5第九章 单位根检验、协整与误差修正模型
计量经济学第五章协整与误差修正模型

根据需要对数据进行变换,如对数变换、差 分变换等,以满足模型对数据的要求。
模型参数估计方法选择
01
最小二乘法(OLS )
适用于满足经典假设的线性回归 模型,通过最小化残差平方和来 估计模型参数。
02
广义最小二乘法( GLS)
适用于存在异方差性的模型,通 过加权最小二乘法进行参数估计 ,以消除异方差性的影响。
误差修正模型定义
误差修正模型(Error Correction Model,简称ECM)是一种具有特定形式的计 量经济学模型,用于描述变量之间的长期均衡关系和短期动态调整过程。
该模型通过引入误差修正项,将变量的短期波动和长期均衡关系结合起来,从而 更准确地刻画经济现象。
误差修正项解释
误差修正项(Error Correction Term,简称ECT)是误差修正模型中的核 心部分,表示变量之间的长期均衡误差。
长期均衡
协整关系反映了时间序列之间的长期均衡,即使短期内有所偏离,长期内也会恢复到均 衡状态。
线性组合平稳
协整序列的线性组合可以消除非平稳性,得到平稳序列。
协整检验方法
EG两步法
首先通过OLS回归得到残差序列,然 后对残差序列进行单位根检验(如 ADF检验),判断其是否平稳。
Johansen检验
适用于多变量协整关系的检验,通过 构建似然比统计量来判断协整向量的 个数。
计量经济学第五章协 整与误差修正模型
汇报人:XX
目 录
• 协整理论概述 • 误差修正模型介绍 • 协整与误差修正模型关系 • 协整检验方法及应用举例 • 误差修正模型建立与评估 • 案例研究:金融市场波动性分析
01
协整理论概述
协整定义及性质
协整和误差修正模型

(6)取 1 0,则模型变为 yt = 0 + 1 yt -1 + 0 xt + ut.
此模型称为局部调整模型(偏调整模型)。
(7)取 0 0,则模型变为 yt = 0 + 1 yt -1 + 1 xt -1 + ut .
模型中只有变量的滞后值作解释变量,yt的值仅 依靠滞后信息。这种模型称为“盲始”模型。
从上式两侧同时减 yt-1,在右侧同时加减 0xt -1 得:
yt = 0 + 0 xt + (1 -1) yt-1 + (0 + 1) xt-1 + ut
上式右侧第三、四项合并得:
yt = 0 + 0 xt + (1 - 1 ) ( yt-1 - k1 xt-1) + ut 其中k1 = (0 + 1) / (1 - 1 )。在上述变换中没有破坏恒
n
yt = 0 + i xti + ut , ut IID (0, 2 ) i0
上述模型的一个明显问题是xt与xt -1 , xt-2, …, xt - n 高
度相关,从而使 j的OLS估计值很不准确。
3.动态分布滞后模型(自回归分布滞后模型)
如果在分布滞后模型中包括被解释变量的若干个滞
长期趋势模型: yt = k0 + k1 xt + ut
短期波动模型: yt = 0 xt + (1- 1 ) ECMt + ut
ECMt = yt-1 - k0 - k1 xt-1
三、误差修正模型(ECM)的建立
(2) ECM模型中的参数 k0 , k1 估计方法有 : ① 若变量为平稳变量或者为非平稳变量但存在长期
协整检验和误差修正模型

财政支出与财政收入的协整关系研究一 实验内容根据我国1990-2007年间财政支出和财政收入的月度数据,研究财政支出和财政支出之间是否存在协整关系,进而做出二者的误差修正模型。
二 模型设定为了定量分析财政支出和财政收入的关系,弄清二者是否存在长期均衡关系,建立了财政支出和财政收入的回归模型。
μββ++=)_ln()_ln(21in f ex f其中ex f _表示财政支出;in f _表示财政收入。
数据如下:数据来源:统计年鉴三、实证分析 1、数据处理由数据结构可以看出,数据存在季节波动。
首先利用X-12季节调整方法对这两个指标进行季节调整,消除季节因素,然后去对数。
2、单位根检验经济时间序列数据往往出现非平稳的情况,如果直接对数据建立回归模型,可能会出现伪回归的现象,因此在做回归之前,运用ADF 方法,对数据进行单位根检验。
对ln(ex f _)、ln(in f _)及其一阶差分进行单位根检验,具体检验结果如下所示:ln(ex f _)原值单位根检验Null Hypothesis: LNF_EX has a unit rootExogenous: ConstantLag Length: 5 (Automatic based on SIC, MAXLAG=14)t-StatisticProb.*Augmented Dickey-Fuller test statistic 0.519686 0.9871 Test critical values: 1% level -3.4614785% level -2.87512810% level -2.574090*MacKinnon (1996) one-sided p-values.f_)一阶差分单位根检验ln(exNull Hypothesis: D(LNF_EX) has a unit rootExogenous: ConstantLag Length: 4 (Automatic based on SIC, MAXLAG=14)t-Statistic Prob.* Augmented Dickey-Fuller test statistic -10.83446 0.0000 Test critical values: 1% level -3.4614785% level -2.87512810% level -2.574090*MacKinnon (1996) one-sided p-values.f_)原值单位根检验ln(inNull Hypothesis: LNF_IN has a unit rootExogenous: ConstantLag Length: 11 (Automatic based on SIC, MAXLAG=14)t-Statistic Prob.* Augmented Dickey-Fuller test statistic 0.763850 0.9932 Test critical values: 1% level -3.4624125% level -2.87553810% level -2.574309*MacKinnon (1996) one-sided p-values.f_)一阶差分单位根检验ln(inNull Hypothesis: D(LNF_IN) has a unit rootExogenous: ConstantLag Length: 10 (Automatic based on SIC, MAXLAG=14)t-Statistic Prob.*Augmented Dickey-Fuller test statistic -8.161494 0.0000Test critical values:1% level -3.462412 5% level -2.87553810% level-2.574309*MacKinnon (1996) one-sided p-values.汇总检验结果如下表所示:财政收入和财政支出的对数的原值和一阶差分的单位根检验结果指标 ADF 值P 值ln(ex f _) 0.519686 0.9871 ln(ex f _)的一阶差分-10.83446 0.0000 ln(in f _) 0.763850 0.9932 ln(in f _)的一阶差分 -8.1614940.0000从上表中的ADF 值和P 值可以看出:当显著性水平为0.05时,对ln(ex f _)和ln(in f _)的原值进行检验时,检验结果都表明不能拒绝“存在单位根”的原假设;而当对ln(ex f _)和ln(in f _)的一阶差分进行检验时,检验结果都表明拒绝“存在单位根”的原假设。
协整分析与误差修正模型

