北师大版初中数学各升中考总复习题

合集下载

北师大版七年级数学下册总复习专项测试题 附答案解析(10份)

北师大版七年级数学下册总复习专项测试题 附答案解析(10份)

总复习专项测试题(一)一、单项选择题(本大题共有15小题,每小题3分,共45分)1、如图,小强利用全等三角形的知识测量池塘两端,的距离,若,则只需测出其长度的线段是( ).A.B.C.D.2、在中,,的垂直平分线交于点,交于点,且,则为().A.B.C.D. 无法确定3、如图,已知,,则( ).A.B.C.D.4、已知在正方形网格中的位置如图所示,点、、、均在格点上,则点叫做的()A. 外心B. 内心C. 重心D. 无法确定5、在庆祝抗战胜利周年那一年,某市某楼盘让利于民,决定将原价为元/平方米的商品房价降价销售,降价后的销售价为()A.B.C.D.6、下列说法正确的是()A. 整式就是多项式B. 是单项式C. 是七次二项式D. 是单项式7、的次数和项数分别为()A.B.C.D.8、下列图形中,多边形有()A. 个B. 个C. 个D. 个9、如图,中,,,平分,,则图中等腰三角形的个数()A. 个B. 个C. 个D. 个10、如图,已知直线、被直线所截,那么的同位角是()A.C.D.11、若,则()A.B.C.D.12、下列关于“”的说法中,错误的是()A. 的绝对值是B. 的倒数是C. 的相反数是D. 是最小的正整数13、如图,在中,,点分别在边上,若,则下列结论正确的是()A. 和互为余角B. 和互为余角C. 和互为补角D. 和互为补角14、一个直三棱柱的顶点个数是()A.B.C.15、下列说法中:①棱柱的上、下底面的形状相同;②若,则点为线段的中点;③相等的两个角一定是对顶角;④不相交的两条直线叫做平行线;⑤直线外一点与直线上各点连接的所有线段中,垂线段最短.正确的有()A. 个B. 个C. 个D. 个二、填空题(本大题共有5小题,每小题5分,共25分)16、利用表格,可以表示因变量随自变量变化而变化的情况,一般地,表格第一行表示,第二行表示,但它不能全面反映的关系,只能反映其中的一部分.17、多面体中,设面数为,顶点数为,棱数为,则、、间的关系式为__________.18、计算__________.19、如图,,其中,则.20、某学校为了增强学生的国防意识,在八年级进行了一次国防知识测验.为了了解这次测验的成绩状况,从中抽取了50名学生的成绩,将所得数据整理后,画出频数分布直方图如图所示.从图中可知这50名学生的成绩的中位数在_______三、解答题(本大题共有3小题,每小题10分,共30分)21、如图,在中,,是上一点,,过点作的垂线交于点.求证:.22、如图,在等腰三角形中,已知边的垂直平分线交于点,,,求的周长.23、计算:(1)(2)总复习专项测试题(一) 答案部分一、单项选择题(本大题共有15小题,每小题3分,共45分)1、如图,小强利用全等三角形的知识测量池塘两端,的距离,若,则只需测出其长度的线段是( ).A.B.C.D.【答案】B【解析】解:由题意知,,.只需测出线段的长度即可得出池塘两端,的距离.故答案应选:.2、在中,,的垂直平分线交于点,交于点,且,则为().A.B.C.D. 无法确定【答案】B【解析】解:如图所示.,且平分,,是等腰三角形,,,,,而,且,,解得.故正确答案是:.3、如图,已知,,则( ).A.B.C.D.【答案】C【解析】解:,,,.故正确答案是.4、已知在正方形网格中的位置如图所示,点、、、均在格点上,则点叫做的()A. 外心B. 内心C. 重心D. 无法确定【答案】C【解析】解:由网格中图可知,点为的中点,点为的中点,则、的交点是的重心.5、在庆祝抗战胜利周年那一年,某市某楼盘让利于民,决定将原价为元/平方米的商品房价降价销售,降价后的销售价为()A.B.C.D.【答案】C【解析】解:由题意得,降价后的销售价为.6、下列说法正确的是()A. 整式就是多项式B. 是单项式C. 是七次二项式D. 是单项式【答案】B【解析】解:根据整式的概念可知,单项式和多项式统称为整式,故“整式就是多项式”错误;是单项式,故“是单项式”正确;是次二项式,故“是七次二项式”错误;是多项式,故“是单项式”错误.故正确答案是:是单项式7、的次数和项数分别为()A.B.C.D.【答案】A【解析】解:的次数和项数分别为.8、下列图形中,多边形有()A. 个B. 个C. 个D. 个【答案】B【解析】解:由多边形的概念可知第四个、第五个是多边形共个.9、如图,中,,,平分,,则图中等腰三角形的个数()A. 个B. 个C. 个D. 个【答案】A【解析】解:,是等腰三角形,,平分,,,,,在中,,为等腰三角形,在中,,是等腰三角形,在中,,是等腰三角形,在中,,是等腰三角形,所以共有个等腰三角形.10、如图,已知直线、被直线所截,那么的同位角是()A.B.C.D.【答案】D【解析】解:根据同位角的定义知,的同位角是.11、若,则()A.B.C.D.【答案】A【解析】解:由题意得解得.12、下列关于“”的说法中,错误的是()A. 的绝对值是B. 的倒数是C. 的相反数是D. 是最小的正整数【答案】C【解析】解:的绝对值是,正确;的倒数是,正确;的相反数是,故“的相反数是”错误;是最小的正整数,正确.13、如图,在中,,点分别在边上,若,则下列结论正确的是()A. 和互为余角B. 和互为余角C. 和互为补角D. 和互为补角【答案】B【解析】解:,,,,和互为余角.14、一个直三棱柱的顶点个数是()A.B.C.D.【答案】D【解析】解:一个直三棱柱由两个三边形的底面和个长方形的侧面组成,根据其特征及欧拉公式可知,它有个顶点.15、下列说法中:①棱柱的上、下底面的形状相同;②若,则点为线段的中点;③相等的两个角一定是对顶角;④不相交的两条直线叫做平行线;⑤直线外一点与直线上各点连接的所有线段中,垂线段最短.正确的有()A. 个B. 个C. 个D. 个【答案】B【解析】解:①棱柱的上、下底面的形状相同,此选项正确;②若,则点为线段的中点,不一定在一条直线上,故此选项错误;③相等的两个角一定是对顶角,交的顶点不一定在一个位置,故此选项错误;④不相交的两条直线叫做平行线,必须在同一平面内,故此选项错误;⑤直线外一点与直线上各点连接的所有线段中,垂线段最短,此选项正确.故正确的为①⑤,共个.二、填空题(本大题共有5小题,每小题5分,共25分)16、利用表格,可以表示因变量随自变量变化而变化的情况,一般地,表格第一行表示,第二行表示,但它不能全面反映的关系,只能反映其中的一部分.【答案】自变量;因变量;两个变量之间【解析】解:利用表格,可以表示因变量随自变量变化而变化的情况,一般地,表格第一行表示自变量,第二行表示因变量,但它不能全面反映两个变量之间的关系,只能反映其中的一部分.正确答案是:自变量;因变量;两个变量之间.17、多面体中,设面数为,顶点数为,棱数为,则、、间的关系式为__________.【答案】【解析】解:由欧拉公式:,可得:.18、计算__________.【答案】【解析】解:19、如图,,其中,则.【答案】127【解析】解:由,得,,所以.20、某学校为了增强学生的国防意识,在八年级进行了一次国防知识测验.为了了解这次测验的成绩状况,从中抽取了50名学生的成绩,将所得数据整理后,画出频数分布直方图如图所示.从图中可知这50名学生的成绩的中位数在_______组.【答案】【解析】解:根据频数分布直方图可知:后面三组的频数分别为、、,因为共有个数,所以这名学生的成绩的中位数是第和个数的平均数.因为第和个数在第三组,从图中可知这名学生的成绩的中位数在组.三、解答题(本大题共有3小题,每小题10分,共30分)21、如图,在中,,是上一点,,过点作的垂线交于点.求证:.【解析】证明:...在和中.,,..,.(三线合一).22、如图,在等腰三角形中,已知边的垂直平分线交于点,,,求的周长.【解析】解:是的垂直平分线,,而,,已知,,又知,的周长为:.正确答案是:.23、计算:(1)【解析】解:(2)【解析】解:总复习专项测试题(二)一、单项选择题(本大题共有15小题,每小题3分,共45分)1、在下图所示的水解环保、绿色食品、节能、绿色环保四个标志中,是轴对称图形的是()A.B.C.D.2、某音乐行出售三种音乐,即古典音乐,流行音乐,民族音乐,为了表示这三种音乐唱片的销售量的百分比,应该用()A. 扇形统计图B. 折线统计图C. 条形统计图D. 以上都可以3、含有 _____的等式叫做方程。

(完整版)北师大版中考数学试题及答案

(完整版)北师大版中考数学试题及答案

A B C31 23 6 78第一部分 选择题(本部分共12小题,每小题3分,共36分。

每小题给出的4个选项中,其中只有一个是正确的)1.12-的相反数等于( )A .12- B .12 C .-2 D .22.如图1所示的物体是一个几何体,其主视图是( )A .B .C .D . 图13.今年参加我市初中毕业生学业考试的总人数约为56000人,这个数据用科学记数法表示为( ) A .5.6×103 B .5.6×104 C .5.6×105 D .0.56×105 4.下列运算正确的是( )A .x 2+x 3=x 5B .(x +y )2=x 2+y 2C .x 2·x 3=x 6D .(x 2)3=x 6 5.某校开展为“希望小学”捐书活动,以下是八名学生捐书的册数:2,3,2,2,6,7,6,5, 则这组数据的中位数为( )A .4B .4.5C .3D .26.一件服装标价200元,若以6折销售,仍可获利20%,则这件服装的进价是( ) A .100元 B .105元 C .108元 D .118元7.如图2,小正方形的边长均为1,则下列图形中的三角形(阴影部分)与△ABC 相似的是( )图2 A . B . C . D . 8.如图3是两个可以自由转动的转盘,转盘各被等分成三个扇形, 并分别标上1,2,3和6,7,8这6个数字。

如果同时转动 两个转盘各一次(指针落在等分线上重转),当转盘停止后, 则指针指向的数字和为偶数的概率是( ) A .12 B .29 C .49D .139.已知a ,b ,c 均为实数,若a >b ,c ≠0。

下列结论不一定正确的是( ) A .a c b c +>+ B .c a c b ->- C .22a b c c> D .22a ab b >> 10.对抛物线223y x x =-+-而言,下列结论正确的是( )图7图5 A .与x 轴有两个交点 B .开口向上C .与y 轴的交点坐标是(0,3)D .顶点坐标为(1,-2) 11.下列命题是真命题的个数有( )①垂直于半径的直线是圆的切线; ②平分弦的直径垂直于弦;③若12x y =⎧⎨=⎩是方程x -ay =3的一个解,则a =-1;④若反比例函数3y x=-的图像上有两点(12,y 1),(1,y 2),则y 1<y2。

北师大初中数学中考总复习:函数综合--巩固练习(提高)(精品推荐)

北师大初中数学中考总复习:函数综合--巩固练习(提高)(精品推荐)

2
2
故选 B.
5. 【答案】 B;
【解析】过点 B 作 BE⊥x轴于点 E, ∵D为 OB的中点,
∴CD是△ OBE的中位线,即 CD= BE.
设 A( x, ),则 B( 2x, ), CD= ,AD= ﹣ ,
∵△ ADO的面积为 1, ∴ AD?OC1=, ( ﹣
)?x=1,解得 y= ,
∴k=x? =y= . 故选 B.
横坐标为 α ,β ,可知 α < 1, β> 2.
4. 【答案】 B; 【解析】当点
1
P 在 AD上时, S△APD= 0;当点 P 在 DC上时, S△APD= ×4×(x - 4) = 2x - 8;
2
1
1
当点 P 在 CB上时, S△APD= ×4×4= 8;当点 P 在 BA 上时, S△APD= ×4×(16 - x) =- 2x+32.
1 (x2
1 4x) ,当 y= cm时,
4
4
1
1 ( x2 4x) ,整理,得 x2 4x 1 0 .
44
∵ b2 4ac 12 0 ,
∴x
( 4)
12 2
3.
2
x 的值是 (2 3) cm或 (2 3) cm.
14. 【答案与解析】
解:(1)由题意可得: y=

( 2)由题意可得: w=

化简得: w=
( 2,0),∴由图象得:若 0< y 1< y 2,则 x 的取值范围是: 2<x < 3.
11.【答案】 (8n - 4) 3 ; 【解析】设直线 OP的解析式为 y= kx ,由 P(4,4 3 ) ,得 4 3 =4k, k= 3 ,
∴y= 3 x. 则 S1= 1 ×(3 -1) ×( 3 + 3 3 ) = 4 3 , 2

北师大数学中考一轮综合复习 ( 最值问题)

北师大数学中考一轮综合复习 ( 最值问题)

北师大数学中考一轮综合复习(最值问题)知识点1 几何问题最值【典例】例1(2020•泰安)如图,点A,B的坐标分别为A(2,0),B(0,2),点C为坐标平面内一点,BC=1,点M为线段AC的中点,连接OM,则OM的最大值为()A.√2+1B.√2+12C.2√2+1D.2√2−12例2(2021秋•西城区校级期中)已知,如图,正方形ABCD,点F为平面内一点.连接FC,H是FC的中点,连接DH,将DH绕点H逆时针旋转90°,点D的对应点为点E,连接HE、AE、EF.(1)①补全图形;②猜想AE与EF的数量关系和位置关系,并证明你的猜想.(2)在(1)的基础上,连接AF.其中AB=a,AE=b,将△AEF绕点A旋转一周,直接写出DH的最大值.例3(2020秋•赣榆区期中)【问题情境】(1)点A是⊙O外一点,点P是⊙O上一动点.若⊙O的半径为2,且OA=5,则点P到点A的最短距离为.【直接运用】(2)如图1,在Rt△ABC中,∠ACB=90°,AC=BC=2,以BC为直径的半圆交AB于D,P是弧CD上的一个动点,连接AP,则AP的最小值是.【构造运用】(3)如图2,已知正方形ABCD的边长为6,点M、N分别从点B、C同时出发,以相同的速度沿边BC、CD方向向终点C和D运动,连接AM和BN交于点P,则点P到点C的最短距离,并说明理由.【灵活运用】(4)如图3,⊙O的半径为4,弦AB=4,点C为优弧AB上一动点,AM⊥AC交直线CB于点M,则△ABM的面积最大值是.例4(2020•北辰区二模)平面直角坐标系中,四边形OABC是正方形,点A,C在坐标轴上,点B(6,6),P是射线OB上一点,将△AOP绕点A顺时针旋转90°,得△ABQ,Q是点P旋转后的对应点.(1)如图(1)当OP=2√2时,求点Q的坐标;(2)如图(2),设点P(x,y)(0<x<6),△APQ的面积为S.求S与x的函数关系式,并写出当S取最小值时,点P的坐标;(3)当BP+BQ=8√2时,求点Q的坐标(直接写出结果即可).【随堂练习】1.(2020•包河区校级一模)如图,等腰Rt△ABC的一个锐角顶点A是⊙O上的一个动点,∠ACB=90°,腰AC与斜边AB分别交⊙O于点E、D,分别过点D,E作⊙O的切线交于点F,且点F恰好是腰BC上的点,连接OC,OD,OE,若⊙O的半径为4,则OC的最大值为()A.2√5+2B.4√2+2C.6D.8 2.(2020•宁波模拟)如图,△ABC内接于⊙O,且AB=AC.直径AD交BC于点E,F是AE的中点,连结CF,若AD=6√3.则CF的最大值为()A.6B.5C.4D.33.(2021秋•汶上县期末)如图,在△ABC中,AB=AC,AO⊥BC于点O,OE⊥AB于点E,以点O为圆心,OE为半径作圆O交AO于点F.(1)求证:AC是⊙O的切线;(2)若∠AOE=60°,OE=3,在BC边上是否存在一点P使PF+PE有最小值,如果存在,请求出PF+PE的最小值.4.(2021•蒙阴县一模)如图,在边长为1的正方形ABCD中,动点E,F分别在边AB,CD 上,将正方形ABCD沿直线EF折叠,使点B的对应点M始终落在边AD上(点M不与A,D重合),点C落在点N出,MN与CD交于点P,设BE=x.(1)当AM=时,求x的值;(2)随着点M在边AD上位置的变化,△PDM的周长是否发生变化?如变化,请说明理由,若不变,请求出定值;(3)设四边形BEFC的面积为S,求S与x的函数表达式,并求出S的最小值.5.(2020秋•巴南区期中)在△ABC中,AB=8,AC=6√3,∠ACB=30°,将△ABC绕点A按逆时针方向旋转,得到△ADE.(1)如图1,点F为BC与DE的交点,连接AF,求证:∠AFD=∠AFC;(2)如图2,点P为线段AB中点,点G是线段BC上的动点,在△ABC绕点A按逆时针方向旋转的过程中,点G的对应点是点G1,直接写出线段PG1长度的最大值与最小值.知识点2 代数问题最值几种常见问题1、利用一次函数表达式在定义域内的增减性来求最值。

北师大版中考总复习初中数学试卷

北师大版中考总复习初中数学试卷

初中毕业考试数学试卷(全卷三个大题,共25个小题;考试时间120分钟;满分:120分)注意:考生可将《2008年云南省高中(中专)招生考试说明与复习指导·数学手册》及科学计算器(品牌和型号不限)带入考场使用. 一、选择题(本大题共8个小题,每小题只有一个正确选项,每小题3分,满分24分)1.-2的倒数是( )A .12-B .12C . 2D .-22.下列运算正确的是( )A .5510x x x +=B .5510·x x x = C .5510()x x = D .20210x x x ÷= 3.下图中所示的几何体的主视图是( )4.不等式组⎩⎨⎧>->-03042x x 的解集为( )A .x >2B .x <3C .x >2或 x <-3D .2<x <3 5.下列事件是必然事件的是( )A .B .C .D .A .今年6月20日双柏的天气一定是晴天B .2008年奥运会刘翔一定能夺得110米跨栏冠军C .在学校操场上抛出的篮球会下落D .打开电视,正在播广告6.圆锥侧面展开图可能是下列图中的( )7.已知甲、乙两地相距s (km ),汽车从甲地匀速行驶到乙地,则汽车行驶的时间t (h )与行驶速度v (km/h )的函数关系图象大致是( )8.如图,小明从点O 出发,先向西走40米,再向南走30米到达点M ,如果点M 的位置用(-40,-30)表示,那么(10,20)表示的位置是( )A .点AB .点BC .点CD .点D二、填空题(本大题共7个小题,每小题3分,满分21分)A .B .C.D .A .B .C . .9.分解因式:21x -= . 10.如图,直线a b ,被直线c 所截,若a b ∥,160∠=°,则2∠= °.11.双柏鄂加老虎山电站年发电量约为156亿千瓦时,用科学记数法表示156亿千瓦时= 千瓦时. 12.函数13y x =-中,自变量x 的取值范围是 . 13.为响应国家要求中小学生每天锻炼1小时的号召,某校开展了形式多样的“阳光体育运动”活动,小明对某班同学参加锻炼的情况进行了统计,并绘制了下面的图1和图2,请在图1中将“乒乓球”部分的图形补充完整.14.下面是一个简单的数值运算程序,当输入x 的值为2时,输出的数值是 .15.如图,点P 在AOB ∠的平分线上,若使AOPBOP △≌△, 则需添加的一个条件是 . (只写一个即可,不添加辅助线)三、解答题(本大题共10个小题,满分75分)12c a b兴趣爱好图1图2输入x(2)⨯- 4+输出ABPO16.(本小题6分)先化简,再求值:223(2)()()a b ab b b a b a b --÷-+-,其中112a b ==-,.17.(本小题6分)解分式方程:233x x=-.18.(本小题6分)AB 是⊙O 的直径,PA 切⊙O 于A ,OP 交⊙O 于C ,连BC .若30P ∠=,求B ∠的度数.19.(本小题8分)如图,E F ,是平行四边形ABCD 的对角线AC 上的点,CE AF =. 请你猜想:BE 与DF 有怎样的位置..关系和数量..关系?并对你的猜想加以证明. AP猜想: 证明:20.(本小题6分)如图是某设计师在方格纸中设计图案的一部分,请你帮他完成余下的工作:(1)作出关于直线AB 的轴对称图形; (2)将你画出的部分连同原图形绕点O 逆时针旋转90°;(3)发挥你的想象,给得到的图案适当涂上阴影,让它变得更加美丽.21.(本小题6分)根据“十一五”规划,元双(双柏—元谋)高速工路即将动工.工程需要测量某一条河的宽度.如图,一测量员在河岸边的A 处测得对岸岸边的一根标杆B 在它的正北方向,测量员从A 点开始沿岸边向正东方向前进100米到达点C 处,测得 68=∠ACB .求所测之处河AB 的宽度. (o o o sin68≈0.93,cos68≈0.37,tan68≈2.4822.(本题81(1)从箱子中任意摸出一个球是白球的概率是多少?(2)从箱子中任意摸出一个球,不将它放回箱子,搅匀后再摸出一个球,求两次摸出的球都是白球的概率,并画出树状图.A O BABCDE F23.(本小题8分)我县农业结构调整取得了巨大成功,今年水果又喜获丰收,某乡组织30辆汽车装运A 、B 、C 三种水果共64吨到外地销售,规定每辆汽车只装运一种水果,且必须装满;又装运每种水果的汽车不少于4辆;同时,装运的B 种水果的重量不超过装运的A 、C 两种水果重量之和.(1)设用x 辆汽车装运A 种水果,用y 辆汽车装运B 种水果,根据下表提(2)设此次外销活动的利润为Q (万元),求Q 与x 之间的函数关系式,请你提出一个获得最大利润时的车辆分配方案.24.(本小题9分)依法纳税是每个公民应尽的义务.从2008年3月1日起,新修改后的《中华人民共和国个人所得税法》规定,公民每月收入不超过2000元,不需交税;超过2000元的部分为全月应纳税所得额,都应纳税,且根据超过部分的多少按不同的税率纳税,详细的税率如下表:(1)某工厂一名工人2008年3月的收入为2 400元,问他应交税款多少元? (2)设x 表示公民每月收入(单位:元),y 表示应交税款(单位:元),当2500≤x ≤4000时,请写出y 关于x 的函数关系式; (3)某公司一名职员2008年4月应交税款120元,问该月他的收入是多少元?25.(本小题(1)~(3)问共12分;第(4)、(5)问为附加题10分,每小题5分,附加题得分可以记入总分,若记入总分后超过120分,则按120分记)已知:抛物线y =ax 2+bx +c 与x 轴交于A 、B 两点,与y 轴交于点C ,其中点B 在x 轴的正半轴上,点C 在y 轴的正半轴上,线段OB 、OC 的长(OB <OC )是方程x 2-10x +16=0的两个根,且抛物线的对称轴是直线x =-2.(1)求A 、B 、C 三点的坐标; (2)求此抛物线的表达式; (3)求△ABC 的面积;(4)若点E是线段AB上的一个动点(与点A、点B不重合),过点E作EF∥AC交BC于点F,连接CE,设AE的长为m,△CEF的面积为S,求S 与m之间的函数关系式,并写出自变量m的取值范围;(5)在(4)的基础上试说明S是否存在最大值,若存在,请求出S的最大值,并求出此时点E的坐标,判断此时△BCE的形状;若不存在,请说明理由.数学试卷参考答案一、选择题(本大题共8个小题,每小题只有一个正确选项,每小题3分,满分24分)1.A 2.B 3.D4.D 5.C 6.D 7.C 8.B 二、填空题(本大题共7个小题,每小题3分,满分21分)9.(x+1)(x-1)10.60 11.1.56×10912.x≠3 13.到5 14.0 15.OA=OB或∠OAP=∠OBP或∠OPA=∠OPB三、解答题(本大题共10个小题,满分75分)16.(本小题6分)解:解:原式22222()a ab b a b =---- 22222a ab b a b =---+ 2ab =-将112a b ==-,代入上式得 原式12(1)2=-⨯⨯-1=17.(本小题6分)解:去分母,得23(3)x x =-去括号,移项,合并,得9x = 检验,得9x =是原方程的根. 18.(本小题6分)PA 切⊙O 于A AB ,是⊙O 的直径, ∴90PAO ∠=.30P ∠=,∴60AOP ∠=.∴1302B AOP ∠=∠=. 19.(本小题8分)猜想:BE DF ∥,BE DF =证明:证法一:如图19- 1四边形ABCD 是平行四边形. BC AD ∴= 12∠=∠ 又CE AF = BCE DAF ∴△≌△ BE DF ∴= 34∠=∠BE DF ∴∥证法二:如图19-2连结BD ,交AC 于点O ,连结DE ,BF .ABCDEF图19-2OAB CDE F 图19-1 2 3 4 1白1白2红白1白2红红白2白1第二次摸出 的球第一次摸出 的球开始四边形ABCD是平行四边形BO OD∴=,AO CO=又AF CE=AE CF∴=EO FO∴=∴四边形BEDF是平行四边形BE DF∴∥20.(本小题6分)如图.三步各计2分,共6分.21.(本小题6分)解:解:在BACRt∆中,68=∠ACB,∴24848.210068tan=⨯≈⋅=ACAB(米)答:所测之处河的宽度AB约为248米22.(本题8分)解:(1)从箱子中任意摸出一个球是白球的概率是23P=(2)记两个白球分别为白1与白2,画树状图如右所示:从树状图可看出:事件发生的所有可能的结果总数为6,两次摸出球的都是白球的结果总数为2,因此其概率2163P==.23.(本小题8分)解:(1)由题得到:2.2x+2.1y+2(30-x-y)=64 所以y = -2x+40 又x≥4,y≥4,30-x-y≥4,得到14≤x≤18(2)Q=6x+8y+5(30-x-y)= -5x+170Q随着x的减小而增大,又14≤x≤18,所以当x=14时,Q取得最大值,即Q= -5x+170=100(百元)=1万元。

