八年级数学上册小专题训练(九) 教材变式题:作平行线构造等边三角形

合集下载

部编数学八年级上册专题03等边三角形(解析版)含答案

部编数学八年级上册专题03等边三角形(解析版)含答案

2022-2023学年八年级数学上册章节同步实验班培优题型变式训练(人教版)专题03 等边三角形【题型1】等边三角形的性质1.(2022·全国·八年级课时练习)下列条件中,不能判断ABC V 是等边三角形的是( ).A .AB AC =,60B Ð=oB .AB AC =,B A Ð=ÐC .60A B Ð=Ð=oD .2A B CÐ+Ð=Ð【答案】D【分析】根据等边三角形的定义和判定定理判断即可.【详解】解:A 选项:∵AB =AC .∠B =60°.∴△ABC 是等边三角形,故A 选项不符合题意;B 选项:∵∠B =∠A ,∴AC =BC ,∵AB =AC ,∴AB =AC =BC ,∴△ABC 是等边三角形,故B 选项不符合题意;C 选项:∵∠A =∠B =60°,∠C =180°−∠A −∠B =60°,∴∠A =∠B =∠C ,∴AB =AC =BC ,∴△ABC 是等边三角形,故C 选项不符合题意;D 选项:∵∠A +∠B =2∠C ,∠A +∠B +∠C =180°,∴∠C =60°,不能判断△ABC 是等边三角形,故D 选项符合题意,故选:D .【点睛】本题考查了等边三角形的判定,解题的关键是熟悉等边三角形的定义及等边三角形的判定定理.注意:等边三角形的判定定理有:①三边都相等的三角形是等边三角形,②三角都相等的三角形是等边三角形,③有一个角等于60°的等腰三角形是等边三角形.【变式1-1】2.(2022·全国·八年级专题练习)如图,△ABC 是等边三角形,且BD =CE ,∠1=15°,则∠2的度数为____°.【答案】60【分析】根据等边三角形的性质可得AB BC =,A ABC CB =Ð∠,证明△ABD ≌△BCE (SAS ),根据全等三角形的性质可得∠1=∠CBE ,根据三角形外角的性质可得∠2=∠1+∠ABE ,继而根据等量代换可得∠2=∠CBE +∠ABE =∠ABC ,即可求解.【详解】解:∵△ABC 是等边三角形,∴AB BC =,A ABC CB =Ð∠,在△ABD 和△BCE 中,AB BC ABC ACB BD CE =ìïÐ=Ðíï=î,∴△ABD ≌△BCE (SAS ),∴∠1=∠CBE ,∵∠2=∠1+∠ABE ,∴∠2=∠CBE +∠ABE =∠ABC =60°.故答案为:60.【点睛】本题考查了等边三角形的性质,三角形外角的性质,全等三角形的性质与判定,掌握等边三角形的性质是解题的关键.【题型2】等边三角形的判定1.(2021·辽宁·辽河油田实验中学八年级阶段练习)如图,已知P 、Q 是△ABC 的BC 边上的两点,BP =PQ =QC =AP =AQ ,则∠BAC 的大小为( )A .120°B .110°C .100°D .90°【答案】A 【分析】根据等边三角形的性质,得∠PAQ =∠APQ =∠AQP =60°,再根据等腰三角形的性质和三角形的外角的性质求得∠BAP =∠CAQ =30°,从而求解.【详解】解:∵PQ =AP =AQ ,∴△APQ 是等边三角形,∴∠PAQ =∠APQ =∠AQP =60°,∵BP =AP , QC =AQ∴∠B =∠BAP ,∠C =∠CAQ .又∵∠BAP +∠ABP =∠APQ =60°,∠C +∠CAQ =∠AQP =60°,∴∠BAP =∠CAQ =30°.∴120BAC BAP PAQ CAQ Ð=Ð+Ð+Ð=°.故∠BAC 的度数是120°.故选:A .【点睛】此题主要考查了运用等边三角形的性质与判定、等腰三角形的性质以及三角形的外角的性质.【变式2-1】2.(2021·辽宁·辽河油田实验中学八年级阶段练习)如图,在等边△ABC 中,AD ⊥BC ,垂足为D ,点E 在线段AD上,且2ED=BC,则∠ACE=_______【题型3】等边三角形的判定和性质1.(2022·山东·济南市济阳区垛石街道办事处中学八年级阶段练习)如图,在△ABC中,AB=AC,∠A=120°,BC=6cm.若AB的垂直平分线交BC于点M,交AB于点E,AC的垂直平分线交BC于点N,交AC于点F,则MN=_________.【答案】2cm【分析】作辅助线来沟通各角之间的关系,首先求出△BMA与△CNA是等腰三角形,再证明△MAN为等边三角形即可.【详解】连接AM,AN,∵AB的垂直平分线交BC于M,交AB于E,AC的垂直平分线交BC于N,交AC于F,∴BM=AM,CN=AN,∴∠MAB=∠B,∠CAN=∠C,∵∠BAC=120°,AB=AC,∴∠B=∠C=30°,∴∠MAB=∠B=∠CAN=∠C=30°∴∠BAM+∠CAN=60°,∠AMN=∠ANM=60°,∴△AMN是等边三角形,∴AM=AN=MN,∴BM=MN=NC,∵BC=6cm,∴MN=2cm.故答案为:2cm.【点睛】本题考查的知识点为线段的垂直平分线性质以及等腰三角形的性质;正确作出辅助线是解答本题的关键.【变式3-1】2.(2022·福建·莆田哲理中学八年级期末)如图,AB =AC ,AE =EC =CD ,∠A =60°,延长DE 交于AB 于F ,若EF =2,则DF =_________.【答案】6【分析】由AB AC =,60A Ð=°得到△ABC 是等边三角形,由等边三角形的性质和AE EC CD ==,推出BE =4,再由∠DBE =∠CDE =30°,推出ED =BE =4,从而求出DF 的长度.【详解】解:∵AB AC =,60A Ð=°,∴△ABC 是等边三角形,又∵AE EC =,∴∠AEB =90°,∠ABE =∠DBE =30°,∵∠ACB =60°,EC CD =,∴∠CED =∠CDE =30°,∴∠AEF=30°,∴∠FEB =60°,∴∠BFE =90°,∵2EF =,∴BE =4,∵∠DBE=∠CDE =30°,∴ED=BE =4,∴DF = ED+EF =6.故答案为6.【点睛】本题考查了等腰三角形的判定与性质、等边三角形的判定与性质以及含30°角的直角三角形的性质,解题的关键是根据已知条件推出△BEF 是直角三角形.【题型4】含30度角的直角三角形1.(2020·湖北·公安县教学研究中心八年级期中)如图,∠B =∠D =90°,AB =AD ,∠2=60°,BC =5,则AC =( )A .5B .10C .15D .2.5【答案】B 【分析】利用HL 证明Rt △ACB ≌Rt △ACD ,推出∠1=30°,再利用含30度角的直角三角形的性质即可求解.【详解】解:∵∠B =∠D =90°,AB =AD ,AC =AC ,∴Rt △ACB ≌Rt △ACD (HL ),∴∠ACB =∠ACD =60°,∴∠1=30°,∵BC =5,∴AC =2BC =10,故选:B .【点睛】本题考查全等三角形的判定和性质,含30度角的直角三角形的性质,解题的关键是证明Rt △ACB ≌Rt △ACD .【变式4-1】2.(2022·湖南·澧县教育局张公庙镇中学八年级期末)如图,在Rt ABC D 中,90C Ð=°,BE 平分ABC Ð,ED 垂直平分AB 于D .若9AC =,则AE 的值是______.【答案】6【分析】先根据角平分线的定义、线段垂直平分线的性质、等腰三角形的性质可得,AE BE ABE CBE A =Ð=Ð=Ð,再根据三角形的内角和定理可得30CBE Ð=°,设AE BE x ==,则9CE x =-,在Rt BCE V 中,根据含30度角的直角三角形的性质即可得.【详解】解:BE Q 平分ABC Ð,ABE CBE \Ð=Ð,ED Q 垂直平分AB ,AE BE \=,ABE A \Ð=Ð,ABE CBE A \Ð=Ð=Ð,又90C Ð=°Q ,90ABE CBE A \Ð+Ð+Ð=°,解得30CBE Ð=°,设AE BE x ==,则9CE AC AE x =-=-,Q 在Rt BCE V 中,90C Ð=°,30CBE Ð=°,2BE CE \=,即()29x x =-,解得6x =,即6AE =,故答案为:6.【点睛】本题考查了线段垂直平分线的性质、等腰三角形的性质、含30度角的直角三角形的性质等知识点,熟练掌握含30度角的直角三角形的性质是解题关键.一.选择题1.(2020·全国·九年级专题练习)如图,将一副三角尺如图所示叠放在一起,若12AB cm =,则阴影部分的面积是( )A .12B .18C .24D .362.(2022·广东清远·八年级期中)如图,在Rt ABC V 中,90ACB Ð=°,30A Ð=°,1BC =,则AB =( )A .2B C D .1.5【答案】A 【分析】根据含30°角的直角三角形的性质定理得出AB =2BC ,代入求出即可.【详解】解:Q 在Rt ABC D 中,90ACB Ð=°,30A Ð=°,2AB BC \=,1BC =Q ,2AB \=,故选:A .【点睛】本题考查了含30°角的直角三角形的性质定理,能根据含30°角的直角三角形的性质定理得出AB =2BC 是解此题的关键.3.(2022·江苏·八年级单元测试)如图,在等边△ABC 中,AB =4cm ,BD 平分∠ABC ,点E 在BC 的延长线上,且30E Ð=o ,则CE 的长是( )A .1cmB .2cmC .3cmD .4cm4.(2022·全国·八年级课时练习)如图,在Rt △ABC 中,∠C =90°,∠CAB 的平分线交BC 于D ,DE 是AB 的垂直平分线,垂足为E .若BC =6,则DE 的长为( )A .1B .2C .3D .45.(2021·贵州·铜仁市第十一中学八年级期中)如图,D 是等边ABC V 的边AC 上的一点,E 是等边ABC V外一点,若BD CE =,12Ð=Ð,则对ADE V 的形状最准确的是( ).A .等腰三角形B .直角三角形C .等边三角形D .不等边三角形【答案】C 【分析】先根据已知利用SAS 判定△ABD ≌△ACE 得出AD =AE ,∠BAD =∠CAE =60°,从而推出△ADE 是等边三角形.【详解】解:∵三角形ABC 为等边三角形,∴AB =AC ,∵BD =CE ,∠1=∠2,在△ABD 和△ACE 中,12AB AC BD CE =ìïÐ=Ðíï=î,∴△ABD ≌△ACE (SAS ),∴AD =AE ,∠BAD =∠CAE =60°,∴△ADE 是等边三角形.故选:C .【点睛】本题考查了等边三角形的判定和全等三角形的判定方法,掌握等边三角形的判定和全等三角形的判定是本题的关键,做题时要对这些知识点灵活运用.6.(2021·江苏·九年级专题练习)如图,一块三角形空地上种草皮绿化,已知AB =20米,AC =30米,∠A =150°,草皮的售价为a 元/米2,则购买草皮至少需要( )A .450a 元B .225a 元C .150a 元D .300a 元【答案】C 【详解】如图,过点C 作CD ⊥BA 交BA 的延长线于点D ,∵∠BAC=150°,∴∠DAC=30°,∵CD⊥BD,AC=30m,∴CD=15m,∵AB=20m,∴S△ABC=AB×CD÷2=×20×15÷2=150m2,∵草皮的售价为a元/米2,∴购买这种草皮的价格:150a元.