协整分析与误差修正模型1.协整分析协整分析用于找到两个或多个非平稳时间序列之间的长期关系。
当两个变量之间存在协整关系时,它们的线性组合将是平稳的。
协整关系可以解释为变量之间长期的平衡关系,即存在一种平衡机制使得变量保持在一个相对稳定的范围内。
协整分析的步骤如下:1)对非平稳时间序列进行单位根检验,例如ADF检验。
2)如果两个或多个时间序列都是非平稳的,那么可以进行线性组合,得到一个平稳的时间序列,通过单位根检验确定这个线性组合是否是平稳的。
3)如果线性组合是平稳的,那么就可以认为存在协整关系。
协整分析的优点是可以探索多个非平稳时间序列之间的关系,并且提供了具体的数值关系,能够描述长期平衡关系。
但是,协整分析不能提供因果关系,只能提供关联关系。
2.误差修正模型(ECM)误差修正模型是一种用于描述非平稳变量之间长期关系的模型。
它是在协整分析的基础上发展而来的。
误差修正模型的基本思想是,如果两个变量之间存在协整关系,那么它们之间的误差会随着时间的推移逐渐修正,回归到长期平衡关系。
因此,误差修正模型可以用来分析变量之间的动态行为。
基本的误差修正模型可以表示为:△Y_t=α+βX_t-1+γE_t-1+ε_t其中,△表示时间差分,Y_t和X_t分别表示被解释变量和解释变量,E_t表示长期误差修正项,ε_t表示短期误差项。
α、β和γ分别表示模型的截距和参数。
误差修正模型的步骤如下:1)进行协整分析,确定变量之间的协整关系。
2)构建误差修正模型,通过估计模型参数来描述长期关系。
3)进行模型检验,包括参数显著性检验、拟合优度检验等。
4)根据模型结果进行解释和预测。
误差修正模型的优点是能够同时分析长期和短期关系,提供了关于变量之间回归到长期平衡的速度信息。
同时,误差修正模型还可以用于预测和政策分析等方面。
但是,误差修正模型的局限性在于假设模型中的所有变量都是线性关系,不能很好地处理非线性关系。
综上所述,协整分析和误差修正模型是非平稳时间序列分析中常用的方法,它们能够揭示非平稳变量之间的长期关系,并对其动态行为进行建模和分析。
协整与误差修正模型

协整与误差修正模型第六讲协整与误差修正模型一、非平稳过程与单位根检验二、长期均衡关系与协整三、误差修正模型一、非平稳过程与单位根检验1、非平稳过程1)随机游走过程(random walk)。
y t = y t-1 + u t, u t~ IID(0, σ2)10y=y(-1)+u5-5-10204060140160差分平稳过程(difference- stationary process)。
2)有漂移项的非平稳过程(non-stationary process with drift )或随机趋势非平稳过程(stochastic trend process )。
y t = μ + y t -1 + u t , u t ~ IID(0, σ2)迭代变换:y t = μ + (μ + y t -2 + u t -1) + u t = … = y 0 + μ t +∑-t i i u 1= μ t +∑-ti i u 120406080100-80-60-40-2020差分平稳过程3)趋势平稳过程(trend-stationary process)或退势平稳过程。
y t = μ+ α t + u t, u t~ IID(0, σ2)2520151055101520253035404550趋势平稳过程的差分过程是过度差分过程:?y t = α + u t - u t-1。
所以应该用退势的方法获得平稳过程。
y t - α t = μ+ u t。
4)确定性趋势非平稳过程(non-stationary process with deterministic trend)y t = μ+ α t + y t-1+ u t, u t~ IID(0, σ2) 1801601401201008060400450500550600650700750800确定性趋势非平稳过程的差分过程是退势平稳过程,?yt = μ + α t + ut。
“协整与误差修正模型”基本内容

