汽车理论 第四章

合集下载

汽车理论 余志生第四章

汽车理论 余志生第四章

授课章节::
5.3汽车的制动效能及其恒定性
目的要求:
掌握制动效能的评价指标;了解对制动距离 的分析;了解影响制动效能恒定性的因素。
重点难点:
制动效能的评价指标
参考书目:
余志生.汽车理论.P102-108
第三节 汽车的制动效能及其恒定性 评定制动效能的指标 制动距离s和制动减速
度ab。
一、制动距离与制动减速度 1. 制动距离 制动距离 指的是汽车速度为u0时,从驾驶员
(4)两种附着能力很小的情况 刚开始下雨和滑水现 象出现时。 1)刚开始下雨,路面上只有少量雨水时 此时,雨水与路面上的尘土、油污相混合,形成粘度 高的水液,滚动的轮胎无法排挤出胎面与路面间的水液膜; 由于水液膜的润滑作用,附着性能将大为降低,平滑的路 面有时会同冰雪路面一样滑溜。 2)滑水现象 在某一车速下,积水中行驶的汽车, 车轮接地面下动水压力的升力等于垂直载荷时,轮胎将完 全漂浮在水膜上面而与路面毫不接触,这种现象叫做滑水 现象。 动水压力 高速滚动的车轮迅速排挤水层,由于惯性, 接触区的前部水中产生动压力,其值与车速的平方成正比。 滑水现象减小了轮胎与地面的附着能力,影响汽车的 制动、转向等性能。
结论: 制动时若能使滑动率 保持在较低值(15%~20 %之间),便可获得较大 的制动力系数与较高的侧 向力系数。这样,制动性 能最好,侧向稳定性也很 好。 ABS能实现这个要求, 能显著地改善汽车在制动 时的制动效能与方向稳定 性。
(3)附着系数的数值主要取决于道路的材料、 路面的状况、轮胎的结构、胎面花纹、轮胎的材料和 行驶车速。
(3)制动跑偏和制动侧滑的联系: 严重的跑偏会引起后轴的侧滑,容易发生侧滑的汽车 也加剧跑偏。 单纯制动跑偏时后轮沿前轮轨迹运动。制动跑偏引 起制动侧滑时前后轮的行驶轨迹不重合。

《汽车理论》教案4-汽车制动性

《汽车理论》教案4-汽车制动性

3. 汽车的制动效能及其恒定性(60’)
(1)制动减速度(10’) 1)车辆制动时整车受力分析 2)最大制动减速度的推导
abmax s g , abmax p g
3)平均制动减速度 (2)制动过程分析(15’) 1)制动踏板力、汽车制动减速度与制动时间的关系曲线 2)阶段划分 驾驶员反应时间
(7)同步附着系数φ0 的选择(15’)
4
预习 思考题
《汽车理论 A》教案
1)轿车同步附着系数φ0 的选择 2)货车同步附着系数φ0 的选择 本章节的重点,介绍完轿车的φ0 选择后采用提问式教学让学生 自己分析货车φ0 的选择 (8)对前、后制动器制动力分配的要求(15’) ECE 制动法规 (9)制动力的调节(15’) 1)限压阀 2)比例阀 3)感载比例阀、感载射线阀 (10)制动防抱死系统(ABS)(40’) 1)ABS 的理论依据 2)ABS 的优缺点 3)ABS 的基本组成 4)ABS 的液压原理 5)ABS 的控制原理 ABS 的理论依据和优点是本章节的重点,应认真分析到位。结 合视频文件和实际案例进行教学 本章共 10 学时,5 次课,各次课的预习思考题: 第 1 次课预习思考题 汽车制动性从哪些方面进行评价? 什么是地面制动力、制动器制动力?它们和附着力的关系如何? 什么是滑动率? 什么是制动力系数?它与滑动率的关系如何? 什么是侧向力系数?它与滑动率的关系如何? 影响制动力系数的因素有哪些? 第 2 次课预习思考题 制动过程分成哪几个阶段?哪几个阶段与制动距离有关? 盘式制动器和鼓式制动器的制动性能比较? 什么制动跑偏?其产生原因有哪些? 前后轴的抱死次序有哪几种?各是何含义? 什么制动侧滑?哪种情况下易发生制动侧滑?为什么? 第 3 次课预习思考题 什么情况下会发生失去转向能力? 制动时地面对前、后车轮的法向反作用力的计算公式(4-6)与(4-7)的