故选C.二、填空题7.(2022·广东·平洲一中八年级期中)如图,Rt△ABC中,∠C=90°,∠A=30°,AB=8cm,则BC=_____cm.8.(2022·上海·七年级专题练习)如图,已知O是等边△ABC内一点,D是线段BO延长线上一点,且Ð=_____.Ð=120°,那么BDC=,AOBOD OA【答案】60°【分析】由AOB Ð的度数利用邻补角互补可得出60AOD Ð=°,结合OD OA =可得出AOD D 为等边三角形,而根据旋转全等模型由SAS 易证出BAO CAD D @D ,根据全等三角形的性质可得出120ADC AOB Ð=Ð=°,再根据BDC ADC ADO Ð=Ð-Ð即可求出BDC ∠的度数.【详解】解:ABC D Q 为等边三角形,AB AC \=,60BAC Ð=°.120AOB Ð=°Q ,180AOD AOB Ð+Ð=°,60AOD \=°∠.又OD OA =Q ,AOD \D 为等边三角形,AO AD \=,60OAD Ð=°,60ADO Ð=°.60BAO OAC OAC CAD Ð+Ð=Ð+Ð=°Q ,BAO CAD \Ð=Ð.在BAO D 和CAD D 中,AB AC BAO CAD AO AD =ìïÐ=Ðíï=î,()BAO CAD SAS \D @D ,120ADC AOB \Ð=Ð=°,60BDC ADC ADO \Ð=Ð-Ð=°.故答案为:60.【点睛】本题考查了等边三角形的判定与性质、全等三角形的判定与性质以及角的计算,通过证明BAO CAD D @D ,找出120ADC AOB Ð=Ð=°是解题的关键.9.(2022·山东临沂·八年级期末)已知等腰ABC V 的一底角∠B =15°,且斜边AB =6cm ,则ABC V 的面积为__10.(2020·辽宁阜新·中考真题)如图,直线a,b过等边三角形ABC顶点A和C,且//a b,142Ð=°,则2Ð的度数为________.【答案】102°【分析】根据题意可求出BACÐ的度数,再根据两直线平行内错角相等即可得出答案.【详解】Q三角形ABC为等边三角形\Ð=°BAC60//Qa b\Ð=Ð+Ð=°+°=°BAC214260102故答案为:102°.【点睛】本题考查了平行线的性质、等边三角形的性质,熟练掌握性质定理是解题的关键.11.(2022·内蒙古·呼和浩特市回民区秋实学校八年级阶段练习)如图,在△ABC 中,∠C =90°,∠B =30°,AD 是△ABC 的角平分线,DE ⊥AB ,垂足为E ,DE = ,则BC =________.12.(2022·全国·八年级专题练习)如图,在△ABC 中,AB AC =,点D 在BC 上,AD DE =,如果20BAD Ð=o ,∠AED =60o ,那么∠EDC 的度数为___度.【答案】10【分析】先证明△ADE 是等边三角形,从而得到∠ADE =∠AED =60°,再根据等腰三角形的性质与三角形外角的性质得到∠EDC =∠AED -∠C =60°-∠C ,∠EDC =∠ADC -∠ADE =∠B +∠BAD -∠ADE =∠B -40°,据此求解即可.【详解】解:∵AD =DE ,∠AED =60°,∴△ADE 是等边三角形,∴∠ADE =∠AED =60°,∵AB =AC ,∴∠B =∠C ,∵∠ADC =∠B +∠BAD ,∠AED =∠C +∠EDC ,∴∠EDC =∠AED -∠C =60°-∠C ,∠EDC =∠ADC -∠ADE =∠B +∠BAD -∠ADE =∠B -40°,∴2∠EDC =60°-∠C +∠B -40°,∴∠EDC =10°,故答案为:10.【点睛】本题主要考查了等边三角形的性质与判定,等腰三角形的性质,三角形外角的性质,证明△ADE 是等边三角形是解题的关键.三、解答题13.(2021·辽宁营口·九年级期中)ABC V 与CDE △都是等边三角形,连接AD 、BE .(1)如图①,当点B 、C 、D 在同一条直线上时,则BCE Ð=______度;(2)将图①中的CDE △绕着点C 逆时针旋转到如图②的位置,求证:AD BE =.【答案】(1)120;(2)证明见解析.【分析】(1)根据CDE △是等边三角形及点B 、C 、D 在同一条直线上即可求解;(2)证明BCE ACD D D ≌即可求解.【详解】解:(1)∵CDE △是等边三角形,∴60DCE Ð=°,∵点B 、C 、D 在同一条直线上,∴180BCE DCE ÐÐ+=°,∴180120BCE DCE ÐÐ=°-=°(2)∵ABC V 与CDE △都是等边三角形,∴BC =AC ,CE =CD ,∠ACB =∠DCE =60°,∴∠ACB +∠ACE =∠DCE +∠ACE ,∴∠BCE =∠ACD ,在BCE V 与ACD △中,BC AC BCE ACD CE CD =ìïÐ=Ðíï=î,∴()BCE ACD SAS D D ≌,∴BE =AD .【点睛】本题考查了等边三角形的性质、全等三角形的判定和性质;解题的关键是熟练掌握全等三角形的判定方法.14.(2021·江苏·南通田家炳中学一模)如图,已知点D 、E 在ABC V 的边BC 上,AB AC =,AD AE =.(1)求证:BD CE =;(2)若AD BD DE CE ===,求BAE Ð的度数.【答案】(1)证明见解析;(2)90o.【分析】(1)作AF BC ^于点F ,利用等腰三角形三线合一的性质得到BF CF =,DF EF =,相减后即可得到正确的结论;(2)根据等边三角形的判定得到ADE V 是等边三角形,根据等边三角形的性质、等腰三角形的性质以及角的和差关系即可求解.【详解】(1)证明:如图,过点A 作AF BC ^于F .Q AB AC =,AD AE =,\BF CF =,DF EF =,15.(2021·江西·信丰县第七中学八年级阶段练习)如图,△ABC中,∠A=90°,∠B=60°,BC的垂直平分线交BC与点D,交AC于点E.求证:(1)AE=DE;(2)若AE=6,求CE的长.【答案】(1)证明见解析;(2)12.【分析】(1)由垂直平分线可得EB=EC,则得∠EBC=∠C=30°=∠ABE,由角平分线性质可得AE=DE;(2)根据直角三角形中,30°所对直角边为斜边的一半.即可得到答案.【详解】(1)证明:连接BE,∵∠A=90°,∠B=60°,∴∠C=30°.∵DE垂直平分BC,16.(2022·江苏·八年级专题练习)如图,点C 为线段AB 上一点,ACM V ,CBN V 是等边三角形,直线AN MC 、交于点E ,直线BM CN 、交于点F .(1)求证:AN BM =;(2)求证:EC FC =;(3)求证://AB EF .【答案】(1)见解析;(2)见解析;(3)见解析【分析】(1)只需要证明△CAN ≌△CMB 即可得到答案;(2)根据△CAN ≌△CMB 得到∠EAC =∠FNC ,再由AC =MC ,∠ACE =∠MCF =60°,即可证明△AEC ≌△MFC ,得到CE =CF ;(3)根据CE =CF ,∠ECF =60°,推出△ECF 是等边三角形,则∠CEF =∠ACE =60°,即可得证.【详解】解:(1)∵△ACM 和△CBN 都是等边三角形,∴AC =MC ,CN =CB ,∠ACM =∠BCN =60°,∴∠MCN =180°-∠ACM -∠BCN =60°,∴∠CAN =∠ACM +∠MCN =∠MCN +∠BCN =∠BCM =120°,∴△CAN ≌△CMB (SAS ),∴AN =BM ;(2)∵△CAN≌△CMB,∴∠EAC=∠FNC,∵AC=MC,∠ACE=∠MCF=60°,∴△AEC≌△MFC(ASA),∴CE=CF;(3)∵CE=CF,∠ECF=60°,∴△ECF是等边三角形,∴∠CEF=∠ACE=60°,∴EF∥AB.【点睛】本题主要考查了全等三角形的性质与判定,等边三角形的性质与判定,平行线的判定,解题的关键在于能够熟练掌握相关知识进行求解.17.(2022·全国·八年级课时练习)已知△ABC是等边三角形,点D在射线BC上(与点B,C不重合),点D关于直线AC的对称点为点E.(1)如图1,连接AD,AE,DE,当BC=2BD时,根据边的关系,可判定△ADE的形状是_____三角形;(2)如图2,当点D在BC延长线上时,连接AD,AE,CE,BE,延长AB到点G,使BG=CD,连接CG,交BE于点F,F为BE的中点,若AE=12,则CF的长为_____.【答案】等边 6【分析】(1)由等边三角形的性质得出AD=AE,∠DAC=∠EAC=30°,证出∠DAE=60°,由等边三角形的判定可得出结论;(2)证明△ACE≌△CBG(S A S),由全等三角形的性质得出AE=CG,证△CEF≌△GBF(AA S),由全等三角形的性质得出CF=GF,则可得出答案.【详解】解:(1)∵BC=2BD,∴BD=CD,∵△ABC是等边三角形,∴∠BAD=∠DAC=30°,∵点D关于直线AC的对称点为点E,∴AD=AE,∠DAC=∠EAC=30°,∴∠DAE=60°,∴△ADE是等边三角形.故答案为:等边;(2)∵点D关于直线AC的对称点为点E.∴△ACD≌△ACE,∴CE=CD,∠ACD=∠ACE,∵BG=CD,∴CE=BG,∵△ABC是等边三角形,∴∠ABC=∠ACB=60°,AC=CB,∴∠ACD=∠GBC=120°,∴∠ACE=∠GBC=120°,∴△ACE≌△CBG(S A S),∴AE=CG,∵∠BCE=∠ACE﹣∠ACB=60°,∴∠BCE+∠BGC=180°,∴BG∥CE,∴∠G=∠FCE,∵F为BE的中点,∴BF=EF,∵∠BFG=∠CFE,∴△CEF≌△GBF(AA S),∴CF=GF,18.(2021·河北唐山·八年级期末)在三角形纸片ABC 中,90ABC Ð=°,30A Ð=°,4AC =,点E 在AC 上,3AE =.将三角形纸片ABC 按图中方式折叠,使点A 的对应点A ¢落在AB 的延长线上,折痕为ED ,A E ¢交BC 于点F .(1)求CFE Ð的度数;(2)求BF 的长度.【答案】(1)60°;(2)1.【分析】(1)先根据折叠的性质可得30A A ¢Ð=Ð=°,再根据邻补角的定义可得90A BF =¢Ð°,然后根据直角三角形的性质可得60A FB ¢Ð=°,最后根据对顶角相等即可得;(2)先根据线段的和差可得1CE =,再根据等边三角形的判定与性质可得1EF CE ==,然后根据折叠的性质可得3A E AE ¢==,从而可得2A F ¢=,最后利用直角三角形的性质即可得.【详解】(1)由折叠的性质得:30A A ¢Ð=Ð=°,90ABC Ð=°Q ,点A ¢落在AB 的延长线上,18090ABC A BF ¢Ð=°Ð=-\°,9060A FB A ¢¢\Ð=°-Ð=°,由对顶角相等得:60CFE A FB ¢Ð=Ð=°;(2)4,3C E A A ==Q ,1CE AC AE \=-=,Q 在ABC V 中,90ABC Ð=°,30A Ð=°,9060C A \Ð=°-Ð=°,由(1)知,60CFE Ð=°,。

