《资本资产定价模型》课件
合集下载
投资学PPT第章资本资产定价模型_图文
资产组合相同 问题: ❖若某一个股票未包含在最优资产组合中,
会怎样?
*
22
图 9.1 The Efficient Frontier and the Capital Market Line
*
23
9.1.2 消极策略的有效性
理由:
❖市场的有效性
❖投资于市场投资组合指数这样一个消极策略是有 效的——有时把这一结果称之为共同基金定理 (mutual fund theorem)。
*
39
练习题
某基金下一年的投资计划是:基金总额的 10%投资于收益率为7%的无风险资产, 90%投资于一个市场组合,该组合的期望 收益率为15%。若基金中的每一份代表其 资产的100元,年初该基金的售价为107美 元,请问你是否愿意购买该基金?为什么 ?
*
40
9.2 资本资产定价模型和指数模型
9.2.1 实际收益与期望收益
*
36
SML 与CML的比较:
������ SML 的坐标系为“β—r”;而CML 的坐标系是“σ—r” ▪ ������ SML 反映的是证券或证券组合的期望收益与风险程
度的依赖关系;而CML 反映的是有效证券组合的期望收 益与风险程度的依赖关系。 ▪ ������ SML 只反映证券或证券组合的期望收益与其所含系 统风险的关系,不是全部风险的关系;CML 则由于其上 面的所有证券组合都只含有系统风险,它所反映的是这 些证券组合的期望收益与其全部风险的依赖关系。 ▪ ������ 在均衡证券市场中,如果证券被恰当定价,则应当 落在SML 之上;而单纯由证券组成的有效证券组合除M 外均落在CML的下方。
▪ 夏普(William Sharpe)是美国斯坦福大学教授。 诺贝尔经济学评奖委员会认为CAPM已构成金融 市场的现代价格理论的核心,它也被广泛用于经 验分析,使丰富的金融统计数据可以得到系统而 有效的利用。它是证券投资的实际研究和决策的 一个重要基础。
会怎样?
*
22
图 9.1 The Efficient Frontier and the Capital Market Line
*
23
9.1.2 消极策略的有效性
理由:
❖市场的有效性
❖投资于市场投资组合指数这样一个消极策略是有 效的——有时把这一结果称之为共同基金定理 (mutual fund theorem)。
*
39
练习题
某基金下一年的投资计划是:基金总额的 10%投资于收益率为7%的无风险资产, 90%投资于一个市场组合,该组合的期望 收益率为15%。若基金中的每一份代表其 资产的100元,年初该基金的售价为107美 元,请问你是否愿意购买该基金?为什么 ?
*
40
9.2 资本资产定价模型和指数模型
9.2.1 实际收益与期望收益
*
36
SML 与CML的比较:
������ SML 的坐标系为“β—r”;而CML 的坐标系是“σ—r” ▪ ������ SML 反映的是证券或证券组合的期望收益与风险程
度的依赖关系;而CML 反映的是有效证券组合的期望收 益与风险程度的依赖关系。 ▪ ������ SML 只反映证券或证券组合的期望收益与其所含系 统风险的关系,不是全部风险的关系;CML 则由于其上 面的所有证券组合都只含有系统风险,它所反映的是这 些证券组合的期望收益与其全部风险的依赖关系。 ▪ ������ 在均衡证券市场中,如果证券被恰当定价,则应当 落在SML 之上;而单纯由证券组成的有效证券组合除M 外均落在CML的下方。
▪ 夏普(William Sharpe)是美国斯坦福大学教授。 诺贝尔经济学评奖委员会认为CAPM已构成金融 市场的现代价格理论的核心,它也被广泛用于经 验分析,使丰富的金融统计数据可以得到系统而 有效的利用。它是证券投资的实际研究和决策的 一个重要基础。
资本资产定价模型概述(ppt42张)
6、可以在无风险折现率R的水平下无限制地借 入或贷出资金; 7、所有投资者对证券收益率概率分布的看法一 致,因此市场上的效率边界只有一条; 8、所有投资者具有相同的投资期限,而且只有 一期; 9、所有的证券投资可以无限制的细分,在任何 一个投资组合里可以含有非整数股份;
