n ≠0,q ≠0 S n =⎩⎨⎧na 1,q =1a 1(1-q n)1-q ,q ≠1公式法:应用等差、等比数列的前n 项和公式 分组求和法 倒序相加法裂项求和法 错位相加法 常见求和方法不等式不等式的性质 一元二次不等式简单的线性规划 基本不等式:ab ≤a +b 2数列是特殊的函数借助二次函数的图象三个二次的关系可行域 目标函数一次函数:z =ax +by z =y -bx -a:构造斜率 z =(x -a )2+(y -b )2:构造距离 应用题几何意义: z 是直线ax +by -z =0在x 轴截距的a 倍,y 轴上截距的b 倍.最值问题 变形 和定值,积最大;积定值,和最小应用时注意:一正二定三相等 2aba +b≤ab ≤a +b 2≤a 2+b 22倾斜角和斜率直线的方程位置关系直线方程的形式倾斜角的变化与斜率的变化重合平行相交垂直A1B2-A2B1=0A1B2-A2B1≠0A1A2+B1B2=0点斜式:y-y0=k(x-x0)斜截式:y=kx+b两点式:y-y1y2-y1=x-x1x2-x1截距式:xa+yb=1一般式:Ax+By+C=0注意各种形式的转化和运用范围.两直线的交点距离点到线的距离:d=| Ax0+By0+C |A2+B2,平行线间距离:d=| C1-C2 |A2+B2圆的方程圆的标准方程圆的一般方程直线与圆的位置关系两圆的位置关系相离相切相交∆<0,或d>r∆=0,或d=r∆>0,或d<r曲线与方程轨迹方程的求法:直接法、定义法、相关点法圆锥曲线椭圆双曲线抛物线定义及标准方程性质范围、对称性、顶点、焦点、长轴(实轴)、短轴(虚轴)、渐近线(双曲线)、准线(只要求抛物线)离心率对称性问题中心对称轴对称点(x1,y1) ───────→关于点(a,b)对称点(2a-x1,2b-y1)曲线f (x,y) ───────→关于点(a,b)对称曲线f (2a-x,2b-y)⎩⎪⎨⎪⎧A·x1+x22+B·y1+y22+C=0y2-y1x2-x1·(-AB)=-1特殊对称轴x±y+C=0 直接代入法截距注意:截距可正、可负,也可为0.点(x1,y1)与点(x2,y2)关于直线Ax+By+C=0对称点与线空间点、 线、面的 位置关系点在直线上 点在直线外 点与面 点在面内 点在面外线与线共面直线异面直线相交平行没有公共点 只有一个公共点线与面平行相交有公共点没有公共点 直线在平面外直线在平面内面与面平行 相交平行关系的相互转化垂直关系的相互转化线线 平行线面 平行面面 平行线线 垂直线面 垂直面面 垂直空间的角异面直线所成的角 直线与平面所成的角 二面角 范围:(0︒,90︒] 范围:[0︒,90︒] 范围:[0︒,180︒]点到面的距离 直线与平面的距离 平行平面之间的距离相互之间的转化 cos θ=|a →·b →|——|a →|·|b →|sin θ=|a →·n →|——|a →|·|n →|cos θ=n 1→·n2→——|n 1→|·|n 2→|d =|a →·n →|——|n →|空间向量空间直角坐标系空间的距离 空间几何体柱体棱柱 圆柱 正棱柱、长方体、正方体台体 棱台 圆台 锥体 棱锥 圆锥球 三棱锥、四面体、正四面体直观图 侧面积、表面积 三视图体积长对正 高平齐 宽相等第六部分统计与概率统计随机抽样抽签法随机数表法简单随机抽样系统抽样分层抽样共同特点:抽样过程中每个个体被抽到的可能性(概率)相等用样本估计总体样本频率分布估计总体总体密度曲线频率分布表和频率分布直方图茎叶图样本数字特征估计总体众数、中位数、平均数方差、标准差变量间的相关关系两个变量的线性相关散点图回归直线正态分布列联表(2×2)独立性分析概率概率的基本性质互斥事件对立事件古典概型几何概型条件概率事件的独立性用随机模拟法求概率常用的分布及期望、方差随机变量两点分布X~B(1,p)E(X)=p,D(X)=p(1-p)二项分布X~B(n,p)E(X)=np,D(X)=np(1-p)X~H(N,M,n)E(X)=nMND(X)=nMN()1-MNN-nN-1n次独立重复试验恰好发生k次的概率为P n(k)=C knp k(1-p)n-k超几何分布若Y=aX+b,则E(Y)=aE(X)+bD(Y)=a2D(X)P(A+B)=P(A)+P(B)P( A)=1-P(A)P(A B)=P(A)·P(B)P(B | A)=P(A B)P(A)第七部分 其他部分内容合情推理演绎推理归纳类比 三段论 大前提、小前提、结论 两个原理分类加法计算原理和分步乘法计算原理 排列与组合 排列数:A m n =n !(n -m )!