八年级数学上册 第七章 平行线的证明 专题练习九 平行线中常用辅助线的添加方法和技巧课件

八年级数学上册 第七章 平行线的证明 专题练习九 平行线中常用辅助线的添加方法和技巧课件

∠CDE=140°,求∠BCD的度数. 解:过点C作MN∥AB,∵AB∥DE,∴MN∥AB∥DE,∴∠1+∠ABC=180°,∠2+∠CDE=
180°. 又∵∠ABC=120°,∠CDE=140°,∴∠1=60°,∠2=40°,∴∠BCD=180°-∠1-
∠2=80°
第六页,共十三页。
5.(1)如图①,若AB∥CD,求∠B+∠D+∠E1的度数(dù shu); (2)如图②,若AB∥CD,求∠B+∠D+∠E1+∠E2的度数(dù shu); (3)如图③,若AB∥CD,求∠B+∠D+∠E1+∠E2+∠E3的度数(dù shu); (4)如图④,若AB∥CD,猜想∠B+∠D+∠E1+∠E2+…+∠En的度数(dù shu).
∵∠BAF+∠MAB=180°,∴∠CDE+∠MAB=180°
第十二页,共十三页。
内容(nèiróng)总结
第七章 平行线的证明。为什么。(2)在(1)的结论下,若过点A的直线MA∥ED, ①如图②,当点E在线段BC上时,猜想(cāixiǎng)并验证∠MAB与∠CDE的数量关系
第十三页,共十三页。
解:∠BCD=∠B-∠D,理由如下:过点C作CF∥AB,则CF∥AB∥DE,∴∠B=∠BCF,∠D=∠DCF, ∴∠BCD=∠BCF-∠DCF=∠B-∠D
第五页,共十三页。
4.如图,工程队铺设一条公路,他们从点A处铺设到点B处时,由于水塘挡路(dǎnɡ lù),他们决 定改变方向经过点C,再拐到点D,然后沿着与AB平行的DE方向继续铺设,如果∠ABC=120°,
第十一页,共十三页。
9.已知点D在∠ABC内,点E为边BC上一点,连接DE,CD. (1)如图①,连接AE,若∠AED=∠A+∠D,求证:AB∥CD;

八年级数学上册第12章三角形中常见辅助线的作法(人教版)

八年级数学上册第12章三角形中常见辅助线的作法(人教版)

三角形中常见辅助线的作法
1、延长中线构造全等三角形
例1 如图1,已知△ABC中,AD是△ABC的中线,AB=8,AC=6,求AD 的取值范围.
提示:延长AD至A',使A'D=AD,连结BA'.根据“SAS”易证△A'BD≌△ACD,得AC=A'B.这样将AC转移到△A'BA中,根据三角形三边关系定理可解.
2、引平行线构造全等三角形
例2 如图2,已知△ABC中,AB=AC,D在AB上,E是AC延长线上一点,且BD=CE,DE与BC交于点F.
求证:DF=EF.
提示:此题辅助线作法较多,如:
①作DG∥AE交BC于G;
②作EH∥BA交BC的延长线于H;
再通过证三角形全等得DF=EF.
3、作连线构造等腰三角形
例3 如图3,已知RT△ACB中,∠C=90°,AC=BC,AD=AC,DE⊥AB,垂足为D,交BC于E.
求证:BD=DE=CE.
提示:连结DC,证△ECD是等腰三角形.
4、利用翻折,构造全等三角形.
例4 如图4,已知△ABC中,∠B=2∠C,AD平分∠BAC交BC于D.求证:AC=AB+BD.
提示:将△ADB沿AD翻折,使B点落在AC上点B'处,再证BD=B'D =B'C,易得△ADB≌△ADB',△B'DC是等腰三角形,于是结论可证.
5、作三角形的中位线
例5 如图5,已知四边形ABCD中,AB=CD,E、F分别是BC、AD的中点,BA、CD的延长线交EF的延长线于点M、N.求证:∠BME=∠CNE.提示:连结AC并取中点O,再连结OE、OF.则OE∥AB,OF∥CD,故∠1=∠BME,∠2=∠CNE.且OE=OF,故∠1=∠2,可得证.。

数学人教版八年级上册等边三角形如何巧做辅助线--平行线

数学人教版八年级上册等边三角形如何巧做辅助线--平行线

等边三角形中如何巧作辅助线长沙市湘一芙蓉二中胡孟本节内容在教材中的地位和作用学习了等腰三角形、等边三角形、全等三角形后,发现同学们对知识点的接受比较单一,不能很快找到各知识点之间的内在联系,更谈不上综合运用。

为了把初中几何中的几个重要的知识点等腰三角形、等边三角形与全等三角形很好的联系起来,提高同学们的数学思维能力和解题能力,特意设计了本节习题课。

教学目标1.通过对课本习题的延伸探究,进一步巩固等边三角形的有关知识的理解,达到灵活应用。

2.在辅助线添加的探究中体会转化思想,构造能力,掌握添加平行线可以产生新的角度、线段长度等量关系,有助于问题的解决。

3.在复习中温故知新,在例习题的变式中,体会数学的一题多解,一题多问,一题多变,感悟数学中变和不变的无穷魅力。

教学重点掌握添加平行线构造全等解决等边三角形有关问题教学难点探究添加平行线构造全等解决等边三角形有关问题重难点突破讲练结合、合作探究、运用投影仪、几何画板演示使抽象的内容变得具体形象有助于理解技术手段学案、几何画板课件、投影仪等多媒体教学过程设计一、问题引入:前面我们已经学习了等腰三角形,等边三角形以及两个三角形全等的相关知识,这节课我们来学习等边三角形中如何巧作辅助线。

出示ppt,这是八上教材93页第13题,我们来看这道题:八上教材93页第13题:如图△ABC是等边三角形,BD是中线,延长BC至E,使CE=CD,求证:DB=DE。

问:题中有哪些已知条件?要证明什么?你找到解题思路了吗?学生回答:(学生回答时,老师配合演示多媒体,强调已知和求证)。

学生分析思路后,师生一起小结:由此题可知,要证明两线段相等,当这两线段在同一三角形中时,我们会很自然想到用“等角对等边”来证。

老师板书,证明两线段相等的方法:①等角对等边二、变式提升老师把条件稍做改变,请同学们看到学案上的变式1,先审题(老师利用同学们审题的时间把变式1板书到黑板上):变式1:如图:△ABC是等边三角形,D是AC上一点,延长BC至E,使CE=AD,求证:DB=DE。