10、税收和交易费用可以忽略不计; 11、市场信息通畅且无成本; 12、不考虑通货膨胀,且折现率不变; 13、投资者具有相同预期,即他们对预期收益率、 标准差和证券之间的协方差具有相同的预期值。 上述假设表明:第一,投资者是理性的,而且严格 按照马科威茨模型的规则进行多样化的投资,并将 从有效边界的某处选择投资组合;第二,资本市场 是完全有效的市场,没有任何磨擦阻碍投资。
又由(7.3)
dv 1 dE ( r E ( r )E ( r c) M j)
于是
d d d v c c d Er ( c) d vd Er ( c)
2 2 [ ( 1 v ) ( 1 2)c v o v ( r , r ) v ]/ j j m M c Er ( M) Er ( j)
假定2:针对一个时期,所有投资者的预期 都是一致的。
这个假设是说,所有投资者在一个共同的时期内 计划他们的投资,他们对证券收益率的概率分布 的考虑是一致的,这样,他们将有着一致的证券预 期收益率﹑证券预期收益率方差和证券间的协方 差。同时,在证券组合中,选择了同样的证券和同 样的证券数目。 这个假设与下面的关于信息在整个资本市场中畅 行无阻的假设是一致的。
故
2 c o v ( r , r ) d j M M c d Er ( c)v Er ( M) Er ( j) ) c( 1
第五章-资本资产定价模型PPT课件
-
20
例
解:R=3.5%+1.63(10.5%-3.5%)
-
21
例三
你个人认为IBM公司股票的期望收益率为12%。 已知 值为1.25,无风险利率为3.5%,市场期望收益率为
10.5%,根据资本资产定价模型,IBM公司股票被高估、 低估还是公平定价?
-
22
ห้องสมุดไป่ตู้
例三
解: R=3.5%+1.25(10.5%-3.5%)
资行为和确定资产组合构成。(不考虑在持有期结束时 及以后事件对投资者行为产生的影响,投资者的资产选 择是一种短视行为,因而可能是非最优的。)
-
4
经典CAPM
一、模型的假设及结论 •(三)投资者投资范围。 假设投资者的投资范围仅限于公开金融市场上交易
的资产,比如股票、债券、借入或贷出的无风险资产安 排等。他们都依据期望收益率和标准差选择证券。
-
5
经典CAPM
•(四)假设不存在证券交易费用(佣金和服务费用等) 及税赋。(但在实践中税收和交易费用会影响投资者的 投资行为。)
-
6
经典CAPM
•(五)假设所有投资者属于同质预期 也就是说,给定证券价格和无风险利率以后,所
有投资者面对的是相同的证券期望收益率与协方差 矩阵,面对的是相同的有效率边界和相同的最优风 险资产组合。
-
12
为什么所有的投资者都持有市场资产组合
• 投资者在一个什么样的价位上才愿意将该只股票纳 入其最优风险资产组合。 当某只股票需求为零时,股价会下跌,直至它对于 投资者的吸引力超过任意其它一只股票的吸引力,并进 入到投资者的最优资产组合的构成之中,从而使该股票 价格回升到某一均衡水平
投资学第章资本资产定价模型剖析ppt课件
比较CAPM:E(ri ) rf i[E(rM ) rf ]
与指数模型的期望形式:
E(ri ) rf i i[E(rM ) rf ] 可知二者差别在于,CAPM认为所有的i都为0。 市场模型:rf E(ri ) i[rf E(rM )] ei
如果CAPM有效,则市场模型等同于指数模型。
E(Ri ) kE(Ci ) ( L1 L2 L3 )
其中,E(Ci )为期望流动性代价; k为所有资产的调整后的平均持有期
为平均市场流动性的市场风险溢价净值 为系统性市场风险敏感度, L1、 L 2、 L3为流动性 E(RM CM ),CM 表示市场平均流动性溢价。
37
流动性的三要素
25
9.3 CAPM符合实际吗?
CAPM的实用性取决于证券分析。 9.3.1 CAPM能否检验 ▪ 规范方法与实证方法 ▪ 实证检验的两类 错误(数据、统计方法) 9.3.2 实证检验质疑CAPM