北师大版中考复习二次函数总结及典型题

北师大版中考复习二次函数总结及典型题

二次函数一、二次函数的定义例1、已知函数y=m -1x m2 +1+5x -3是二次函数,求m 的值.若函数y=m 2+2m -7x 2+4x+5是x 的二次函数,则m 的取值范围为 . 二、五点作图法的应用 例2. 已知抛物线y x x =-+123522, 1用配方法求它的顶点坐标和对称轴并用五点法作图2若该抛物线与x 轴的两个交点为A 、B,求线段AB 的长. 1、抛物线1822-+-=x x y 的顶点坐标为 A-2,7 B-2,-25 C2,7 D2,-92、抛物线(1)(3)(0)y a x x a =+-≠的对称轴是直线 A .1x =B .1x =-C .3x =-D .3x =3、把二次函数3412+--=x x y 用配方法化成()k h x a y +-=2的形式 三、a b c ,,及b ac 24-的符号确定例3. 已知抛物线y ax bx c =++2如图,试确定:1a b c ,,及b ac 24-的符号;2a b c ++与a b c -+的符号.1、已知二次函数2y ax bx c =++0a ≠的图象如图所示,有下列四个结论:20040b c b ac <>->①②③④0a b c -+<,其中正确的个数有A .1个B .2个C .3个D .4个2、已知二次函数2y ax bx c =++的图象如图所示,有以下结论:①0a b c ++<;②1a b c -+>;③0abc >;④420a b c -+<;⑤1c a ->其中所有正确结论的序号是11 1-Ox yA .①②B . ①③④C .①②③⑤D .①②③④⑤3、二次函数c bx ax y ++=2的图象如图所示,则下列关系式中错误..的是 A .a <0 B .c >0C .ac b 42->0D .c b a ++>04、图12为二次函数2y ax bx c =++的图象,给出下列说法:①0ab <;②方程20ax bx c ++=的根为1213x x =-=,;③0a b c ++>;④当1x >时,y 随x 值的增大而增大;⑤当0y >时,13x -<<.其中,正确的说法有 .请写出所有正确说法的序号5、已知=次函数y =ax 2+bx+c 的图象如图.则下列5个代数式:ac,a+b+c,4a -2b+c,2a+b,2a -b 中,其值大于0的个数为 A .2B 3C 、4D 、5四、二次函数解析式的确定 例4. 求二次函数解析式: 1抛物线过0,2,1,1,3,5; 2顶点M-1,2,且过N2,1;3已知抛物线过A1,0和B4,0两点,交y 轴于C 点且BC =5,求该二次函数的解析式.练习:根据下列条件求x 的二次函数的解析式(1)当x=3时,y 最小值=-1,且图象过0,7(2)图象过点0,-21,2且对称轴为直线x=错误! (3)图象经过0,11,03,0五、二次函数与x 轴、y 轴的交点二次函数与一元二次方程的关系例5、 已知抛物线y =x 2-2x-8,1求证:该抛物线与x 轴一定有两个交点;2若该抛物线与x 轴的两个交点为A 、B,且它的顶点为P,求△ABP 的面积xO1 -1、二次函数y=x2-2x-3图象与x轴交点之间的距离为2、如图所示,二次函数y=x2-4x+3的图象交x轴于A、B两点, 交y 轴于点C, 则△ABC的面积为B.43、若二次函数y=m+5x2+2m+1x+m的图象全部在x轴的上方,则m 的取值范围是六、直线与二次函数的问题例6已知:二次函数为y=x2-x+m,1写出它的图像的开口方向,对称轴及顶点坐标;2m为何值时,顶点在x轴上方,3若抛物线与y轴交于A,过A作AB∥x轴交抛物线于另一点B,当S△AOB=4时,求此二次函数的解析式.1、抛物线y=x2+7x+3与直线y=2x+9的交点坐标为 .2、直线y=7x+1与抛物线y=x2+3x+5的图象有个交点.例7 已知x的二次函数y=x2-mx+212m+与y=x2-mx-222m+,这两个二次函数的图像中的一条与x轴交于A,B两个不同的点.1试判断哪个二次函数的图像经过A,B两点;2若A点坐标为-1,0,试求B点坐标;3在2的条件下,对于经过A,B两点的二次函数,当x取何值时,y的值随x•值的增大而减小练习如图,在平面直角坐标系中,OB⊥OA,且OB=2OA,点A的坐标是-1,2.1求点B的坐标;2求过点A、O、B的抛物线的表达式;3连接AB,在2中的抛物线上求出点P,使得S△ABP =S△ABO.例8 已知:m,n是方程x2-6x+5=0的两个实数根,且m<n,抛物线y=-x2+bx+c的图像经过点Am,0,B0,n,如图所示.1求这个抛物线的解析式;2设1中的抛物线与x轴的另一交点为C,抛物线的顶点为D,试求出点C,D的坐标和△BCD的面积;3P是线段OC上的一点,过点P作PH⊥x轴,与抛物线交于H点,若直线BC•把△PCH分成面积之比为2:3的两部分,请求出P点的坐标.七、用二次函数解决最值问题例9 某产品每件成本10元,试销阶段每件产品的销售价x元•与产品的日销售量y件之间的关系如下表:x 元152030…y件252010…若日销售量y是销售价x的一次函数.1求出日销售量y件与销售价x元的函数关系式;2要使每日的销售利润最大,每件产品的销售价应定为多少元•此时每日销售利润是多少元例3.你知道吗平时我们在跳大绳时,绳甩到最高处的形状可近似地看为抛物线.如图所示,正在甩绳的甲、乙两名学生拿绳的手间距为 4 m,距地面均为1m,学生丙、丁分别站在距甲拿绳的手水平距离1m、2.5 m处.绳子在甩到最高处时刚好通过他们的头顶.已知学生丙的身高是1.5 m,则学生丁的身高为建立的平面直角坐标系如右图所示A.1.5 m B.1.625 mC.1.66 m D.1.67 m八、二次函数应用一经济策略性1.某商店购进一批单价为16元的日用品,销售一段时间后,为了获得更多的利润,商店决定提高销售价格.经检验发现,若按每件20元的价格销售时,每月能卖360件若按每件25元的价格销售时,每月能卖210件.假定每月销售件数y件是价格X的一次函数.1试求y与x的之间的关系式.2在商品不积压,且不考虑其他因素的条件下,问销售价格定为多少时,才能使每月获得最大利润,每月的最大利润是多少总利润=总收入-总成本2.有一种螃蟹,从海上捕获后不放养最多只能活两天,如果放养在塘内,可以延长存活时间,但每天也有一定数量的蟹死去,假设放养期内蟹的个体重量基本保持不变,现有一经销商,按市场价收购了这种活蟹1000千克放养在塘内,此时市场价为每千克30元,据测算,以后每千克活蟹的市场价每天可上升1元,但是放养一天需各种费用支出400元,且平均每天还有10千克蟹死去,假定死蟹均于当天全部售出,售价都是每千克20元. 1设X 天后每千克活蟹的市场价为P 元,写出PX 的函数关系式.2如果放养X 天后将活蟹一次性出售,并记1000千克蟹的销售额为Q 元,写出QX 的函数关系式.2该经销商将这批蟹放养多少天后出售,可获最大利润利润=销售总额—收购成本—费用,最大利润是多少自我检测一. 选择题.1. 用配方法将12322x x ++化成()a x b c ++2的形式A. ()123522x +-B. 1232542x +⎛⎝ ⎫⎭⎪- C. ()12322x ++ D.()12372x +- 2. 对于函数y ax a =<20(),下面说法正确的是A. 在定义域内,y 随x 增大而增大B. 在定义域内,y 随x 增大而减小C. 在()-∞,0内,y 随x 增大而增大D. 在()0,+∞内,y 随x 增大而增大 3. 已知a b c <<>000,,,那么y ax bx c =++2的图象4. 已知点-1,33,3在抛物线y ax bx c =++2上,则抛物线的对称轴是A. x a b=-B. x =2C. x =3D. x =15. 一次函数y ax b =+和二次函数y ax bx c =++2在同一坐标系内的图象6. 函数y x x =-++33322的最大值为 A. 94B. -32C. 32D. 不存在二. 填空题.7. ()()y m x m x m =++-++11321是二次函数,则m =____________.8. 抛物线y x x =--52222的开口向_____,对称轴是________,顶点坐标是_______. 9. 抛物线y ax bx c =++2的顶点是2,3,且过点3,1,则a =___,b =___,c =______. 10. 函数y x x =---123522图象沿y 轴向下平移2个单位,再沿x 轴向右平移3个单位,得到函数________的图象. 三. 解答题.抛物线()()y x m x m m =-++-+-222243,m 为非负整数,它的图象与x 轴交于A 和B,A 在原点左边,B 在原点右边. 1求这个抛物线解析式.2一次函数y kx b =+的图象过A 点与这个抛物线交于C,且S ABC ∆=10,求一次函数解析式.◆强化训练 一、填空题1.右图是二次函数y 1=ax 2+bx+c 和一次函数y 2=mx+n 的图像,•观察图像写出y 2≥y 1时,x 的取值范围_______.2.已知抛物线y=a 2+bx+c 经过点A -2,7,B6,7,C3,-8,•则该抛物线上纵坐标为-8的另一点的坐标是_______.3.已知二次函数y=-x 2+2x+c 2的对称轴和x 轴相交于点m,0,则m 的值为______. 4.若二次函数y=x 2-4x+c 的图像与x 轴没有交点,其中c 为整数,•则c=_______只要求写出一个.5.已知抛物线y=ax 2+bx+c 经过点1,2与-1,4,则a+c•的值是______.6.甲,乙两人进行羽毛球比赛,甲发出一十分关键的球,出手点为P,羽毛球飞行的水平距离sm 与其距地面高度hm 之间的关系式为h=-112s 2+23s+32.如下左图所示,•已知球网AB 距原点5m,乙用线段CD 表示扣球的最大高度为94m,设乙的起跳点C 的横坐标为m,若乙原地起跳,因球的高度高于乙扣球的最大高度而导致接球失败,则m•的取值范围是______.7.二次函数y=x 2-2x -3与x 轴两交点之间的距离为______.8.兰州市“安居工程”新建成的一批楼房都是8层高,•房子的价格y 元/m 2随楼层数x 楼的变化而变化x=1,2,3,4,5,6,7,8,已知点x,y•都在一个二次函数的图像上如上右图,则6楼房子的价格为_____元/m 2. 二、选择题9.二次函数y=ax 2+bx+c 的图像如图所示,•则下列关系式不正确的是A .a<0B .abc>0C .a+b+c<0D .b 2-4ac>0第9题 第12题 第15题10.已知二次函数y=ax 2+bx+c 的图像过点A1,2,B3,2,C5,7.若点M -2,y 1,N -1,y 2,K8,y 3也在二次函数y=ax 2+bx+c 的图像上,则下列结论中正确的是 A .y 1<y 2<y 3 B .y 2<y 1<y 3 C .y 3<y 1<y 2 D .y 1<y 3<y 211.抛物线y=ax2+bx+ca≠0的对称轴是x=2,且经过点P3,0,则a+b+c的值为A.-1 B.0 C.1 D.212.如图所示,抛物线的函数表达式是A.y=x2-x+2 B.y=-x2-x+2 C.y=x2+x+2 D.y=-x2+x+213.抛物线y=-2x2-4x-5经过平移得到y=-2x2,平移方法是A.向左平移1个单位,再向下平移3个单位 B.向左平移1个单位,再向上平移3个单位C.向右平移1个单位,再向下平移3个单位 D.向右平移1个单位,再向上平移3个单位14.已知二次函数y=x2+bx+3,当x=-1时,y取得最小值,则这个二次函数图像的顶点在A.第一象限 B.第二象限 C.第三象限 D.第四象限15.抛物线y=ax2+2ax+a2+2的一部分图像如图所示,那么该抛物线在y轴右侧与x轴交点的坐标是,0 B.1,0 C.2,0 D.3,0A.1216.在同一直角坐标系中,函数y=mx+m和y=-mx2+2x+2m是常数,•且m≠0的图像可能是三、解答题17.如图所示,已知抛物线y=ax2+4ax+ta>0交x轴A,B两点,交y轴于点C,抛物线的对称轴交x轴于点E,点B的坐标为-1,0.1求抛物线的对称轴及点A的坐标;2过点C作x轴的平行线交抛物线的对称轴于点P,你能判断四边形ABCP•是什么四边形并证明你的结论;3连接CA与抛物线的对称轴交于点D,当∠APD=∠ACP时,求抛物线的解析式.18.如图所示,m,n是方程x2-6x+5=0的两个实数根,且m<n,•抛物线y=-x2+bx+c的图像经过点Am,0,B0,n.1求这个抛物线的解析式;2设1中抛物线与x轴的另一交点为C,抛物线的顶点为D,试求出点C,D的坐标和△BCD 的面积;3P是线段OC上的一点,过点P作PH⊥x轴,与抛物线交于点H,若直线BC•把△PCH分成面积之比为2:3的两部分,请求出点P的坐标.19.某地计划开凿一条单向行驶从正中通过的隧道,•其截面是抛物线拱形ACB,而且能通过最宽3m,最高3.5m的厢式货车.按规定,•机动车通过隧道时车身距隧道壁的水平距离和铅直距离最小都是0.5m.•为设计这条能使上述厢式货车恰好完全通过的隧道,在图纸上以直线AB为x轴,线段AB的垂直平分线为y轴,•建立如图所示的直角坐标系,求抛物线拱形的表达式,隧道的跨度AB和拱高OC.20.已知一个二次函数的图像过如图所示三点.1求抛物线的对称轴;2平行于x轴的直线L的解析式为y=254,抛物线与x轴交于A,B两点.•在抛物线的对称轴上找点P,使BP的长等于直线L与x轴间的距离.求点P的坐标.21.如图5-76所示,二次函数y=ax2+bx+ca≠0的图像与x•轴交于A,B两点,其中A点坐标为-1,0,点C0,5,D1,8在抛物线上,M为抛物线的顶点.1求抛物线的解析式;2求△MCB的面积.22.如图所示,过y轴上一点A0,1作AC平行于x轴,交抛物线y=x2x≥0于点B,交抛物线y=12x2x≥0于点C;过点C作CD平行于y轴,交抛物线y=x2于点D;过点D作DE平行于x轴,交抛物线y=14x2于点E.1求AB:BC;2判断O,B,E三点是否在同一直线上如果在,写出直线解析式;如果不在,请说明理由.。