汽车理论:第四章 汽车制动性作业(答案)

汽车理论:第四章 汽车制动性作业(答案)

m du dt
=
FXb1
+ FXb2
=
FZ1ϕ
+ 0.5FZ1ϕ
= 1.5FZ1ϕBiblioteka 3)汽车的制动减速度由
m
du dt
= 1.5FZ1ϕ
=
1.5ϕ L
(Gb +
m du dt
hg )
可得
(1 − 1.5ϕhg )m du = 1.5ϕ Gb L dt L
du =
1.5ϕGb
= 1.5ϕgb = 1.5 × 0.7 × 9.8 × 1.1
答:
开始制动时,前、后制动器制动力 Fu1、Fu2 按 β 线上升,因前、后车轮均未抱死,故 前、后轮地面制动力 FXb1= Fu1、FXb2= Fu2 也按 β 线上升。
到 B 点时, β 线与ϕ = 0.7 的 r 线相交,地面制动力 FXb1、FXb2 符合后轮先抱死的状
况,后轮开始抱死。
从 B 点以后,再增加制动踏板力,前、后制动器制动力 Fu1、Fu2 继续按 β 线上升,因 前轮未抱死,故前轮地面制动力 FXb1= Fu1 仍按 β 线上升,但因后轮已抱死,故其地面制动 力 FXb2 不再按 β 线上升,而是随着 FXb1 的增加而沿ϕ = 0.7 的 r 线变化而有所减小。
解: 1)质心至前轴的距离
a = L − b = 2.8 −1.1 = 1.7 m
制动时汽车的受力图
2)忽略汽车的滚动阻力偶矩、空气阻力以及旋转质量减速时产生的惯性力偶矩,根据汽车 在水平路面上制动时的受力分析可得
FZ1
=
1 L
(Gb
+
m
du dt
hg
)
FZ 2

汽车理论课件第四章

汽车理论课件第四章
➢ 抗制动衰退的性能—经长时间、高强度的制动后,或者制动器涉 水以后,制动效能不致过分降低的能力。即定义中的“可靠”。 感性认识,了解《GB 7258-2017 机动车运行安全技术条件》
相关项目及限值要求。P118-119 注意,标准规定了“…附着系数大于等于0.7”的条件,这是
为了在统一的试验条件下重点体现车辆的性能。在本章研究中,并 不限定路面条件,路面条件对制动性的影响是一个重要研究内容。
未制动
制动时
紧急制动时,力矩FXb r使前轴向前转。前板簧刚度较低,则转 角θ较大;且上述球销距轴心较高 位移δ=hθ应较大,例如3mm。
该球销又与转向纵拉杆相连,只能在转向杆系的间隙和弹性的
容许下稍许向前运动,例如δ’=2mm 相对于无跑偏的δ=3mm , 球销向后运动了1mm 。于是车轮向右转。
真实的
汽车理论 吉林大学汽车工程学院
3
§4-2 制动力分析
真正使汽车减速的是地面制动力FXb。
地面制动力实际上同时受到两对摩擦副的限制:
➢ 制动器内部摩擦副。该摩擦副产生制动器制动力Fμ,在给定制
动系参数的条件下,Fμ取决于制动踏板力Fp。
➢ 轮胎—地面摩擦副。两者之间的纵向力不会超过附着力Fϕ (FZ ϕ)。
比较常见的一个指标是充分发出的平均减速度,符号为MFDD, 单位为m/s2。
其含义是:制动全过程的车速由u0 (km/h)变化到0,其中 0.8u0 →0.1u0就是制动效能的“充分发出”阶段,将此阶段看做匀 减速过程而得到的平均值,就得到:
MFDD (0.8u0 )2 (0.1u0 )2 25.92S
换言之,地面制动力FXb等于制动器制动力Fμ与附着力Fϕ二者
中的较小者。
当制动踏板力Fp不大时,车轮未抱死