26
9.3 CAPM符合实际吗?
9.3.3CAPM的经济性与有效性 ▪ CAPM在公平定价领域的广泛应用 ▪ CAPM被普遍接受的原因 9.3.4 投资行业与CAPM的有效性 投资公司更趋向于支持CAPM
39
27
9.4 计量经济学和期望收益-贝塔关系
▪ 计量经济方法可能是引起CAPM被错误拒 绝的原因
▪ 相关改进
➢ 用广义最小二乘法处理残差相关性 ➢ 时变方差模型ARCH
28
9.5 CAPM的拓展形式
两种思路: ▪ 假定的放宽 ▪ 投资者心理特征的应用
29
9.5.1 零模型
有效前沿的三大性质:
▪ 两种有效前沿上的资产组合组成的任意资产组合仍在有 效前沿上
23
9.2.2 指数模型和已实现收益
与指数模型的期望形式:
E(ri ) rf i i[E(rM ) rf ] 可知二者差别在于,CAPM认为所有的i都为0。 市场模型:rf E(ri ) i[rf E(rM )] ei
如果CAPM有效,则市场模型等同于指数模型。
E(Ri ) kE(Ci ) ( L1 L2 L3 )
其中,E(Ci )为期望流动性代价; k为所有资产的调整后的平均持有期
为平均市场流动性的市场风险溢价净值 为系统性市场风险敏感度, L1、 L 2、 L3为流动性 E(RM CM ),CM 表示市场平均流动性溢价。
37
流动性的三要素
25
9.3 CAPM符合实际吗?
CAPM的实用性取决于证券分析。 9.3.1 CAPM能否检验 ▪ 规范方法与实证方法 ▪ 实证检验的两类 错误(数据、统计方法) 9.3.2 实证检验质疑CAPM
26
9.3 CAPM符合实际吗?
9.3.3CAPM的经济性与有效性 ▪ CAPM在公平定价领域的广泛应用 ▪ CAPM被普遍接受的原因 9.3.4 投资行业与CAPM的有效性 投资公司更趋向于支持CAPM
39
27
9.4 计量经济学和期望收益-贝塔关系
▪ 计量经济方法可能是引起CAPM被错误拒 绝的原因
▪ 相关改进
➢ 用广义最小二乘法处理残差相关性 ➢ 时变方差模型ARCH
28
9.5 CAPM的拓展形式
两种思路: ▪ 假定的放宽 ▪ 投资者心理特征的应用
29
9.5.1 零模型
有效前沿的三大性质:
▪ 两种有效前沿上的资产组合组成的任意资产组合仍在有 效前沿上
23
9.2.2 指数模型和已实现收益
资本资产定价模型 (PPT 55张)
i
上式结论也适用于由无风险资产和风险资产组合构 成的投资组合的情形。在图(7-9)中,这种投资组 合的预期收益率和标准差一定落在AB线段上。
11
投资于无风险资产A和风险资产组合B的可行集 ——许多线段AB构成的区域
R
p
﹡D
R r i f R r p f P
Ri
B
★
i
A(rf ) ★
5
二、资本市场线 CML
(一)允许无风险贷出下的可行集与有效集 1.无风险贷款或无风险资产的定义 无风险贷款相当于投资于无风险资产,其收益是确定的, 其风险(标准差)应为零。 无风险资产收益率与风险资产收益率之间的协方差也等于 零。 现实生活中,到期日和投资期相等的国债是无风险资产。
为方便起见,常将1年期的国库券或货币市 场基金当作无风险资产。
17
(二)无风险借款对有效集的影响
1、允许无风险借款下的投资组合
在推导马科维茨有效集的过程中,我们假定投资者可 以购买风险资产的金额仅限于他期初的财富。然而,在 现实生活中,投资者可以借入资金并用于购买风险资产。 由于借款必须支付利息,而利率是已知的,在该借款 本息偿还上不存在不确定性。因此我们把这种借款称为 无风险借款。
iff i
x ,其中 [ 0 , ] p i i p i
x x 1 ,其中 x x [ 0 , 1 ] f i f, i
③
②
8
该组合的预期收益率和标准差的关系为:
p R ( 1 ) r p f
i
p R i i
y f ( x ) b k x
2
一、CAPM模型的基本假设
1.存在着大量投资者,每个投资者的财富相对于所有投 资者的财富总和来说是微不足道的。
资本资产定价模型(CAPM模型)ppt课件
75%投资于福特汽车公司股票。假定两支股票的值
分别为1.2和1.6,投资组合的风险溢价为多少?