13.3.2 等边三角形 人教版数学八年级上册同步作业(含答案)

13.3.2 等边三角形 人教版数学八年级上册同步作业(含答案)

13.3.2 等边三角形 必备知识·基础练(打“√”或“×”)1.三条边都相等的三角形是等边三角形.(√)2.三个角都相等的三角形是等边三角形.(√)3.有一个角是60°的三角形是等边三角形.(×)4.有一个角等于30°的三角形,它所对的边等于最长边的一半. (×) 5.在△ABC中,若AB=BC=AC,则∠A=∠B=∠C=60°.(√)知识点1 等边三角形的性质1.如图,△ABC是等边三角形,DE∥BC,若AB=10,BD=6,则△ADE 的周长为( D )A.4 B.30 C.18 D.12【解析】∵△ABC为等边三角形,∴∠A=∠B=∠C=60°,∵DE∥BC,∴∠ADE=∠AED=∠B=∠C=60°,∴△ADE为等边三角形,∵AB=10,BD=6,∴AD=AB-BD=10-6=4,∴△ADE的周长为12.2.如图,在正三角形ABC中,AD⊥BC于点D,则∠BAD=__30__°.【解析】∵△ABC是等边三角形,∴∠BAC=60°,∵AB=AC,AD⊥BC,∠BAC=30°.∴∠BAD=123.(2020·阜新中考)如图,直线a,b过等边三角形ABC顶点A和C,且a∥b,∠1=42°,则∠2的度数为__102°__.【解析】如图,∵△ABC是等边三角形,∴∠BAC=60°,∵∠1=42°,a∥b,∴∠2=∠1+∠BAC=42°+60°=102°.知识点2 等边三角形的判定4.(易错警示题)下列推理中,错误的是( B )A.因为∠A=∠B=∠C,所以△ABC是等边三角形B.因为AB=AC且∠B=∠C,所以△ABC是等边三角形C.因为∠A=60°,∠B=60°,所以△ABC是等边三角形D.因为AB=AC,∠B=60°,所以△ABC是等边三角形【解析】选项A,根据判定方法可知三个角相等的三角形是等边三角形,因此A是正确的;选项B,由AB=AC可推出∠B=∠C,因此它只能判定△ABC是等腰三角形,故B是错误的;选项C,可求出第三个角也是60°,因此有两个角是60°的三角形可判定为等边三角形,故C是正确的;选项D,有一个角为60°的等腰三角形,可判定为等边三角形,故D是正确的.5.(2021·长沙期中)如图,△ABC是等边三角形,DF⊥AB,DE⊥CB,EF⊥AC,求证:△DEF是等边三角形.【证明】∵△ABC是等边三角形,∴AB=AC=BC,∠ABC=∠ACB=∠CAB=60°,∵DF⊥AB,DE⊥CB,EF⊥AC,∴∠DAB=∠ACF=∠CBE=90°,∴∠FAC=∠BCE=∠DBA=30°,∴∠D=∠E=∠F=180°-90°-30°=60°,∴△DEF是等边三角形.6.(2021·北京期中)如图,在△ABC中,∠A=120°,AB=AC,D是BC 的中点,DE⊥AB,DF⊥AC,点E,F为垂足,求证:△DEF是等边三角形.【证明】∵∠A=120°,AB=AC,∴∠B=∠C=30°,又∵DE⊥AB,DF⊥AC,∴∠BED=∠CFD=90°,∴∠BDE=∠CDF=60°,∴∠EDF=60°,∵D是BC的中点,∴BD=CD,在△BDE与△CDF中,{∠B=∠C,BD=CD,∠BDE=∠CDF,∴△BDE≌△CDF(ASA),∴DE=DF,∴△DEF是等边三角形.知识点3 含30°角的直角三角形的性质7.如图,在Rt△ABC中,∠C=90°,∠B=30°,CD是斜边AB上的高,AD=3 cm,则BD的长度是( C )A.3 cm B.6 cmC.9 cm D.12 cm【解析】在Rt△ABC中,∵CD是斜边AB上的高,∴∠ADC=90°,∴∠ACD=∠B=30°(同角的余角相等),∵AD=3 cm,在Rt△ACD中,AC=2AD=6 cm,在Rt△ABC中,AB=2AC=12 cm.∴BD=AB-AD=12-3=9(cm).8.如图,∠MON=30°,且OP平分∠MON,过点P作PQ∥OM交ON 于点Q.若点P到OM的距离为2,则OQ的长为( D )A.1 B.2 C.3 D.4【解析】如图,过点P作PE⊥ON,∵OP平分∠MON,∴∠1=∠2,∵PQ∥OM,∴∠1=∠3,∠MON=15°,∴∠2=∠3=12∴OQ=PQ,∠4=30°,∴PQ=2PE=4,∴OQ=PQ=4.9.(生活情境题)如图是屋架设计图的一部分,立柱BC垂直于横梁AC,AB=12 m,∠A=30°,则立柱BC的长度为( B )A.4 m B.6 m C.8 m D.12 m【解析】∵∠ACB=90°,AB=12 m,∠A=30°,∴BC=1AB=6 m.则立柱BC的长度为6 m.210.(2021·珠海期中)如图,在△ABC中,AB=AC,∠C=30°,AB⊥AD,AD=3 cm,求BC的长.【解析】∵AB=AC,∴∠B=∠C=30°,∵AB⊥AD,∴BD=2AD=2×3=6(cm),∵∠B+∠ADB=90°,∴∠ADB=60°,∵∠ADB=∠DAC+∠C=60°,∴∠DAC=30°,∴∠DAC=∠C,∴DC=AD=3 cm,∴BC=BD+DC=6+3=9(cm).关键能力·综合练11.如图,在以BC为底边的等腰△ABC中,∠A=30°,AC=8,BD⊥AC,则△ABC的面积是( B )A.12 B.16C.20 D.24【解析】∵AB=AC,AC=8,∴AB=8,∵BD是高,∴∠BDA=90°,∵∠A=30°,∴BD=1AB=4,2∴△ABC的面积=1×8×4=16.212.(2021·深圳质检)如图,在等边三角形ABC中,AD⊥BC,垂足为点D,点E在线段AD上,∠EBC=45°,则∠ACE等于( A )A.15° B.30° C.45° D.60°【解析】∵等边三角形ABC中,AD⊥BC,∴BD=CD,即:AD是BC的垂直平分线,∵点E在AD上,∴BE=CE,∴∠EBC=∠ECB,∵∠EBC=45°,∴∠ECB=45°,∵△ABC是等边三角形,∴∠ACB=60°,∴∠ACE=∠ACB-∠ECB=15°.13.(2020·河南中考)如图,在△ABC中,AB=BC=3,∠BAC=30°,分别以点A,C为圆心,AC的长为半径作弧,两弧交于点D,连接DA,DC,则四边形ABCD的面积为( D )A.63B.9C.6 D.33【解析】连接BD交AC于O,∵AD=CD,AB=BC,∴BD垂直平分AC,∴BD⊥AC,AO=CO,∵AB=BC,∴∠ACB=∠BAC=30°,∵AC=AD=CD,∴△ACD是等边三角形,∴∠DAC=∠DCA=60°,∴∠BAD=∠BCD=90°,∠ADB=∠CDB=30°,∵AB=BC=3,∴AD=CD=3AB=3,∴四边形ABCD的面积=2×1×3×3=33.214.(生活情境题)某市在旧城改造中,计划在一块如图所示的△ABC 空地上种植草皮以美化环境,已知∠A=150°,这种草皮每平方米售价a元,则购买这种草皮至少需要( B )A.300a元B.150a元C.450a元D.225a元【解析】如图,作BA边的高CD,设与BA的延长线交于点D,∵∠BAC=150°,∴∠DAC=30°,∵CD⊥BD,AC=30 m,∴CD=15 m,∵AB=20 m,∴S△ABC=12AB×CD=12×20×15=150 m2,∵每平方米售价a元,∴购买这种草皮的价格是150a元.15.(2020·常州中考)如图,在△ABC中,BC的垂直平分线分别交BC,AB于点E,F.若△AFC是等边三角形,则∠B=__30__°.【解析】∵EF 垂直平分BC ,∴BF =CF ,∴∠B =∠BCF ,∵△AFC 为等边三角形,∴∠AFC =60°,∴∠B =∠BCF =30°.16.(2021·杭州期中)如图,AD ,BE 是等边△ABC 的两条高线,AD ,BE 交于点O ,则∠AOB =__120__°.【解析】∵△ABC 是等边三角形,∴AB =AC =BC ,∠CAB =∠ABC =60°,∵AD ,BE 是等边△ABC 的两条高线,∴∠BAD =12∠BAC =30°,∠ABE =12∠ABC =30°,∴∠AOB =180°-∠BAD -∠ABE =180°-30°-30°=120°.17.如图,已知△ABC 是等边三角形,过点B 作BD ⊥BC ,过A 作AD ⊥BD ,垂足为D ,若△ABC 的周长为12,求AD 的长.【解析】∵BD ⊥BC ,在等边三角形ABC 中,∠ABC =60°,∴∠ABD =90°-60°=30°.又∵AD⊥BD,即△ABD是直角三角形,∴∠ABD所对的直角边AD是斜边AB的一半.∵等边三角形ABC的周长为12,∴其边长AB=4.∴AD=1AB=2.218.(素养提升题)(2021·广州期中)如图,已知△ABC和△CDE均为等边三角形,且点B,C,D在同一条直线上,连接AD,BE,交CE 和AC分别于G,H点,连接GH.(1)试证明AD=BE;(2)试证明△BCH≌△ACG;(3)试猜想:△CGH是什么特殊的三角形,并加以说明.【解析】(1)∵△ABC和△CDE均为等边三角形,∴AC=BC,EC=DC,∠ACB=∠ECD=60°.∴∠ACD=∠ECB,∴△ACD≌△BCE,∴AD=BE.(2)∵△ACD≌△BCE,∴∠CBH=∠CAG.∵∠ACB=∠ECD=60°,点B,C,D在同一条直线上,∴∠ACB=∠ECD=∠ACG=60°.又∵AC=BC,∴△ACG≌△BCH.(3)△CGH是等边三角形,理由如下:∵△ACG≌△BCH,∴CG=CH,又∵∠ACG=60°,∴△CGH是等边三角形(有一内角为60度的等腰三角形为等边三角形).模型 等边三角形判定定理1的应用模型如图,AB=AC,∠BAC=120°,AD⊥AC,AE⊥AB.求证:△ADE是等边三角形.【证明】∵AB=AC,∠BAC=120°,∴∠B=∠C=30°,∵AD⊥AC,AE⊥AB,∴∠ADC=∠AEB=60°,∴∠ADC=∠AEB=∠EAD=60°,∴AD=AE=DE,即△ADE是等边三角形.应用模型:在△ABC中,∵∠A=∠B=∠C,∴AB=BC=CA.关闭Word文档返回原板块。