组合数:C m n =n !m !(n -m )! 性质C m n =C n -mn C mn +1=C mn +Cm -1n计算原理二项式定理通项公式T r +1=C rn a n -r b r首末两端“等距离”两项的二项式系数相等 C 0n +C 2n +C 4n …=C 1n +C 3n +C 5n …=2n -1C 0n +C 1n +…+C nn =2n二项式系数性质 直接证明综合法分析法由因导果执果索因间接证明 反证法数学归纳法推理证明推理与证明充分非必要条件、必要非充分条件、充要条件关系条件复合命题 或:p ∨ q 且:p ∧ q 非:⌝ p猜想原命题:若p 则q逆命题:若q 则p否命题:若⌝p 则⌝q逆命题:若⌝q 则⌝p互逆 互逆互否互否互为逆否 等价关系一真便真 一假则假全称量词与存在量词 简易逻辑概括性、逻辑性、有穷性、不唯一性、普遍性 顺序结构条件结构 循环结构命题算法语言算法的特征程序框图 基本算法语言算法案例 辗转相除法、更相减损术、秦九韶算法、进位制 复 数概念虚数、纯虚数、实部、虚部、实轴、虚轴、模、共轭复数 运算 加、减、乘、除、乘方几何意义复数与复平面内点(向量)的对应关系、复数模的几何意义。
高中数学必修1-5知识网络结构图
高一数学必修1知识网络集合123412n x A x B A B A B A n A ∈∉⎧⎪⎪⎨⎪⎪⎩∈⇒∈⊆()元素与集合的关系:属于()和不属于()()集合中元素的特性:确定性、互异性、无序性集合与元素()集合的分类:按集合中元素的个数多少分为:有限集、无限集、空集()集合的表示方法:列举法、描述法(自然语言描述、特征性质描述)、图示法、区间法子集:若 ,则,即是的子集。
、若集合中有个元素,则集合的子集有个, 注关系集合集合与集合{}00(2-1)23,,,,.4/nA A ABC A B B C A C A B A B x B x A A B A B A B A B A B x x A x B A A A A A B B A A B ⎧⎪⎧⎪⎪⎪⊆⎪⎪⎨⎪⊆⊆⊆⎨⎪⎪⎪⎩⎪⎪⊆≠∈∉⎪⊆⊇⇔=⎪⎩⋂=∈∈⋂=⋂∅=∅⋂=⋂⋂⊆真子集有个。
、任何一个集合是它本身的子集,即 、对于集合如果,且那么、空集是任何集合的(真)子集。
真子集:若且(即至少存在但),则是的真子集。
集合相等:且 定义:且交集性质:,,,运算{}{},/()()()-()/()()()()()()U U U U U U U U A A B B A B A B A A B x x A x B A A A A A A B B A A B A A B B A B A B B Card A B Card A Card B Card A B C A x x U x A A C A A C A A U C C A A C A B C A C B ⎧⎪⎨⋂⊆⊆⇔⋂=⎪⎩⎧⋃=∈∈⎪⎨⋃=⋃∅=⋃=⋃⋃⊇⋃⊇⊆⇔⋃=⎪⎩⋃=+⋂=∈∉=⋂=∅⋃==⋂=⋃,定义:或并集性质:,,,,, 定义:且补集性质:,,,, ()()()U U U C A B C A C B ⎧⎪⎪⎪⎪⎪⎪⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎧⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⋃=⋂⎪⎪⎩⎩⎩⎩函数,,,A B A x B y f B A B x y x f y y x y →映射定义:设,是两个非空的集合,如果按某一个确定的对应关系,使对于集合中的任意一个元素, 在集合中都有唯一确定的元素与之对应,那么就称对应:为从集合到集合的一个映射传统定义:如果在某变化中有两个变量并且对于在某个范围内的每一个确定的值,定义 按照某个对应关系都有唯一确定的值和它对应。
人教版高中数学知识框架思维导图(04)-按章节整理(含目录高清版)
几何意义
归纳
合情推理
猜想
类比
推理
演绎推理
推理与证明
三段论
大前提、小前提、结论
综合法
由因导果
分析法
执果索因
直接证明
证明
间接证明
1.验证 = 0 (初始值)命题成立;
2.若 = ( ≥ 0 )时命题成立,证明 = + 1时命题也成立.
数学归纳法
两个原理
反设、归谬、结论
反证法
分类加法计算原理和分步乘法计算原理
1.f (a+x)=f (b-x),对称轴为 =
对称性
2.f (a+x)+f (b-x)=c,对称中心为(
2
+
2
, )
2
二次函数、基本不等式、双勾函数、三角函
数有界性、数形结合、单调性、导数.