“协整与误差修正模型”基本内容Abstract本部分我们要介绍时间序列计量经济学模型中的“协整与误差修正模型”内容。
对于时间序列数据而言,若其为非平稳的,那么我们无法使用经典的回归模型,而若变量之间是协整关系(即它们之间有着长期稳定的关系),那么经典的回归模型方法仍然是valid。
简单差分未必能解决非平稳时间序列的所有问题,因此误差修正模型也就应运而生了。
Problem:对于时间序列数据,如果通过平稳性检验为非平稳序列,能否建立经典计量经济学模型?Answer:需要对模型采用的非平稳时间序列进行协整检验。
一、长期均衡关系与协整经济理论指出,某些经济变量间确实存在着长期均衡关系这种均衡关系意味着经济系统不存在破坏均衡的内在机制。
假设和之间的长期“均衡关系”由下式描述:其中,是随机干扰项。
值得注意的是,在期末,存在下述三种情形之一:(1) 等于它的均衡值,即.(2) 小于它的均衡值,即.(3) 大于它的均衡值,即.注意到,如果正确地提示了与之间的长期稳定的"均衡关系",则意味着对其均衡点的偏离从本质上来说是"临时性"的,这个时候自然假设随机干扰项必须是平稳序列。
另外,非平稳的时间序列,它们的线性组合也可能成为平稳的。
Definition3.1一般地,如果序列都是阶单整的,存在向量,使得,其中,则认为序列是阶协整,记为,为协整向量。
注:(1)如果两个变量都是单整变量,只有它们的单整阶相同时,才有可能协整;(2)三个以上的变量,如果具有不同的单整阶,有可能经过线性组合构成低阶单整变量。
阶协整的经济意义:两个变量,虽然具有各自的长期波动规律,但是如果它们是阶协整的,则它们之间存在着一个长期稳定的比例关系。
二、协整的检验1.两变量的Engle-Granger检验(1987年恩格尔和格兰杰提出的两步检验法/EG检验法)(1,1)阶协整最令人关注,EG检验法正是为了检验两个均呈现1阶单整的变量是否为协整的。
第九章单位根与协整

9.7
其中, -1。则原假设与备择假设变为
H0:=0 vs H1: <0
对方程 9.7 使用OLS可得估计量ˆ及相应的t统计量
此t统计量称为ADF统计量(简记为ADF)。ADF统 计量的分布有没有解析解,其临界值也要通过蒙特 卡罗模拟得到。与DF检验一样,ADF检验也是左边 单侧检验,其拒绝域只在分布的最左边。
简记为DF统计量。 可以证明,DF统计量的渐近分布为布朗运动的函
数,并不服从渐近正态分布。由于其分布没有解
析解,故临界值须通过蒙特卡罗模拟来获得。
显然,DF统计量越小(绝对值很大的负数),则 越倾向于拒绝原假设。因此,DF检验是左边单侧 检验,即其拒绝域只在分布的最左边。比如,5% 的临界值为-2.886,如果DF<-2.886,则拒绝原 假设;反之,则接受原假设 2、Augmented Dickey-Fuller单位根检验(ADF检验)
中心极限定理不再适用。虽然p
lim
n
ˆ1=(1 仍为一
致估计),但在有限样本下可能存在较大偏差。
使用蒙特卡罗法可以得到ˆ1的大样本分布
2 传统的t检验失效:由于ˆ1不是渐近正态分布
t统计量也不服从渐近标准正态分布,传统的区间
估计与假设检验是无效的。更一般地,建立于平
稳性假设基础之上的大样本理论不再适用。
然而实际结果并非如此,因为扰动项
t=yt--
x
也是非平稳的(为什么?)
t
(因为 t=yt-)
这一结论最初由Granger通过蒙特卡罗模拟而发现。
t 之非平稳部分会进入到OLS模型中去,从而 造成ˆ 0。
如何避免伪回归?方法之一,先对变量作一阶差 分,然后再回归。(差分后平稳了)
协整与误差修正模型

1、误差修正模型
前文已经提到,对于非稳定时间序列,可通过差分的方 法将其化为稳定序列,然后才可建立经典的回归分析模型。 如:建立人均消费水平(Y)与人均可支配收入(X) 之间的回归模型:
Yt 0 1 X t t
如果Y与X 具有共同的 向上或向下 的变化趋势 X,Y 成为 平稳 序列
t t t
称为协整回归(cointegrating)或静态回归(static regression)。
e et Y 第二步,检验t 的单整性。如果 为稳定序列,则认为变量t , X t Y 为(1,1)阶协整; et 为 1 阶单整, 如果 则认为变量 t , X t 为(2,1)阶协整; „。
• MacKinnon(1991)通过模拟试验给出了协整检 验的临界值,表9.3.1是双变量情形下不同样本 容量的临界值。
表 9.3.1 样本容量 25 50 100 ∝ 双变量协整 ADF 检验临界值 显 著 性 水 平 0.01 -4.37 -4.12 -4.01 -3.90 0.05 -3.59 -3.46 -3.39 -3.33 0.10 -3.22 -3.13 -3.09 -3.05
•
例9.3.1 检验中国居民人均消费水平CPC与人均国内生 产总值GDPPC的协整关系。
在前文已知CPC与GDPPC都是I(2)序列,而§2.10中已 给出了它们的回归式
CPCt 49.764106 0.45831 GDPPC t
R2=0.9981
通过对该式计算的残差序列作ADF检验,得适当检验 模型
Yt 1X t vt
式中,vt=t-t-1。
实际情况往往并非如此
如果t-1期末,发生了上述第二种情况,即Y的值小于其 均衡值,则Y的变化往往会比第一种情形下Y的变化Yt 大一些; 反之,如果Y的值大于其均衡值,则Y的变化往往会小 于第一种情形下的Yt 。 可见,如果Yt=0+1Xt+t 正确地提示了X与Y间的长 期稳定的“均衡关系”,则意味着Y对其均衡点的偏离从 本质上说是“临时性”的。 因此,一个重要的假设就是:随机扰动项t 必须是平 稳序列。 显然,如果t有随机性趋势(上升或下降),则会导 致Y对其均衡点的任何偏离都会被长期累积下来而不能被 消除。
时间序列的协整检验与误差修正模型讲义