2019年八年级数学上册 12.3.2等边三角形(应用)同步练习 新人教版 .doc

2019年八年级数学上册 12.3.2等边三角形(应用)同步练习 新人教版 .doc

2019年八年级数学上册 12.3.2等边三角形(应用)同步练习新人
教版
一、作图题
1.正三角形给人以“稳如泰山”的感觉,它具有独特的对称性,请你按要求进行分割.(1)分割后得到的四个等腰三角形面积相等
(2)分割成四个全等的等边三角形
(3)分割成两对全等的直角三角形
2.请在由边长为1的小正三角形组成的虚线网格中,画出
(1)一个
..所有顶点均在格点上的等腰三角形;
(2)一个
...为无理数的等腰三角形.
..所有顶点均在格点上,且三条边
(1)(2)
二、解答题
3.请你仔细观察图中等边三角形图形的变换规律,写出你所发现关于等边三角形内一点到三边距离的数学事实:

4.小明利用两块等边三角形纸板(△ABC与△DEF)进行拼图,如图所示,经过探索后,小明说AD=BE=CF,你同意他的说法吗?说出你的理由.
12.3.2等边三角形(二)参考答案
一、作图题
1.
二、解答题
2.答案:本题答案不惟一,只要符合要求都给满分,以下答案供参考:
3.等边三角形内任意一点到三边的距离和等于该等边三角形的高
4.提示:证明△ADF≌△BED≌△CFE。

人教版八年级数学上册《13.3.2等边三角形》练习题(附答案)

人教版八年级数学上册《13.3.2等边三角形》练习题(附答案)