汽车理论第四章

汽车理论第四章

ig1

mg(
f
cosmax sin max Ttqmax i0T
)r
货车的最大爬坡度约为30%,约为16.7°。
二、根据驱动轮与路面的附着力确定一挡传动比
Ft max
Ttqmax ig1i0T
r
F
通常取=0.5 ~ 0.6
三、根据最低稳定车速确定一挡传动比
取ig1除了应满足要求外,还要考虑
有的国家对汽车的比功率有规定,以保证 路上行驶的汽车动力性不低于一定的水平, 防止阻碍正常交通流。
发动机选型
• 考虑因素
1.动力性指标 2.耐久性指标 3.经济性指标 4.重量指标 5.先进性指标
第二节 最小传动比的选择
一、最小传动比的选择
汽车大部分时间以 最高挡行驶,也就是用 最小传动比的挡位行驶 的,因此最小传动比的 选定是很重要的。
i0
Pe
i03
i02
i01
Pe ua max2
ua m ax3
ua m ax1
u p3 u p2 u p1
ua
不同时的汽车功率平衡图
选择不同的 i0 对汽车最高车速、汽车
的后备功率、汽车燃油经济性、汽车驾驶 性能有很大的影响。
(一)最高车速
(二)汽车的后x 选定最小传动比
2 .汽车比功率(单位汽车质量具有的功率)
汽车比功率
1000 Pe m

fg
3.6T
ua max
CD A
76 .14 mT
u3 a max
占中4型0货%车。的比功率约为10kW/t,其中Ff约
A/m项,m增加,A增加有限,因此, A/m随总质量的增加而减少(2~3m2)。

汽车理论第四章

汽车理论第四章
28
第三节 汽车的制动效能及 其恒定性
中国行业标准采用平均减速度的概念
1 a at dt t 2 t1 t1
t1—制动压力达到75%最大压力
t2
pa max 的时刻;
t2—到停车时总时间的2/3的时刻。
29
第三节 汽车的制动效能及 其恒定性 ECE R13和GB7258采用的是充分发出的平均减速度(m/s2)
1 2 abmax 2 6
33
第三节 汽车的制动效能及 其恒定性
2.持续制动阶段汽车驶过的距离s3
持续制动阶段汽车以 abmax 作
匀减速运动,其初速度为 ue ,末 s u 2 / 2a 3 e bmax 速度为零。
1 2 ue u0 k 2 2 将 代入 abmax k 2
39
第三节 汽车的制动效能及 其恒定性
抗热衰退性能主要与制动器摩擦副材料及制动器结构有关。
1)摩擦副材料
制动鼓和制动盘用铸铁。
摩擦片用无石棉或半金属材料。
温度/℃
温度/℃
40
第三节 汽车的制动效能及 其恒定性 保时捷911使用了特殊的陶瓷制动盘
制动距离/m
保时捷911 冷 /热 34.1/34.1 11.3/11.3
当 2 时
1 2 ue u0 k 2 2
当 ''时,将k
u0 2 s2 1 2 abmax 2 6
ab max
'' 2
代入
当τ=0 时,s=0
s u0
1 3 k 6
s2 s2 s2
u0 2 s2 u0 2
10
第二节 制动时车轮的受力

汽车理论最新版课后答案第4章

汽车理论最新版课后答案第4章

第四章 汽车的制动性4.1一轿车驶经有积水层的一良好路面公路,当车速为100km/h 时要进行制动。

为此时有无可能出现划水现象而丧失制动能力?轿车轮胎的胎压为179.27kPa 。

解:由Home 等根据试验数据给出的估算滑水车速的公式:6.3484.9/h u km h ===所以车速为100km/h 进行制动可能出现滑水现象。

4.2在第四章第三节二中,举出了CA700轿车的制动系由真空助力改为压缩空气助力后的制动试验结果。

试由表中所列数据估算'''221ττ+的数值,说明制动器作用时间的重要性。

注:起始制动速度均为30km/h分析:计算'''2212ττ+的数值有两种方法。

一是利用式(4-6)进行简化计算。

二是不进行简化,未知数有三个,制动器作用时间'''222()τττ+,持续制动时间3τ,根据书上P79页的推导,可得列出制动时间、制动距离两个方程,再根据在制动器作用时间结束时与车速持续制动阶段初速相等列出一个方程,即可求解。