(完整版)北师大版初中中考数学压轴题及答案

(完整版)北师大版初中中考数学压轴题及答案

中考数学专题复习(压轴题)1.已知:如图,抛物线y=-x 2+bx+c 与x 轴、y 轴分别相交于点A (-1,0)、B (0,3)两点,其顶点为D.(1) 求该抛物线的解析式;(2) 若该抛物线与x 轴的另一个交点为E. 求四边形ABDE 的面积;(3) △AOB 与△BDE 是否相似?如果相似,请予以证明;如果不相似,请说明理由.(注:抛物线y=ax 2+bx+c(a ≠0)的顶点坐标为⎪⎪⎭⎫ ⎝⎛--a b ac a b 44,22)2. 如图,在Rt ABC △中,90A ∠=,6AB =,8AC =,D E ,分别是边AB AC ,的中点,点P 从点D 出发沿DE 方向运动,过点P 作PQ BC ⊥于Q ,过点Q 作QR BA ∥交AC 于R ,当点Q 与点C 重合时,点P 停止运动.设BQ x =,QR y =.(1)求点D 到BC 的距离DH 的长;(2)求y 关于x 的函数关系式(不要求写出自变量的取值范围);(3)是否存在点P ,使PQR △为等腰三角形?若存在,请求出所有满足要求的x 的值;若不存在,请说明理由.3在△ABC 中,∠A =90°,AB =4,AC =3,M 是AB 上的动点(不与A ,B 重合),过M 点作MN ∥BC 交AC 于点N .以MN 为直径作⊙O ,并在⊙O 内作内接矩形AMPN .令AM =x .(1)用含x 的代数式表示△MNP 的面积S ;(2)当x 为何值时,⊙O 与直线BC 相切?(3)在动点M 的运动过程中,记△MNP 与梯形BCNM 重合的面积为y ,试求y 关于x 的函数表达式,并求x 为何值时,y 的值最大,最大值是多少?P图 3B D 图 2B 图 1 AB C D E R PH Q4.如图1,在平面直角坐标系中,己知ΔAOB 是等边三角形,点A 的坐标是(0,4),点B 在第一象限,点P 是x 轴上的一个动点,连结AP ,并把ΔAOP 绕着点A 按逆时针方向旋转.使边AO 与AB 重合.得到ΔABD.(1)求直线AB 的解析式;(2)当点P 运动到点(3,0)时,求此时DP 的长及点D 的坐标;(3)是否存在点P ,使ΔOPD 的面积等于43,若存在,请求出符合条件的点P 的坐标;若不存在,请说明理由.5如图,菱形ABCD 的边长为2,BD=2,E 、F 分别是边AD ,CD 上的两个动点,且满足AE+CF=2.(1)求证:△BDE ≌△BCF ;(2)判断△BEF 的形状,并说明理由;(3)设△BEF 的面积为S ,求S 的取值范围.6如图,抛物线21:23L y x x =--+交x 轴于A 、B 两点,交y 轴于M 点.抛物线1L 向右平移2个单位后得到抛物线2L ,2L 交x 轴于C 、D 两点.(1)求抛物线2L 对应的函数表达式;(2)抛物线1L 或2L 在x 轴上方的部分是否存在点N ,使以A ,C ,M ,N 为顶点的四边形是平行四边形.若存在,求出点N 的坐标;若不存在,请说明理由;(3)若点P 是抛物线1L 上的一个动点(P 不与点A 、B 重合),那么点P 关于原点的对称点Q 是否在抛物线2L 上,请说明理由.7.如图,在梯形ABCD 中,AB ∥CD ,AB =7,CD =1,AD =BC =5.点M ,N 分别在边AD ,BC 上运动,并保持MN ∥AB ,ME ⊥AB ,NF ⊥AB ,垂足分别为E ,F .(1)求梯形ABCD 的面积;(2)求四边形MEFN 面积的最大值.(3)试判断四边形MEFN 能否为正方形,若能,求出正方形MEFN 的面积;若不能,请说明理由.C DA B E F NM8.如图,点A (m ,m +1),B (m +3,m -1)都在反比例函数x k y =的图象上. (1)求m ,k 的值;(2)如果M 为x 轴上一点,N 为y 轴上一点,以点A ,B ,M ,N 为顶点的四边形是平行四边形,试求直线MN 的函数表达式.(3)选做题:在平面直角坐标系中,点P 的坐标 为(5,0),点Q 的坐标为(0,3),把线段PQ 向右平移4个单位,然后再向上平移2个单位,得到线段P 1Q 1, 则点P 1的坐标为 ,点Q 1的坐标为.9.如图16,在平面直角坐标系中,直线y =x 轴交于点A ,与y 轴交于点C ,抛物线2(0)y ax x c a =-+≠经过A B C ,,三点. 友情提示:本大题第(1)小题4分,第(2)小题7分.对完成第(2)小题有困难的同学可以做下面的(3)选做题.选做题2分,所得分数计入总分.但第(2)、(3)小题都做的,第(3)小题的得分不重复计入总分.(1)求过A B C ,,三点抛物线的解析式并求出顶点F 的坐标;(2)在抛物线上是否存在点P ,使ABP △为直角三角形,若存在,直接写出P 点坐标;若不存在,请说明理由;(3)试探究在直线AC 上是否存在一点M ,使得MBF △的周长最小,若存在,求出M 点的坐标;若不存在,请说明理由.10.如图所示,在平面直角坐标系中,矩形ABOC 的边BO 在x 轴的负半轴上,边OC 在y 轴的正半轴上,且1AB =,OB =ABOC 绕点O 按顺时针方向旋转60后得到矩形EFOD .点A 的对应点为点E ,点B 的对应点为点F ,点C 的对应点为点D ,抛物线2y ax bx c =++过点A E D ,,.(1)判断点E 是否在y 轴上,并说明理由;(2)求抛物线的函数表达式;(3)在x 轴的上方是否存在点P ,点Q ,使以点O B P Q ,,,为顶点的平行四边形的面积是矩形ABOC 面积的2倍,且点P 在抛物线上,若存在,请求出点P ,点Q 的坐标;若不存在,请说明理由.x图16压轴题答案1. 解:( 1)由已知得:310c b c =⎧⎨--+=⎩解得 c=3,b =2∴抛物线的线的解析式为223y x x =-++(2)由顶点坐标公式得顶点坐标为(1,4)所以对称轴为x=1,A,E 关于x=1对称,所以设对称轴与x 轴的交点为F所以四边形ABDE 的面积=ABO BOFD S S S ∆++梯形=111()222AO BO BO DF OF EF DF ⋅++⋅+⋅=11113(34)124222⨯⨯++⨯+⨯⨯ =9(3)相似如图,====所以2220BD BE +=, 220DE =即: 222BD BE DE +=,所以BDE ∆是直角三角形 所以90AOB DBE ∠=∠=︒,且2AO BO BD BE ==, 所以AOB DBE ∆∆.2 解:(1)Rt A ∠=∠,6AB =,8AC =,10BC ∴=.点D 为AB 中点,132BD AB ∴==. 90DHB A ∠=∠=,B B ∠=∠.BHD BAC ∴△∽△,DH BD AC BC ∴=,3128105BD DH AC BC ∴==⨯=. (2)QR AB ∥,90QRC A ∴∠=∠=. C C ∠=∠,RQC ABC ∴△∽△, RQ QC AB BC ∴=,10610y x -∴=, 即y 关于x 的函数关系式为:365y x =-+. (3)存在,分三种情况:①当PQ PR =时,过点P 作PM QR ⊥于M ,则QM RM =.1290∠+∠=,290C ∠+∠=,1C ∴∠=∠. AB CD E R P H Q M 2184cos 1cos 105C ∴∠===,45QMQP ∴=,1364251255x ⎛⎫-+ ⎪⎝⎭∴=,185x ∴=.②当PQ RQ =时,312655x -+=,6x ∴=.③当PR QR =时,则R 为PQ 中垂线上的点, 于是点R 为EC 的中点,11224CR CE AC ∴===.tan QRBAC CR CA ==,366528x -+∴=,152x ∴=.综上所述,当x 为185或6或152时,PQR △为等腰三角形.3解:(1)∵MN ∥BC ,∴∠AMN =∠B ,∠ANM =∠C . ∴ △AMN ∽ △ABC .∴ AM ANAB AC =,即43x AN=.∴ AN =43x . ……………2分∴ S =2133248MNP AMN S S x x x ∆∆==⋅⋅=.(0<x <4) ……………3分H Q A B C D E R P H QB 图 1(2)如图2,设直线BC 与⊙O 相切于点D ,连结AO ,OD ,则AO =OD =21MN . 在Rt △ABC 中,BC. 由(1)知 △AMN ∽ △ABC .∴ AM MN AB BC=,即45x MN=.∴ 54MN x =, ∴ 58OD x =. …………………5分过M 点作MQ ⊥BC 于Q ,则58MQ OD x ==. 在Rt △BMQ 与Rt △BCA 中,∠B 是公共角, ∴ △BMQ ∽△BCA . ∴ BM QM BC AC=.∴ 55258324xBM x ⨯==,25424AB BM MA x x =+=+=. ∴ x =4996. ∴当x=4996时,⊙O 与直线B C 相切.…………………………………7分(3)随点M 的运动,当P 点落在直线BC 上时,连结AP ,则O 点为AP 的中点.∵ MN ∥BC ,∴ ∠AMN =∠B ,∠AOM =∠APC∴ △AMO ∽ △ABP .∴ 12AM AO AB AP ==. AM =MB =2. 故以下分两种情况讨论:① 当0<x ≤2时,2Δ83x S y PMN ==.BD 图 2QBP 图 3∴ 当x =2时,2332.82y =⨯=最大 ……………………………………8分 ② 当2<x <4时,设PM ,PN 分别交BC 于E ,F .∵ 四边形AMPN 是矩形, ∴ PN ∥AM ,PN =AM =x . 又∵ MN ∥BC ,∴ 四边形MBFN 是平行四边形. ∴ FN =BM =4-x .∴ ()424PF x x x =--=-. 又△PEF ∽ △ACB .∴ 2PEF ABCS PF AB S ∆∆⎛⎫= ⎪⎝⎭. ∴()2322PEF S x ∆=-. ……………………………………………… 9分 MNP PEFy S S ∆∆=-=()222339266828x x x x --=-+-.……………………1分当2<x <4时,29668y x x =-+-298283x ⎛⎫=--+ ⎪⎝⎭.∴ 当83x =时,满足2<x <4,2y =最大. ……………………11分 综上所述,当83x =时,y 值最大,最大值是2. …………………………12分4 解:(1)作BE ⊥OA ,∴ΔAOB 是等边三角形∴BE=OB ·sin60o=B(∵A(0,4),设AB 的解析式为4y kx =+,所以42+=,解得k =,P图 4以直线AB 的解析式为343y x =-+ (2)由旋转知,AP=AD, ∠PAD=60o, ∴ΔAPD 是等边三角形,PD=PA=2219AO OP +=如图,作B E ⊥AO,DH ⊥OA,GB ⊥DH,显然ΔGBD 中∠GBD=30°∴GD=12BD=32,DH=GH+GD=32+23=532, ∴GB=32BD=32,OH=OE+HE=OE+BG=37222+=∴D(532,72)(3)设OP=x,则由(2)可得D(323,22x x ++)若ΔOPD 的面积为:133(2)224x x += 解得:23213x -±=所以P(23213-±,0)5yxHG E DBA OP67解:(1)分别过D,C两点作DG⊥AB于点G,CH⊥AB于点H.……………1分∵AB∥CD,∴DG=CH,DG∥CH.∴四边形DGHC为矩形,GH=CD=1.∵DG=CH,AD=BC,∠AGD=∠BHC=90°,D∴△AGD≌△BHC(HL). CMN∴ AG =BH =2172-=-GH AB =3. ………2分 ∵ 在Rt △AGD 中,AG =3,AD =5, ∴ DG =4.∴ ()174162ABCD S +⨯==梯形. ………………………………………………3分(2)∵ MN ∥AB ,ME ⊥AB ,NF ⊥AB ,∴ ME =NF ,ME ∥NF .∴ 四边形MEFN 为矩形.∵ AB ∥CD ,AD =BC , ∴ ∠A =∠B .∵ ME =NF ,∠MEA =∠NFB =90°, ∴ △MEA ≌△NFB (AAS ).∴ AE =BF . ……………………4分 设AE =x ,则EF =7-2x . ……………5分 ∵ ∠A =∠A ,∠MEA =∠DGA =90°, ∴ △MEA ∽△DGA .∴ DGME AG AE =. ∴ ME =x 34. …………………………………………………………6分∴ 6494738)2(7342+⎪⎭⎫ ⎝⎛--=-=⋅=x x x EF ME S MEFN 矩形. ……………………8分 当x =47时,ME =37<4,∴四边形MEFN 面积的最大值为649.……………9分 (3)能. ……………………………………………………………………10分由(2)可知,设AE =x ,则EF =7-2x ,ME =x 34.若四边形MEFN 为正方形,则ME =EF .即 =34x 7-2x .解,得 1021=x . ……………………………………………11分∴ EF =21147272105x -=-⨯=<4.A B E F G H∴ 四边形MEFN 能为正方形,其面积为251965142=⎪⎭⎫⎝⎛=MEFNS 正方形.8解:(1)由题意可知,()()()131-+=+m m m m .解,得 m =3. ………………………………3分∴ A (3,4),B (6,2);∴ k =4×3=12. ……………………………4分(2)存在两种情况,如图:①当M 点在x 轴的正半轴上,N 点在y 轴的正半轴 上时,设M 1点坐标为(x 1,0),N 1点坐标为(0,y 1).∵ 四边形AN 1M 1B 为平行四边形,∴ 线段N 1M 1可看作由线段AB 向左平移3个单位, 再向下平移2个单位得到的(也可看作向下平移2由(1)知A 点坐标为(3,4),B 点坐标为(6,2),∴ N 1点坐标为(0,4-2),即N 1(0,2); ………………………………5分 M 1点坐标为(6-3,0),即M 1(3,0). ………………………………6分设直线M 1N 1的函数表达式为21+=x k y ,把x =3,y =0代入,解得321-=k .∴ 直线M 1N 1的函数表达式为232+-=x y . ……………………………………8分②当M 点在x 轴的负半轴上,N 点在y 轴的负半轴上时,设M 2点坐标为(x 2,0),N 2点坐标为(0,y 2). ∵ AB ∥N 1M 1,AB ∥M 2N 2,AB =N 1M 1,AB =M 2N 2, ∴ N 1M 1∥M 2N 2,N 1M 1=M 2N 2.∴ 线段M 2N 2与线段N 1M 1关于原点O 成中心对称.∴ M 2点坐标为(-3,0),N 2点坐标为(0,-2). ………………………9分设直线M 2N 2的函数表达式为22-=x k y ,把x =-3,y =0代入,解得322-=k ,∴ 直线M 2N 2的函数表达式为232--=x y .所以,直线MN 的函数表达式为232+-=x y 或232--=x y . ………………11分(3)选做题:(9,2),(4,5). ………………………………………………2分9解:(1)直线y=-x轴交于点A,与y轴交于点C.(10)A∴-,,(0C, ················································································· 1分点A C,都在抛物线上,3a cc⎧=++⎪∴⎨⎪=⎩3ac⎧=⎪∴⎨⎪=⎩∴抛物线的解析式为2y x x=-- ····················································· 3分∴顶点1F⎛-⎝⎭, ······················································································ 4分(2)存在····································································································· 5分1(0P ·································································································· 7分2(2P ·································································································· 9分(3)存在····································································································10分理由:解法一:延长BC到点B',使B C BC'=,连接B F'交直线AC于点M,则点M就是所求的点.··············································································11分过点B'作B H AB'⊥于点H.B点在抛物线233y x x=-(30)B∴,在Rt BOC△中,tan OBC∠=,x30OBC∴∠=,BC=在Rt BB H'△中,12B H BB''==6BH H'==,3OH∴=,(3B'∴--, ··············································12分设直线B F'的解析式为y kx b=+3k bk b⎧-=-+⎪∴⎨=+⎪⎩解得2kb⎧=⎪⎪⎨⎪=-⎪⎩62y x∴=-························································································13分62yy x⎧=⎪∴⎨=-⎪⎩解得377xy⎧=⎪⎪⎨⎪=-⎪⎩37M⎛∴⎝⎭∴在直线AC上存在点M,使得MBF△的周长最小,此时37M⎛-⎝⎭,.········14分解法二:过点F作AC的垂线交y轴于点H,则点H为点F关于直线AC的对称点.连接BH交AC于点M,则点M即为所求.11分过点F作FG y⊥轴于点G,则OB FG∥,BC FH∥.90BOC FGH∴∠=∠=,BCO FHG∠=∠xHFG CBO ∴∠=∠同方法一可求得(30)B ,.在Rt BOC △中,tan 3OBC ∠=,30OBC ∴∠=,可求得3GH GC ==, GF ∴为线段CH 的垂直平分线,可证得CFH △为等边三角形,AC ∴垂直平分FH .即点H 为点F 关于AC的对称点.03H ⎛∴- ⎝⎭, ············································ 12分设直线BH 的解析式为y kx b =+,由题意得03k b b =+⎧⎪⎨=⎪⎩解得k b ⎧=⎪⎪⎨⎪=⎪⎩y ∴=······················································································· 13分y y ⎧=-⎪∴⎨⎪=⎩解得37x y ⎧=⎪⎪⎨⎪=⎪⎩37M ⎛∴ ⎝⎭, ∴在直线AC 上存在点M ,使得MBF △的周长最小,此时377M ⎛⎫- ⎪ ⎪⎝⎭,. 110解:(1)点E 在y 轴上 ·············································································· 1分 理由如下:连接AO ,如图所示,在Rt ABO △中,1AB =,BO =2AO ∴=1sin 2AOB ∴∠=,30AOB ∴∠= 由题意可知:60AOE ∠=306090BOE AOB AOE ∴∠=∠+∠=+=点B 在x 轴上,∴点E 在y 轴上. ································································· 3分(2)过点D 作DM x ⊥轴于点M1OD =,30DOM ∠=∴在Rt DOM △中,12DM =,2OM = 点D 在第一象限, ∴点D 的坐标为12⎫⎪⎪⎝⎭, ··············································································· 5分 由(1)知2EO AO ==,点E 在y 轴的正半轴上∴点E 的坐标为(02),∴点A 的坐标为( ················································································· 6分抛物线2y ax bx c =++经过点E , 2c ∴=由题意,将(A,122D ⎛⎫ ⎪ ⎪⎝⎭,代入22y ax bx =++中得32131242a a ⎧+=⎪⎨+=⎪⎩解得899a b ⎧=-⎪⎪⎨⎪=-⎪⎩∴所求抛物线表达式为:28299y x x =--+ ·················································· 9分 (3)存在符合条件的点P ,点Q . ·································································· 10分 理由如下:矩形ABOC 的面积3AB BO ==∴以O B P Q ,,,为顶点的平行四边形面积为由题意可知OB 为此平行四边形一边, 又3OB =OB ∴边上的高为2 ······················································································· 11分 依题意设点P 的坐标为(2)m ,点P在抛物线28299y x x =--+上282299m m ∴--+= 解得,10m =,2m =1(02)P ∴,,228P ⎛⎫- ⎪ ⎪⎝⎭以O B P Q ,,,为顶点的四边形是平行四边形, PQ OB ∴∥,PQ OB ==∴当点1P 的坐标为(02),时,点Q的坐标分别为1(Q,2Q ; 当点2P的坐标为2⎛⎫ ⎪ ⎪⎝⎭时,点Q的坐标分别为32Q ⎛⎫ ⎪ ⎪⎝⎭,42Q ⎫⎪⎪⎝⎭. ··········································· 14分 (以上答案仅供参考,如有其它做法,可参照给分)。

北师大版九年级数学中考总复习知识梳理与练习题

北师大版九年级数学中考总复习知识梳理与练习题

⎪⎪⎪⎩⎪⎪⎪⎨⎧有理数⎪⎩⎪⎨⎧)3,2,1:()3,2,1:( 如负整数如正整数整数)0(零⎪⎩⎪⎨⎧----)8.4,3.2,31,21:( 如负分数分数)8.3,3.5,31,21:( 如正分数第一讲 实数一.知识梳理: 1.实数的基本概念 (1)正数和负数定义:大于0的数叫做正数。

在正数前加上符号“-”(负)的数叫做负数。

0既不是正数,也不是负数。

(2)有理数分类:正整数、0、负整数统称整数。

正分数、负分数统称分数。

整数和分数统称为有理数。

即:(3)无理数:无限不循环小数叫做无理数。

常见的无理数,归纳起来有四类: a.开方开不尽的数,如32,7等;b.有特定结构的数,如0.1010010001…等;c.有特定意义的数,如圆周率π,或化简后含有π的数,如3π+8等; d.某些三角函数值,如sin60o等 注:小数是分数。

(4)实数:有理数和无理数统称为实数,即:正有理数有理数 零 有限小数和无限循环小数 实数 负有理数 正无理数无理数 无限不循环小数 负无理数2.数轴:规定了原点、正方向和单位长度的直线叫做数轴。

(画数轴时,原点,正方向,单位长度三要素缺一不可)注意:实数与数轴的点是一一对应的。

3.相反数:代数定义:只有符号不同的两个数叫做互为相反数。

几何定义:从数轴上看,互为相反数的两个数所对应的点关于原点对称,若a+b=0⇔a 、b 互为相反数,反之亦成立.注意:零的相反数是零一般地,如果a 、b 互为相反数,则a+b=0. 4.绝对值定义:在数轴上,一个数所对应的点与原点的距离做该数的绝对值,记作|a|。

①正数的绝对值是它本身;②负数的绝对值是它的相反数;③0的绝对值是0。

即:⎪⎩⎪⎨⎧<-=>=)0()0(0)0(||a a a a a a ⎩⎨⎧<-≥=)0()0(||a a a a a ①a =|a|所表示的意义是:一个数和它的绝对值相等。

很显然,a ≥0。

北师大版数学中考总复习:数与式综合复习--巩固练习(提高)(可编辑修改word版)

北师大版数学中考总复习:数与式综合复习--巩固练习(提高)(可编辑修改word版)

中考总复习:数与式综合复习—巩固练习(提高)【巩固练习】一、选择题1. 把多项式 1-x 2+2xy-y 2分解因式的结果是()A. (1+ x - y )(1- x + y )B. (1- x - y )(1+ x - y )C. (1- x - y )(1- x + y )D. (1+ x - y )(1+ x + y )1 1 1 1 1 12. 按一定的规律排列的一列数依次为:个数是( ), , , , , 2 3 10 15 26 35 ┅┅,按此规律排列下去,这列数中的第 7 1 111A.B .C .D .454046503. 根据下表中的规律,从左到右的空格中应依次填写的数字是( )000110010111 001 111A .100,011B .011,100C .011,101D .101,1104. 在一个地球仪的赤道上用铁丝打一个箍,现将铁丝半径增大 1 米,需增加 m 米长的铁丝.假设地球赤道上也有一个铁箍, 同样半径增大 1 米, 需增加 n 米长的铁丝, 则 m 与 n 的大小关系是 ( )A. m >nB .m <nC .m =nD .不能确定5.将一张长方形纸片对折,可得到一条折痕,继续对折,对折时每次折痕与上次折痕保持平行,那么 对折 n 次后折痕的条数是 ( ) A .2n -1 B .2n +1 C .2n -1 D .2n +1 6.(2015 秋•重庆校级月考)如图图案都是同样大小的小正方形按一定的规律组成的,其中第 1 个图形中有 5 个小正方形,第 2 个图形有 13 个小正方形,第 3 个图形有 25 个小正方形,…,按此规律,则第 8 个图形中小正方形的个数为( )A .181B .145C .100D .88二、填空题7. 若非零实数 a ,b 满足4a 2 + b 2 = 4ab ,则 b=.a2 3 1 18.已知分式 x 2 - 1(x - 2)(x - 1),当 x =时,分式的值为 0.9. 在实数范围内分解因式x+y ( 2 - 4(x + y - 1) =.10. (2015 秋•平ft 区校级月考)化简:(1)当 x≥0 时,= ; (2)当 a≤0 时,=; (3)当 a≥0,b <0 时,=.11. 德国数学家莱布尼兹发现了下面的单位分数三角形(单位分数是分子为 1,分母为正整数的分数):1第一行 第二行第三行第四行111 221 1 1 3 631 1 1 1第五行4 12 1 1 1 520 30 12 41 1 20 5… …… …根据前五行的规律,可以知道第六行的数依次是:.12. 让我们轻松一下,做一个数字游戏:第一步:取一个自然数 n 1=5 ,计算 n 2+1 得 a ; 第二步:算出 a 1 的各位数字之和得 n 2,计算 n 2+1 得 a 2;第三步:算出 a 2 的各位数字之和得 n 3,再计算 n 2 +1 得 a 3; …………依此类推,则 a 2012= .三、解答题13.(2015 春•碑林区期中)图①是一个长为 2m ,宽为 2n 的长方形,沿图中虚线用剪刀平均分成四块小长方形,然后按图②的形状拼成一个正方形.S 1 S 2 S n(1) 图②中的阴影部分的面积为;(2) 观察图②,三个代数式(m+n )2,(m ﹣n )2,mn 之间的等量关系是 ;(3) 观察图③,你能得到怎样的代数等式呢?(4) 试画出一个几何图形,使它的面积能表示(m+n )(m+3n );(5)若 x+y=﹣6,xy=2.75,求 x ﹣y 的值.14. 阅读下列题目的计算过程:x - 3 x 2 - 1 - 2 1 + xx - 3= (x + 1)(x - 1) -2(x - 1)(x + 1)(x - 1)(A )=(x -3)-2(x -1) (B ) =x -3-2x +1 (C ) =-x -1 (D ) (1) 上述计算过程中,从哪一步开始出现错误?请写出该步的代号 .(2) 错误的原因 . (3) 本题目正确的结论为 .xx 215.已知x 2 - x +1 = 7 ,求x 4 + x 2 +1的值.1 1 1 1 1 1 1 116. 设 S 1 =1+ 12 + 22 , S 2 =1+ 22 + 32 , S 3 =1+ 32 + 42 ,…, S n =1+ n 2 +(n +1)2设 S = + +... + ,求 S 的值 (用含n 的代数式表示,其中 n 为正整数).【答案与解析】一、选择题 1. 【答案】A ;【解析】1-x2+ 2xy -y2= 1- (x2- 2xy +y2 ) = 1- (x -y)2= (1+x -y)(1-x +y) .2.【答案】D;【解析】每个分数的分子均为 1,分母为n2+1或n2-1(当n为奇数时加 1,当n为偶数时减 1),7 为奇数,因而其分母为72+1 = 50 .3.【答案】B;【解析】通过观察,不难发现两个并排的短横表示 0,而一条长横表示 1,所表示的数是从上往下看,因而表格中的两个空格中所填的数这 011 和100 .4.【答案】C;【解析】设地球仪赤道半径为r,则m =2(r +1) -2r =2;设地球赤道半径为R,则n = 2(R +1) - 2R = 2,所以相等.5.【答案】C;【解析】除了第一次对折得到 1 条折痕,其后,每次对折所得折痕都是上次多出来的折痕的两倍. 6.【答案】B;【解析】∵第 1 个图案中小正方形的个数为 3+1+1=5;第2 个图案中小正方形的个数为 5+3+1+3+1=13;第 3 个图案中小正方形的个数为 7+5+3+1+5+3+1=25;…∴第 n 个图形的小正方体的个数(n+1)2+n2;∴第 8 个图形中小正方形的个数为 92+(9﹣1)2=81+64=145 个.故选:B.二、填空题7.【答案】2;【解析】将原式改写为4a2- 4ab +b2= 0 ,所以(2a -b)2= 0 ,可求出b=2a.8.【答案】-1;【解析】由题意x2-1 = 0 且(x - 2)(x -1) ≠ 0 ,所以x=-1.9.【答案】x+y- 2(2;【解析】此题如果按一般方法去分解,须将(x + y)2 展开,结果将问题复杂化了,其实原式可化为(x + y)2 - 4(x + y) + 4 ,将x + y 看成一个整体,再用公式法分解因式.(x + y)2- 4(x + y -1).= (x + y)2- 4(x + y) + 4= (x + y - 2)210. 【答案】3x ;﹣a ;﹣3ab【解析】解:(1)∵x≥0, ∴=|3x|=﹣3x ,故答案为:3x . (2)∵a≤0, ∴=|a|=﹣a ,故答案为:﹣a . (3)∵a≥0,b <0, ∴=|3ab|=﹣3ab,故答案为:﹣3ab.1. 【答案】1 1、 6 301111 、、、、;6060306【解析】每行中相邻两个数相加等于上一行中间的数值.12. 【答案】65;【解析】本题是一道关于数字猜想的问题,关键是通过归纳与总结,得到其中的规律.由题目得,a 1=26;n 2=8,a 2=65;n 3=11,a 3=122;看不出什么规律,那就继续:n 4=5,a 4=26;…; 这样就发现规律:每三个为一个循环,2012÷3=670……2;即 a 2012= a 2=65.答案为 65.三、解答题13. 【答案与解析】 解:(1)阴影部分的边长为(m ﹣n ),所以阴影部分的面积为(m ﹣n )2;故答案为:(m ﹣n )2;(2)(m+n )2﹣(m ﹣n )2=4mn ;故答案为:(m+n )2﹣(m ﹣n )2=4mn ; (3)(m+n )(2m+n )=2m 2+3mn+n 2; (4) 答案不唯一:(5)(x ﹣y )2=(x+y )2﹣4xy=(﹣6)2﹣2.75×4=25, ∴x﹣y=±5.14. 【答案与解析】 (1)B ;1 21 (2)去分母;x - 3 2 (3) x 2 - -1 1+ x=x - 3 - 2(x -1) = x - 3 - 2x + 2 =-x -1 = 1. (x +1)(x -1) (x +1)(x -1) (x +1)(x -1) (x +1)(x -1) 1- x15. 【答案与解析】xx 2 - x +1 1 1 8因为= 7 ,所以, 所以 = ,即 x + = ,x 2 - x +1x 7 x 7x 4 + x 2 +11⎛ 1 ⎫215 所以= x 2+ +1 = x + ⎪ -1 =x 2x 2 ⎝ x ⎭49 所以x = 49.x 4 + x 2 +1 1516. 【答案与解析】S n = 1+ n 2=[1++ 1 (n +1)21 ]2=1+[ - n 1 (n +1) ]2 + 2 ⨯ 1 n (n +1) =1+[ 1 n (n +1)]2 + 2 ⨯1n (n +1)n (n +1)∴S= (1+1 1⨯2 ) + (1+ 1 2 ⨯3 ) + (1+ 1 3⨯ 4) +…+ (1+1 )n (n +1) =n + 1 - 1 + 1 - 1 + 1 - 1 + + 1 - 1=n + 1 -2 23 34 1n + 1n n + 1 n 2 + 2n .n + 1(利用拆项1 = 1 -1 即可求和). n (n +1) n n +1=。