时间序列的协整检验与误差修正模型讲义时间序列的协整检验与误差修正模型是在经济学和金融学中广泛使用的方法,用于分析两个或多个变量之间的长期稳定关系。
本讲义将介绍协整检验的基本概念和步骤,并讨论误差修正模型的理论背景和实际应用。
一、协整检验1. 概念与原理协整是指两个或多个变量之间存在长期稳定的关系,即它们的线性组合是平稳的。
协整关系可以用来解释一个变量对另一个变量的影响,并提供长期均衡关系的信息。
协整检验的基本原理是利用单位根检验方法,测试变量是否存在单位根(非平稳性)。
如果变量存在单位根,则它们是非平稳的;如果变量不存在单位根,则它们是平稳的。
如果变量之间存在协整关系,它们的线性组合将是平稳的。
2. 协整检验的步骤协整检验的一般步骤如下:- 收集数据并绘制时间序列图,观察变量之间的趋势和关系;- 进行单位根检验,常用的方法包括ADF检验、Phillips-Perron检验等;- 如果变量存在单位根,则进行差分,直到变量变为平稳的;- 应用最小二乘法等方法,估计协整关系方程;- 进行残差平稳性检验,确保协整关系的合理性;- 如果协整关系存在,可以进行模型的进一步分析与应用。
二、误差修正模型(Error Correction Model, ECM)1. 概念与原理误差修正模型是一种动态模型,用于解释协整关系的调整速度和误差纠正机制。
在误差修正模型中,除了协整关系的线性组合外,还引入了误差修正项,用于捕捉变量之间的短期非平衡关系。
误差修正项反映了系统离开长期均衡后的调整速度,通过估计误差修正项的系数,可以判断系统是否有趋向于均衡的能力。
当误差修正项的系数为负数且显著时,表示系统具有自我修复的能力;当系数为零时,表示系统处于长期均衡状态;当系数为正数时,表示系统趋向于进一步偏离均衡。
2. ECM模型的应用误差修正模型可以用于解释和预测时间序列数据的长期和短期动态变化。
它在经济学和金融学中有广泛的应用,如货币供给与通货膨胀、利率与消费支出、汇率与经济增长等领域。
协整和误差修正模型

在式(5.4.3)两端减去 yt-1,在右边加减 2xt-1 得到 :
yt 0 (1 1) yt1 2xt (2 3 )xt1 ut
(5.4.7)
利用 2 + 3 = k1 (1 - 1), 0 = k0 (1 - 1),式
(5.4.7)又可改写成
yt (1 1)( yt1 k0 k1xt1) 2xt ut
(5.4.8)
令 = 1-1,则式(5.4.8) 可写成
yt ( yt1 k0 k1xt1) 2xt ut
(5.4.9) 上式称为误差修正模型 (error correction model,
简记ECM)。当长期平衡关系是 y* = k0 + k1x* 时,误 差修正项是如 (yt - k0- k1xt) 的形式,它反映了 yt 关于 xt 在第 t 时点的短期偏离。一般地,由于式(5.4.3)中
| 1|<1 ,所以误差项的系数 = ( 1-1) < 0,通常称
为调整系数,表示在 t-1 期 yt-1 关于 k0 + k1xt-1 之间
利用ADF的协整检验方法来判断残差序列是否平稳, 如果残差序列是平稳的,则回归方程的设定是合理的, 说明回归方程的因变量和解释变量之间存在稳定的均衡 关系。反之,说明回归方程的因变量和解释变量之间不 存在稳定均衡的关系,即便参数估计的结果很理想,这 样的一个回归也是没有意义的,模型本身的设定出现了 问题,这样的回归是一个伪回归。
y1t 2 y2t 3 y3t k ykt ut
模型估计的残差为Biblioteka uˆt y1t ˆ2 y2t ˆ3 y3t ˆk ykt
(2)检验残差序列ût是否平稳,也就是判断序列 ût是否含有单位根。通常用ADF检验来判断残差序列 ût是否是平稳的。
单位根、协整检验、误差修正模型及因果关系检验