最值
一次、二次函数、反比例函数、双勾函数
基本初等函数
指数函数、对数函数、幂函数、三角函数
分段函数
利用对称性求函数
对称变换: = () → = −(), = () → = (−), = () → = −(−)
函数图象
及其变换
翻折变换: = () → = |()|, = () → = (||)
伸缩变换: = () → = (), = () → = ()
②减法:( + i)-( + i)=(-c)+(b-d)i;
③乘法:( + i)·( + i)=(c-bd)+(d+bc)i;
运算
④除法:
+i
+i
=
(+i)(−i)
(+i)(−i)
高中数学知识结构框图(人教版)
高中数学知识结构1)第一章 集合与函数概念 列举法 {a,b,c, , } 含义与表示 描述法 {x|p(x)} 图象法图 ; 数轴 包含关系 子集 ; 真子集集合 基本关系 相等关系交集 :A ∩ B={x|x ∈A 且 x ∈B} 基本运算并集 :A ∪ B={x|x ∈A 或 x ∈B}补集 :{ | } C Ax x U 且x AU定义域概念对应关系 值域 解析法函数表示图象法 列表法定义性最值 图象特征性质上 升 或 下降定义奇偶性图:对称性 映射映射的概念1第二章基本初等函数(Ⅰ)根式n am指数与指数指数n m分数指数幂( 0, , *, 1)a n a a m n N n无理数指数幂r s r sa a a运算性质r s rs(a ) a函r r r ( a b) a b数指x定义( 0, 1) y a a a基本数函图象: “一撇或一捺”,过点(0,1).见教材P56初等数性质: 位于x 轴上方,以x 轴为渐近线函数定义:x若则叫以为底的对数a N x a N(Ⅰ)对数l og (M N)log M log Na a a对数运算性质Mlog log M log Na a aN与对nlog M n l og Ma a数函数换底公式:log bclog b (a 0,a 1,c 0,c 1,b 0)alog ac对定义:log ( 0, 1)y x a aa数函图象:位于y 轴右侧,以y 轴为渐近线.见教材P71数性质:过点(1,0)图象见P77图2.3-1 yx定义:y x 2y x幂特征:过点(1,1),函具体的五3 y xy x1y x在(0, ) 上递减。
2第三章函数的应用方程f (x) 0有实数根方程的根与函数y f ( x)的图象与x轴有交点函数零点的关函数y f ( x)有零点函数与如果函数y f ( x)在区间[a,b]上的图方象是连续不断的一条曲线, 并且有程函数零点的存在性 f (a) f (b) 0,那么函数y f ( x)在区间内有零点, 即存在使得(a, b) c (a ,b), 函f (c) 0,这个c也就是方程 f (x) 0的根. 数的应用用二分法求方程的近似解直线上升函指数爆炸数几种不同增长的函数模型对数增长模型及用已知函数模型解决问题指数函数,对数函数,幂函数增长速度的比其较。
文科新人教高中数学知识板块结构关系图(文科)
集合映射 概念元素、集合之间的关系运算:交、并、补 性质确定性、互异性、无序性 定义表示 解析法 列表法 三要素图象法定义域对应关系 值域 性质奇偶性周期性 对称性单调性 最值幂函数 对数函数 三角函数基本初等函数抽象函数 复合函数 函数与方程 零点函数的应用 导数函数基本初等函数的导数导数的概念导数的运算法则导数的应用表示方法 分段函数 几何意义(切线问题)、物理意义单调性生活中的优化问题一次、二次函数、反比例函数指数函数图象及其变换最值极值角的概念任意角的三角函数的定义 三角函数弧度制三角函数线同角三角函数的关系诱导公式和角、差角公式二倍角公式三角函数的图象定义域奇偶性单调性周期性最值正弦函数y=sin x=余弦函数y=cos x正切函数y=tan xy=A sin(ωx+ϕ)+b平面向量概念线性运算基本定理加、减、数乘几何意义坐标表示数量积几何意义模共线与垂直共线(平行)垂直值域图象解三角形余弦定理面积正弦定理实际应用投影对称性夹角公式倾斜角和斜率 直线的方程位置关系直线方程的形式重合 平行 相交垂直点斜式:y -y 0=k (x -x 0) 斜截式:y =kx +b 两点式:y -y 1y 2-y 1=x -x 1x 2-x 1截距式:x a +yb =1一般式:Ax +By +C =0两直线的交点 截距概念 数列表示解析法:a n =f (n ) 通项公式 图象法 列表法递推公式等差数列 通项公式 求和公式 性质 判断常见递推类型及方法①a n +1-a n =f (n ) ②a n + 1a n=f (n ) ③a n +1=pa n +q ④pa n +1a n =a n -a n +1 ⑤a n + 1=pa n +q n等比数列 常见求和方法 不等式不等式的性质 一元二次不等式简单的线性规划基本不等式:ab ≤a +b 2可行域 目标函数一次函数:z =ax +by z =y -bx -a:构造斜率 z =(x -a )2+(y -b )2:构造距离应用题 最值问题 变形。