(北师大版)初中九年级数学下学期中考复习模拟考试试题卷(含答案详解)

(北师大版)初中九年级数学下学期中考复习模拟考试试题卷(含答案详解)

(北师大版)初中九年级数学下学期中考复习模拟考试试题卷(含答案详解)(满分150分 时间:120分钟)一.单选题。

(共40分) 1.16的算术平方根是( )A.±2B.2C.4D.±4 2.下面四个几何体中,左视图为圆的是( )A. B. C. D.3.据5月17日消息,全国各地约42600名医务人员支援湖北抗击新冠肺炎疫情,将42600用科学记数法表示为( )A.0.426×105B.4.26×105C.42.6×104D.4.26×1044.如图,直线a ∥b ,直线c 分别交a ,b 于点A ,C ,∠BAC 的平分线交直线b 于点D ,若∠1=50°,则∠2的度数是( )A.50°B.70°C.80°D.110°(第4题图) (第9题图) (第10题图) 5.下列图形中,既是轴对称图形又是中心对称图形的是( )A. B. C. D.6.化简a 2a -1-1-2a 1-a的结果为( )A.a+1a -1B.a ﹣1C.aD.17.从甲、乙、丙、丁四人中抽调两人参加“寸草心”志愿服务队,恰好抽到甲和乙的概率是( )A.112 B.18 C.16 D.128.在同一直角坐标系中,函数y=kx 和y=kx ﹣3的图象大致是( )A. B. C. D.9.在直角坐标系中,等腰直角三角形AOB 在如图所示的位置,点B 的横坐标为2,将△AOB 绕点O 按逆时针方向旋转90°,得到△A’OB’,则点A’的坐标为( ) A.(1,1) B.(√2,√2) C.(﹣1,1) D.(﹣√2,√2)10.在平面直角坐标系内,已知点A (﹣1,0),点B (1,1)都在直线y =12x+12上,若抛物线y =ax 2﹣x+1(a ≠0)与线段AB 有两个不同的交点,则a 的取值范围是( ) A.a ≤﹣2 B.a <98 C.1≤a <98或a ≤﹣2 D.﹣2≤a <98 二.填空题。

备战中考数学(北师大版)巩固复习相交线与平行线(含解析)

备战中考数学(北师大版)巩固复习相交线与平行线(含解析)

备战中考数学(北师大版)巩固复习相交线与平行线(含解析)一、单选题1.已知,∠1和∠2是一对内错角,且∠1=48°,那么∠2的度数是()A.48°B.42°C.132°D.无法确定2.如图,下列推理错误的是()A.因为∠1=∠2,因此a∥bB.因为∠4=∠6,因此c∥dC.因为∠3+∠4=180°,因此a∥b D.因为∠1+∠5=180°,因此a∥b3.在同一平面内,不重合的两条直线的位置关系是()A.平行B.相交C.平行或相交 D.平行、相交或垂直4.如图,下列能判定AB∥CD的条件有()个.①∠B+∠BCD=180°;②∠1=∠2;③∠3=∠4;④∠B=∠5.A.1B.2C.3D.45.如图,已知直线a∥b,∠1=40°,∠2=60°.则∠3等于().A.100°B.60°C.40°D.20°6.如图,已知AB∥CD,则图中与∠1互补的角有()A.1个B. 2个C. 3个D.4个7.尺规作图作∠AOB的平分线方法如下:以O为圆心,任意长为半径画弧交OA、OB于C、D,再分别以点C、D为圆心,以大于CD长为半径画弧,两弧交于点P,作射线OP,由作法可得△OCP≌△ODP,判定这两个三角形全等的依照是()A.SASB.ASAC.AASD.SSS二、填空题8.如图:△ABC中,∠A的同旁内角是________ .9.一个角的补角是140°,则那个角的余角是________;10.如图,木工用图中的角尺画平行线的依据是________.11.如图,若∠1=∠2,则互相平行的线段是________.12.如图,两块三角板的直角顶点O重叠在一起,则∠AOD+∠BOC=_ _______.13.用直尺和圆规作一个角等于已知角的示意图如图所示,则说明△DO C≌△D'O'C'的依据是________.14.所谓尺规作图中的尺规是指:________15.如图,直线a∥b,若∠1=140°,则∠2=________度.16.完成下列推理过程.如图,DE∥BC,点D、A、E在同一条直线上,求证:∠BAC+∠B+∠C=180°,证明:∵DE∥BC________∴∠1=∠B,∠2=∠C________∵D、A、E在同一直线上(已知),∴∠1+∠BAC+∠2=180°________∴∠BAC+∠B+∠C=180°________三、解答题17.在下面的方格纸中通过点C画与线段AB互相平行的直线l1 ,再通过点B画一条与线段AB垂直的直线l2 .18.如图所示,在5×5的网格中,AC是网格中最长的线段,请画出两条线段与AC平行同时过网格的格点.19.已知平面内四条直线共有三个交点,则这四条直线中最多有几条平行线?四、综合题20.如图,若用A(2,1)表示放置2个胡萝卜,1棵小白菜;点B(4,2)表示放置4个胡萝卜,2棵小白菜:(1)请你写出C、E所表示的意义.(2)若一只兔子从A顺着方格线向上或向右移动到达B,试问有几条路径可供选择,其中走哪条路径吃到的胡萝卜最多?走哪条路径吃到的小白菜最多?请你通过运算的方式说明.21.综合题(1)已知:如图1,BE⊥DE,∠1=∠B,∠2=∠D,试证明AB与C D平行。

2021-2022学年北师大版九年级数学中考复习压轴题专题提升训练(附答案)

2021-2022学年北师大版九年级数学中考复习压轴题专题提升训练(附答案)