单位根、协整检验、误差修正模型及因果关系检验问题:中国城镇居民月人均可支配收入(SR)和生活费支出(ZC)1992年至1998年各月度数据序列(见表1)。
表1 城镇居民月人均生活费支出和可支配收入序列序列月份1992 1993 1994 1995 1996 1997 1998可支配收入Sr1 151.83 265.93 273.98 370.00 438.37 521.01 643.402 159.86 196.96 318.81 385.21 561.29 721.01 778.623 124.00 200.19 236.45 308.62 396.82 482.38 537.164 124.88 199.48 248.00 320.33 405.27 492.96 545.795 127.75 200.75 261.16 327.94 410.06 499.90 567.996 134.48 208.50 273.45 338.53 415.38 508.81 555.797 145.05 218.82 278.10 361.09 434.70 516.24 570.238 138.31 209.07 277.45 356.30 418.21 509.98 564.389 144.25 223.17 292.71 371.32 442.30 538.46 576.3610 143.86 226.51 289.36 378.72 440.81 537.09 599.4011 149.12 226.62 296.50 383.58 449.03 534.12 577.4012 139.93 210.32 277.60 427.78 449.17 511.22 606.14生活费支出 Zc1 139.47 221.74 234.28 307.10 373.58 419.39 585.702 168.07 186.49 272.09 353.55 471.77 528.09 598.823 110.47 185.92 202.88 263.37 350.36 390.04 417.274 113.22 185.26 227.89 281.22 352.15 405.63 455.605 115.82 187.62 235.70 299.73 369.57 426.81 466.206 118.20 12.11 237.89 308.18 370.41 422.00 455.197 118.03 186.75 239.71 315.87 376.90 428.70 458.578 124.45 187.07 252.52 331.88 387.44 459.29 475.409 147.70 219.23 286.75 385.99 454.93 517.06 591.4110 135.14 212.80 270.00 355.92 403.77 463.98 494.5711 135.20 205.22 274.37 355.11 410.10 422.96 496.6912 128.03 192.64 250.01 386.08 400.48 460.92 516.16数据来源:转摘自易丹辉《数据分析与Eviews的应用》,中国统计出版社2002,P141。
单位根检验和误差修正模型-原理及应用(精)

第2卷第3期南京审计学院学报Journal o f N anjing A udit U niversityV ol. 2, No. 3单位根检验和误差修正模型:原理及应用崔到陵(南京审计学院商学院, 江苏南京 210029[摘要]本文对计量经济学中关于序列平稳性检验的单位根检验法、协整理论以及误差修正模型理论进行了梳理和归纳。
作为该理论的应用, 本文最后从实践的角度针对江苏省城镇居民收入和消费的历年数据进行了协整分析, 对消费函数模型进行了误差修正, 并进一步揭示了其中所蕴涵的经济和政策含义。
[关键词]单位根检验; 协整; 伪回归; 误差修正模型[中图分类号]F224. 0 [文献标识码]A [文章编号]16728750(2005 03001504自从2003年诺贝尔经济学奖得主恩格尔(R. F. Eng le 和格兰杰(C. W. J. Grang er 创造性地研究并提出序列的平稳性问题及建立在平稳性基础之上的单整、协整理论以来, 计量经济学家族中又增添了一个新的研究和分析序列之间相互依存关系的有力工具, 并且为剔除由普通最小二乘法(OLS 引发的/伪回归0问题提供了一个有效而独特的分析视角。
鉴于我国国内版计量经济学教材对这一理论的介绍大多较为抽象和笼统, 本文拟对这个问题作一番梳理和归纳, 并结合实例对非平稳序列之间的协整关系进行具体分析和探讨。
一、单位根平稳序列及检验(一单位根平稳序列的直观含义对于一个单一序列来说, 如果它的当期项可以表示成它的前一期项的线性形式, 且关于前一期项前的系数Q 的假设H 1:Q <1能够在统计意义上成立的话, 则称序列不存在单位根, 该序列是一个收敛的平稳序列, 或者称单位根平稳序列。
具体地说, 这里的线性形式包含了序列的三种[收稿日期]20050418形式的引力趋势线。
一种是, 序列X t 在X =0这一水平线上的平稳性。
也就是说, 如果序列X t 的散点最终收敛于X =0这条水平趋势线, 则称序列X t 是纯粹平稳序列, 此时, 有一阶自回归过程:X t =Q X t -1+u t , 且备择假设H 1:Q <1成立(或者说原假设H 0:Q =1被拒绝, 下同 ;第二种情况是, X t 在X =A 这一水平线上的平稳性。
单整_协整_误差修正模型

五 单位根检验、协整与误差修正模型【实验目的与要求】1.准确掌握单位根检验方程的形式和检验原理。
2.准确掌握单整、协整和误差修正模型的概念和形式。
3.学会利用单位根检验方法对样本序列进行协整关系检验。
4.熟练掌握运用误差修正模型对样本序列间的短期、长期关系进行分析。
5. 在老师的指导下独立完成实验,得到正确的结果,并完成实验报告。
【实验准备知识】在上个实验中,我们学习了如何运用相关分析图判断随机过程是否平稳,但这种方法比较粗略。
检验随机过程是否平稳的一种比较正式的方法就是单位根检验。
在介绍单位根检验之前,我们有必要认识几种典型的非平稳随机过程。
1. 几种典型的非平稳随机过程(1) 随机游走过程t t t u y y +=-1,t u ~ IID(0, 2σ) (5.1)随机游走过程上个实验已经介绍,这里不再赘述。
图5—1为一个00=y ,t u ~ IID(0, 1)的随机游走过程的序列图。
-8-6-4-2图5—1 一个随机游走过程的序列图(2) 随机趋势过程t t t u a y y ++=-1,t u ~ IID(0, 2σ) (5.2) 其中a 称作位移项或漂移项。
将上式作如下迭代变换:∑=---++==++++=++=t i it t t t t t u y at u a u a y u a y y 10121)( (5.3)可知,t y 由时间趋势项at 和∑=+t i i uy 10(可看作截距项)组成。
在不存在任何冲击t u 的情况下,截距项为0y 。
而每个冲击t u 都表现为截距的移动。
每个冲击u t 对截距项的影响都是持久的,导致序列的条件均值发生变化,所以称这样的过程为随机趋势过程或有漂移项的随机游走过程。
图5—2为一个t t t u y y ++=-3.01,00=y ,t u ~ IID(0, 1)的随机趋势过程的序列图。
图5—2 一个随机趋势过程的序列图图5—2表明,虽然总趋势不变,但该过程围绕趋势项上下游动。
时间序列的协整检验与误差修正模型