解: P 0.251.2 0.751.6 1.5
E(rP ) rf 1.5[E(rM ) rf ] 1.58% 12%
ppt课件
18
证券特征线(Characteristic Line)
证券特征线方程:E(ri ) rf i (E(rm ) rf )
ppt课件
10
资本市场线与证券市场线的内在关系
描述对象不同
CML描述有效组合的收益与风险之间的关系
SML描述的是单个证券或某个证券组合的收益与风险 之间的关系,既包括有效组合有包括非有效组合
风险指标不同
CML中采用标准差作为风险度量指标,是有效组合收 益率的标准差
SML中采用β系数作为风险度量指标,是单个证券或 某个证券组合的β系数
ppt课件
26
我们可以对 rp j 给出另一种解释。由于拥有股票j的风险
为 jm ,即 j乘上市场风险 m是j所带来的风险,而每
单位风险的价格为:
P rm rf m
所以,承担风险资产j的所需求的风险溢价应为:
j
mP
j
m
rm rf
m
j
rm rf
rpj
ppt课件
27
证券市场均衡条件 如证券市场如有N只股票,对于i,j 1,2, , N,在证券
E(zi ) r (z) cov(zi , z)
(1)
ppt课件
24
均方差资产定价原理
其中, (z) 是对投资中总的风险的度量,也就是对不 确定环境中某种状态的概率。 另一方面,由2可知,在市场均衡的条件下,资产 组合的收益E(Z)减去无风险利率r后所得的差,也 必须与证券收益的方差成比例,即有:
分别为1.2和1.6,投资组合的风险溢价为多少?
解: P 0.251.2 0.751.6 1.5
E(rP ) rf 1.5[E(rM ) rf ] 1.58% 12%
ppt课件
18
证券特征线(Characteristic Line)
证券特征线方程:E(ri ) rf i (E(rm ) rf )
ppt课件
10
资本市场线与证券市场线的内在关系
描述对象不同
CML描述有效组合的收益与风险之间的关系
SML描述的是单个证券或某个证券组合的收益与风险 之间的关系,既包括有效组合有包括非有效组合
风险指标不同
CML中采用标准差作为风险度量指标,是有效组合收 益率的标准差
SML中采用β系数作为风险度量指标,是单个证券或 某个证券组合的β系数
ppt课件
26
我们可以对 rp j 给出另一种解释。由于拥有股票j的风险
为 jm ,即 j乘上市场风险 m是j所带来的风险,而每
单位风险的价格为:
P rm rf m
所以,承担风险资产j的所需求的风险溢价应为:
j
mP
j
m
rm rf
m
j
rm rf
rpj
ppt课件
27
证券市场均衡条件 如证券市场如有N只股票,对于i,j 1,2, , N,在证券
E(zi ) r (z) cov(zi , z)
(1)
ppt课件
24
均方差资产定价原理
其中, (z) 是对投资中总的风险的度量,也就是对不 确定环境中某种状态的概率。 另一方面,由2可知,在市场均衡的条件下,资产 组合的收益E(Z)减去无风险利率r后所得的差,也 必须与证券收益的方差成比例,即有:
资本资产定价模型培训课程PPT(共 48张)
第五章 资产定价模型
R
I0 I1 I2 I3 I4 I5
M
rf
例4-1(p77)
p 2 w 22 f ( 1 w ) 2m 2 2 w ( 1 w ) C o v ( r f, r m )
2 p
(1w)2m 2
p (1w) m
•
13、认识到我们的所见所闻都是假象,认识到此生都是虚幻,我们才能真正认识到佛法的真相。钱多了会压死你,你承受得了吗?带,带不走,放,放不下。时时刻刻发悲心,饶益众生为他人。
•
14、梦想总是跑在我的前面。努力追寻它们,为了那一瞬间的同步,这就是动人的生命奇迹。
•
15、懒惰不会让你一下子跌倒,但会在不知不觉中减少你的收获;勤奋也不会让你一夜成功,但会在不知不觉中积累你的成果。人生需要挑战,更需要坚持和勤奋!