人教版八年级数学上册《13.3.2等边三角形》练习题(附答案)一、选择题1.已知直角三角形中30°角所对的直角边为2cm,则斜边的长为( )A. 2cmB. 4cmC. 6cmD. 8cm2.如图,BC=10cm,∠B=∠BAC=15°,AD⊥BC于点D,则AD的长为( )A. 3cmB. 4cmC. 5cmD. 6cm3.如图,△ABC是等边三角形,AD⊥BC于点D,点E在AC上,且AE=AD,则∠DEC的度数为( )A. 105°B. 95°C. 85°D. 75°4.如图,直线l1//l2,△ABC是等边三角形∠1=50°,则∠2的大小为( )A. 60°B. 80°C. 70°D. 100°5.如图,Rt△ABC中,∠ACB=90°,∠B=30°,CD是斜边AB上的高,AD=3则BD的长是( )A. 12B. 9C. 6D. 36.如图,直线l//m,等边△ABC的顶点B在直线m上,边BC与直线m所夹锐角为18°,则∠α的度数为( )A. 60°B. 42°C. 36°D. 30°7.如图,△ABC中,AB=AC,∠BAC=120∘,AC的垂直平分线交BC于D,交AC于E,DE=2,则BC=( )A. 8B. 10C. 12D. 158.如图,四边形ABCD中∠C=30∘,∠B=90∘,∠ADC=120∘若AB=2,CD=8,则AD=( )A. 4B. 5C. 6D. 79.如图,已知∠AOB=60°,点P在边OA上OP=12,点M,N在边OB上PM=PN,若MN=2,则OM的长是( )A. 3B. 4C. 5D. 610.如图,C为线段AB上一动点(不与点A、B重合),在AB同侧分别作正三角形ACD和正三角形BCE,AE与BD 交于点F,AE与CD交于点G,BD与CE交于点H,连接GH.以下五个结论:①AE=BD②GH//AB③AD=DH ④GE=HB⑤∠AFD=60°一定成立的是( )A. ①②③④B. ①②④⑤C. ①②③⑤D. ①③④⑤二、填空题11.若一个等边三角形的周长是30cm,一边上的高是5√ 3cm,则这个等边三角形的面积是.12.如图∠MAN=60°,点B在射线AM上,且AB=2,点C在射线AN上.若△ABC是锐角三角形,则AC的取值范围是______.13.在△ABC中,若AB=AC=7,∠B=30°,则BC边上的高AD=.14.如图,一棵树在一次强台风中于离地面4米处折断倒下,倒下部分与地面成30°夹角,这棵树在折断前的高度为________米.15.如图,将一副三角板如图所示叠放在一起,若AB=8cm,则阴影部分的面积是cm2.16.如图,等边三角形纸片ABC的边长为6,E,F是边BC上的三等分点.分别过点E,F沿着平行于BA,CA方向各剪一刀,则剪下的△DEF的周长是______.17.如图,在△ABC中∠B=30°,BC的垂直平分线交AB于点E,垂足为点D,若ED=5,则EC的长为.18.在△ABC中∠B=10°,∠C=20°,AC=2cm,CD⊥AB且CD交BA的延长线于点D,则CD的长为.19.如图,将边长为5cm的等边△ABC向右平移1cm,得到△A′B′C′,此时阴影部分的周长为cm.20.如图,△ABC为等边三角形DE//AC,点O为线段EC上一点,DO的延长线与AC的延长线交于点F,DO= FO.若AC=7,FC=3,则OC的长为.三、解答题21.如图,在Rt△ABC中∠A=90°,∠B=30°,请用尺规作图法在AB上求作一点D,使得AB=3AD.(保留作图痕迹,不写作法)22.如图,△ABD、△AEC都是等边三角形,直线CD与直线BE交于点F.(1)求证:CD=BE;(2)求∠CFE的度数.23.如图∠ACB=90°,AC=BC,AD⊥CE,BE⊥CE垂足分别为D、E,CE交AB于点F.(1)求证:BE=CD;(2)若∠ECA=75°,求证:DE=1AB.224.如图,在△ABC中AB=AC=8,∠CBA=45°.(1)求证:AC⊥AB;(2)分别以点A,C为圆心,AC长为半径作弧,两弧交于点D(点D在AC的左侧),连接CD,AD,BD.求△ABD 的面积.25.如图①,在等边△ABC中,M是BC边上一点(不含端点B,C),N是△ABC的外角∠ACH的平分线上一点,且AM=MN.(1)尺规作图:在直线BC的下方,过点B作∠CBE=∠CBA,作NC的延长线,与BE相交于点E.(2)求证:△BEC是等边三角形;(3)求证:∠AMN=60°.答案和解析1.【答案】B【解析】【分析】本题主要考查了直角三角形30°角所对的直角边等于斜边的一半的性质,是基础题,熟记性质是解题的关键.根据直角三角形30°角所对的直角边等于斜边的一半解答.【解析】解:∵直角三角形中30°角所对的直角边为2cm∴斜边的长为2×2=4cm.故选:B.2.【答案】C【解析】解:∵∠B=∠BAC=15°∴AC=BC∵∠ACD=∠B+∠BAC=15°+15°=30°又∵AD⊥BCAC=5cm.∴AD=12故选:C.根据等角对等边的性质可得AC=BC=10cm,再根据三角形的一个外角等于与它不相邻的两个内角的和列式求出∠ACD=30°,然后根据直角三角形30°角所对的直角边等于斜边的一半解答即可.本题考查了等角对等边的性质,三角形的一个外角等于与它不相邻的两个内角的和的性质,直角三角形30°角所对的直角边等于斜边的一半的性质,熟记性质是解题的关键.3.【答案】A【解析】【分析】本题考查的是等边三角形的性质,熟知等边三角形三线合一的性质是解答此题的关键.先根据△ABC是等边三角形,AD⊥BC可得∠CAD=30°,再由AD=AE可知∠ADE=∠AED,根据三角形内角和定理即可求出∠AED的度数,故可得出∠DEC的度数.【解答】解:∵△ABC是等边三角形∴∠BAC=60°.∵AD⊥BC ∴AD平分∠BAC∴∠DAC=30°.∵AD=AE∴∠ADE=∠AED=180°−30°2=75°∴∠DEC=∠DAC+∠ADE=105°.故选:A4.【答案】C【解析】【分析】本题考查了等边三角形的性质和平行线的性质,熟记等边三角形的性质和平行线的性质是解题的关键.根据等边三角形的性质及外角性质可求∠3,再根据平行线的性质即可得到结论.【解答】解:如图∵△ABC是等边三角形∴∠A=60°∵∠1=50°∴∠3=∠1+∠A=50°+60°=110°∵直线l1//l2∴∠2+∠3=180°∴∠2=180°−∠3=70°故选:C.5.【答案】B【解析】解:∵CD⊥AB,∠ACB=90°∴∠ADC=90°=∠ACB∵∠B=30°∴∠A=90°−∠B=60°∴∠ACD=90°−∠A=30°∵AD=3∴AC=2AD=6∴AB=2AC=12∴BD=AB−AD=12−3=9故选:B.根据三角形的内角和求出∠A,根据余角的定义求出∠ACD,根据含30°角的直角三角形性质求出AC=2AD,AB=2AC求出AB即可.本题主要考查的是含30°角的直角三角形性质和三角形内角和定理的应用,关键是求出AC=2AD,AB=2AC.6.【答案】B【解析】解:∵△ABC是等边三角形∴∠A=∠ABC=60°.∵l//m∴∠1=∠ABC+18°=78°.∴∠α=180°−∠A−∠1=180°−60°−78°=42°.故选:B.先利用等边三角形的性质得到∠A、∠ABC的度数,再利用平行线的性质求出∠1的度数,最后利用三角形的内角和定理求出∠a.本题考查了平行线的性质、等边三角形的性质等知识点,掌握“等边三角形的每个内角都是60°”、“三角形的内角和是180°”及平行线的性质是解决本题的关键.另解决本题亦可过点C作直线l的平行线,利用平行线的性质求解.7.【答案】C【解析】解:连接AD,如图所示:∵AB=AC,∠BAC=120∘∴∠B=∠C=30∘∵AC的垂直平分线交BC于D∴DA=DC,∠DEC=90∘∴CD=2DE=4∴AD=4∵∠BAD=120∘−30∘=90∘∴BD=2AD=8∴BC=BD+CD=8+4=12∴故选C.8.【答案】A【解析】【分析】本题考查了含30∘角的直角三角形的性质,通过作辅助线得出直角三角形是解决问题的关键.作DE⊥BC于E,作AF⊥DE于F,先求出EF=AB=2,再根据含30∘角的直角三角形的性质得出DE= 12CD=4,进而得到DF=DE−EF=2,进而可得出答案.【解答】解:作DE⊥BC于E,作AF⊥DE于F,如图所示:则∠DEC=∠AFD=90∘,EF=AB=2∵∠C=30∘∴∠CDE=60°∴∠ADE=120°−60°=60∘,DE=12CD=4∴DF=DE−EF=2∵∠AFD=90°∴∠DAF=30∘∴AD=2DF=4.故选A.9.【答案】C【解析】【分析】此题考查了含30°角的直角三角形的性质,等腰三角形的性质,熟练掌握直角三角形的性质是解本题的关键.过P作PD⊥OB,交OB于点D,在直角三角形POD中,利用含30°角的直角三角形的性质得出OD的长,再由PM=PN,利用三线合一得到D为MN中点,根据MN求出MD的长,由OD−MD即可求出OM的长.【解答】解:过P作PD⊥OB,交OB于点D在Rt△OPD中∠AOB=60°,OP=12∴∠OPD=30°∴OD=12OP=6∵PM=PN,PD⊥MN,MN=2∴MD=ND=12MN=1∴OM=OD−MD=6−1=5.故选C.10.【答案】B【解析】【分析】本题考查了等边三角形的判定与性质的运用,全等三角形的判定及性质的运用,三角形的外角与内角之间的关系的运用,平行线的判定的运用,解答时证明三角形全等是关键.根据等边三角形的性质可以得出△ACE≌△DCB,就可以得出∠CAE=∠CDB,∠AEC=∠DBC,通过证明△CEG≌△CBH就可以得出CG=CH,GE=HB,可以得出△GCH是等边三角形,就可以得出∠GHC=60°就可以得出GH//AB,由∠DCH≠∠DHC就可以得出CD≠DH,就可以得出AD≠DH,进而得出结论.【解答】解:∵△ACD和△BCE是等边三角形∴AD=AC=CD,CE=CB=BE,∠ACD=∠BCE=60°.∴∠DCE =60°.∴∠DCE =∠BCE .∴∠ACD +∠DCE =∠BCE +∠DCE∴∠ACE =∠DCB .在△ACE 和△DCB 中{AC =DC ∠ACE =∠DCB CE =CB∴△ACE ≌△DCB(SAS)∴AE =BD ,∠CAE =∠CDB ,∠AEC =∠DBC.故①正确;在△CEG 和△CBH 中{∠GEC =∠HBC CE =CB ∠GCE =∠HCB,∴△CEG ≌△CBH(ASA)∴CG =CH ,GE =HB ,故④正确;∴△CGH 为等边三角形∴∠GHC =60°∴∠GHC =∠BCH∴GH//AB ,故②正确;∵∠AFD =∠EAB +∠CBD∴∠AFD =∠CDB +∠CBD =∠ACD =60°,故⑤正确;∵∠DHC =∠HCB +∠HBC =60°+∠HBC∴∠DCH ≠∠DHC∴CD ≠DH∴AD ≠DH ,故③不正确;综上所述,正确的有:①②④⑤.故选B .11.【答案】25√ 3cm 2【解析】【分析】根据周长可求边长;根据三角形面积公式计算.此题考查等边三角形的性质和三角形的面积计算,属基础题.【解答】解:∵等边三角形的周长是30厘米∴边长为10厘米.∵高是√ 102−52=√ 75=5√ 3厘米∴面积=10×5√ 3÷2=25√ 3(cm2).故答案是:25√ 3cm2.12.【答案】1<AC<4【解析】解:如图,过点B作BC1⊥AN,垂足为C1,BC2⊥AM,交AN于点C2在Rt△ABC1中AB=2,∠A=60°∴∠ABC1=30°∴AC1=12AB=1在Rt△ABC2中AB=2,∠A=60°∴∠AC2B=30°∴AC2=4当点C在C1和C2之间时,△ABC是锐角三角形∴AC的取值范围是1<AC<4故答案为:1<AC<4.当点C在射线AN上运动,△ABC的形状可能是钝角三角形、直角三角形或锐角三角形.画出相应的图形,根据运动三角形的变化,构造含30°角的直角三角形,即可得到AC的取值范围.本题考查了直角三角形中30°的角所对的直角边等于斜边的一半,能熟记含30°角的直角三角形的性质是解此题的关键.13.【答案】3.5【解析】【分析】本题考查了含30°角的直角三角形的性质,熟练掌握含30°角的直角三角形的性质是解题关键.根据含30°角的直角三角形的性质即可得.【解答】解:∵在△ABC中AB=AC=7,∠B=30°,AD⊥BC∴AD=12AB=3.5故答案为:3.5.14.【答案】12【解析】【分析】此题主要利用了直角三角形中30°的角所对的边是斜边的一半解决问题,然后解题时要正确理解题意,把握题目的数量关系.如图,由于倒下部分与地面成30°夹角,所以∠BAC=30°,由此得到AB=2CB,而离地面4米处折断倒下,即BC=4米,所以得到AB=8米,然后即可求出这棵大树在折断前的高度.【解答】解:如图∵∠BAC=30°,∠BCA=90°∴AB=2CB而BC=4米∴AB=8米∴这棵大树在折断前的高度为AB+BC=12米.故答案为12.15.【答案】8【解析】【分析】本题主要考查含30°角的直角三角形,等腰直角三角形,平行线的判定与性质等知识点,熟记公式是解题的关键.先利用直角三角形的性质求出AC的长,再根据平行线的性质及等腰直角三角形的性质求出CF的长即可.【解答】解:∵∠B=30°,∠ACB=90°,AB=8cm∴AC=4cm.由题意可知BC//ED∴∠AFC=∠ADE=45°∴AC=CF=4cm.×4×4=8(cm2).故S△ACF=12故答案为8.16.【答案】6【解析】解:∵等边三角形纸片ABC的边长为6,E,F是边BC上的三等分点∴EF=2∵DE//AB,DF//AC∴△DEF是等边三角形∴剪下的△DEF的周长是2×3=6.故答案为:6.根据三等分点的定义可求EF的长,再根据等边三角形的判定与性质即可求解.本题考查了等边三角形的判定与性质,平行线的性质,关键是证明△DEF是等边三角形.17.【答案】10【解析】【分析】本题考查的是线段垂直平分线的性质和含30°角的直角三角形的性质,熟知线段垂直平分线上任意一点,到线段两端点的距离相等是解答此题的关键.先根据线段垂直平分线的性质得出BE=CE,故可得出∠B=∠DCE,再由直角三角形的性质即可得出结论.【解答】解:在△ABC中∠B=30°,BC的垂直平分线交AB于E,ED=5所以BE=CE所以∠B=∠DCE=30°在Rt△CDE中因为∠DCE=30°,ED=5所以CE=2DE=10.故答案为:10.18.【答案】1cm【解析】【分析】根据三角形的外角的性质可求得∠DAC=30°,再根据直角三角形中有一个角是30°,则这个角所对的边等于斜边的一半,从而求得CD的长.本题考查直角三角形的性质的综合运用.【解答】解:∵∠B=10°,∠C=20°∴∠DAC=30°.∵CD⊥AB∴CD=1/2AC=1cm.故CD的长度是1cm.19.【答案】12【解析】【分析】本题考查了等边三角形的性质:等边三角形的三个内角都相等,且都等于60°.也考查了平移的性质.利用等边三角形的性质得到AB=BC=5cm,∠B=∠ACB=60°,再根据平移的性质得到∠A′B′C′=∠B= 60°,BB′=1cm,B′C=4cm,于是可判断阴影部分为等边三角形,从而得到阴影部分的周长.【解答】解:∵△ABC为等边三角形∴AB=BC=5cm,∠B=∠ACB=60°∵等边△ABC向右平移1cm得到△A′B′C′∴∠A′B′C′=∠B=60°,BB′=1cm∴∠A′B′C′=∠ACB=60°,B′C=BC−BB′=5−1=4cm∴阴影部分为等边三角形∴阴影部分的周长为3×4=12(cm).故答案为:12.20.【答案】221.【答案】解:如下图:点D即为所求.【解析】本题考查了尺规作图,掌握作一个角的平分线的方法是解题的关键.作∠ACB 的平分线即可.22.【答案】解:(1)∵△ABD 、△AEC 都是等边三角形∴AD =AB ,AC =AE ,∠DAB =∠DBA =∠ADB =60°,∠CAE =60°∵∠DAB =∠DAC +∠CAB ,∠CAE =∠BAE +∠CAB∴∠DAC =∠BAE在△DAC 和△BAE 中{AD =AB ∠DAC =∠BAE AC =AE∴△DAC≌△BAE∴CD =BE .(2)∵△DAC≌△BAE∴∠ADC =∠ABE∴∠CFE =∠BDF +∠DBF=∠BDF +∠DBA +∠ABF=∠BDF +∠DBA +∠ADC=∠BDA +∠DBA=60°+60°=120°.【解析】本题考查了全等三角形的性质与判定,解决本题的关键是证明△DAC≌△BAE .(1)利用△ABD 、△AEC 都是等边三角形,证明△DAC≌△BAE ,即可得到CD =BE ;(2)由△DAC≌△BAE ,得到∠ADC =∠ABE ,再由∠CFE =∠BDF +∠DBF =∠BDF +∠DBA +∠ABF ,即可解答.23.【答案】证明:(1)∵∠ACB =90°,AD ⊥CE ,BE ⊥CE∴∠ACD +∠BCE =90°,∠ACD +∠CAD =90°,∠ADC =∠CEB =90°∴∠BCE =∠CAD在△ADC 和△CEB 中{∠ADC =∠CEB ∠CAD =∠BCE AC =BC∴△ADC≌△CEB(AAS)∴BE =CD ;(2)∵∠ECA=75°∴∠CAD=15°=∠BCE ∵∠ACB=90°,AC=BC∴∠CBA=∠CAB=45°∴∠BFE=60°,∠DAF=30°∴∠FBE=30°,DF=12AF∴EF=12BF∴DE=DF+EF=12(AF+BF)=12AB.【解析】(1)由“AAS”可证△ADC≌△CEB,可得BE=CD;(2)由直角三角形的性质可得DF=12AF,EF=12BF,可得结论.本题考查了全等三角形的判定和性质,30°所对的直角边是斜边的一半,直角三角形的性质,证明三角形全等是解题的关键.24.【答案】(1)证明:∵AB=AC∴∠CBA=∠ACB=45°∴∠CAB=180°−∠ACB−∠CBA=90°∴AC⊥AB.(2)解:过点D作DE⊥BA,交BA的延长线于点E由题意得:AC=AD=CD=8∴△ACD是等边三角形∴∠DAC=60°∴∠DAE=180°−∠DAC−∠CAB=30°∴DE=12AD=4∴△ABD的面积=12AB⋅DE=12×8×4=16∴△ABD的面积为16.【解析】(1)利用等腰三角形的性质可得∠CBA=∠ACB=45°,然后利用三角形内角和定理求出∠CAB=90°,即可解答;(2)过点D作DE⊥BA,交BA的延长线于点E,根据题意可得:AC=AD=CD=8,从而可得△ACD是等边三角形,然后利用等边三角形的性质可得∠DAC=60°,从而利用平角定义可得∠DAE=30°,最后在Rt△DEA中,利用含30°角的直角三角形的性质可得DE=4,从而利用三角形的面积进行计算即可解答.本题考查了等腰三角形的性质,等边三角形的判定与性质,含30°角的直角三角形,根据题目的已知条件并结合图形添加适当的辅助线是解题的关键.25.【答案】(1)解:如图所示:(2)证明:∵△ABC是等边三角形∴∠ABC=∠ACB=60°∴∠ACH=120°∵CN平分∠ACH∴∠HCN=∠BCE=60°∵∠CBE=∠CBA=60°∴∠EBC=∠BCE=∠BEC=60°∴△BEC是等边三角形;(3)证明:连接ME∵△ABC和△BCE是等边三角形∴AB=BC=BE在△ABM和△EBM中∵{AB=EB∠ABM=∠EBM BM=BM,∴△ABM≌△EBM(SAS)∴AM=EM,∠BAM=∠BEM∵AM=MN∴MN=EM∴∠N=∠CEM∵∠HCN=∠N+∠CMN=60°∠BEC=∠BEM+∠CEM=60°∴∠CMN=∠BEM=∠BAM∵∠AMC=∠ABC+∠BAM=∠AMN+∠CMN∴∠AMN=60°.【解析】【分析】此题是三角形综合题目,考查了等边三角形的性质和判定,作一个角等于已知角的基本作图,全等三角形的判定与性质,三角形的外角性质等知识;熟练掌握等边三角形的性质,通过作辅助线构造三角形全等是解本题的关键.(1)以B为圆心,以任意长为半径画弧,交AB、BC两边为D和F,以F为圆心,以DF为半径画弧,交前弧于G,作射线BG,交NC的延长线于E,则∠CBE=∠CBA;(2)证明△BCE三个角都是60°,可得结论;(3)作辅助线,构建三角形全等,证明△ABM≌△EBM(SAS),得AM=EM,∠BAM=∠BEM,证明∠CMN=∠BEM=∠BAM根据三角形外角的性质可得结论.。