2021-2022学年北师大版九年级数学中考复习压轴题专题提升训练(附答案)1.如图,在平面直角坐标系中,菱形ABCD的顶点D在第二象限,其余顶点都在第一象限,AB∥x轴,AO⊥AD,AO=AD.过点A作AE⊥CD,垂足为E,DE=4CE.反比例函数y=(x>0)的图象经过点E,与边AB交于点F,连接OE,OF,EF.若S△EOF=,则k的值为()A.B.C.7D.2.在△ABC中,AB=AC,D是边BC上一动点,连接AD,将AD绕点A逆时针旋转至AE 的位置,使得∠DAE+∠BAC=180°.(1)如图1,当∠BAC=90°时,连接BE,交AC于点F.若BE平分∠ABC,BD=2,求AF的长;(2)如图2,连接BE,取BE的中点G,连接AG.猜想AG与CD存在的数量关系,并证明你的猜想;(3)如图3,在(2)的条件下,连接DG,CE.若∠BAC=120°,当BD>CD,∠AEC =150°时,请直接写出的值.3.有公共顶点A的正方形ABCD与正方形AEGF按如图1所示放置,点E,F分别在边AB 和AD上,连接BF,DE,M是BF的中点,连接AM交DE于点N.【观察猜想】(1)线段DE与AM之间的数量关系是,位置关系是;【探究证明】(2)将图1中的正方形AEGF绕点A顺时针旋转45°,点G恰好落在边AB上,如图2,其他条件不变,线段DE与AM之间的关系是否仍然成立?并说明理由.4.在▱ABCD中,∠BAD=α,DE平分∠ADC,交对角线AC于点G,交射线AB于点E,将线段EB绕点E顺时针旋转α得线段EP.(1)如图1,当α=120°时,连接AP,请直接写出线段AP和线段AC的数量关系;(2)如图2,当α=90°时,过点B作BF⊥EP于点F,连接AF,请写出线段AF,AB,AD之间的数量关系,并说明理由;(3)当α=120°时,连接AP,若BE=AB,请直接写出△APE与△CDG面积的比值.5.已知点O是线段AB的中点,点P是直线l上的任意一点,分别过点A和点B作直线l 的垂线,垂足分别为点C和点D.我们定义垂足与中点之间的距离为“足中距”.(1)[猜想验证]如图1,当点P与点O重合时,请你猜想、验证后直接写出“足中距”OC和OD的数量关系是.(2)[探究证明]如图2,当点P是线段AB上的任意一点时,“足中距”OC和OD的数量关系是否依然成立,若成立,请给出证明;若不成立,请说明理由.(3)[拓展延伸]如图3,①当点P是线段BA延长线上的任意一点时,“足中距”OC和OD的数量关系是否依然成立,若成立,请给出证明;若不成立,请说明理由;②若∠COD=60°,请直接写出线段AC、BD、OC之间的数量关系.6.如图,在矩形ABCD中,AB=3cm,AD=cm.动点P从点A出发沿折线AB﹣BC向终点C运动,在边AB上以1cm/s的速度运动;在边BC上以cm/s的速度运动,过点P作线段PQ与射线DC相交于点Q,且∠PQD=60°,连接PD,BD.设点P的运动时间为x(s),△DPQ与△DBC重合部分图形的面积为y(cm2).(1)当点P与点A重合时,直接写出DQ的长;(2)当点P在边BC上运动时,直接写出BP的长(用含x的代数式表示);(3)求y关于x的函数解析式,并写出自变量x的取值范围.7.在等腰△ADE中,AE=DE,△ABC是直角三角形,∠CAB=90°,∠ABC=∠AED,连接CD、BD,点F是BD的中点,连接EF.(1)当∠EAD=45°,点B在边AE上时,如图①所示,求证:EF=CD;(2)当∠EAD=45°,把△ABC绕点A逆时针旋转,顶点B落在边AD上时,如图②所示,当∠EAD=60°,点B在边AE上时,如图③所示,猜想图②、图③中线段EF和CD又有怎样的数量关系?请直接写出你的猜想,不需证明.8.如图,已知△ABC是等边三角形,P是△ABC内部的一点,连接BP,CP.(1)如图1,以BC为直径的半圆O交AB于点Q,交AC于点R,当点P在上时,连接AP,在BC边的下方作∠BCD=∠BAP,CD=AP,连接DP,求∠CPD的度数;(2)如图2,E是BC边上一点,且EC=3BE,当BP=CP时,连接EP并延长,交AC 于点F,若AB=4BP,求证:4EF=3AB;(3)如图3,M是AC边上一点,当AM=2MC时,连接MP.若∠CMP=150°,AB =6a,MP=a,△ABC的面积为S1,△BCP的面积为S2,求S1﹣S2的值(用含a的代数式表示).9.(1)已知△ABC,△ADE如图①摆放,点B,C,D在同一条直线上,∠BAC=∠DAE =90°,∠ABC=∠ADE=45°.连接BE,过点A作AF⊥BD,垂足为点F,直线AF 交BE于点G.求证:BG=EG.(2)已知△ABC,△ADE如图②摆放,∠BAC=∠DAE=90°,∠ACB=∠ADE=30°.连接BE,CD,过点A作AF⊥BE,垂足为点F,直线AF交CD于点G.求的值.10.已知△ABC和△DEC都为等腰三角形,AB=AC,DE=DC,∠BAC=∠EDC=n°.(1)当n=60时,①如图1,当点D在AC上时,请直接写出BE与AD的数量关系:;②如图2,当点D不在AC上时,判断线段BE与AD的数量关系,并说明理由;(2)当n=90时,①如图3,探究线段BE与AD的数量关系,并说明理由;②当BE∥AC,AB=3,AD=1时,请直接写出DC的长.11.如图1,对角线互相垂直的四边形叫做垂美四边形.(1)概念理解:如图2,在四边形ABCD中,AB=AD,CB=CD,问四边形ABCD是垂美四边形吗?请说明理由;(2)性质探究:如图1,垂美四边形ABCD的对角线AC,BD交于点O.猜想:AB2+CD2与AD2+BC2有什么关系?并证明你的猜想.(3)解决问题:如图3,分别以Rt△ACB的直角边AC和斜边AB为边向外作正方形ACFG 和正方形ABDE,连结CE,BG,GE.已知AC=4,AB=5,求GE的长.12.如图1,在正方形ABCD中,点E是边BC上一点,且点E不与点B、C重合,点F是BA的延长线上一点,且AF=CE.(1)求证:△DCE≌△DAF;(2)如图2,连接EF,交AD于点K,过点D作DH⊥EF,垂足为H,延长DH交BF 于点G,连接HB,HC.①求证:HD=HB;②若DK•HC=,求HE的长.13.综合与实践数学实践活动,是一种非常有效的学习方式,通过活动可以激发我们的学习兴趣,提高动手动脑能力,拓展思维空间,丰富数学体验,让我们一起动手来折一折、转一转、剪一剪,体会活动带给我们的乐趣.折一折:将正方形纸片ABCD折叠,使边AB、AD都落在对角线AC上,展开得折痕AE、AF,连接EF,如图1.(1)∠EAF=°,写出图中两个等腰三角形:(不需要添加字母);转一转:将图1中的∠EAF绕点A旋转,使它的两边分别交边BC、CD于点P、Q,连接PQ,如图2.(2)线段BP、PQ、DQ之间的数量关系为;(3)连接正方形对角线BD,若图2中的∠P AQ的边AP、AQ分别交对角线BD于点M、点N,如图3,则=;剪一剪:将图3中的正方形纸片沿对角线BD剪开,如图4.(4)求证:BM2+DN2=MN2.14.实践与探究操作一:如图①,已知正方形纸片ABCD,将正方形纸片沿过点A的直线折叠,使点B 落在正方形ABCD的内部,点B的对应点为点M,折痕为AE,再将纸片沿过点A的直线折叠,使AD与AM重合,折痕为AF,则∠EAF=度.操作二:如图②,将正方形纸片沿EF继续折叠,点C的对应点为点N.我们发现,当点E的位置不同时,点N的位置也不同.当点E在BC边的某一位置时,点N恰好落在折痕AE上,则∠AEF=度.在图②中,运用以上操作所得结论,解答下列问题:(1)设AM与NF的交点为点P.求证:△ANP≌△FNE;(2)若AB=,则线段AP的长为.15.【阅读理解】如图①,l1∥l2,△ABC的面积与△DBC的面积相等吗?为什么?解:相等.在△ABC和△DBC中,分别作AE⊥l2,DF⊥l2,垂足分别为E,F.∴∠AEF=∠DFC=90°,∴AE∥DF.∵l1∥l2,∴四边形AEFD是平行四边形,∴AE=DF.又S△ABC=BC•AE,S△DBC=BC•DF.∴S△ABC=S△DBC.【类比探究】如图②,在正方形ABCD的右侧作等腰△CDE,CE=DE,AD=4,连接AE,求△ADE的面积.解:过点E作EF⊥CD于点F,连接AF.请将余下的求解步骤补充完整.【拓展应用】如图③,在正方形ABCD的右侧作正方形CEFG,点B,C,E在同一直线上,AD=4,连接BD,BF,DF,直接写出△BDF的面积.16.如图①,在△ABC中,AD⊥BC于点D,BC=14,AD=8,BD=6,点E是AD上一动点(不与点A,D重合),在△ADC内作矩形EFGH,点F在DC上,点G,H在AC上,设DE=x,连接BE.(1)当矩形EFGH是正方形时,直接写出EF的长;(2)设△ABE的面积为S1,矩形EFGH的面积为S2,令y=,求y关于x的函数解析式(不要求写出自变量x的取值范围);(3)如图②,点P(a,b)是(2)中得到的函数图象上的任意一点,过点P的直线l 分别与x轴正半轴,y轴正半轴交于M,N两点,求△OMN面积的最小值,并说明理由.17.下面是某数学兴趣小组探究用不同方法作一个角的平分线的讨论片段,请仔细阅读,并完成相应的任务.小明:如图1,(1)分别在射线OA,OB上截取OC=OD,OE=OF(点C,E不重合);(2)分别作线段CE,DF的垂直平分线l1,l2,交点为P,垂足分别为点G,H;(3)作射线OP,射线OP即为∠AOB的平分线.简述理由如下:由作图知,∠PGO=∠PHO=90°,OG=OH,OP=OP,所以Rt△PGO≌Rt△PHO,则∠POG=∠POH,即射线OP是∠AOB的平分线.小军:我认为小明的作图方法很有创意,但是太麻烦了,可以改进如下,如图2,(1)分别在射线OA,OB上截取OC=OD,OE=OF(点C,E不重合);(2)连接DE,CF,交点为P;(3)作射线OP.射线OP即为∠AOB的平分线.……任务:(1)小明得出Rt△PGO≌Rt△PHO的依据是(填序号).①SSS②SAS③AAS④ASA⑤HL(2)小军作图得到的射线OP是∠AOB的平分线吗?请判断并说明理由.(3)如图3,已知∠AOB=60°,点E,F分别在射线OA,OB上,且OE=OF=+1.点C,D分别为射线OA,OB上的动点,且OC=OD,连接DE,CF,交点为P,当∠CPE =30°时,直接写出线段OC的长.18.如图,在四边形ABCD中,AB∥CD,AB≠CD,∠ABC=90°,点E、F分别在线段BC、AD上,且EF∥CD,AB=AF,CD=DF.(1)求证:CF⊥FB;(2)求证:以AD为直径的圆与BC相切;(3)若EF=2,∠DFE=120°,求△ADE的面积.19.已知四边形ABCD是边长为1的正方形,点E是射线BC上的动点,以AE为直角边在直线BC的上方作等腰直角三角形AEF,∠AEF=90°,设BE=m.(1)如图,若点E在线段BC上运动,EF交CD于点P,AF交CD于点Q,连接CF,①当m=时,求线段CF的长;②在△PQE中,设边QE上的高为h,请用含m的代数式表示h,并求h的最大值;(2)设过BC的中点且垂直于BC的直线被等腰直角三角形AEF截得的线段长为y,请直接写出y与m的关系式.20.【推理】如图1,在正方形ABCD中,点E是CD上一动点,将正方形沿着BE折叠,点C落在点F处,连结BE,CF,延长CF交AD于点G.(1)求证:△BCE≌△CDG.【运用】(2)如图2,在【推理】条件下,延长BF交AD于点H.若,CE=9,求线段DE的长.【拓展】(3)将正方形改成矩形,同样沿着BE折叠,连结CF,延长CF,BF交直线AD于G,H两点,若=k,=,求的值(用含k的代数式表示).21.如图,在△ABC中,AB=AC,∠BAC=α,M为BC的中点,点D在MC上,以点A 为中心,将线段AD顺时针旋转α得到线段AE,连接BE,DE.(1)比较∠BAE与∠CAD的大小;用等式表示线段BE,BM,MD之间的数量关系,并证明;(2)过点M作AB的垂线,交DE于点N,用等式表示线段NE与ND的数量关系,并证明.22.如图1,在△ABC中,∠ACB=90°,AC=BC,点D是AB边上一点(含端点A、B),过点B作BE垂直于射线CD,垂足为E,点F在射线CD上,且EF=BE,连接AF、BF.(1)求证:△ABF∽△CBE;(2)如图2,连接AE,点P、M、N分别为线段AC、AE、EF的中点,连接PM、MN、PN.求∠PMN的度数及的值;(3)在(2)的条件下,若BC=,直接写出△PMN面积的最大值.23.某数学兴趣小组在数学课外活动中,对多边形内两条互相垂直的线段做了如下探究:【观察与猜想】(1)如图1,在正方形ABCD中,点E,F分别是AB,AD上的两点,连接DE,CF,DE⊥CF,则的值为;(2)如图2,在矩形ABCD中,AD=7,CD=4,点E是AD上的一点,连接CE,BD,且CE⊥BD,则的值为;【类比探究】(3)如图3,在四边形ABCD中,∠A=∠B=90°,点E为AB上一点,连接DE,过点C作DE的垂线交ED的延长线于点G,交AD的延长线于点F,求证:DE•AB=CF•AD;【拓展延伸】(4)如图4,在Rt△ABD中,∠BAD=90°,AD=9,tan∠ADB=,将△ABD沿BD 翻折,点A落在点C处得△CBD,点E,F分别在边AB,AD上,连接DE,CF,DE⊥CF.①求的值;②连接BF,若AE=1,直接写出BF的长度.24.在平面直角坐标系中,O为原点,△OAB是等腰直角三角形,∠OBA=90°,BO=BA,顶点A(4,0),点B在第一象限,矩形OCDE的顶点E(﹣,0),点C在y轴的正半轴上,点D在第二象限,射线DC经过点B.(Ⅰ)如图①,求点B的坐标;(Ⅱ)将矩形OCDE沿x轴向右平移,得到矩形O′C′D′E′,点O,C,D,E的对应点分别为O′,C′,D′,E′.设OO′=t,矩形O′C′D′E′与△OAB重叠部分的面积为S.①如图②,当点E′在x轴正半轴上,且矩形O′C′D′E′与△OAB重叠部分为四边形时,D′E′与OB相交于点F,试用含有t的式子表示S,并直接写出t的取值范围;②当≤t≤时,求S的取值范围(直接写出结果即可)25.如图1,在△ABC中,AB=AC,N是BC边上的一点,D为AN的中点,过点A作BC 的平行线交CD的延长线于T,且AT=BN,连接BT.(1)求证:BN=CN;(2)在图1中AN上取一点O,使AO=OC,作N关于边AC的对称点M,连接MT、MO、OC、OT、CM得图2.①求证:△TOM∽△AOC;②设TM与AC相交于点P,连接PD,求证:PD∥CM,PD=CM.26.问题提出如图(1),在△ABC和△DEC中,∠ACB=∠DCE=90°,BC=AC,EC=DC,点E在△ABC内部,直线AD与BE交于点F.线段AF,BF,CF之间存在怎样的数量关系?问题探究(1)先将问题特殊化如图(2),当点D,F重合时,直接写出一个等式,表示AF,BF,CF之间的数量关系;(2)再探究一般情形如图(1),当点D,F不重合时,证明(1)中的结论仍然成立.问题拓展如图(3),在△ABC和△DEC中,∠ACB=∠DCE=90°,BC=kAC,EC=kDC(k是常数),点E在△ABC内部,直线AD与BE交于点F.直接写出一个等式,表示线段AF,BF,CF之间的数量关系.27.【证明体验】(1)如图1,AD为△ABC的角平分线,∠ADC=60°,点E在AB上,AE=AC.求证:DE平分∠ADB.【思考探究】(2)如图2,在(1)的条件下,F为AB上一点,连结FC交AD于点G.若FB=FC,DG=2,CD=3,求BD的长.【拓展延伸】(3)如图3,在四边形ABCD中,对角线AC平分∠BAD,∠BCA=2∠DCA,点E在AC上,∠EDC=∠ABC.若BC=5,CD=2,AD=2AE,求AC的长.28.已知,在△ABC中,∠BAC=90°,AB=AC.(1)如图1,已知点D在BC边上,∠DAE=90°,AD=AE,连结CE.试探究BD与CE的关系;(2)如图2,已知点D在BC下方,∠DAE=90°,AD=AE,连结CE.若BD⊥AD,AB=2,CE=2,AD交BC于点F,求AF的长;(3)如图3,已知点D在BC下方,连结AD、BD、CD.若∠CBD=30°,∠BAD>15°,AB2=6,AD2=4+,求sin∠BCD的值.29.在平面直角坐标系中,点A的坐标为(﹣,0),点B在直线l:y=x上,过点B 作AB的垂线,过原点O作直线l的垂线,两垂线相交于点C.(1)如图,点B,C分别在第三、二象限内,BC与AO相交于点D.①若BA=BO,求证:CD=CO.②若∠CBO=45°,求四边形ABOC的面积.(2)是否存在点B,使得以A,B,C为顶点的三角形与△BCO相似?若存在,求OB 的长;若不存在,请说明理由.30.如图,△OAB的顶点坐标分别为O(0,0),A(3,4),B(6,0),动点P、Q同时从点O出发,分别沿x轴正方向和y轴正方向运动,速度分别为每秒3个单位和每秒2个单位,点P到达点B时点P、Q同时停止运动.过点Q作MN∥OB分别交AO、AB于点M、N,连接PM、PN.设运动时间为t(秒).(1)求点M的坐标(用含t的式子表示);(2)求四边形MNBP面积的最大值或最小值;(3)是否存在这样的直线l,总能平分四边形MNBP的面积?如果存在,请求出直线l 的解析式;如果不存在,请说明理由;(4)连接AP,当∠OAP=∠BPN时,求点N到OA的距离.参考答案1.解:延长EA交x轴于点G,过点F作FH⊥x轴于点H,如图,∵AB∥x轴,AE⊥CD,AB∥CD,∴AG⊥x轴.∵AO⊥AD,∴∠DAE+∠OAG=90°.∵AE⊥CD,∴∠DAE+∠D=90°.∴∠D=∠OAG.在△DAE和△AOG中,.∴△DAE≌△AOG(AAS).∴DE=AG,AE=OG.∵四边形ABCD是菱形,DE=4CE,∴AD=CD=DE.设DE=4a,则AD=OA=5a.∴OG=AE=.∴EG=AE+AG=7a.∴E(3a,7a).∵反比例函数y=(x>0)的图象经过点E,∴k=21a2.∵AG⊥GH,FH⊥GH,AF⊥AG,∴四边形AGHF为矩形.∴HF=AG=4a.∵点F在反比例函数y=(x>0)的图象上,∴x=.∴F().∴OH=a,FH=4a.∴GH=OH﹣OG=.∵S△OEF=S△OEG+S梯形EGHF﹣S△OFH,S△EOF=,∴.××﹣=.解得:a2=.∴k=21a2=21×=.故选:A.2.解:(1)连接CE,过点F作FQ⊥BC于Q,∵BE平分∠ABC,∠BAC=90°,∴F A=FQ,∵AB=AC,∴∠ABC=∠ACB=45°,∴FQ=CF,∵∠BAC+∠DAE=180°,∴∠DAE=∠BAC=90°,∴∠BAD=∠CAE,由旋转知,AD=AE,∴△ABD≌△ACE(SAS),∴BD=CE=2,∠ABD=∠ACE=45°,∴∠BCE=90°,∴∠CBF+∠BEC=90°,∵BE平分∠ABC,∴∠ABF=∠CBF,∴∠ABF+∠BEC=90°,∵∠BAC=90°,∴∠ABF+∠AFB=90°,∴∠AFB=∠BEC,∵∠AFB=∠CFE,∴∠BEC=∠CFE,∴CF=CE=2,∴AF=FQ=CF=;(2)AG=CD,理由:延长BA至点M,使AM=AB,连接EM,∵G是BE的中点,∴AG=ME,∵∠BAC+∠DAE=∠BAC+∠CAM=180°,∴∠DAE=∠CAM,∴∠DAC=∠EAM,∵AB=AM,AB=AC,∴AC=AM,∵AD=AE,∴△ADC≌△AEM(SAS),∴CD=EM,∴AG=CD;(3)如图3,连接DE,AD与BE的交点记作点N,∵∠BAC+∠DAE=180°,∠BAC=120°,∴∠DAE=60°,∵AD=AE,∴△ADE是等边三角形,∴AE=DE,∠ADE=∠AED=60°,∵∠AEC=150°,∴∠DEC=∠AEC﹣∠AED=90°,在△ABC中,AB=AC,∠BAC=120°,∴∠ACB=∠ABC=30°,∵∠AEC=150°,∴∠ABC+∠AEC=180°,∴点A,B,C,E四点共圆,∴∠BEC=∠BAC=120°,∴∠BED=∠BEC﹣∠DEC=30°,∴∠DNE=180°﹣∠BED﹣∠ADE=90°,∵AE=DE,∴AN=DN,∴BE是AD的垂直平分线,∴AG=DG,BA=BD=AC,∴∠ABE=∠DBE=∠ABC=15°,∴∠ACE=∠ABE=15°,∴∠DCE=45°,∵∠DEC=90°,∴∠EDC=45°=∠DCE,∴DE=CE,∴AD=DE,设AG=a,则DG=a,由(2)知,AG=CD,∴CD=2AG=2a,∴CE=DE=CD=a,∴AD=a,∴DN=AD=a,过点D作DH⊥AC于H,在Rt△DHC中,∠ACB=30°,CD=2a,∴DH=a,根据勾股定理得,CH=a,在Rt△AHD中,根据勾股定理得,AH==a,∴AC=AH+CH=a+a,∴BD=a+a,∴==.3.解:(1)∵四边形ABCD和四边形AEGF都是正方形,∴AD=AB,AF=AE,∠DAE=∠BAF=90°,∴△DAE≌△BAF(SAS),∴DE=BF,∠ADE=∠ABF,∵∠ABF+∠AFB=90°,∴∠ADE+∠AFB=90°,在Rt△BAF中,M是BF的中点,∴AM=FM=BM=BF,∴DE=2AM.∵AM=FM,∴∠AFB=∠MAF,又∵∠ADE+∠AFB=90°,∴∠ADE+∠MAF=90°,∴∠AND=180°﹣(∠ADE+∠MAF)=90°,即AN⊥DN;故答案为DE=2AM,DE⊥AM.(2)仍然成立,证明如下:延长AM至点H,使得AM=MH,连接FH,∵M是BF的中点,∴BM=FM,又∵∠AMB=∠HMF,∴△AMB≌△HMF(SAS),∴AB=HF,∠ABM=∠HFM,∴AB∥HF,∴∠HFG=∠AGF,∵四边形ABCD和四边形AEGF是正方形,∴∠DAB=∠AFG=90°,AE=AF,AD=AB=FH,∠EAG=∠AGF,∴∠EAD=∠EAG+∠DAB=∠AFG+∠AGF=∠AFG+∠HFG=∠AFH,∴△EAD≌△AFH(SAS),∴DE=AH,又∵AM=MH,∴DE=AM+MH=2AM,∵△EAD≌△AFH,∴∠ADE=∠FHA,∵△AMB≌△HMF,∴∠FHA=∠BAM,∴∠ADE=∠BAM,又∵∠BAM+∠DAM=∠DAB=90°,∴∠ADE+∠DAM=90°,∴∠AND=180°﹣(∠ADE+∠DAM)=90°,即AN⊥DN.故线段DE与AM之间的数量关系是DE=2AM.线段DE与AM之间的位置关系是DE ⊥AM.4.解:(1)方法一:如图1,连接PB,PC,∵四边形ABCD是平行四边形,∴AD∥BC,AB∥CD,AD=BC,∵α=120°,即∠BAD=120°,∴∠B=∠ADC=60°,∴∠BEP=60°=∠B,由旋转知:EP=EB,∴△BPE是等边三角形,∴BP=EP,∠EBP=∠BPE=60°,∴∠CBP=∠ABC+∠EBP=120°,∵∠AEP=180°﹣∠BEP=120°,∴∠AEP=∠CBP,∵DE平分∠ADC,∴∠ADE=∠CDE=30°,∴∠AED=∠CDE=30°=∠ADE,∴AD=AE,∴AE=BC,∴△APE≌△CPB(SAS),∴AP=CP,∠APE=∠CPB,∴∠APE+∠CPE=∠CPB+∠CPE,即∠APC=∠BPE=60°,∴△APC是等边三角形,方法二:如图1,延长PE交CD于点Q,连接AQ,∵四边形ABCD是平行四边形,∴AD∥BC,AB∥CD,∵α=120°,即∠BAD=120°,∴∠B=∠ADC=60°,∴∠BEP=60°=∠B,∴PE∥BC∥AD,∴四边形ADQE和四边形BCQE是平行四边形,∵DE平分∠ADC,∴∠ADE=∠CDE=30°,∴∠AED=∠CDE=30°=∠ADE,∴AD=AE,∴四边形ADQE是菱形,∴∠EAQ=∠AEQ=60°,∴△AEQ是等边三角形,∴AE=AQ,∠AQE=60°,∵四边形BCQE是平行四边形,∴PE=BE=CQ,∠B=∠CQE=60°,∵∠AEP=120°,∠AQC=∠AQE+∠CQE=120°,∴∠AEP=∠AQC,∴△AEP≌△AQC(SAS),∴AP=AC;(2)AB2+AD2=2AF2,理由:如图2,连接CF,在▱ABCD中,∠BAD=90°,∴∠ADC=∠ABC=∠BAD=90°,AD=BC,∵DE平分∠ADC,∴∠ADE=∠CDE=45°,∴∠AED=∠ADE=45°,∴AE=BC,∵BF⊥EP,∴∠BFE=90°,∵∠BEF=α=∠BAD=×90°=45°,∴∠EBF=∠BEF=45°,∴BF=EF,∵∠FBC=∠FBE+∠ABC=45°+90°=135°,∠AEF=180°﹣∠FEB=135°,∴∠CBF=∠AEF,∴△BCF≌△EAF(SAS),∴CF=AF,∠CFB=∠AFE,∴∠AFC=∠AFE+∠CFE=∠CFB+∠CFE=∠BFE=90°,∴∠ACF=∠CAF=45°,∵sin∠ACF=,∴AC====AF,在Rt△ABC中,AB2+BC2=AC2,∴AB2+AD2=2AF2;(3)方法一:由(1)知,BC=AD=AE=AB﹣BE,∵BE=AB,AB=CD,∴AB=CD=2BE,设BE=a,则PE=AD=AE=a,AB=CD=2a,①当点E在AB上时,如图3,过点G作GM⊥AD于点M,作GN⊥CD于点N,过点C作CK⊥AD于点K,过点A作AH⊥PE的延长线于点H,当α=120°时,∠B=∠ADC=60°,∵DE平分∠ADC,GM⊥AD,GN⊥CD,∴GM=GN,∵S△ACD=AD•CK=a•2a•sin60°=a2,====2,∴S△CDG=2S△ADG,∴S△CDG=S△ACD=a2,由(1)知PE∥BC,∴∠AEH=∠B=60°,∵∠H=90°,∴AH=AE•sin60°=a,∴S△APE=PE•AH=a•a=a2,∴==.②如图4,当点E在AB延长线上时,由①同理可得:S△CDG=S△ACD=××2a××3a=a2,S△APE=PH•AE=×a×3a=a2,∴==,综上所述,△APE与△CDG面积的比值为或.方法二:如图3,∵四边形ABCD是平行四边形,∴AD∥BC,AB∥CD,AB=CD,∴△AEG∽△CDG,∴=()2,=,①当点E在AB上时,∵BE=AB,∴AE=BE=AB=CD,∴=()2=,又∵==,∴=,即=3,∴==3,当α=120°时,∠B=∠ADC=60°,∵DE平分∠ADC,∴∠ADE=30°,∴∠AED=180°﹣∠BAD﹣∠ADE=30°=∠ADE,∴AE=AD,∵EP=EB=AE,EP∥AD,∴EP=AD=AE,∠AEP=∠DAE=120°,∴△AED≌△EAP(SAS),∴S△AED=S△EAP,∴=•=•=3×=;②如图4,当点E在AB延长线上时,∵BE=AB,∴AE=AB=CD,由①知,AD=AE=CD,∵EP=BE=AE=AD,EP∥AD,∴==,∵==,∴=,∴==,∵=()2=()2=,∴=••=××=;综上所述,△APE与△CDG面积的比值为或.5.解:(1)猜想:OC=OD.理由:如图1中,∵AC⊥CD,BD⊥CD,∴∠ACO=∠BDO=90°在△AOC与△BOD中,,∴△AOC≌△BOD(AAS),∴OC=OD,故答案为:OC=OD;(2)数量关系依然成立.理由:过点O作直线EF∥CD,交AC的延长线于点E,∵EF∥CD,∴∠DCE=∠E=∠CDF=90°,∴四边形CEFD为矩形,∴∠OFD=90°,CE=DF,由(1)知,OE=OF,在△COE与△DOF中,,∴△COE≌DOF(SAS),∴OC=OD;(3)①结论成立.理由:如图3中,延长CO交BD的延长线于点E,∵AC⊥CD,BD⊥CD,∴AC∥BD,∴∠ACO=∠E,∵点O为AB的中点,∴AO=BO,又∵∠AOC=∠BOE,∴△AOC≌△BOE(AAS),∴CO=OE,∵∠CDE=90°,∴OD=OC=OE,∴OC=OD.②结论:AC+BD=OC.理由:如图3中,∵∠COD=60°,OD=OC,∴△COD是等边三角形,∴CD=OC,∠OCD=60°,∵∠CDE=90°,∴tan60°=,∴DE=CD,∵△AOC≌△BOE,∴AC=BE,∴AC+BD=BD+BE=DE=CD,∴AC+BD=OC.6.解:(1)如图,在Rt△PDQ中,AD=cm,∠PQD=60°,∴tan60°==,∴DQ=AD=1cm.(2)点P在AB上运动时间为3÷1=3(s),∴点P在BC上时PB=(x﹣3).(3)当0≤x≤3时,点P在AB上,作PM⊥CD于点M,PQ交AB于点E,作EN⊥CD 于点N,同(1)可得MQ=AD=1cm.∴DQ=DM+MQ=AP+MQ=(x+1)cm,当x+1=3时x=2,∴0≤x≤2时,点Q在DC上,∵tan∠BDC==,∴∠DBC=30°,∵∠PQD=60°,∴∠DEQ=90°.∵sin30°==,∴EQ=DQ=,∵sin60°==,∴EN=EQ=(x+1)cm,∴y=DQ•EN=(x+1)×(x+1)=(x+1)2=x2+x+(0≤x≤2).当2<x≤3时,点Q在DC延长线上,PQ交BC于点F,如图,∵CQ=DQ﹣DC=x+1﹣3=x﹣2,tan60°=,∴CF=CQ•tan60°=(x﹣2)cm,∴S△CQF=CQ•CF=(x﹣2)×(x﹣2)=(x2﹣2x+2)cm2,∴y=S△DEQ﹣S△CQF=x2+x+﹣(x2﹣2x+2)=(﹣x2+x﹣)cm2(2<x≤3).当3<x≤4时,点P在BC上,如图,∵CP=CB﹣BP=﹣(x﹣3)=(4﹣x)cm,∴y=DC•CP=×3(4﹣x)=6﹣x(3<x≤4).综上所述,y=7.(1)证明:如图①中,∵EA=ED,∠EAD=45°,∴∠EAD=∠EDA=45°,∴∠AED=90°,∵BF=FD,∴EF=DB,∵∠CAB=90°,∴∠CAD=∠BAD=45°,∵∠ABC=∠AED=45°,∴∠ACB=∠ABC=45°,∴AD垂直平分线段BC,∴DC=DB,∴EF=CD.(2)解:如图②中,结论:EF=CD.理由:取CD的中点T,连接AT,TF,ET,TE交AD于点O.∵∠CAD=90°,CT=DT,∴AT=CT=DT,∵EA=ED,∴ET垂直平分线段AD,∴AO=OD,∵∠AED=90°,∴OE=OA=OD,∵CT=TD,BF=DF,∴BC∥FT,∴∠ABC=∠OFT=45°,∵∠TOF=90°,∴∠OTF=∠OFT=45°,∴OT=OF,∴AF=ET,∵FT=TF,∠AFT=∠ETF,F A=TE,∴△AFT≌△ETF(SAS),∴EF=CD.如图③中,结论:EF=CD.理由:取AD的中点O,连接OF,OE.∵EA=ED,∠AED=60°,∴△ADE是等边三角形,∵AO=OD,∴OE⊥AD,∠AEO=∠OED=30°,∴tan∠AEO==,∴=,∵∠ABC=∠AED=30°,∠BAC=90°,∴AB=AC,∵AO=OD,BF=FD,∴OF=AB,∴=,∴=,∵OF∥AB,∴∠DOF=∠DAB,∵∠DOF+∠EOF=90°,∠DAB+∠DAC=90°,∴∠EOF=∠DAC,∴△EOF∽△DAC,∴==,∴EF=CD.8.解:(1)如图1,连接BD,∵△ABC是等边三角形,∴AB=BC,∠ABC=60°,在△BAP和△BCD中,,∴△BAP≌△BCD(SAS),∴BP=BD,∠ABP=∠CBD,∵∠ABP+∠PBC=60°,∴∠CBD+∠PBC=60°,即∠PBD=60°,∴△BDP是等边三角形,∴∠BPD=60°,∵BC是⊙O的直径,∴∠BPC=90°,∴∠CPD=∠BPC﹣∠BPD=90°﹣60°=30°;(2)如图2,连接AP交BC于D,∵△ABC是等边三角形,∴AB=AC=BC,∠ABC=∠ACB=60°,∵BP=CP,∴AD⊥BC,BD=CD=BC=AB,∴AD=AB•sin∠ABC=AB•sin60°=AB,∵AB=4BP,∴BP=AB,∴PD===AB,∴PD=AD,即点P是AD的中点,∵EC=3BE,∴BE=BC,BC=4BE,∵BD=BC,∴BE=BD,即点E是BD的中点,∴EP是△ABD的中位线,∴EF∥AB,∴△CEF∽△CBA,∴===,∴4EF=3AB;(3)如图3,过点A作AD⊥BC于点D,过点P作PE⊥BC于点E,交AC于点F,作PH⊥AC于点H,由(2)得:AD=AB=3a,∠ACB=60°,BC=AC=AB=6a,∵∠CMP=150°,∴∠PMF=180°﹣∠CMP=180°﹣150°=30°,∵∠CHP=90°,∴PH=PM•sin∠PMF=a•sin30°=a,MH=PM•cos∠PMF=a•cos30°=a,∵EF⊥BC,∴∠CEF=90°,∴∠CFE=90°﹣∠ACB=90°﹣60°=30°,∴∠CFE=∠PMF,∴PF=PM=a,∴FH=PF•cos∠PFH=a•cos30°=a,∵AM=2MC,∴CM=AC=×6a=2a,∴CF=CM++MH+HF=5a,∴EF=CF•sin∠ACB=5a•sin60°=a,∴PE=EF﹣PF=a﹣a=a,∴S1﹣S2=S△ABC﹣S△BCP=BC•AD﹣BC•PE=BC•(AD﹣PE)=×6a×(3a ﹣a)=a2.9.(1)证明:如图,连接EC,∵∠BAC=∠DAE=90°,∠ABC=∠ADE=45°,∴△ABC和△ADE为等腰直角三角形,∴AB=AC,AD=AE,∠BAC+∠CAD=∠DAE+∠CAD,即∠BAD=∠CAE,在△BAD与△CAE中,,∴△BAD≌△CAE(SAS),∴∠ABD=∠ACE=45°,∴∠ACB+∠ACE=90°,则CE⊥BD,∵AF⊥BD,∴AF∥CE,BF=FC,∴==1,∴BG=EG.(2)解:如图,过点D作DM⊥AG,垂足为点M,过点C作CN⊥AG,交AG的延长线于点N,在△ABC和△AED中,∠BAC=∠DAE=90°,∠ACB=∠ADE=30°,设AE=a,AB=b,则AD=a,AC=b,∵∠1+∠EAF=90°,∠2+∠EAF=90°,∴∠1=∠2,∴sin∠1=sin∠2,∴=,即===,同理可证∠3=∠4,==,∴=,∴DM=CN,在△DGM和△CGN中,有:,∴△DGM≌△CGN(AAS),∴DG=CG,∴=1.10.解:(1)①当n=60时,△ABC和△DEC均为等边三角形,∴BC=AC,EC=DC,又∵BE=BC﹣EC,AD=AC﹣DC,∴BE=AD,故答案为:BE=AD;②BE=AD,理由如下:当点D不在AC上时,∵∠ACB=∠ACD+∠DCB=60°,∠DCE=∠BCE+∠DCB=60°,∴∠ACD=∠BCE,在△ACD和△BCE中,,∴△ACD≌△BCE(SAS),∴AD=BE;(2)①BE=AD,理由如下:当n=90时,在等腰直角三角形DEC中:=sin45,在等腰直角三角形ABC中:=,∵∠ACB=∠ACE+∠ECB=45°,∠DCE=∠ACE+∠DCA=45°,∴∠ECB=∠DCA在△DCA和△ECB中,,∴△DCA∽△ECB,∴,∴BE=,②DC=5或,理由如下:当点D在△ABC外部时,设EC与AB交于点F,如图所示:∵AB=3,AD=1由上可知:AC=AB=3,BE==,又∵BE∥AC,∴∠EBF=∠CAF=90°,而∠EFB=∠CF A,∴△EFB∽△CF A,∴==,∴AF=3BF,而AB=BF+AF=3,∴BF==,在Rt△EBF中:EF===,又∵CF=3EF=3×=,∴EC=EF+CF==5(或EC=4EF=5),在等腰直角三角形DEC中,DC=EC•cos45°=5×=5.当点D在△ABC内部时,过点D作DH⊥AC于H∵AC=3,AD=1,∠DAC=45°∴AH=DH=,CH=AC﹣AH=,∴CD===,综上所述,满足条件的CD的值为5或.11.解:(1)四边形ABCD是垂美四边形.理由如下:如图2,连接AC、BD,∵AB=AD,∴点A在线段BD的垂直平分线上,∵CB=CD,∴点C在线段BD的垂直平分线上,∴直线AC是线段BD的垂直平分线,∴AC⊥BD,即四边形ABCD是垂美四边形;(2)AB2+CD2=AD2+BC2,理由如下:如图1中,∵AC⊥BD,∴∠AOD=∠AOB=∠BOC=∠COD=90°,由勾股定理得,AD2+BC2=AO2+DO2+BO2+CO2,AB2+CD2=AO2+BO2+CO2+DO2,∴AD2+BC2=AB2+CD2;(3)如图3,连接CG、BE,∵正方形ACFG和正方形ABDE,∴AG=AC,AB=AE,∠CAG=∠BAE=90°,∴∠CAG+∠BAC=∠BAE+∠BAC,即∠GAB=∠CAE,在△GAB和△CAE中,,∴△GAB≌△CAE(SAS),∴∠ABG=∠AEC,∵∠AEC+∠AME=90°,∴∠ABG+∠AME=90°,∵∠AME=∠BMN,∴∠ABG+∠BMN=90°,即CE⊥BG,∴四边形CGEB是垂美四边形,由(2)得,CG2+BE2=CB2+GE2,∵AC=4,AB=5,∴BC===3,∵CG===4,BE===5,∴GE2=CG2+BE2﹣CB2=(4)2+(5)2﹣32=73,∴GE=.12.解:(1)∵四边形ABCD为正方形,∴CD=AD,∠DCE=∠DAF=90°,∵CE=AF,∴△DCE≌△DAF(SAS);(2)①∵△DCE≌△DAF,∴DE=DF,∠CDE=∠ADF,∴∠FDE=∠ADF+∠ADE=∠CDE+∠ADE=∠ADC=90°,∴△DFE为等腰直角三角形,∵DH⊥EF,∴点H是EF的中点,∴DH=EF,同理,由HB是Rt△EBF的中线得:HB=EF,∴HD=HB;②∵四边形ABCD为正方形,故CD=CB,∵HD=HB,CH=CH,∴△DCH≌△BCH(SSS),∴∠DCH=∠BCH=45°,∵△DEF为等腰直角三角形,∴∠DFE=45°,∴∠HCE=∠DFK,∵四边形ABCD为正方形,∴AD∥BC,∴∠DKF=∠HEC,∴△DKF∽△HEC,∴,∴DK•HC=DF•HE,在等腰直角三角形DFH中,DF=HF=HE,∴DK•HC=DF•HE=HE2=,∴HE=1.13.(1)解:如图1中,∵四边形ABCD是正方形,∴AB=AD=BC=CD,∠BAD=90°,∴ABC,△ADC都是等腰三角形,∵∠BAE=∠CAE,∠DAF=∠CAF,∴∠EAF=(∠BAC+∠DAC)=45°,∵∠BAE=∠DAF=22.5°,∠B=∠D=90°,AB=AD,∴△BAE≌△DAF(ASA),∴BE=DF,AE=AF,∵CB=CD,∴CE=CF,∴△AEF,△CEF都是等腰三角形,故答案为:45,△AEF,△EFC,△ABC,△ADC.(2)解:结论:PQ=BP+DQ.理由:如图2中,延长CB到T,使得BT=DQ.∵AD=AB,∠ADQ=∠ABT=90°,DQ=BT,∴△ADQ≌△ABT(SAS),∴AT=AQ,∠DAQ=∠BAT,∵∠P AQ=45°,∴∠P AT=∠BAP+∠BAT=∠BAP+∠DAQ=45°,∴∠P AT=∠P AQ=45°,∵AP=AP,∴△P AT≌△P AQ(SAS),∴PQ=PT,∵PT=PB+BT=PB+DQ,∴PQ=BP+DQ.故答案为:PQ=BP+DQ.(3)解:如图3中,∵四边形ABCD是正方形,∴∠ABM=∠ACQ=∠BAC=45°,AC=AB,∵∠BAC=∠P AQ=45°,∴∠BAM=∠CAQ,∴△CAQ∽△BAM,∴==,故答案为:.(4)证明:如图4中,将△ADN绕点A顺时针旋转90°得到△ABR,连接RM.∵∠BAD=90°,∠MAN=45°,∴∠DAN+∠BAM=45°,∵∠DAN=∠BAR,∴∠BAM+∠BAR=45°,∴∠MAR=∠MAN=45°,∵AR=AN,AM=AM,∴△AMR≌△AMN(SAS),∴RM=MN,∵∠D=∠ABR=∠ABD=45°,∴∠RBM=90°,∴RM2=BR2+BM2,∵DN=BR,MN=RM,∴BM2+DN2=MN2.14.操作一:解:∵四边形ABCD是正方形,∴∠C=∠BAD=90°,由折叠的性质得:∠BAE=∠MAE,∠DAF=∠MAF,∴∠MAE+∠MAF=∠BAE+∠DAF=∠BAD=45°,即∠EAF=45°,故答案为:45;操作二:解:∵四边形ABCD是正方形,∴∠B=∠C=90°,由折叠的性质得:∠NFE=∠CFE,∠ENF=∠C=90°,∠AFD=∠AFM,∴∠ANF=180°﹣90°=90°,由操作一得:∠EAF=45°,∴△ANF是等腰直角三角形,∴∠AFN=45°,∴∠AFD=∠AFM=45°+∠NFE,∴2(45°+∠NFE)+∠CFE=180°,∴∠NFE=∠CFE=30°,∴∠AEF=90°﹣30°=60°,故答案为:60;(1)证明:∵△ANF是等腰直角三角形,∴AN=FN,∵∠AMF=∠ANF=90°,∠APN=∠FPM,∴∠NAP=∠NFE=30°,在△ANP和△FNE中,,∴△ANP≌△FNE(ASA);(2)由(1)得:△ANP≌△FNE,∴AP=FE,PN=EN,∵∠NFE=∠CFE=30°,∠ENF=∠C=90°,∴∠NEF=∠CEF=60°,∴∠AEB=60°,∵∠B=90°,∴∠BAE=30°,∴BE=AB=1,∴AE=2BE=2,设PN=EN=a,∵∠ANP=90°,∠NAP=30°,∴AN=PN=a,AP=2PN=2a,∵AN+EN=AE,∴a+a=2,解得:a=﹣1,∴AP=2a=2﹣2,故答案为:2﹣2.15.解:【类比探究】过点E作EF⊥CD于点F,连接AF,∵四边形ABCD是正方形,∴AD=CD=4,∠ADC=90°,∵DE=CE,EF⊥CD,∴DF=CF=CD=2,∠ADC=∠EFD=90°,∴AD∥EF,∴S△ADE=S△ADF,∴S△ADE=×AD×DF=×4×2=4;【拓展应用】如图③,连接CF,∵四边形ABCD和四边形CGFE都是正方形,∴∠BDC=45°,∠GCF=45°,∴∠BDC=∠GCF,∴BD∥CF,∴S△BDF=S△BCD,∴S△BDF=BC×BC=8.16.解:(1)设EF=m.∵BC=14,BD=6,∴CD=BC﹣BD=14﹣6=8,∵AD=8,∴AD=DC=8,∵AD⊥BC,∴∠ADC=90°,∴AC=AD=8,∵四边形EFGH是正方形,∴EH=FG=GH=EF=m,∠EHG=∠FGH=90°,∴∠AHE=∠FGC=90°,∵∠DAC=∠C=45°,∴∠AEH=∠EAH=45°,∠GFC=∠C=45°,∴AH=EH=m,CG=FG=m,∴3m=8,∴m=,∴EF=.(2)∵四边形EFGH是矩形,∴EF∥AC,∴∠DEF=∠DAC,∠DFE=∠C,∵∠DAC=∠C,∴∠DEF=∠DFE,∴DE=DF=x,DA=DC=8,∴AE=CF=8﹣x,∴EH=AE=(8﹣x),EF=DE=x,∴y===,∴y=(0<x<8).(3)如图②中,由(2)可知点P在y=上,设直线MN的解析式为y=kx+b,把P(a,)代入得到,=ka+b,∴b=﹣ka,∴y=kx+﹣ka,∴N(0,﹣ka),M(a﹣,0),∴ON=﹣ka,OM=a﹣∴△MON的面积=•ON•OM=×(6﹣a2k﹣)≥×(6+2)•=6,∴△MON的面积的最小值=6.解法二:过点P作PR⊥OM于M,PQ⊥ON于Q.设P(a,b),由△NQP∽△NOM,∴=,设==k,∴MO=,NQ=kON,ON=,∴S△MON=•OM•ON=•=•,∴k=时,△OMN的面积的最小值为×=6.17.解:(1)如图1,由作图得,OC=OD,OE=OF,PG垂直平分CE,PH垂直平分DF,∴∠PGO=∠PHO=90°,∵OE﹣OC=OF﹣OD,。