•
5、心情就像衣服,脏了就拿去洗洗,晒晒,阳光自然就会蔓延开来。阳光那么好,何必自寻烦恼,过好每一个当下,一万个美丽的未来抵不过一个温暖的现在。
•
6、无论你正遭遇着什么,你都要从落魄中站起来重振旗鼓,要继续保持热忱,要继续保持微笑,就像从未受伤过一样。
•
7、生命的美丽,永远展现在她的进取之中;就像大树的美丽,是展现在它负势向上高耸入云的蓬勃生机中;像雄鹰的美丽,是展现在它搏风击雨如苍天之魂的翱翔中;像江河的美丽,是展现在它波涛汹涌一泻千里的奔流中。
组合的系统性风险:
2 p
2p
p2m 2
由于系统系风险大小取决于 p 的大小
n
p wi i
i 1
•
1、不是井里没有水,而是你挖的不够深。不是成功来得慢,而是你努力的不够多。
•
2、孤单一人的时间使自己变得优秀,给来的人一个惊喜,也给自己一个好的交代。
R
I0 I1 I2 I3 I4 I5
M
rf
例4-1(p77)
p 2 w 22 f ( 1 w ) 2m 2 2 w ( 1 w ) C o v ( r f, r m )
2 p
(1w)2m 2
p (1w) m
•
13、认识到我们的所见所闻都是假象,认识到此生都是虚幻,我们才能真正认识到佛法的真相。钱多了会压死你,你承受得了吗?带,带不走,放,放不下。时时刻刻发悲心,饶益众生为他人。
•
14、梦想总是跑在我的前面。努力追寻它们,为了那一瞬间的同步,这就是动人的生命奇迹。
•
15、懒惰不会让你一下子跌倒,但会在不知不觉中减少你的收获;勤奋也不会让你一夜成功,但会在不知不觉中积累你的成果。人生需要挑战,更需要坚持和勤奋!
•
5、心情就像衣服,脏了就拿去洗洗,晒晒,阳光自然就会蔓延开来。阳光那么好,何必自寻烦恼,过好每一个当下,一万个美丽的未来抵不过一个温暖的现在。
•
6、无论你正遭遇着什么,你都要从落魄中站起来重振旗鼓,要继续保持热忱,要继续保持微笑,就像从未受伤过一样。
•
7、生命的美丽,永远展现在她的进取之中;就像大树的美丽,是展现在它负势向上高耸入云的蓬勃生机中;像雄鹰的美丽,是展现在它搏风击雨如苍天之魂的翱翔中;像江河的美丽,是展现在它波涛汹涌一泻千里的奔流中。
组合的系统性风险:
2 p
2p
p2m 2
由于系统系风险大小取决于 p 的大小
n
p wi i
i 1
•
1、不是井里没有水,而是你挖的不够深。不是成功来得慢,而是你努力的不够多。
•
2、孤单一人的时间使自己变得优秀,给来的人一个惊喜,也给自己一个好的交代。
资本资产定价模型The Capital Asset Pricing Model(精品PPT)
• 单个证券的期望(qīwàng)收益是单个证券对市场 资产组合的奉献。
• 单个资产的风险溢价是该资产与资产组合中 所有资产的协方差的函数。
第九页,共二十四页。
证券市场 线SML (zhènɡ quàn shì chǎnɡ)
第十页,共二十四页。
证券市场 线 (zhènɡ quàn shì chǎnɡ)
第十四页,共二十四页。
证券市场 线与资本市场线 (zhènɡ quàn shì chǎnɡ)
• 资本市场线刻画的是有效资产组合的风险溢 价。有效资产组合是有市场资产组合与无风 险资产构成的资产组合,其收益是资产组合 标准差的函数(hánshù)。
• 证券市场线是刻画单个资产风险溢价的函数 。单个资产的收益是该证券对市场资产组合 方差的奉献度,即beta。
M = 斜率 of the CAPM
第七页,共二十四页。
– 证券市场线〔SML 〕
r i rfirM rf
– 这里
i Co2vrriM ,rM
– Beta是测度股票i对市场资产组合方
差 的奉献程度,这是市场资产组 (fānɡ chà)
第八页,共二十四页。
单个证券的期望(qīwàng)收益
= Slope SML =
=
[COV(ri,rm)] / m2 E(rm) - rf market risk premium
SML = rf + [E(rm) - rf] Betam = [Cov (ri,rm)] / m2