安徽省八年级数学上册全等三角形专题训练10一题多解构造全等三角形的辅助线作法pptx课件新版沪科版

安徽省八年级数学上册全等三角形专题训练10一题多解构造全等三角形的辅助线作法pptx课件新版沪科版
1
2
2
如答图,延长 AC 至 M ,使 AM = AB ,连接 PM ,在△ ABP
和△ AMP 中,
∵ AB = AM ,∠1=∠2, AP = AP ,
∴△ ABP ≌△ AMP ( SAS ),∴ PB = PM .
∵在△ PCM 中,有 CM > PM - PC ,
∴ AM - AC > PM - PC . ∴ AB - AC > PB - PC .
再根据 AAS 或 ASA 证全等)
1
2
如图②,过点 C 作 AB 的平行线,交 AD 的延长线于点 E ,
∵ AD 是△ ABC 的中线,∴ BD = CD .
∵ CE ∥ AB ,∴∠ DAB =∠ E ,∠ B =∠ DCE .
∴△ ABD ≌△ ECD ( AAS ).∴ DE = AD =5, CE = AB =7.
∴5+5-7< AC <5+5+7,即3< AC <17.
1
2
1. 如图, AD 是△ ABC 的边 BC 上的中线, AB =7, AD =
5,求 AC 长的取值范围.(试用2种方法完成此题)
解法二:(可以尝试过点 C 作 AB 的平行线,交 AD 的延长线
于点 E ,或过点 B 作 AC 的平行线,交 AD 的延长线于点 E ,
第14章
专题训练10
全等三角形
【一题多解】
构造全等三角形的辅助线作法
遇到中点,可尝试倍长中线法或作平行线法
1. 如图, AD 是△ ABC 的边 BC 上的中线, AB =7, AD =
5,求 AC 长的取值范围.(试用2种方法完成此题)
解法一:(可以尝试倍长中线 AD ,再根据 SAS 证全等)

数学人教版八年级上册角平分线和平行线构成等腰三角形的探究

数学人教版八年级上册角平分线和平行线构成等腰三角形的探究

角平分线和平行线构成等腰三角形的探究-----李春蕊北京市育英学校一、教材分析:《等腰三角形》是“人教版八年级数学(上)”第十二章第三节的内容。

等腰三角形是一种特殊的三角形,它除了具备一般三角形的所有性质外,还有许多特殊的性质,由于这些特殊性质,使它比一般的三角形应用更广泛。

这一单元的主要内容是等腰三角形的性质和判定,以及等边三角形的相关知识,尤其是等腰三角形的性质和判定,它们是研究等边三角形、证明线段等和角等的重要依据.学情分析:本节课在学生已经学习了轴对称、等腰三角形性质及判定基础上,进一步探究角平分线和平行线形成等腰三角形的问题。

学生具有一定说理能力,整体几何感观比较清晰,在探究活动中,能够根据老师的问题进行有切入的思考。

二、教学目标:(1)掌握角平分线和平行线形成等腰三角形的基本规律;(2)体会研究问题中用到的分类思想,经历由特征图形问题的解决,发展对问题的进一步探究,认识到在几何问题中,位置关系可得出一定数量关系,特殊的数量关系也能推出一定位置关系.(3)通过交流和研讨,使学生在探索的同时获得解决问题的一种方法,提高学生学习数学的兴趣和信心.教学重点:掌握角平分线+平行线能形成等腰三角形这个基本规律,利用这个规律解决等腰三角形方面的有关问题.教学难点:灵活运用角平分线和平行线形成等腰三角形这个基本规律解决有关问题.突出重点方法:观察,思考,证明.突出难点方法:自主探究教学方法:启发与探究相结合教学准备:PPT,课本,作图工具三、教学设计:(一)复习等腰三角形相关知识1、请同学们对等腰三角形的知识要点进行自我回顾:(由学生先进行回顾,教师补充)(二)探究过程问题1:已知∠ABC,BD平分∠ABC,ED//BC.思考:△EBD是等腰三角形吗?解:是;EB=ED发现:无论点D 在BD 上如何运动,△EBD 都是等腰三角形结论:角平分线+平行线 等腰三角形我们在几何证明中,一般不单独研究角,大多数都是借助图形,比如在三角形中研究问题,上面问题如果放在三角形中,我们可以作三角形中一个角的角平分线,然后过角平分线上一点,作这个角的一边的平行线。

2023学年八年级数学上册高分突破必练专题(人教版) 等边三角形常考作辅助线(原卷版)

2023学年八年级数学上册高分突破必练专题(人教版) 等边三角形常考作辅助线(原卷版)