全新北师大版中考数学总复习资料(共145页 附答案)

全新北师大版中考数学总复习资料(共145页 附答案)

全新北师大版中考数学总复习资料(共145页附答案)目录专题01 实数的有关概念及运算专题02 整式与分解因式专题03 分式与分式方程专题04 二次根式专题05 一元一次方程、二元一次方程(组)及应用专题06 一元二次方程及应用专题07 一元一次不等式(组)及应用专题08 平面直角坐标系、函数及其图像专题09 一次函数图象和性质及应用专题10 反比例函数图象和性质及应用专题11 二次函数图象和性质专题12 二次函数应用专题13 统计与概率专题14 相交线与平行线、三角形及尺规作图专题15 锐角三角函数及应用专题16 平行四边形、矩形、菱形、正方形专题17 相似三角形及应用专题18 圆的基本性质和圆的有关位置关系专题19 圆的有关计算及圆的综合专题20 图形的变换、视图与投影专题01 实数的有关概念及运算学校:___________姓名:___________班级:___________一、选择题:(共4个小题)1.【2015成都】实数a ,b 在数轴上对应的点的位置如图所示,计算的结果为( ) A . B . C . D .【答案】C . 【解析】【考点定位】1.数轴;2.绝对值.2.【2015成都】今年5月,在成都举行的世界机场城市大会上,成都新机场规划蓝图首次亮相,新机场建成后,成都将成为既北京、上海之后,国内第三个拥有双机场的城市,按照远期规划,新机场将建的4个航站楼的总面积约为126万平方米,用科学记数法表示126万为( )A .B .C .D . 【答案】C . 【解析】试题分析:126万用科学记数法表示元,故选C . 【考点定位】科学记数法—表示较大的数. 3.【2015内江】9的算术平方根是( )【答案】C . 【解析】试题分析:9的算术平方根是3.故选C.a b -a b +a b -b a -a b --412610⨯31.2610⨯61.2610⨯71.2610⨯61.2610⨯【考点定位】算术平方根.4,则=( )A.﹣1 B.1 C. D.【答案】A . 【解析】 试题分析:∵,∴,解得:,则.故选A.【考点定位】1.解二元一次方程组;2.非负数的性质. 二、填空题:(共4个小题) 5.【2015____(填“>”、“<”或“=”).【答案】<. 【解析】【考点定位】1.实数大小比较;2.估算无理数的大小.6.【2015峨边中考模拟】设实数、b 在数轴上对应位置如图所示:化简:+∣+b ∣的结果是:________【答案】b . 【解析】试题分析:根据数轴上a ,b 的值得出a ,b 的符号,a <0,b >0,以及a +b >0,即可化简求值.试题解析:根据数轴上a ,b 的值得出a ,b 的符号,a <0,b >0,a +b >0, ∴+∣+b ∣=-a +a +b =b .210a b -+=()2015b a -2015520155-210a b -+=⎩⎨⎧=+-=++01205b a b a ⎩⎨⎧-=-=32b a ()20152015321b a -=-+=-()58a 2a a 2a a【考点定位】1.二次根式的性质与化简;2.实数与数轴. 7.【2015巴中】a 是不为1的数,我们把称为a 的差倒数,如:2的差倒数为;的差倒数是;已知,是的差倒数,是的差倒数.是差倒数,…依此类推,则= . 【答案】. 【解析】【考点定位】1.规律型:数字的变化类;2.倒数;3.规律型;4.阅读型.8.【2015成都】已知菱形的边长为2,=60°,对角线,相交于点O .以点O 为坐标原点,分别以,所在直线为x 轴、y 轴,建立如图所示的直角坐标系.以为对角线作菱形∽菱形,再以为对角线作菱形∽菱形,再以为对角线作菱形∽菱形,…,按此规律继续作下去,在x 轴的正半轴上得到点,,,......,,则点的坐标为________.11a-1112=--1-111(1)2=--112a =-2a 1a 3a 2a 4a 3a 2015a 231111A B C D 111A B C ∠11AC 11B D 1OA 1OB 11B D 1212B C D A 1111A B C D 22A C 2222A B C D 1212B C D A 22B D 2323B C D A 2222A B C D 1A 2A 3A n A n A【答案】(3 n -1,0). 【解析】试题分析:∵菱形的边长为2,=60°,∴=2,∴=1,∴点A 1的坐标为(1,0),∵=1,∴=3,点A 2的坐标为(3,0),即(3 2-1,0),同理可得:点A 3的坐标为(9,0),即(3 3-1,0),点A 4的坐标为(27,0),即(3 4-1,0), ………∴点A n 的坐标为(3 n -1,0).故答案为:(3 n -1,0).【考点定位】1.相似多边形;2.菱形的性质;3.规律型;4.压轴题. 三、解答题:(共2个小题)9.【2015内江】计算:.【答案】 【解析】【考点定位】1.实数的运算;2.零指数幂;3.负整数指数幂;4.特殊角的三角函数值.1111A B C D 111A B C ∠11AC 1OA 1OA 1OB 2OA 0112(2015)()2sin 60122π----+-+310.【2015遂宁】阅读下列材料,并用相关的思想方法解决问题. 计算:. 令,则 原式== =问题:(1)计算;(2)解方程.【答案】(1);(2),. 【解析】(2)设,则原方程化为:,∴,解得:或,11111111111111(1)()(1)()23423452345234---⨯+++-----⨯++111234t ++=11(1)()(1)55t t t t -+---22114555t t t t t +---+151111111111111111111(1...)(...)(1...)(...)2342014234520152345201420152342014-----⨯+++++--------⨯++++22(51)(57)7x x x x ++++=1201510x =25x =-25x x t +=(1)(7)7t t ++=280t t +=0t =8t =-当时,,,,;当时,,,△==25﹣4×1×8<0,此时方程无解; 即原方程的解为:,.【考点定位】1.换元法解一元二次方程;2.有理数的混合运算;3.换元法;4.阅读型.专题02 整式与分解因式学校:___________姓名:___________班级:___________一、选择题:(共4个小题)1.【2015宜宾】把代数式分解因式,结果正确的是( )A. B. C. D. 【答案】D . 【解析】试题分析:原式==,故选D. 【考点定位】提公因式法与公式法的综合运用.2.【2015开县五校联考九上半期】下列计算正确的是( )A .B .C .D .[【答案】D . 【解析】0t =250x x +=(5)0x x +=10x =25x =-8t =-258x x +=-2580x x ++=24b ac-10x =25x =-3231212x x x -+23(44)x x x -+23(4)x x -3(2)(2)x x x +-23(2)x x -23(44)x x x -+23(2)x x -32622a a a =÷412122-=⎪⎭⎫ ⎝⎛-x x ()66332x x x =+()11+-=--a a【考点定位】1.同底数幂的除法;2.合并同类项;3.去括号与添括号;4.完全平方公式.3.【2015枣庄】如图,边长为a ,b 的矩形的周长为14,面积为10,则的值为( )A.140 B.70 C.35 D.24 【答案】B . 【解析】试题分析:根据题意得:a +b =14÷2=7,ab =10,∴=ab (a +b )=10×7=70;故选B. 【考点定位】因式分解的应用.4.【2015日照】观察下列各式及其展开式:; ; ;;…请你猜想的展开式第三项的系数是( )22a b ab+22a b ab +222()2a b a ab b +=++33223()33a b a a b ab b +=+++4432234()464a b a a b a b ab b +=++++554322345()510105a b a a b a b a b ab b +=+++++10()a b +A.36 B.45 C.55 D.66 【答案】B . 【解析】第6个式子系数分别为:1,6,15,20,15,6,1; 第7个式子系数分别为:1,7,21,35,35,21,7,1; 第8个式子系数分别为:1,8,28,56,70,56,28,8,1; 第9个式子系数分别为:1,9,36,84,126,126,84,36,9,1;第10个式子系数分别为:1,10,45,120,210,252,210,120,45,10,1,则的展开式第三项的系数为45.故选B.【考点定位】1.完全平方公式;2.规律型;3.综合题. 二、填空题:(共4个小题)5.【2015巴中】分解因式:=.【答案】. 【解析】试题分析:原式==.故答案为:. 【考点定位】提公因式法与公式法的综合运用. 6.【2015大庆】若若,,则= .【答案】. 【解析】 试题分析:∵,,∴,∴,∴=,故答案为:.【考点定位】幂的乘方与积的乘方.10()a b +2242a a -+22(1)a -22(21)a a -+22(1)a -22(1)a -52=na 162=nb ()nab ±52=na162=n b 2280n n a b ⋅=2()80n ab =()nab±±7.【2015内江】已知实数a ,b 满足:,,则|= . 【答案】1. 【解析】【考点定位】1.因式分解的应用;2.零指数幂;3.条件求值;4.综合题;5.压轴题. 8.【2015雅安】若,,…,是从0,1,2这三个数中取值的一列数,若=1525,,则,,…,中为2的个数是 .【答案】510. 【解析】【考点定位】1.规律型:数字的变化类;2.规律型;3.综合题;4.压轴题. 三、解答题:(共2个小题)211a a +=211b b+=2015a b-1m 2m 2015m 122015...m m m +++222122015(1)(1)...(1)1510m m m -+-++-=1m 2m 2015m9.【2015内江】填空:= ; = ;= .(2)猜想:= (其中n 为正整数,且).(3)利用(2)猜想的结论计算:.【答案】(1) ,,;(2) ;(3)342.【解析】试题分析:(1)根据平方差公式与多项式乘以多项式的运算法则运算即可;(2)根据(1)的规律可得结果;(3)原式变形后,利用(2)得出的规律计算即可得到结果.试题解析:(1)=; =;=;故答案为:,,;【考点定位】1.平方差公式;2.规律型;3.阅读型;4.综合题.10.【2015重庆市】如果把一个自然数各数位上的数字从最高位到个位依次排出的一串数字,与从个位到最高位依次排出的一串数字完全相同,那么我们把这样的自然数称为“和谐数”.例如自然数12321,从最高位到个位依次排出的一串数字是:1,2,3,2,1,从个位到最高位依次排出的一串数字仍是:1,2,3,2,1,因此12321是一个“和谐数”,再加22,545,3883,345543,…,都是“和谐数”.()()a b a b -+22()()a b a ab b -++3223()()a b a a b ab b -+++1221()(...)n n n n a b a a b ab b -----++++2n ≥98732222...222-+-+-+22a b -33a b -44a b -n n a b -()()a b a b -+22a b -3223()()a b a a b ab b -+++33a b -3223()()a b a a b ab b -+++44a b -22a b -33a b -44a b-(1)请你直接写出3个四位“和谐数”;请你猜想任意一个四位“和谐数”能否被11整除?并说明理由;(2)已知一个能被11整除的三位“和谐数”,设其个位上的数字x (1≤x ≤4,x 为自然数),十位上的数字为y ,求y 与x 的函数关系式.【答案】(1)四位“和谐数”:1221,1331,1111,6666…(答案不唯一),能;(2)y =2x (1≤x ≤4,x 为自然数).【解析】试题分析:(1)根据“和谐数”的定义(把一个自然数各数位上的数字从最高位到个位依次排出的一串数字,与从个位到最高位依次排出的一串数字完全相同)写出四个“和谐数”,设任意四位“和谐数”形式为:,根据和谐数的定义得到a =d ,b =c ,则=为正整数,易证得任意四位“和谐数”都可以被11整除;(2)设能被11整除的三位“和谐数”为:,则,故为正整数.故y =2x (1≤x ≤4,x 为自然数).试题解析:(1)四位“和谐数”:1221,1331,1111,6666…(答案不唯一),任意一个四位“和谐数”都能被11整除,理由如下:设任意四位“和谐数”形式为:,则满足:最高位到个位排列:d ,c ,b ,a ,个位到最高位排列:a ,b ,c ,d .由题意,可得两组数据相同,则:a =d ,b =c ,则=为正整数. ∴四位“和谐数”能被11整数,又∵a ,b ,c ,d 为任意自然数,∴任意四位“和谐数”都可以被11整除;【考点定位】1.因式分解的应用;2.规律型:数字的变化类;3.新定义;4.综合题;5.压轴题. abcd 100010010100010010100111011111111abcd a b c d a b b a a b +++++++===9110a b +zyx 10110zyx xyx x y ==+10110991122911111111zyx x y x y x y x y x y +++--===++abcd 100010010100010010100111011111111abcd a b c d a b b a a b +++++++===9110a b+专题03 分式与分式方程学校:___________姓名:___________班级:___________一、选择题:(共4个小题)1.【2015随州】若代数式x 的取值范围是( ) A. B. C. D.且【答案】D .【解析】 试题分析:∵代数式,解得且.故选D. 【考点定位】1.二次根式有意义的条件;2.分式有意义的条件.2.【2015甘南州】在盒子里放有三张分别写有整式a +1,a +2,2的卡片,从中随机抽取两张卡片,把两张卡片上的整式分别作为分子和分母,则能组成分式的概率是( )A. B. C. D. 【答案】B . 【解析】【考点定位】1.概率公式;2.分式的定义;3.综合题.3.【2015南宁】对于两个不相等的实数a 、b ,我们规定符号Max {a ,b }表示a 、b 中的较大值,如:Max {2,4}=4,按照这个规定,方程的解为( ) 11x -1x ≠0x ≥0x ≠0x ≥1x ≠11x +-100x x -≠⎧⎨≥⎩0x ≥1x ≠13231634{}21x Max x x x+-=,A. B. C.D.【答案】D. 【解析】【考点定位】1.解分式方程;2.新定义;3.综合题.4.【2015遂宁】遂宁市某生态示范园,计划种植一批核桃,原计划总产量达36万千克,为了满足市场需求,现决定改良核桃品种,改良后平均每亩产量是原计划的1.5倍,总产量比原计划增加了9万千克,种植亩数减少了20亩,则原计划和改良后平均每亩产量各多少万千克?设原计划每亩平均产量x 万千克,则改良后平均每亩产量为1.5x 万千克,根据题意列方程为( )A. B. C. D.【答案】A .【解析】试题分析:设原计划每亩平均产量x 万千克,由题意得:,故选A. 【考点定位】由实际问题抽象出分式方程. 二、填空题:(共4个小题)5.【2015葫芦岛】有意义,则实数x 的取值范围是 . 【答案】x ≥0且x ≠1.【解析】 21-22-121-1+36369201.5x x +-=3636201.5x x -=36936201.5x x+-=36369201.5x x ++=36369201.5x x +-=试题分析:∵有意义,∴x ≥0,x ﹣1≠0,∴实数x 的取值范围是:x ≥0且x ≠1.故答案为:x ≥0且x ≠1.【考点定位】1.二次根式有意义的条件;2.分式有意义的条件.6.【2015甘南州】已知若分式的值为0,则x 的值为 . 【答案】3.【解析】试题分析:∵分式的值为0,∴,解得x =3,即x 的值为3.故答案为:3. 【考点定位】1.分式的值为零的条件;2.解一元二次方程-因式分解法;3.综合题.7.【2015攀枝花】分式方程的根为 . 【答案】2.【解析】试题分析:去分母得:,解得:x =2,经检验x =2是分式方程的解.故答案为:2.【考点定位】解分式方程.8.【2015包头】化简:= . 【答案】. 【解析】试题分析:原式===,故答案为:. 【考点定位】分式的混合运算.三、解答题:(共2个小题)2231x x x --+2231x x x --+22310x x x ⎧--⎨+≠⎩1311x x =-+133x x +=-2211()a a a a a---÷11a a -+22211a a a a a -+⋅-2(1)(1)(1)a a a a a -⋅+-11a a -+11a a -+。