时间序列的协整检验与误差修正模型时间序列的协整检验与误差修正模型是经济学中常用的方法,用于分析两个或多个变量之间的长期关系。
协整检验是在时间序列数据中,判断变量之间是否存在长期平衡关系的一种方法。
误差修正模型是在协整关系已经验证的基础上,建立起变量之间的因果关系,对短期的偏离进行修正的模型。
协整检验的原理是基于单位根检验的思想,判断时间序列是否为平稳序列。
平稳序列是指序列的均值和方差不随时间发生变化。
如果两个变量都是非平稳序列,但它们的线性组合是平稳序列,那么可以认为这两个变量是协整的。
常用的协整检验方法有Engle-Granger方法和Johansen方法。
Engle-Granger方法是一种直观简单的协整检验方法。
它的步骤如下:首先,分别对两个变量进行单位根检验,确认它们是否为非平稳序列。
然后,对两个变量进行线性回归,得到残差序列。
接下来,对残差序列进行单位根检验,确认它是否为平稳序列。
最后,如果残差序列是平稳序列,则可以判断两个变量之间存在协整关系。
协整检验完成后,接下来可以建立误差修正模型。
误差修正模型是基于协整关系的基础上建立起来的,以短期的偏离修正为核心。
它的核心假设是,在长期平衡关系的约束下,两个变量之间的短期偏离可以通过一个修正项来消除。
误差修正模型的基本形式是多元线性回归模型,其中包含自变量、因变量以及一个误差修正项。
误差修正模型的估计和推断可以使用最小二乘法或最大似然法等统计方法进行。
通过对误差修正模型的估计和推断,可以对变量之间的因果关系进行分析。
同时,误差修正模型还可以用于预测和决策分析。
综上所述,时间序列的协整检验与误差修正模型是分析变量之间长期关系的重要工具。
协整检验可以判断变量是否具有长期平衡关系,而误差修正模型则可以分析变量之间的短期调整过程。
这些方法在经济学、金融学、管理学等领域都有广泛的应用。
时间序列的协整检验与误差修正模型是经济学中常用的方法,用于分析两个或多个变量之间的长期关系。
二、协整分析的模型和方法

二、协整分析的模型和方法协整分析是一种时间序列分析方法,主要用于研究两个或者多个非平稳时间序列之间的长期均衡关系。
这种方法能够避免模型中出现误差项之间的相关性,因此可以提高模型的可靠性和准确性。
协整分析方法主要涉及三个方面:单位根检验、协整关系的检验和误差修正模型的建立。
一、单位根检验单位根检验是协整分析的基础,也是时间序列分析的重要组成部分。
其主要目的是检验时间序列的平稳性,即时间序列的均值和方差是否稳定不变。
平稳性是时间序列分析的前提条件,因此单位根检验是协整分析的关键步骤。
常用的单位根检验方法包括ADF检验、Phillips-Perron检验、Kwiatkowski-Phillips-Schmidt-Shin检验等。
这些方法的基本思路都是比较时间序列原始值和其一阶差分值之间的差异,以此来判断时间序列的平稳性。
如果时间序列的原始值和一阶差分值之间存在长期的关系,则认为该序列为非平稳序列,否则认为该序列为平稳序列。
二、协整关系的检验协整分析的核心是协整关系的建立和检验。
协整关系是指在长期均衡状态下,两个或者多个非平稳时间序列之间存在稳定的线性关系,即它们的线性组合是平稳的。
如果两个非平稳时间序列之间存在协整关系,则说明它们之间具有长期的联动性,可以用于进行有效的预测和投资决策。
常用的协整关系检验方法包括Engle-Granger两步法和Johansen多元共整关系检验法。
Engle-Granger两步法主要包括两个步骤:首先通过单位根检验确定每个时间序列是否为非平稳序列,然后对这些序列进行线性组合,检验组合序列是否为平稳序列。
Johansen多元共整关系检验法则是对多个时间序列之间的协整关系进行检验,可以同时确定协整关系的个数和系数向量。
三、误差修正模型的建立误差修正模型是协整分析的最终目标,其主要作用是将非平稳时间序列转化为平稳时间序列,并通过建立长期均衡关系来进行预测和决策。
误差修正模型的建立基于协整关系的检验结果,从而确定协整关系的个数和系数向量。
时间序列的协整和误差修正模型