但是结果表明,不进行简化压缩空气-液压制动系的数值无解,这与试验数据误差有关。

解:方法一(不简化计算):制动时间包含制动器作用时间'''222()τττ+,持续制动时间3τ。

223'''t τττ++= ①制动距离包含制动器作用和持续制动两个阶段汽车驶过的距离2s 和3s22022max 21(''')''6b s u a τττ=+-,2max332b a s τ=,总制动距离:22max 22022max 231(''')''62b b a s s s u a ττττ=+=+-+ ②在制动器作用时间结束时与车速持续制动阶段初速相等0max 2max 31''2b b u a a ττ-=③方程①②③联立可得:22max'')2o b u s a τ=-,''032max 12b u a ττ=-,223'''t τττ=-+。

汽车理论第四章

汽车理论第四章

制动跑偏
(2)悬架导向杆系与转向杆系在运动上的干涉,主要是设 计因素造成的,比当出现后轮制动时抱死且侧滑,而前轮虽受到制动力但仍 继续滚动时,其受力情况可用图4-10b)表示。
制动时前轴侧滑
如制动时发生前轮抱死而后轮滚动,则其运动和受力情况 如图4-10a)所示。
汽车制动性能的内容包括以下:
(1)使汽车减速,必要时可使其在短距离内停车且维持 行驶方向的稳定性。 (2)在下长坡时能维持一定车速。 (3)对已停驶(特别是在坡道上停驶)的汽车,可使其可 靠地驻留原地不动。 前两方面主要指行车制动,第三方面指驻车制动。
1)汽车制动性能的评价指标:
(1)制动效能,即制动距离和制动减速度。 (2)制动效能的恒定性,即抗热衰退与水衰退性能。 (3)制动时的方向稳定性,即汽车在制动时不发生跑偏、 侧滑及不丧失转向的能力。 为了讨论以上各项指标,首先要分析制动过程中汽车,特 别是车轮的受力情况。
制动距离与制动减速度
制动距离与制动减速度
对制动减速度仅有欧洲经济委员会提出要求,因为制动中 减速度是变化的,故ECER13和GB7258采用的是充分发 出的平均减速度(m/s2)。
制动减速度的最大值与地面附着力及制动系是否有防抱装 置有关。 若设计中规定汽车前、后车轮能同时抱死,则 :
制动距离与制动减速度
制动距离与制动减速度
t3是驾驶员踩踏板的力继续增大,制动压力也迅速增长, 从而制动减速度也随之迅速增长直至最大减速度abmax的时 间,在此过程中车速由va0减至va2 ,这段时间称制动力增 长时间,它与制动器形式有关。 液压制动系:0.15~0.3sꎻ 气压制动系:0.3~0.8s。
t4是持续制动时间,如踏板力保持不变,其减速度基本不 变,直到汽车停住为止。va=0由此可见,从驾驶员发现停 车信号,制动至停车所需时间应为:

汽车理论第四章

汽车理论第四章
第四章 汽车的制动性
本章内容
摘要 第一节 制动性的评价指标 第二节 制动时车轮的受力 第三节 汽车的制动效能及其恒定性 第四节 制动时汽车的方向稳定性 第五节 前、后车轮制动器制动力的比例关系 第六节 汽车制动防抱装置 第七节 驻车制动性 第八节 汽车制动性试验
实例 总结 思考题
摘要
➢ 汽车的制动性是汽车的主要使用性能之一,直接关系到交 通安全。重大交通事故往往与制动距离太长、制动时发生 严重侧滑或方向失控、下长坡制动稳定性差等情况有关。 因此改善汽车的制动性始终是汽车设计制造和使用部门的 重要任务。
三、具有固定比值的前、后车轮制动器制动力与同步附着系 数
不少两轴汽车的前、后车轮制动器制动力之比为固定常数。
常用前轮制动器制动力与汽车总制动器制动力之比来表明
制动力分配的比例,称为制动器制动力分配系数,用β表
示 ,即
β F1
F
式中 F1 ——前轮制动器别动力;
F——汽车总制动器制动力,F F1 F2 ,F2 为后制 动器制动力
第三节 汽车的制动效能及其恒定性
汽车的制动效能是指汽车迅速降低车速直至停车的能力。评定制动效 能的指标是制动距离S(m)、制动减速度j(m/s2)和地面制动力Fxb(N) 。 一、制动效能的评价指标 ➢ 制动距离
制动距离与汽车的行驶安全有直接的关系。它指的是汽车在附着性 能 停车良为好的止水汽车平所路驶面过上以的车距离速。u0滑制行动时距,离从与驾汽驶车员制踩动着前制的动车踏速板、开制始动到踏 板力、路面附着条件以及制动系统的型式有关。
➢ ABS一般由轮速传感器、电子控制 器与压力调节器三部分组成,如右 图
第七节 驻车制动性
➢ 汽车的驻车制动性是衡量汽车长期停放在坡道上的能力。 驻车制动一般靠手操纵的驱动机构使后轴制动器或中央制 动器产生制动力矩并传到后轮,路面对后轮产生地面制动 力,以实现整车制动(即驻车制动)。