北师大版八年级上期数学常考或中考题型

北师大版八年级上期数学常考或中考题型

北师大版八年级上期数学常考或中考题型一.解答题〔共10小题〕1.〔2007•梅州〕计算:.2.〔2021•孝感〕:x=+1,y=﹣1,求以下各式的值.〔1〕x2+2xy+y2;〔2〕x2﹣y2.3.如图,A〔﹣1,0〕,C〔1,4〕,点B在x轴上,且AB=3.〔1〕求点B的坐标,并画出△ABC;〔2〕求△ABC的面积.4.如图:在直角坐标系中,第一次将△AOB变换成△OA1B1,第二次将三角形变换成△OA2B2,第三次将△OA2B2,变换成△OA3B3,A〔1,3〕,A1〔3,3〕,A2〔5,3〕,A3〔7,3〕;B〔2,0〕,B1〔4,0〕,B2〔8,0〕,B3〔16,0〕.〔1〕观察每次变换前后的三角形有何变化,找出规律,按此变化规律再将△OA3B3变换成△OA4B4,那么A4的坐标是_________,B4的坐标是_________.〔2〕假设按〔1〕找到的规律将△OAB进行了n次变换,得到△OA n B n,比拟每次变换中三角形顶点有何变化,找出规律,推测A n的坐标是_________,B n的坐标是_________.5.〔2021•崇左〕如图,平面直角坐标系中,直线AB与x轴,y轴分别交于A〔3,0〕,B〔0,〕两点,点C 为线段AB上的一动点,过点C作CD⊥x轴于点D.〔1〕求直线AB的解析式;〔2〕假设S梯形OBCD=,求点C的坐标;〔3〕在第一象限内是否存在点P,使得以P,O,B为顶点的三角形与△OBA相似?假设存在,请求出所有符合条件的点P的坐标;假设不存在,请说明理由.6.〔2021•邵阳〕王师傅开车通过邵怀高速公路雪峰山隧道〔全长约为7千米〕时,所走路程y〔千米〕与时间x〔分钟〕之间的函数关系的图象如图〔十四〕所示.请结合图象,答复以下问题:〔1〕求王师傅开车通过雪峰山隧道的时间;〔2〕王师傅说:“我开车通过隧道时,有一段连续2分钟恰好走了1.8千米〞.你说有可能吗?请说明理由.7.〔2021•湘西州〕如图,Rt△ABC中,∠C=90°,AD平分∠CAB,DE⊥AB于E,假设AC=6,BC=8,CD=3.〔1〕求DE的长;〔2〕求△ADB的面积.8.〔2021•株洲〕四边形ABCD是边长为2的菱形,∠BAD=60°,对角线AC与BD交于点O,过点O的直线EF交AD于点E,交BC于点F.〔1〕求证:△AOE≌△COF;〔2〕假设∠EOD=30°,求CE的长.9.〔2021•崇左〕为了加快社会主义新农村建设,让农民享受改革开放30年取得的成果,党中央、国务院决定:凡农民购置家电和摩托车享受政府13%的补贴〔凭购物发票到乡镇财政所按13%领取补贴〕.星星村李伯伯家今年购置了一台彩电和一辆摩托车共花去6000元,且该辆摩托车的单价比所买彩电的单价的2倍还多600元.〔1〕李伯伯可以到乡财政所领到的补贴是多少元?〔2〕求李伯伯家所买的摩托车与彩电的单价各是多少元?10.〔2021•湖州〕为鼓励教师爱岗敬业,某市开展了“我最喜爱的老师〞评选活动.某中学确定如下评选方案:有学生和教师代表对4名候选教师进行投票,每票选1名候选教师,每位候选教师得到的教师票数的5倍与学生票数的和作为该教师的总票数.以下是根据学生和教师代表投票结果绘制的统计表和条形统计图〔不完整〕.学生投票结果统计表候选教师王老师赵老师李老师陈老师得票数200 300〔1〕假设共有25位教师代表参加投票,那么李老师得到的教师票数是多少?请补全条形统计图.〔画在答案卷相对应的图上〕〔2〕王老师与李老师得到的学生总票数是500,且王老师得到的学生票数是李老师得到的学生票数的3倍多20票,求王老师与李老师得到的学生票数分别是多少?〔3〕在〔1〕、〔2〕的条件下,假设总得票数较高的2名教师推选到市参评,你认为推选到市里的是两位老师?为什么?北师大版八年级上期数学常考或中考题型参考答案与试题解析一.解答题〔共10小题〕1.〔2007•梅州〕计算:.考点:负整数指数幂;绝对值;算术平方根;零指数幂.专题:计算题.分析:此题根据算术平方根、负整数指数幂、绝对值、零指数幂等知识点进行解答,需注意:〔〕﹣1=2,〔﹣1〕0=1.解答:解:原式=2﹣2×2+3+1=2.点评:此题需注意的知识点是:a﹣p=.任何不等于0的数的0次幂是1.2.〔2021•孝感〕:x=+1,y=﹣1,求以下各式的值.〔1〕x2+2xy+y2;〔2〕x2﹣y2.考点:二次根式的化简求值;整式的加减—化简求值.分析:观察可知:〔1〕式是完全平方和公式,〔2〕是平方差公式.先转化,再代入计算即可.解答:解:〔1〕当x=+1,y=﹣1时,原式=〔x+y〕2=〔+1+﹣1〕2=12;〔2〕当x=+1,y=﹣1时,原式=〔x+y〕〔x﹣y〕=〔+1+﹣1〕〔+1﹣+1〕=4.点评:先化简变化算式,然后再代入数值,所以第一步先观察,而不是直接代入数值.3.如图,A〔﹣1,0〕,C〔1,4〕,点B在x轴上,且AB=3.〔1〕求点B的坐标,并画出△ABC;〔2〕求△ABC的面积.考点:三角形的面积;坐标与图形性质.〔2〕根据条件可以得到AB边上的高为4,然后利用三角形的面积公式就可以求出△ABC的面积.解答:解:〔1〕∵点B在x轴上,∴纵坐标为0,又AB=3,∴B〔2,0〕或〔﹣4,0〕;〔2〕S△ABC==6.点评:此题主要考查了利用坐标求线段长,然后求三角形的面积.4.如图:在直角坐标系中,第一次将△AOB变换成△OA1B1,第二次将三角形变换成△OA2B2,第三次将△OA2B2,变换成△OA3B3,A〔1,3〕,A1〔3,3〕,A2〔5,3〕,A3〔7,3〕;B〔2,0〕,B1〔4,0〕,B2〔8,0〕,B3〔16,0〕.〔1〕观察每次变换前后的三角形有何变化,找出规律,按此变化规律再将△OA3B3变换成△OA4B4,那么A4的坐标是〔9,3〕,B4的坐标是〔32,0〕.〔2〕假设按〔1〕找到的规律将△OAB进行了n次变换,得到△OA n B n,比拟每次变换中三角形顶点有何变化,找出规律,推测A n的坐标是〔2n+1,3〕,B n的坐标是〔2n+1,0〕.考点:坐标与图形性质.专题:规律型.分析:对于A1,A2,A n坐标找规律可将其写成竖列,比拟从而发现A n的横坐标为2n+1,而纵坐标都是3,同理B1,B2,B n也一样找规律.解答:解:〔1〕A〔1,3〕,A1〔3,3〕,A2〔5,3〕,A3〔7,3〕;对于A1,A2,A n坐标找规律比拟从而发现A n的横坐标为2n+1,而纵坐标都是3;同理B1,B2,B n也一样找规律,规律为B n的横坐标为2n+1,纵坐标为0.由上规律可知:〔1〕A4的坐标是〔9,3〕,B4的坐标是〔32,0〕;〔2〕A n的坐标是〔2n+1,3〕,B n的坐标是〔2n+1,0〕点评:此题是观察坐标规律的问题,需要分别从横坐标,纵坐标两方面观察规律,写出答案.5.〔2021•崇左〕如图,平面直角坐标系中,直线AB与x轴,y轴分别交于A〔3,0〕,B〔0,〕两点,点C为线段AB上的一动点,过点C作CD⊥x轴于点D.〔2〕假设S梯形OBCD=,求点C的坐标;〔3〕在第一象限内是否存在点P,使得以P,O,B为顶点的三角形与△OBA相似?假设存在,请求出所有符合条件的点P的坐标;假设不存在,请说明理由.考点:一次函数综合题.专题:压轴题.分析:〔1〕因为直线AB与x轴,y轴分别交于A〔3,0〕,B〔0,〕两点,所以可设y=kx+b,将A、B的坐标代入,利用方程组即可求出答案;〔2〕因为点C为线段AB上的一动点,CD⊥x轴于点D,所以可设点C坐标为〔x,x+〕,那么OD=x,CD=x+,利用梯形的面积公式可列出关于x的方程,解之即可,但要注意x的取值;〔3〕因为∠AOB=90°,所以以P,O,B为顶点的三角形与△OBA相似需分情况探讨:当∠OBP=90°时,如图①假设△BOP∽△OBA,那么∠BOP=∠BAO=30°,BP=OB=3,P1〔3,〕.②假设△BPO∽△OBA,那么∠BPO=∠BAO=30°,OP=OB=1,P2〔1,〕.③过点P作OP⊥BC于点P,此时△PBO∽△OBA,∠BOP=∠BAO=30°,OP=BP,过点P作PM⊥OA于点M,∠OPM=30°,OM=OP,PM=OM,从而求得P的坐标.④假设△POB∽△OBA,那么∠OBP=∠BAO=30°,∠POM=30°,所以PM=OM,P4〔,〕;当∠POB=90°时,点P在x轴上,不符合要求.解答:解:〔1〕设直线AB解析式为:y=kx+b,把A,B的坐标代入得k=﹣,b=所以直线AB的解析为:y=x+.〔2〕方法一:设点C坐标为〔x,x+〕,那么OD=x,CD=x+.∴S梯形OBCD==x.由题意:x=,解得x1=2,x2=4〔舍去〕,方法二:∵,S梯形OBCD=,∴.由OA=OB,得∠BAO=30°,AD=CD.∴S△ACD=CD×AD==.可得CD=.∴AD=1,OD=2.∴C〔2,〕.〔3〕当∠OBP=90°时,如图①假设△BOP∽△BAO,那么∠BOP=∠BAO=30°,BP=OB=3,∴P1〔3,〕.〔2分〕②假设△BPO∽△BAO,那么∠BPO=∠BAO=30°,OP=OB=1.∴P2〔1,〕.〔1分〕当∠OPB=90°时③过点P作OP⊥BA于点P〔如图〕,此时△PBO∽△OBA,∠BOP=∠BAO=30°过点P作PM⊥OA于点M.方法一:在Rt△PBO中,BP=OB=,OP=BP=.∵在Rt△PMO中,∠OPM=30°,∴OM=OP=;PM=OM=.∴P3〔,〕.方法二:设P〔x,x+〕,得OM=x,PM=x+,由∠BOP=∠BAO,得∠POM=∠ABO.∵tan∠POM==,tan∠ABO==.∴x+=x,解得x=.此时P3〔,〕.④假设△POB∽△OBA〔如图〕,那么∠OBP=∠BAO=30°,∠POM=30度.∴PM=OM=.∴P4〔,〕〔由对称性也可得到点P4的坐标〕.当∠POB=90°时,点P在x轴上,不符合要求.综合得,符合条件的点有四个,分别是:P1〔3,〕,P2〔1,〕,P3〔,〕,P4〔,〕.点评:此题综合考查了用待定系数法求一次函数的解析式和相似三角形的有关知识,解决这类问题常用到分类讨论、数形结合、方程和转化等数学思想方法.6.〔2021•邵阳〕王师傅开车通过邵怀高速公路雪峰山隧道〔全长约为7千米〕时,所走路程y〔千米〕与时间x〔分钟〕之间的函数关系的图象如图〔十四〕所示.请结合图象,答复以下问题:〔1〕求王师傅开车通过雪峰山隧道的时间;〔2〕王师傅说:“我开车通过隧道时,有一段连续2分钟恰好走了1.8千米〞.你说有可能吗?请说明理由.考点:一次函数的应用.专题:分类讨论.分析:此题中x的取值范围的不同,决定了y与x的函数关系的不同,要分别进行讨论,依情况而定.解答:解:〔1〕当x≥2时,设路程y与时间x之间的函数关系式为y=kx+b,依题意可得:解得所以y=x﹣0.4,当y=7时,解得x=7.4,即王师傅开车通过雪峰山隧道的时间为7.4分钟;〔2〕有可能.当0<x≤2时,王师傅开车的速度为0.8千米/分钟,当x≥2时,王师傅开车的速度为1千米/分钟,设王师傅开车从第t分钟开始连续〔2分〕钟恰好走了1.8千米,那么有0.8〔2﹣t〕+1•t=1.8,解得t=1,7.〔2021•湘西州〕如图,Rt△ABC中,∠C=90°,AD平分∠CAB,DE⊥AB于E,假设AC=6,BC=8,CD=3.〔1〕求DE的长;〔2〕求△ADB的面积.考点:角平分线的性质;勾股定理.分析:〔1〕根据角平分线性质得出CD=DE,代入求出即可;〔2〕利用勾股定理求出AB的长,然后计算△ADB的面积.解答:解:〔1〕∵AD平分∠CAB,DE⊥AB,∠C=90°,∴CD=DE,∵CD=3,∴DE=3;〔2〕在Rt△ABC中,由勾股定理得:AB===10,∴△ADB的面积为S△ADB=AB•DE=×10×3=15.点评:此题考查了角平分线性质和勾股定理的运用,注意:角平分线上的点到角两边的距离相等.8.〔2021•株洲〕四边形ABCD是边长为2的菱形,∠BAD=60°,对角线AC与BD交于点O,过点O的直线EF 交AD于点E,交BC于点F.〔1〕求证:△AOE≌△COF;〔2〕假设∠EOD=30°,求CE的长.考点:菱形的性质;全等三角形的判定与性质;等边三角形的判定与性质;含30度角的直角三角形;勾股定理.分析:〔1〕根据菱形的对角线互相平分可得AO=CO,对边平行可得AD∥BC,再利用两直线平行,内错角相等可得∠OAE=∠OCF,然后利用“角边角〞证明△AOE和△COF全等;〔2〕根据菱形的对角线平分一组对角求出∠DAO=30°,然后求出∠AEF=90°,然后求出AO的长,再求出EF的长,然后在Rt△CEF中,利用勾股定理列式计算即可得解.解答:〔1〕证明:∵四边形ABCD是菱形,在△AOE和△COF中,,∴△AOE≌△COF〔ASA〕;〔2〕解:∵∠BAD=60°,∴∠DAO=∠BAD=×60°=30°,∵∠EOD=30°,∴∠AOE=90°﹣30°=60°,∴∠AEF=180°﹣∠BOD﹣∠AOE=180°﹣30°﹣60°=90°,∵菱形的边长为2,∠DAO=30°,∴OD=AD=×2=1,∴AO===,∴AE=CF=×=,∵菱形的边长为2,∠BAD=60°,∴高EF=2×=,在Rt△CEF中,CE===.点评:此题考查了菱形的性质,全等三角形的判定与性质,直角三角形30°角所对的直角边等于斜边的一半的性质,勾股定理的应用,〔2〕求出△CEF是直角三角形是解题的关键,也是难点.9.〔2021•崇左〕为了加快社会主义新农村建设,让农民享受改革开放30年取得的成果,党中央、国务院决定:凡农民购置家电和摩托车享受政府13%的补贴〔凭购物发票到乡镇财政所按13%领取补贴〕.星星村李伯伯家今年购置了一台彩电和一辆摩托车共花去6000元,且该辆摩托车的单价比所买彩电的单价的2倍还多600元.〔1〕李伯伯可以到乡财政所领到的补贴是多少元?〔2〕求李伯伯家所买的摩托车与彩电的单价各是多少元?考点:二元一次方程组的应用.分析:〔1〕根据农民购置家电和摩托享受政府13%的补贴及一共花去6000元,可以求出补贴钱数;〔2〕用二元一次方程解应用题的关键是找到两个适宜的等量关系.此题中两个等量关系是:彩电单价+摩托车单价=6000,摩托车单价=2×彩电单价+600,根据这两个等量关系可以列出方程组.解答:解:〔1〕6000×13%=780〔1分〕答:李伯伯可以从政府领到补贴780元;〔2分〕〔2〕方法一:设彩电的单价为x元/台.〔3分〕x+2x+600=6000〔5分〕3x=5400x=1800〔6分〕2x+600=2×1800+600=4200.〔7分〕答:彩电与摩托车的单价分别为1800元/台、4200元/辆.〔8分〕〔5分〕解得:〔7分〕答:彩电与摩托车的单价分别为1800元/台、4200元/辆.〔8分〕点评:此题关键是弄清题意,找到等量关系:彩电单价+摩托车单价=6000,摩托车单价=2×彩电单价+600.10.〔2021•湖州〕为鼓励教师爱岗敬业,某市开展了“我最喜爱的老师〞评选活动.某中学确定如下评选方案:有学生和教师代表对4名候选教师进行投票,每票选1名候选教师,每位候选教师得到的教师票数的5倍与学生票数的和作为该教师的总票数.以下是根据学生和教师代表投票结果绘制的统计表和条形统计图〔不完整〕.学生投票结果统计表候选教师王老师赵老师李老师陈老师得票数200 300〔1〕假设共有25位教师代表参加投票,那么李老师得到的教师票数是多少?请补全条形统计图.〔画在答案卷相对应的图上〕〔2〕王老师与李老师得到的学生总票数是500,且王老师得到的学生票数是李老师得到的学生票数的3倍多20票,求王老师与李老师得到的学生票数分别是多少?〔3〕在〔1〕、〔2〕的条件下,假设总得票数较高的2名教师推选到市参评,你认为推选到市里的是两位老师?为什么?考点:二元一次方程组的应用;条形统计图.分析:〔1〕根据共有25位教师代表参加投票,结合条形图得出李老师得到的教师票数即可;〔2〕根据“王老师与李老师得到的学生总票数是500,且王老师得到的学生票数是李老师得到的学生票数的3倍多20票,〞分别得出方程组求出即可;〔3〕求出每位老师的得票总数,进而得出答案.解答:解:〔1〕李老师得到的教师票数是:25﹣〔7+6+8〕=4,如下图:〔2〕设王老师与李老师得到的学生票数分别是x和y,由题意得出:,解得:,答:王老师与李老师得到的学生票数分别是380和120;〔3〕总得票数情况如下:王老师:380+5×7=415,赵老师:200+5×6=230,李老师:120+5×4=140,陈老师:300+5×8=340,推选到市里的是王老师和陈老师.点评:此题主要考查了二元一次方程组的应用,关键是弄清题意,找出适宜的等量关系,列出方程组.。

北师大版九年级(上册)数学复习知识点和例题

北师大版九年级(上册)数学复习知识点和例题

数学九年级上册知识点总结第一章特殊的平行四边形复习中考考点综述:特殊平行四边形即矩形、菱形、正方形,它们是历年中考的必考内容之一,主要出现的题型多样,注重考查学生的基础证明和计算能力,以及灵活运用数学思想方法解决问题的能力。

内容主要包括:矩形、菱形、正方形的性质与判定,以及相关计算,了解平行四边形与矩形、菱形、正方形之间的联系,掌握平行四边形是矩形、菱形、正方形的条件。

知识目标掌握矩形、菱形、正方形等概念,掌握矩形、菱形、正方形的性质和判定,通过定理的证明和应用的教学,使学生逐步学会分别从题设和结论出发,寻找论证思路分析法和综合法。

重难点:1.矩形、菱形性质及判定的应用2.相关知识的综合应用知识点归纳矩形菱形正方形性质边对边平行且相等对边平行,四边相等对边平行,四边相等角四个角都是直角对角相等四个角都是直角对角线互相平分且相等互相垂直平分,且每条对角线平分一组对角互相垂直平分且相等,每条对角线平分一组对角判定·有三个角是直角;·是平行四边形且有一个角是直角;·是平行四边形且两条对角线相等.·四边相等的四边形;·是平行四边形且有一组邻边相等;·是平行四边形且两条对角线互相垂直。

·是矩形,且有一组邻边相等;·是菱形,且有一个角是直角。

对称性既是轴对称图形,又是中心对称图形一.矩形矩形定义:有一角是直角的平行四边形叫做矩形.【强调】矩形(1)是平行四边形;(2)一一个角是直角.矩形的性质性质1矩形的四个角都是直角;性质2 矩形的对角线相等,具有平行四边形的所以性质。

;矩形的判定矩形判定方法1:对角线相等的平行四边形是矩形.注意此方法包括两个条件:(1)是一个平行四边形;(2)对角线相等矩形判定方法2:四个角都是直角的四边形是矩形.矩形判断方法3:有一个角是直角的平行四边形是矩形。

例1:若矩形的对角线长为8cm,两条对角线的一个交角为600,则该矩形的面积为例2:菱形具有而矩形不具有的性质是()A.对角线互相平分; B.四条边都相等; C.对角相等; D.邻角互补例3:已知:如图,□ABCD各角的平分线分别相交于点E,F,G,•H,•求证:•四边形EFGH是矩形.二.菱形菱形定义:有一组邻边相等的平行四边形叫做菱形.【强调】菱形(1)是平行四边形;(2)一组邻边相等.菱形的性质性质1菱形的四条边都相等;性质2 菱形的对角线互相平分,并且每条对角线平分一组对角;菱形的判定菱形判定方法1:对角线互相垂直的平行四边形是菱形.注意此方法包括两个条件:(1)是一个平行四边形;(2)两条对角线互相垂直.菱形判定方法2:四边都相等的四边形是菱形.例1已知:如图,四边形ABCD是菱形,F是AB上一点,DF交AC于E.求证:∠AFD=∠CBE.例2已知:如图ABCD 的对角线AC 的垂直平分线与边AD 、BC 分别交于E 、F . 求证:四边形AFCE 是菱形.例3、如图,在 ABCD 中,O 是对角线AC 的中点,过点O 作AC 的垂线与边AD 、BC 分别交于E 、F ,求证:四边形AFCE 是菱形.例4、已知如图,菱形ABCD 中,E 是BC 上一点,AE 、BD 交于M ,若AB=AE,∠EAD=2∠BAE 。

初三北师大数学试题及答案

初三北师大数学试题及答案

初三北师大数学试题及答案一、选择题(每题3分,共15分)1. 下列各数中,最小的数是()A. -3B. -2C. -1D. 02. 若a < b < 0,且c > 0,那么ac + bc的值()A. 一定大于0B. 一定小于0C. 可能为正,也可能为负D. 无法确定3. 一个圆的半径是5,那么这个圆的面积是()A. 25πB. 50πC. 75πD. 100π4. 一个长方体的长、宽、高分别是a、b、c,若长方体的体积是120,那么a×b×c等于()A. 120B. 60C. 30D. 155. 一个数的平方根是4,那么这个数是()A. 16B. -16C. 8D. -8二、填空题(每题2分,共10分)6. 一个数的绝对值是3,这个数可能是_______。

7. 一个数的倒数是1/2,那么这个数是_______。

8. 一个直角三角形的两条直角边分别是3和4,那么斜边的长度是_______。

9. 若x² - 5x + 6 = 0,那么x的值是_______。

10. 一个数的立方是-27,那么这个数是_______。

三、解答题(共75分)11. 解方程:2x + 5 = 13。

(5分)12. 已知一个直角三角形的两条直角边长分别为6和8,求斜边的长度。

(5分)13. 一个长方体的长、宽、高分别是3米、4米和5米,求这个长方体的表面积和体积。

(10分)14. 某工厂生产一批零件,每件零件的成本是5元,售价是10元,如果工厂要获得10000元的利润,需要生产多少件零件?(10分)15. 一个圆的半径是7厘米,求这个圆的周长和面积。