时间序列的协整和误差修正模型时间序列分析中,协整和误差修正模型是两个重要的概念。
协整是指两个或多个时间序列之间的长期关系,而误差修正模型是一种用来修正时间序列中的误差的模型。
协整是经济学家提出的一个概念,用来解决时间序列数据存在的非平稳性的问题。
在实际应用中,有很多时间序列数据是非平稳的,即其均值和方差不随时间变化而保持不变。
然而,这些非平稳的时间序列之间可能存在长期的关系,也就是说它们会随着时间变化而趋于稳定。
这种关系可以通过协整分析来检验和建模。
协整模型的一种常见形式是误差修正模型(Error Correction Model,ECM)。
误差修正模型是建立在协整模型的基础上的,它可以用来描述时间序列数据之间的长期关系,并且考虑了这些时间序列数据之间的短期变动。
在误差修正模型中,如果两个时间序列之间存在协整关系,那么它们之间的生成误差(随机扰动)会导致它们之间的偏离程度逐渐回归到长期均衡的水平。
因此,误差修正模型是通过引入误差修正项来解决协整关系中存在的短期波动的问题。
误差修正模型的基本思想是,当两个时间序列之间存在协整关系时,如果它们之间的误差超过一定的阈值,那么它们之间的误差就会被修正回长期均衡的水平。
这种修正过程可以通过引入一个误差修正项来实现,从而使得模型具备误差修正的能力。
总之,协整和误差修正模型是对时间序列数据进行建模和分析的重要工具。
协整可以用来检验和描述时间序列之间的长期关系,而误差修正模型则是在协整的基础上引入修正项,用来处理时间序列之间的短期波动。
这些方法在经济学和金融学等领域中具有广泛的应用价值。
协整和误差修正模型是时间序列分析中非常重要的概念。
协整是指两个或多个非平稳时间序列之间存在的长期关系,而误差修正模型则是通过引入误差修正项来描述时间序列的短期波动。
在实际应用中,许多经济和金融时间序列是非平稳的,即它们的均值和方差会随时间变化而发生变动。
这种非平稳性可能会导致误导性的统计结果,因为传统的统计方法要求时间序列数据是平稳的。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(1)实际中,多数经济时间序列都是非平稳的.
(2)某些非平稳经济时间序列的某种线性组合可能是平稳 的,即变量存在长期均衡关系。例如,净收入与消费、政府 支出与税收等。
(3)如果若干个I(1)序列的某种线性组合是平稳的,则称具 有协整性。协整概念是理解经济变量存在长期均衡关系的基 础。
10000 8000 6000 4000 2000
DF检验法是由Dickey-Fuller于1979年提出的。这方法只 适用于AR(1)过程且要求ut同方差性且相互独立。这对序列要求 很严格,许多时间序列难以满足。
yt yt1 ut (t 1,2, , n() 1) 式中,ut ~ IID(0, 2 ).由B J模型可知, 1, yt为平稳过程; =1, yt为随机游走过程,有一个单位根,故yt ~ I (1), 而yt ~ I (0); 1, yt为强非平稳,yt仍为非平稳过程。
二、 单位根检验
平稳性检验的方法可分为两类:传统方法和现代方法。 前者使用自相关函数(Autocorrelation function),后者使用单 位根(Unit roots)。单位根方法是目前最常用的方法。对单位 根的检验就是对随机过程平稳性的检验,也是对随机过程单 整阶数的检验。
1.单位根检验的DF法(只适用于AR(1))
(a) 对(1)式进行回归,用"ols"法估计参数;
(b)
计算DF统计量,DF
ˆ 1 Se( ˆ )
(c) 设定零假设和备择假设。H 0 : 1, yt非平稳 H1 : 1, yt平稳(左侧假设检验)
(d ) 判断:对于样本,DF 临界值,接受H0,yt为非平稳; DF 临界值,接受H1,yt为平稳。
❖ 协整定义:
设xt=(x1t x2t …xNt)T是N1阶时序向量。 (1)如果xt中的元素都是I(d)的; (2)若存在一个N1阶列向量B(B0),使得BTXt~I(d-b),则 称xt中各分量是d、b阶协整,记为CI(d, b)。这里CI是协整 的符号。构成N个变量的线性组合的系数向量B称为“协整 向量”,其中的元素称为协整参数。协整向量的个数称为Xt 的协整秩。
yt = + yt-1 + ut
yt = + t + yt-1 + ut
也可以把检验式写成如下形式
yt = 0+ yt-1 + ut
(7)
yt = 0+ t + yt-1 + ut
(8)
检验用临界值可查表。
2.增项的单位根检验ADF
DF检验只有当序列为AR(1),且残差为白噪声过程时 才有效。如果序列存在高阶滞后相关,用AR(1)模型描述经济 时间序列是有困难的,且误差项ut常常是序列相关的。在这种 情况下,为使单位根检验更具有实用性,Dickey-Fuller提出 了增项单位根检验方法,称为增项或扩展的Dickey-Fuller检 验,简称ADF检验。
第九章 单位根、协整检验与误 差修正模型
第一节 单整与单位根检验
一、单整性的定义
单整性:对于随机过程{xt},如果经过d次差分后变成 一个平稳、可逆的ARMA过程,而经过d-1次差分后仍是非 平稳过程,则称此过程具有d阶单整性,记为xt~I(d)。
若xt经过一次差分变为平稳序列,记为xt~I(1);同理,若 xt经过二次差分变为平稳序列,记为xt~I(2)。
【注意】:
第一,协整向量是不唯一的;第二,最多可能存在k-1 个线性无关的协整向量;第三,协整变量之间具有共同的趋 势成份,在数量上成比例。
【例析】
+bUt1~、I(如1)果;存Q在t =:cWWtt
~ I (1),Vt ~ +ePt ~ I (0)
I。(2则),U:t ~VtI,