汽车理论第四章

汽车理论第四章

18、雨天行车制动时,车轮很容易抱死拖滑,这是由于路面附着系数过大。 ( 19、汽车制动时,轴荷重新分配的结果是后轴载荷增加,前轴载荷下降。 ( 曲线。 ( 曲线。 ( ) ) )

20、f 线组是前轮没有抱死,在各种附着系数值路面上后轮抱死时的前、后地面制动力关系 21、r 线组是后轮没有抱死,在各种附着系数值路面上前轮抱死时的前、后地面制动力关系
) 。 C.双领蹄制动器 ) 。 C.双领蹄制动器 ) 。 B.前、后轮同时抱死拖滑 D.后轮先抱死拖滑,然后前轮 ) 。 D.双向自动 D.双向自动
13、前、 后制动器制动力为固定比值的汽车, 在同步附着系数路面上制动时将出现 ( A.前轮抱死,后轮不抱死 C.前轮先抱死,然后后轮抱死 B.前、后轮同时抱死
10、在下列制动器中,制动效能的稳定性最好的是( A.盘式制动器 增力蹄制动器 11、在下列制动器中,制动效能的稳定性最差的是( A.盘式制动器 增力蹄制动器 12、相对来讲,制动时附着条件利用较好的情况是( A.前轮抱死拖滑,后轮不抱死 C.前轮先抱死拖滑,然后后轮抱死拖滑 抱死拖滑 B.领从蹄制动器 B.领从蹄制动器
五、问答与分析论述题
1、 汽车制动跑偏是由哪些原因造成的? 2、 作图分析论述制动力系数与滑动率之间的关系。 3、 作图分析论述“后轮侧滑比前轮侧滑更危险”的道理。 4、 设某汽车的同步附着系数为 0.5,试分析该车在附着系数为 0.3 的路面上制动时的制动 过程。 (作图分析) 5、 设某汽车的同步附着系数为 0.5,试分析该车在附着系数为 0.7 的路面上制动时的制动 过程。 (作图分析)
11、f 线组是后轮没有抱死,在各种附着系数值路面上前轮抱死时的前、后地面制动力关系 12、r 线组是前轮没有抱死,在各种附着系数值路面上后轮抱死时的前、后地面制动力关系 ( 13、 线位于 I 曲线下方,制动时总是后轮先抱死。 ( 14、 线位于 I 曲线上方,制动时总是前轮先抱死。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第四章4.1 一轿车驶经有积水层的—良好路面公路,当车速为100km/h 时要进行制动。

问此时有无可能出现滑水现象而丧失制动能力?轿车轮胎的胎压为179.27kPa 。

答:假设路面水层深度超过轮胎沟槽深度估算滑水车速:i h p 34.6=μ i p 为胎压(kPa ) 代入数据得:89.84=h μkm/h而h μμ> 故有可能出现滑水现象而失去制动能力。