等边三角形常考作辅助线法技巧1:作平行线法技巧2:截长补短法【典例1】(烟台)如图,在等边三角形ABC中,点E是边AC上一定点,点D是直线BC上一动点,以DE为一边作等边三角形DEF,连接CF.【问题解决】如图1,若点D在边BC上,求证:CE+CF=CD;【类比探究】如图2,若点D在边BC的延长线上,请探究线段CE,CF与CD之间存在怎样的数量关系?并说明理由.【变式1-1】(2020秋•句容市期中)如图,在等边三角形ABC中,点E是边AC上一定点,点D是射线BC上一动点,以DE为一边作等边三角形DEF,连接CF.【问题解决】如图1,点D与点B重合,求证:AE=FC;【类比探究】(1)如图2,点D在边BC上,求证:CE+CF=CD;(2)如图3,点D在边BC的延长线上,请探究线段CE,CF与CD之间存在怎样的数量关系?直接写出你的结论.【变式1-2】(天心区期中)如图,在等边△ABC中,点D是边AC上一定点,点E是直线BC上一动点,以DE为一边作等边△DEF,连接CF.(1)如图1,若点E在边BC上,且DE⊥BC,垂足为E,求证:CD=2CE;(2)如图1,若点E在边BC上,且DE⊥BC,垂足为E,求证:CE+CF=CD;(3)如图2,若点E在射线CB上,请探究线段CE,CF与CD之间存在怎样的数量关系?并说明理由.【典例2】(2020秋•湖南期末)如图,△ABC是等边三角形,点D、E分别是射线AB、射线CB上的动点,点D从点A出发沿射线AB移动,点E从点B出发沿BG移动,点D、点E同时出发并且运动速度相同.连接CD、DE.(1)如图①,当点D移动到线段AB的中点时,求证:DE=DC.(2)如图②,当点D在线段AB上移动但不是中点时,试探索DE与DC之间的数量关系,并说明理由.(3)如图③,当点D移动到线段AB的延长线上,并且ED⊥DC时,求∠DEC度数.【变式2-1】(道外区期末)如图,△ABC中,AB=AC,点D在AB边上,点E在AC的延长线上,且CE=BD,连接DE交BC于点F.(1)求证:EF=DF;(2)过点D作DG⊥BC,垂足为G,求证:BC=2FG.【变式2-2】(东城区期末)(1)老师在课上给出了这样一道题目:如图1,等边△ABC边长为2,过AB边上一点P作PE⊥AC于E,Q为BC延长线上一点,且AP=CQ,连接PQ交AC于D,求DE的长.小明同学经过认真思考后认为,可以通过过点P作平行线构造等边三角形的方法来解决这个问题.请根据小明同学的思路直接写出DE的长.(2)【类比探究】老师引导同学继续研究:1.等边△ABC边长为2,当P为BA的延长线上一点时,作PE⊥CA的延长线于点E,Q为边BC上一点,且AP=CQ,连接PQ交AC于D.请你在图2中补全图形并求DE 的长.2.已知等边△ABC,当P为AB的延长线上一点时,作PE⊥射线AC于点E,Q为②(①BC边上;②BC的延长线上;③CB的延长线上)一点,且AP=CQ,连接PQ交直线AC于点D,能使得DE的长度保持不变.(将答案的编号填在横线上)1.(2021秋•咸丰县期末)如图,等边△ABC的边长为12cm,D为AC边上一动点,E为AB延长线上一动点,DE交CB于点P,点P为DE中点(1)求证:CD=BE;(2)若DE⊥AC,求BP的长.2.(2021秋•绵竹市期末)在等边△ABC中,点E是AB上的动点,点E与点A、B不重合,点D在CB的延长线上,且EC=ED.(1)如图1,若点E是AB的中点,求证:BD=AE;(2)如图2,若点E不是AB的中点时,(1)中的结论“BD=AE”能否成立?若不成立,请直接写出BD与AE数量关系,若成立,请给予证明.3.(2020秋•旅顺口区期中)如图,在等边三角形ABC中,点E是边CA延长线上一点,点D是直线BC上一动点,以DE为一边作等边三角形DEF,连接CF.(1)如图1,若点D在边BC上,求证:CE=CF+CD;(2)如图2,若点D在边BC的延长线上,请探究线段CE,CF与CD之间存在怎样的数量关系,并说明理由.4.(2020•安徽)如图,D是等边△ABC的边AB上一点,E是BC延长线上一点,CE=DA,连接DE交AC于F,过D点作DG⊥AC于G点.证明下列结论:(1)AG=AD;(2)DF=EF;(3)S△DGF=S△ADG+S△ECF.5.(2020秋•花雨区校级月考)我们在前面曾遇到过这样一道题目:小明与同桌小聪讨论后,进行了如下解答:(1)特殊情况,探索结论当点E为AB的中点时,如图1,确定线段AE与DB的大小关系,请你直接写出结论:AE DB(填“>”、“<”或“=”)(2)一般情况,证明结论:如图2,过点E作EF∥BC,交AC于点F.请你继续完成对以上问题(1)中所填写结论的证明.(3)变式探究:如图3,△ABC是等边三角形,D是边BC上一点,点E在BA的延长线上,且BD=AE,此时,CE和DE有何数量关系?请画出图形,作出判断,并说明理6.(2020秋•河西区期末)如图,△ABC是边长为6的等边三角形,P是AC边上一动点,由A向C运动(与A、C不重合),Q是CB延长线上一点,与点P同时以相同的速度由B向CB延长线方向运动(Q不与B重合),过P作PE⊥AB于E,连接PQ交AB于D.(1)当∠BQD=30°时,求AP的长;(2)证明:在运动过程中,点D是线段PQ的中点;(3)当运动过程中线段ED的长是否发生变化?如果不变,求出线段ED的长;如果变化请说明理由.7.(2020秋•裕华区校级期末)知识链接:将两个含30°角的全等三角尺放在一起,让两个30°角合在一起成60°,经过拼凑、观察、思考,探究出结论“直角三角形中,30°角所对的直角边等于斜边的一半”.如图,等边三角形ABC的边长为4cm,点D从点C出发沿CA向A运动,点E从B出发沿AB的延长线BF向右运动,已知点D、E都以每秒0.5cm的速度同时开始运动,运动过程中DE与BC相交于点P,设运动时间为x秒.(1)请直接写出AD长.(用x的代数式表示)(2)当△ADE为直角三角形时,运动时间为几秒?(3)求证:在运动过程中,点P始终为线段DE的中点.8.(2021秋•营口期末)已知A(﹣10,0),以OA为边在第二象限作等边△AOB.(1)求点B的横坐标;(2)如下图,点M、N分别为OA、OB边上的动点,以MN为边在x轴上方作等边△MNE,连结OE,当∠EMO=45°时,求∠MEO的度数.。

八年级数学上第9讲平行线的证明素养专项提升专项2平行线中常用作辅助线的方法新北师大

八年级数学上第9讲平行线的证明素养专项提升专项2平行线中常用作辅助线的方法新北师大
2、科学的灵感,决不是坐等可以等来的。如果说,科学上的发现有什么偶然的机遇的话,那么这种‘偶然的机遇’只能给那些学有素养的人,给那些善于 独立思考的人,给那些具有锲而不舍的人。2022年3月2022/3/272022/3/272022/3/273/27/2022 3、做老师的只要有一次向学生撒谎撒漏了底,就可能使他的全部教育成果从此为之失败。 2022/3/272022/3/27March 27, 2022
7.如图,已知AB∥DE,∠BCD=30°,∠CDE=138°.求 ∠ABC的度数.
解:如图,过点C作CF∥AB. ∵AB∥DE,∴DE∥CF. ∴∠DCF=180°-∠CDE=180°-138°=42°. ∴∠BCF=∠BCD+∠DCF=30°+42°=72°. ∵AB∥CF,∴∠ABC=∠BCF=72°.
谢谢观赏
You made my day!
期末提分练案
第9讲 平行线的证明 2 素养专项提升
专项2 平行线中常用作辅助线的方法
提示:点击 进入习题
1 见习题 2B 3 见习题 4 见习题 5 见习题
6 见习题 7 见习题 8 见习题 9 见习题
答案显示
1.如图,∠E=∠B+∠D,猜想AB与CD有怎样的位置关 系,并说明理由.
解:AB∥CD.理由如下: 如图,连接BD. 在△BDE中,∠1+∠2+∠E=180°. ∵∠E=∠3+∠4,∴∠1+∠2+∠3+∠4=180°, 即∠ABD+∠CDB=180°. ∴AB∥CD.
解法二:过点P作射线PM∥AB,如图②所示. ∵AB∥CD,∴PM∥CD. ∴∠4=180°-∠2=180°-28°=152°. ∵∠4+∠BPC+∠3=360°, ∴∠3=360°-∠BPC-∠4=360°-58°-152°=150°. ∵AB∥PM, ∴∠1=180°-∠3=180°-150°=30°.

几何辅助线——构造等边三角形

几何辅助线——构造等边三角形

几何辅助线——构造等边三角形
例:如图,在△ABC中,点D、E分别在AB、AC上,且△ADE是等边三角形,CE=AB。

求证:BC=CD。

解法一:如图,延长AB至点F,使得AF=AC,连接CF。

易证△ACD≌△FCB(SAS)
解法二:如图,过点B作BF∥DE交AC于点F。

易证△ABF为等边三角形,△BCF≌△CDE。

解法三:分别取BD、AC的中点F、G,连接CF,FG。

设AD=a,DF=b.易证AF=AG=a+b,△AFG为等边三角形,∠GFC=∠GCF=1/2∠AGF=30°。

所以∠AFC=90°。

由三线合一得BC=CD。

解法四:如图,以AB为边向外作等边△ABF,连接BF,EF。

易证
四边形BCEF为平行四边形。

△AEF≌△EDC。

每做一道题,深挖题目条件,从不同的角度去思考问题,由因及果,由果及因,反复推敲。

这样做一道题比只写出结果做十道题的效果更好,更能锻炼你的思维。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档