(U2t)~且CIP(?t ,=?a) V;t
注意:
1.如果两个变量皆为单整变量,当且仅当它们的单整阶 数相同时,才可能存在协整关系;如果单整阶数不同,则不 可能存在协整关系。
2.当xt中含有N>2个分量时,则有可能存在多个协整向量。 如果存在r(1<rN)个线性独立的协整向量,则这些协整向量 可组成一个Nr阶矩阵B,称B为协整矩阵,B的秩为r。
右图中的两个变量随时间呈相同规模变化,两个变量的 单整阶数相同,它们的线性组合有可能是平稳的,此图直观 地表达了协整概念。
二、协整的概念(Cointegration)
协整概念是20世纪80年代由恩格尔-格兰杰(EngleGranger)提出的。协整理论为在两个或多个非平稳变量 间寻找均衡关系,以及用存在协整关系的变量建立误差 修正模型奠定了理论基础。
ADF检验原理与DF检验相同,只是对模型(9)、 (10)、(11)进行检验时,有各自相应的临界值。
注意:1.选择滞后差分项 yt i个数k的原则是:(1)应尽量小, 从而节省自由度;(2)应尽量大,从而消除误 差项中存在 的自相关。通常采用 AIC准则来确定滞后阶数。 2.当时间序列为AR(p)过程,或者进行 DF检验时发现 存在序列相关,应改用 ADF检验。实际经济时间序 列一 般不会是AR(1)过程,所以ADF检验是常用的检验方法 。 3.此检验方法还应注意数 据生成系统在整个样本 区间内 都应该是稳定的。皮荣 (Perron,1989)指出当一个时间 序列在取值大小或趋势 上受外来因素影响,无 论是在 样本区间的任何时候发 生突变,即使变化前后 的两段 时间内都各自表现出平 稳性,仍会使单位根检 验的功效 大大降低。检验结果很 可能使该序列非平稳。
在零假设(序列非平稳)下,即使在大样本下DF统计量也 是有偏倚的(向下偏倚,呈现围绕小于零值的偏态分布),所以 DF检验与传统的t检验不同,DF统计量不服从正态分布,也不 服从t分布,Dicky和Fuller于1976年提出了这一情形下统计量 服从的分布,其临界值可查表。
上述 DF 检验还可用另一种形式表达。(1)式两侧同减 yt-1,得
ˆi yt i ut (10)
i 1
k
yt t yt 1 ˆi yt i ut (11) i 1
当AR( p)中,p 1或ut不独立时,使用此方法。
三个模型检验的假设都是:H1: ρ<0,检验H0:ρ=0,即 存在一单位根。实际检验时从模型3开始,然后模型2、模型 1;何时检验拒绝零假设,何时检验停止。否则,就要继续 检验,直到检验完模型1为止。
40000 30000 20000 10000
0
90
92
94
96
98
00
02
RINCOME
UINCOME
0
90
92
94
96
98
00
02
EX
IM
左图表示1989至2003年我国非农业居民与农业居民的人均 收入水平;右图给出我国年进、出口总额序列。很明显两个图 中四个时间序列都是非平稳的。
左图中rincome与uincome之间随时间变化相距越来越远, 可见两者之间不可能存在均衡关系。
yt yt1 ut ut ~ IID(0, u 2 )(, 2)
E(uiv j ) 0, i, j
(3)
其
中x
t与y
是两个互
t
不
相
关的随机游走过程。vt
和ut
分别服从独立同分布。因为x t和yt互不影响,所以
如下模型
yt 0 1xt wt (4) 中1的估计量ˆ1的分布应该趋于零。但实际上并非
yt = ( -1) yt-1 + ut ,
(4)
令 = - 1,代入上式,
yt = yt-1 + ut ,
(5)
与上述零假设和备择假设相对应,用于模型(5)的零假设和备择假设是
H0: = 0, ( yt 非平稳) H1: < 0, ( yt 平稳)
这种变化并不影响 DF 统计量的值,所以检验规则仍然是 若 DF > 临界值,则 yt 是非平稳的; 若 DF < 临界值,则 yt 是平稳的。
模型(1)的好处是便于理论分析,但对于实际经济 问题来说,模型要求太严格,很难用于描述经济时间 序列,为此提出如下两个模型:
yt yt1 ut (2) yt t yt1 ut (3) 式中y0 0,ut ~ IID(0, 2 ), -位移项,t-趋势项。
单位根的检验方法与步骤:
Wt, Pt~CI(?, ?)
2、什么情况下序列Yt, Xt的线性组合a1Yt+a2Xt是平稳的? 线解性:组当合Y是t,平X稳t~的CI。(d, d)时,其线性组合属于I(0),进而
且 该E线(性ε3t)、组=已合0知能。Y代试t,表问X长Yt~t 期与I(均1X)t衡协,关整其系吗线吗?性?若组是合则ε协t=Y整t-β向0-量β1是Xt什~么I(0?), 解:Yt,Xt~CI(1, 1),协整向量是(1, -β0, -β1),能。
若将zt经过d次差分,即d zt d xt d yt 若将zt经过c次差分,即c zt c xt c yt, d zt和c zt过程平稳吗? 这说明当任何两个随机过程相加时,所得过程的 单整阶数与原被加过程中单整阶数较高的一个过 程的阶数相同,即zt ~ I (max{d, c})。
若干个同阶非平稳过程的线性组合过程的单整阶数低于 原非平稳过程的单整阶数,这说明在该若干个同阶非平稳过 程之间存在协整关系。这种情形在后面讨论。
第二节 协整与误差修正模型
一、虚假回归 当用两个相互独立的非平稳时间序列建立回归模型时, 常常得到一个具有统计显著性的回归函数,称为虚假回归 (格兰杰-纽博尔博Grange-Newbold,1974年提出) 。 例:给定数据生成系统如下:
xt xt1 vt vt ~ IID(0, v2 )(, 1)
如此,以(1)(3)式作为数据生成系统,模拟200