4.2在第四章第三节二中.举出了CA700轿车的制动系由真空助力改为压缩空气助力后的制动试验结果。

试由表中所列数据估算''2'221ττ+的数值,以说明制动器作用时间的重要性。

提示:由表4-3的数据以及公式max202292.2526.31b a a a u u s +⎪⎭⎫ ⎝⎛''+'=ττ 计算''2'221ττ+的数值。

可以认为制动器起作用时间的减少是缩短制动距离的主要原因。

4.3一中型货车装有前、后制动器分开的双管路制功系,其有关参数如下; 1)计算并绘制利用附着系数曲线与制动效率曲线。

2)求行驶车速30km/h ,在.0=ϕ80路面上车轮不抱死的制动距离。

计算时取制动系反应时间s 02.0'2=τ,制动减速度上升时间s 02.0''2=τ。

3)求制功系前部管路损坏时汽车的制功距离,制功系后部管路损坏时汽车的制功距离。

答案:1)前轴利用附着系数为:gf zh b zL +=βϕ 后轴利用附着系数为: ()gr zh a z L --=βϕ1空载时:g h b L -=βϕ0=413.0845.085.138.095.3-=-⨯ 0ϕϕ> 故空载时后轮总是先抱死。

由公式()Lh La zE g r rr /1/ϕβϕ+-==代入数据rrE ϕ845.0449.21.2+=(作图如下)满载时:g h b L -=βϕ0=4282.017.1138.095.3=-⨯ 0ϕϕ<时:前轮先抱死L h Lb zE g f ff //ϕβϕ-==代入数据f E =fϕ17.1501.11-(作图如下)0ϕϕ>时:后轮先抱死 ()Lh La zE g r rr /1/ϕβϕ+-==代入数据r E =rϕ17.1449.295.2+(作图如下)2)由图或者计算可得:空载时 8.0=ϕ制动效率约为0.7因此其最大动减速度g g a b 56.07.08.0max =⨯= 代入公式:max202292.2526.31b a a a u u s +⎪⎭⎫ ⎝⎛''+'=ττg56.092.253030202.002.06.312⨯+⨯⎪⎭⎫ ⎝⎛+==6.57m 由图或者计算可得: 满载时 制动效率为0.87因此其最大动减速度g g a b 696.087.08.0max '=⨯= 制动距离max202292.2526.31b a a a u u s +⎪⎭⎫ ⎝⎛''+'=ττg696.092.253030202.002.06.312⨯+⨯⎪⎭⎫ ⎝⎛+==5.34m3)A.若制动系前部管路损坏 Gz dt dug G F xb ==2)(2g z zh a LGF -=⇒后轴利用附着系数 gr zh a Lz -=ϕ⇒后轴制动效率Lh La z E g r rr /1/ϕϕ+==代入数据得:空载时:r E =0.45满载时:r E =0.60a)空载时 其最大动减速度g g a b 36.045.08.0max =⨯=代入公式:max202292.2526.31b a a a u u s +⎪⎭⎫ ⎝⎛''+'=ττg36.092.253030202.002.06.312⨯+⨯⎪⎭⎫ ⎝⎛+==10.09mb)满载时 其最大动减速度g g a b 48.06.08.0max =⨯=代入公式:max202292.2526.31b a a a u u s +⎪⎭⎫ ⎝⎛''+'=ττg48.092.253030202.002.06.312⨯+⨯⎪⎭⎫ ⎝⎛+==7.63mB .若制动系后部管路损坏 Gz dt dug G F xb ==1)(1g z zh b LGF +=⇒前轴利用附着系数 gf zh b Lz +=ϕ⇒前轴制动效率Lh Lb zE g f ff /1/ϕϕ-==代入数据 空载时:f E =0.57 满载时:f E =0.33a)空载时 其最大动减速度g g a b 456.057.08.0max =⨯=代入公式:max202292.2526.31b a a a u u s +⎪⎭⎫ ⎝⎛''+'=ττg456.092.253030202.002.06.312⨯+⨯⎪⎭⎫ ⎝⎛+==8.02mb)满载时 其最大动减速度g g a b 264.033.08.0max =⨯=代入公式:max202292.2526.31b a a a u u s +⎪⎭⎫ ⎝⎛''+'=ττg264.092.253030202.002.06.312⨯+⨯⎪⎭⎫ ⎝⎛+==13.67m4.4在汽车法规中,对双轴汽车前、后轴制功力的分配有何规定。