(10分)16. 某班有40名学生,其中20名男生和20名女生。

如果随机挑选一名学生,求选出男生的概率。

(10分)17. 已知a + b = 10,a - b = 2,求a² - b²的值。

(10分)18. 某班有40名学生,其中20名男生和20名女生。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

有理数测试题1.(2012年广东珠海)2的倒数是( ) A .2 B .-2 C.12 D .-122.(2012年广东肇庆)计算 -3+2 的结果是( )A .1 B .-1 C. 5 D. -53.计算(-1)2 012的结果是( ) A .-1 B .1 C .-2 012 D. 2 0124.|-3|的相反数是( ) A .3 B .-3 C.13 D .-135.下列各式,运算结果为负数的是( )A .-(-2)-(-3)B .(-2)×(-3)C .(-2)2D .(-3)-36.(2010年广东广州)如果+10%表示“增加10%”,那么“减少8%”可以记作( )A .-18%B .-8%C .+2%D .+8%7.(2011年贵州安顺)-4的倒数的相反数是( ) A .-4 B .4 C .-148.某天最低气温是-5 ℃,最高气温比最低气温高8 ℃,则这天的最高气温是________℃.9.如果x -y <0,那么x 与y 的大小关系是x ______y (填“<”或“>”).10.实数a ,b 在数轴上的位置如图1-1-3,则:图1-1-3(1)a +b ______0; (2)|a |______|b |.11.计算:711516×(-8). 12.计算: (-2)2-(3-5)-4+2×(-3). 13.若|m -3|+(n +2)2=0,则m +2n 的值为( ) A .-4 B .-1 C .0D .414.用科学记数法把 009 608表示成×10n ,那么n =________.15.已知-3的相反数是a ,-2的倒数是b ,-1的绝对值是c ,则a +2b +3c =________.16.观察下列一组数:23,45,67,89,1011,…,它们是按一定规律排列的,那么这一组数的第k 个数是________.实数测试题的平方根是( )A .81 B .±3 C.3 D .-32.(2011年广东中山)下列各式中,运算正确的是( )=±2 B .-||-9=-()-9 2=x 6 =2-π3.计算:()-12+()-13=( )A .-2 B .-1 C .0 D .24.由四舍五入法得到的近似数×103,下列说法正确的是( )A .精确到十分位B .精确到个位C .精确到百位D .精确到千位5.下列计算正确的是( ) =2 10 ·3= 6 -2= 2 =-36.计算13-12的结果( )A .-73 3 D .-533 7.(2012年广东珠海)使x -2有意义的x 的取值范围是______.8.(2012年广东肇庆)计算20·15的结果是______. 9.(2012年广东)若x ,y 为实数,且满足||x -3+y -3=0,则⎝ ⎛⎭⎪⎫x y 2 012的值是______.10. (2012年广东珠海)计算:()-22-||-1+()2 012-π0-⎝ ⎛⎭⎪⎫12-1. 11.(2011年湖南湘潭)规定一种新的运算:a ?b =1a +1b,则1?2=________. 12.使12n 是整数的最小正整数n =__________.13. (2012年广东深圳)计算:||4+⎝ ⎛⎭⎪⎫12-1-(3-1)0-8cos45°. 代数式测试题1.某省参加初中毕业学业考试的学生约有15万人,其中男生约有a 万人,则女生约有( )A .(15+a )万人B .(15-a )万人C .15a 万人 万人2.(2010年湖南怀化)若x =1,y =12,则x 2+4xy +4y 2的值是( ) A .2 B .4 3.(2011年湖北襄阳)若x ,y 为实数,且||x +1+y -1=0,则⎝ ⎛⎭⎪⎫x y 2 011的值是( ) A .0 B .1 C .-1 D .-2 0114.(2011年江苏盐城)已知a -b =1,则代数式2a -2b -3的值是( )A .-1B .1C .-5D .55.(2010年浙江嘉兴)用代数式表示“a ,b 两数的平方和”,结果为__________.6.一筐苹果的总重量为x 千克,筐本身的重量为2千克,若将苹果平均分成5份,则每份苹果的重量为________千克.7.(2011年山东枣庄)若m 2-n 2=6,且m -n =2,则m +n =________.8.(2011年浙江丽水)已知2x -1=3,求代数式(x -3)2+2x (3+x )-7的值.代数式测试题1.某省参加初中毕业学业考试的学生约有15万人,其中男生约有a 万人,则女生约有( )A .(15+a )万人B .(15-a )万人C .15a 万人 万人2.(2010年湖南怀化)若x =1,y =12,则x 2+4xy +4y 2的值是( ) A .2 B .4 3.(2011年湖北襄阳)若x ,y 为实数,且||x +1+y -1=0,则⎝ ⎛⎭⎪⎫x y 2 011的值是( ) A .0 B .1 C .-1 D .-2 0114.(2011年江苏盐城)已知a -b =1,则代数式2a -2b -3的值是( )A .-1B .1C .-5D .55.(2010年浙江嘉兴)用代数式表示“a ,b 两数的平方和”,结果为__________.6.一筐苹果的总重量为x 千克,筐本身的重量为2千克,若将苹果平均分成5份,则每份苹果的重量为________千克.7.(2010年江苏苏州)若代数式2x +5的值为-2,则x =__________.8.已知代数式2a 3b n +1与-3a m +2b 2是同类项,2m +3n =________.9.(2011年广东湛江)多项式2x 2-3x +5是________次__________项式.10.(2011年广东广州)定义新运算“?”,规定:a ?b =13a -4b ,则12? (-1)=______. 11.(2011年浙江宁波)先化简,再求值:(a +2)(a -2)+a (1-a ),其中a =5.12.如图1-3-5,点A ,B 在数轴上对应的实数分别为m ,n ,则A ,B 两点间的距离是________(用含m ,n 的式子表示).图1-3-513.(2011年山东枣庄)若m 2-n 2=6,且m -n =2,则m +n =________.14.(2011年浙江丽水)已知2x -1=3,求代数式(x -3)2+2x (3+x )-7的值.整式测试题1.(2012年安徽)计算(-2x 2)3的结果是( )A .-2x 5B .-8x 6C .-2x 6D .-8x 52.(2011年广东清远)下列选项中,与xy 2是同类项的是( )A .-2xy 2B .2x 2yC .xyD .x 2y 23.(2012年广东深圳)下列运算正确的是( )A .2a +3b =5abB .a 2·a 3=a 5C .(2a )3=6a 3D .a ÷a 2=a 34.(2010年广东佛山)多项式1+xy -xy 2的次数及最高次数的系数是( )A .2,1B .2,-1C .3,-1D .5,-15.(2011年浙江金华)下列各式能用完全平方式进行分解因式的是( )A .x 2+1B .x 2+2x -1C .x 2+x +1D .x 2+4x +46.(2011年湖北荆州)将代数式x 2+4x -1化成(x +p )2+q 的形式为( )A .(x -2)2+3B .(x +2)2-4C .(x +2)2-5D .(x +2)2+47.计算: (1)(3+1)(3-1)=____________; (2)(a 2b )2÷a =________;(3)(-2a )·⎝ ⎛⎭⎪⎫14a 3-1=________. 8.(2012年江苏南通)单项式3x 2y 的系数为______.9.(2012年广东梅州)若代数式-4x 6y 与x 2n y 是同类项,则常数n 的值为______.10. (2010年湖南益阳)已知x -1=3,求代数式(x +1)2-4(x +1)+4的值.11.(2011年安徽芜湖)如图1-4-1,从边长为(a +4) cm 的正方形纸片中剪去一个边长为()a +1 cm 的正方形(a >0),剩余部分沿虚线又剪拼成一个矩形(不重叠无缝隙),则矩形的面积为( )图1-4-1A .(2a 2+5a ) cm 2B .(3a +15) cm 2C .(6a +9) cm 2D .(6a +15) cm 212.先化简,再求值:(a +b )2+(a -b )(2a +b )-3a 2,其中a =-2-3,b =3-2.13.(2011年江苏南通)先化简,再求值:(4ab 3-8a 2b 2)÷4ab +(2a +b ) (2a -b ),其中a =2,b =1.14.(2010年四川巴中)若2x -y +|y +2|=0,求代数式[(x -y )2+(x +y )(x -y )]÷2x 的值.因式分解练习题1.(2012年云南)分解因式:3x 2-6x +3=____________.2.(2011年安徽)因式分解:a 2b +2ab +b =______________.3.(2011年安徽芜湖)因式分解:x 3-2x 2y +xy 2=___________.4.(2011年山东潍坊)分解因式:a 3+a 2-a -1=________________. 5.若非零实数a ,b 满足4a 2+b 2=4ab ,则b a =______.6.把a 3-4ab 2因式分解,结果正确的是( )A .a (a +4b )(a -4b )B .a (a 2-4b 2)C .a (a +2b )(a -2b )D .a (a -2b )27.(2011年河北)下列分解因式正确的是( )A .-a +a 3=-a (1+a 2)B .2a -4b +2=2(a -2b )C .a 2-4=(a -2)2D .a 2-2a +1=(a -1)212.分解因式:(x +y )2-(x -y )2.8.(2011年四川凉山州)分解因式:-a 3+a 2b -14ab 2=______________. 9.对于任意自然数n ,(n +11)2-n 2是否能被11整除?为什么?10.已知实数x ,y 满足xy =5,x +y =7,求代数式x 2y +xy 2的值.11.已知a ,b ,c 为△ABC 的三边长,且满足a 2c 2-b 2c 2=a 4-b 4,试判断△ABC 的形状.分式练习题1.若分式x -1x -1??x -2?有意义,则x 应满足的条件是( ) A .x ≠1 B .x ≠2 C.x ≠1,且x ≠2 D .以上结果都不对2.(2012年安徽)化简x 2x -1+x 1-x 的结果是( ) A .x +1 B .x -1 C .-x D .x3.约分:56x 3yz 448x 5y 2z =________;x 2-9x 2-2x -3=.已知a -b a +b =15,则a b=________. 5.当x =_______时,分式x 2-2x -3x -3的值为零. 6.(2012年广东湛江)计算:1x -1-x x 2-1. 7.(2012年广东肇庆)先化简,再求值:⎝⎛⎭⎫1+1x -1÷x x 2-1,其中x =-4. 8.(2011年湖南邵阳)已知1x -1=1,求2x -1+x -1的值. 9.(2012年广东珠海)先化简,再求值:⎝⎛⎭⎫x x -1-1x 2-x ÷(x +1),其中x = 2. 10.(2011年广东肇庆)先化简,再求值:a 2-4a -3·⎝⎛⎭⎫1-1a -2,其中a =-3. 11.(2011年湖南常德)先化简,再求值:⎝⎛⎭⎫1x +1+x 2-2x +1x 2-1÷x -1x +1,其中x =2. 12.已知x 2-3x -1=0,求x 2+1x 2的值. 13.先化简,再求值:⎝⎛⎭⎫x -1x -x -2x +1÷2x 2-x x 2+2x +1,其中x 满足x 2-x -1=0. 一元一次方程及其应用1. “五一”节期间,某电器按成本价提高30%后标价,再打8折(标价的80%)销售,售价为2 080元.设该电器的成本价为x 元,根据题意,下面所列方程正确的是( )A .x (1+30%)×80%=2 080B .x ·30%·80%=2 080C .2 080×30%×80%=xD .x ·30%=2 080×80%2.一件服装标价200元,若以6折销售,仍可获利20%,则这件服装的进价是( )A .100元B .105元C .108元D .118元3.动物园的门票售价:成人票每张50元,儿童票每张30元.某日动物园售出门票700张,共得29 000元.设儿童票售出x 张,依题意可列出方程( ) A .30x +50(700-x )=29 000 B .50x +30(700-x )=29 000C .30x +50(700+x )=29 000D .50x +30(700+x )=29 0004.已知关于x 的方程3x -2m =4的解是x =m ,则m 的值是________.5.某市在端午节准备举行划龙舟大赛,预计15个队共330人参加.已知每个队一条船,每条船上的人数相等,且每条船上有1人击鼓,1人掌舵,其余的人同时划桨.设每条船上划桨的有x 人,那么可列出一元一次方程为______________.6.(1)解方程:错误!-错误!=3. (2) 解方程:3x -错误!=2x +错误!.7.(2012年广东肇庆)顺安旅行社组织200人到怀集和德庆旅游,到德庆的人数是到怀集的人数的2倍少1人,求到两地旅游的人数各是多少人?8.(2010年广东湛江)学校组织一次有关世博的知识竞赛,共有20道题,每一题答对得5分,答错或不答都倒扣1分,小时最终得76分,那么他答对__________题.9.若y 1=5x -16,y 2=x 3,那么当x =__________时,y 1与 y 2互为相反数. 10.南生态食品加工厂收购了一批质量为10 000千克的某种山货,根据市场需求对其进行粗加工和精加工处理,已知精加工的该种山货质量比粗加工的质量3倍还多2 000千克.求粗加工的该种山货质量.二元一次方程组解法及应用1.(2011年安徽芜湖)方程组⎩⎪⎨⎪⎧ 2x +3y =7,x -3y =8的解为________________.2.(2012年湖南长沙)若实数a ,b 满足||3a -1+b 2=0,则a b的值为______. 3.(2011年福建泉州)已知x ,y 满足方程组⎩⎪⎨⎪⎧ 2x +y =5,x +2y =4,则x -y 的值为_____________. 4.(2011年山东潍坊)方程组⎩⎪⎨⎪⎧ 5x -2y -4=0,x +y -5=0的解是__________.5.(2012年江苏南通)甲种电影票每张20元,乙种电影票每张15元,若购买甲、乙两种电影票共40张,恰好用去700元,则甲种电影票买了____张.6.若关于x ,y 的二元一次方程组⎩⎪⎨⎪⎧ x +y =5k ,x -y =9k 的解也是二元一次方程2x +3y =6的解,则k 的值为( )A .-34 D .-437.(2012年山东临沂)关于x ,y 的方程组⎩⎪⎨⎪⎧ 3x -y =m ,x +my =n 的解是⎩⎪⎨⎪⎧ x =1,y =1,则||m -n 的值是( )A .5B .3C .2D .18.(2010年山东日照)解方程组:⎩⎪⎨⎪⎧ x -2y =3,3x -8y =13.9.已知⎩⎪⎨⎪⎧ x =1,y =-2是关于x ,y 的二元一次方程组⎩⎪⎨⎪⎧ ax +by =1,x -by =3的解,求a ,b 的值.10. (2011年湖南衡阳)李大叔去年承包了10亩地种植甲、乙两种蔬菜,共获利18 000元,其中甲种蔬菜每亩获利2 000元,乙种蔬菜每亩获利1 500元,李大叔去年甲、乙两种蔬菜各种植了多少亩(注:亩为面积单位)?一元二次方程1.(2011年江苏泰州)一元二次方程x 2=2x 的根是( )A .x =2B .x =0C .x 1=0, x 2=2D .x 1=0, x 2=-22.(2012年贵州安顺)已知1是关于x 的一元二次方程(m -1)x 2+x +1=0的一个根,则m 的值是( )A .1B .-1C .0D .无法确定3.(2012年湖北荆门)用配方法解关于x 的一元二次方程x 2-2x -3=0,配方后的方程可以是( )A .(x -1)2=4B .(x +1)2=4C .(x -1)2=16D .(x +1)2=164.(2012年湖北武汉)若x 1,x 2是一元二次方程x 2-3x +2=0的两根,则x 1+x 2的值是( )A .-2B .2C .3D .15.(2011年福建福州)一元二次方程x (x -2)=0根的情况是( )A .有两个不相等的实数根B .有两个相等的实数根C .只有一个实数根D .没有实数根6.(2012年湖南常德)若一元二次方程x 2+2x +m =0有实数解,则m 的取值范围是( )A .m ≤-1B .m ≤1 C.m ≤4 D.m ≤127.当m 满足__________时,关于x 的方程x 2-4x +m -12=0有两个不相等的实数根. 8.(2012年贵州铜仁)一元二次方程x 2-2x -3=0的解是______________.9.(2011年江苏镇江)已知关于x 的方程x 2+mx -6=0的一个根为2,则m =________,另一根是_____________________________________________________________________.10.(2011年四川宜宾)某城市居民最低生活保障在2009年是240元,经过连续两年的增加,到2011年提高到元,则该城市两年来最低生活保障的平均年增长率是________.11. (2011年四川宜宾)已知一元二次方程x 2-6x -5=0的两根为a ,b ,则1a +1b的值是__________. 12、解方程:1)、 (x -3)2+4x (x -3)=0. 2)、 8(3 -x )2 –72=014.(2010年广东茂名)已知关于x 的一元二次方程x 2-6x -k 2=0(k 为常数).(1)求证:方程有两个不相等的实数根; (2)设x 1,x 2为方程的两个实数根,且x 1+2x 2=14,试求出方程的两个实数根和k 的值. 一元一次方程及其应用1.解方程x +12-x -14=1有下列四步,其中开始出现错误的一步是( ) A .去分母,得2(x +1)-(x -1)=4 B .去括号,得2x +2-x -1=4C .移项,得2x -x =4-2+1D .合并同类项,得x =32.“五一”节期间,某电器按成本价提高30%后标价,再打8折(标价的80%)销售,售价为2 080元.设该电器的成本价为x 元,根据题意,下面所列方程正确的是( )A .x (1+30%)×80%=2 080B .x ·30%·80%=2 080C .2 080×30%×80%=xD .x ·30%=2 080×80%3.一件服装标价200元,若以6折销售,仍可获利20%,则这件服装的进价是( )A .100元B .105元C .108元D .118元4.动物园的门票售价:成人票每张50元,儿童票每张30元.某日动物园售出门票700张,共得29 000元.设儿童票售出x 张,依题意可列出方程( )A .30x +50(700-x )=29 000B .50x +30(700-x )=29 000C .30x +50(700+x )=29 000D .50x +30(700+x )=29 0005.已知关于x 的方程3x -2m =4的解是x =m ,则m 的值是________.6.某市在端午节准备举行划龙舟大赛,预计15个队共330人参加.已知每个队一条船,每条船上的人数相等,且每条船上有1人击鼓,1人掌舵,其余的人同时划桨.设每条船上划桨的有x 人,那么可列出一元一次方程为______________.7.(1)解方程:错误!-错误!=3. (2) 解方程:3x -错误!=2x +错误!.8.(2012年广东肇庆)顺安旅行社组织200人到怀集和德庆旅游,到德庆的人数是到怀集的人数的2倍少1人,求到两地旅游的人数各是多少人?9.(2010年广东湛江)学校组织一次有关世博的知识竞赛,共有20道题,每一题答对得5分,答错或不答都倒扣1分,小时最终得76分,那么他答对__________题.10.若y 1=5x -16,y 2=x 3,那么当x =__________时,y 1与 y 2互为相反数. 11.已知关于x 的方程9x -3=kx +4有整数解,求满足条件的所有整数k .13.江南生态食品加工厂收购了一批质量为10 000千克的某种山货,根据市场需求对其进行粗加工和精加工处理,已知精加工的该种山货质量比粗加工的质量3倍还多2 000千克.求粗加工的该种山货质量.分式方程1.(2012年浙江丽水)把分式方程2x +4=1x转化为一元一次方程时,方程两边需同时乘以( ) A .x B .2x C .x +4 D .x (x +4)2.(2012年四川成都)分式方程32x =1x -1的解为( ) A .x =1 B .x =2 C .x =3 D .x =4 3.解分式方程:1-x x -2+2=12-x,可知方程的( ) A .解为x =2 B .解为x =4 C .解为x =3 D .无解 4.解关于x 的方程x -3x -1=m x -1会产生增根,则常数m 的值等于( ) A .-2 B .-1 C .1 D .2 5.(2012年江苏无锡)方程4x -3x -2=0的解为________. 6.在课外活动跳绳时,相同时间内小林跳了90下,小群跳了120下.已知小群每分钟比小林多跳20下,设小林每分钟跳x 下,则可列关于x 的方程为______________.7.解方程:3-x x -4+14-x =1. 8.解方程:1x 2-x =2x 2-2x +1. 8.在四川省发生地震后,成都运往汶川灾区的物资须从西线或南线运输,西线的路程约800千米,南线的路程约80千米,走南线的车队在西线车队出发18小时后立刻启程,结果两车队同时到达.已知两车队的行驶速度相同,求车队走南线所用的时间.12.已知||a -1+b +2=0,求方程a x +bx =1的解. 13.(2011年广东茂名)解分式方程:3x 2-12x +2=2x . 15.(2012年贵州安顺)张家界市为了治理城市污水,需要铺设一段全长为300米的污水排放管道,铺设120米后,为了尽可能减少施工对城市交通所造成的影响,后来每天的工作量比原计划增加20%,结果共用了27天完成了这一任务,求原计划每天铺设管道多少米? 不等式与不等式组解法及应用测试题1.(2012年广东广州)已知a >b ,c 为任意实数,则下列不等式中总是成立的是( )A .a +c <b +cB .a -c >b -cC .ac <bcD .ac >bc2.(2012年四川攀枝花)下列说法中,错误的是( )A .不等式x <2的正整数解中有一个B .-2是不等式2x -1<1的一个解C .不等式-3x >9的解集是x >-3D .不等式x <10的整数解有无数个3.(2012年贵州六盘水)已知不等式x -1≥0,此不等式的解集在数轴上表示为( )4.(2012年湖北荆州)已知点M (1-2m ,m -1)关于x 轴的对称点在第一象限,则m 的取值范围在数轴上表示正确的是( )5.(2012年山东滨州)不等式⎩⎪⎨⎪⎧ 2x -1≥x +1,x +8≤4x -1的解集是( )A .x ≥3 B.x ≥2 C.2≤x ≤3 D.空集6.(2012年湖北咸宁)不等式组⎩⎪⎨⎪⎧ x -1≥0,4-2x >0的解集在数轴上表示为( )7.(2012年湖南益阳)如图2-2-2,数轴上表示的是下列哪个不等式组的解集( )图2-2-28.(2012年山东日照)某校学生志愿服务小组在“学雷锋”活动中购买了一批牛奶到敬老院慰问老人.如果分给每位老人4盒牛奶,那么剩下28盒牛奶;如果分给每位老人5盒牛奶,那么最后一位老人分得的牛奶不足4盒,但至少1盒.则这个敬老院的老人最少有( )A .29人B .30人C .31人D .32人9.(2012年四川南充)不等式x +2>6的解集为______.10.(2012年浙江衢州)不等式2x -1>12x 的解是______. 11.(2012年贵州毕节)不等式组⎩⎪⎨⎪⎧ x +12≤1,1-2x <4的整数解是______.12.(2012年陕西)小宏准备用50元钱买甲、乙两种饮料共10瓶.已知甲饮料每瓶7元,乙饮料每瓶4元,则小宏最多能买______瓶甲饮料.13.解不等式组,并把解集在如图所示的数轴上表示出来.14.(2010年湖北荆门)试确定实数a 的取值范围,使不等式组⎩⎨⎧ x 2+x +13>0,x +5a +43>43?x +1?+a恰有两个整数解. 15.若不等式组⎩⎪⎨⎪⎧ 2x -a <1,x -2b >3的解集为-1<x <1,求代数式(a +1)(b -1)的值。

相关文档
最新文档