说明作出这种规定的理由?答:为了保证制动时汽车的方向稳定性和有足够的制动效率,联合国欧洲经济委员会制定的ECE R13制动对双轴汽车前、后轮制动器制动力提出了明确的要求。

我国的行业标准ZBT240007—89也提出了类似的要求。

下面以轿车和最大总质量大于3.5t的货车为例予以说明。

法规规定:对于8.0ϕ之间的各种车辆,要求制动强度=~2.0+≥ϕz1.0-.0(85)2.0车辆在各种装载状态时,前轴利用附着系数曲线应在后轴利用附着系数曲线之上。

对于最大总质量大于3.5t的货车,在制动强度3.0z之间,=15~.0每根轴的利用附着系数曲线位于08ϕ两条平行于理想附着系数直线=z.0±的平行线之间;而制动强度3.0z时,后轴的利用附着系数满足关系式≥3.0-+.0z,则认为也满足了法规的要求。

但是对于轿车而言,制≥ϕ)7438.0(动强度在0.3~0.4之间,后轴利用附着系数曲线不超过直线05ϕ的条=z+.0件下,允许后轴利用系数曲线在前轴利用附着系数曲线的上方。

4.5一轿车结构参数问题1.8中给出的数据一样。

轿车装有单回路制动系,其制功器制动力分配系数65.0=β。

试求:1)同步附着系数。

2)在7.0=ϕ路面上的制动效率。

*3)汽车此时能达到的最大制动减速度(指无任何车轮抱死时)f 。

4)若将设车改为双回路制动系统(只改变制动的传动系, 见习题图3),而制动器总制动力与总泵输出管路压力之比称为 制功系增益,并令原车单管路系统的增益为G '。

确定习题图3 中各种双回路制动系统以及在一个回路失效时的制动系增益。

5)计算:在7.0=ϕ的路面L 。

上述各种双回路系统在一个回路失效时的制功效率及其能达到的最大制功减速度。

6)比较各种双回路系统的优缺点。

答案:1)同步附着系数8.063.025.165.07.20=-⨯=-=g h b L βϕ 2)因7.0=ϕ0ϕ< 所以前轮先抱死Lh Lb zE g f f f //ϕβϕ-== 7.0=f ϕ=7.2/63.07.065.07.2/25.1⨯-=0.9513)最大制动减速度:max b a =2/53.67.0s m g E f =⨯⨯4)T'uF G = 65.0=βa) 1失效''227.0)1(221)1(G G T F T F uu =-=-=ββ2失效''113.1221G G TF T F u u ===ββb)1失效'2121G T F u = 2失效'2121G T F u = c) 1失效'2121G T F u = 2失效'2121G T F u = 5)a)1失效Gz dtdug G F xb ==2)(2g z zh a LGF -=⇒后轴利用附着系数 gr zh a Lz -=ϕ⇒后轴制动效率L h La z E g r rr /1/ϕϕ+===⨯+=7.2/63.07.017.2/45.10.46最大动减速度g g a b 32.046.07.0max =⨯= 2失效Gz dtdug G F xb ==1)(1g z zh b LGF +=⇒前轴利用附着系数 gf zh b Lz +=ϕ⇒前轴制动效率L h Lb zE g f ff /1/ϕϕ-===⨯-=7.2/63.07.017.2/25.10.55最大动减速度g g a b 39.055.07.0max =⨯=b)由第2)问 知:前轮先抱死 1失效与2失效情况相同。

Gz dtdug G F xb ββ==1 )(1g z zh b LGF +=⇒前轴利用附着系数 gfzh b Lz+=βϕ⇒前轴制动效率L h L b zE g f ff //ϕβϕ-===7.2/63.07.065.07.2/25.1⨯-=0.95最大动减速度g g a b 33.02195.07.0max =⨯⨯= c) 与b )回路的情况相同。

6) 比较优缺点:a ) 其中一个回路失效时,不易发生制动跑偏现象。

但当1失效时,容易后轮先抱死,发生后轴测滑的不稳定的危险工况。

b ) 实现左右侧轮制动器制动力的完全相等比较困难。

c)实现左右侧轮制动器制动力的完全相等比较困难。

其中一个管路失效时,极容易制动跑偏。

相关文档
最新文档