= m2 / m2 = 1
第十一页,共二十四页。
例子(lìzi)
E(rm) - rf = .08 rf = .03
优 • 投资者都有着相同的预期(同质预期)
• 单个资产的风险溢价是该资产与资产组合中 所有资产的协方差的函数。
第九页,共二十四页。
证券市场 线SML (zhènɡ quàn shì chǎnɡ)
第十页,共二十四页。
证券市场 线 (zhènɡ quàn shì chǎnɡ)
第十四页,共二十四页。
证券市场 线与资本市场线 (zhènɡ quàn shì chǎnɡ)
• 资本市场线刻画的是有效资产组合的风险溢 价。有效资产组合是有市场资产组合与无风 险资产构成的资产组合,其收益是资产组合 标准差的函数(hánshù)。
• 证券市场线是刻画单个资产风险溢价的函数 。单个资产的收益是该证券对市场资产组合 方差的奉献度,即beta。
M = 斜率 of the CAPM
第七页,共二十四页。
– 证券市场线〔SML 〕
r i rfirM rf
– 这里
i Co2vrriM ,rM
– Beta是测度股票i对市场资产组合方
差 的奉献程度,这是市场资产组 (fānɡ chà)
第八页,共二十四页。
单个证券的期望(qīwàng)收益
= Slope SML =
=
[COV(ri,rm)] / m2 E(rm) - rf market risk premium
SML = rf + [E(rm) - rf] Betam = [Cov (ri,rm)] / m2
= m2 / m2 = 1
第十一页,共二十四页。
例子(lìzi)
E(rm) - rf = .08 rf = .03
优 • 投资者都有着相同的预期(同质预期)
资本资产定价模型PPT课件
7
+ 假设1:在一期时间模型里,投资者以期望 回报率和标准差作为评价证券组合的标准。
+ 假设2:所有的投资者都是非餍足的,或进 一步,给定风险,偏好高收益胜于低收益。
+ 假设3:所有的投资者都是风险厌恶者。
+ 假设4:每种证券都是无限可分的,即,投 资者可以购买到他想要的一份证券的任何 一部分。
+ 假设5:无税收和交易成本。
2020/1/11
16
+ 工行的当前价格是4.1元,期末的期望价格 是5.0元,其期望回报率为22%。假设工行 现在价格是4.8元而不是4.1元,其期望回报 率变为4%。与其他证券比较起来,工行的 期望回报率相对太小,而风险相对太大,
+ 每一种证券的相对市场价值等于这种证券 的总市场价值除以所有证券的总市场价值。
+ 市场证券组合记为M。
2020/1/11
14
均衡的定义
一个风险资产回报率向量 r r1,, rN T 和
无风险利率 rf (相应地,风险资产价
格向量 p p1,, pN T 和无风险债券价
格 p f )称为均衡回报率(相应地,均衡 价格),如果它们使得对资金的借贷量 相等且所有风险资产的供给等于需求。
2020/1/11
15
+ 当证券市场达到均衡时,最优风险证券组 合P就是市场证券组合M。
+ 在均衡时,每一种证券在市场证券组合的 构成比例都不为零。
– 这一特性是分离定理的结果:每个投资者都选择相同的 风险证券P 。所有的投资者都购买P,但如果P并不包括 某种风险证券,则没有人会购买P中不包含的风险证券, 那该证券的价格回下降,导致其期望回报率上升,而 这又会刺激投资者对这种证券的需求。这种调整一直 持续到证券组合P中包含每一种风险证券。
资本资产定价模型介绍课件演示(39张)
1 2 X A 2A 2 X B 2B 2 2 X A X B AB
无风险贷款对投资组合选择的影 响
• 对于厌恶风险程度较轻,从而其选择的投 资组合位于DT弧线上的投资者而言,其投 资组合的选择将不受影响。
RP
A
T
C
O
D
P
无风险贷款对投资组合选择的影响
• 对于较厌恶风险的投资者而言,将选择其 无差异曲线与AT线段相切所代表的投资组 合.
• 具有较大 iM值的证券必须按比例提供较
大的预期收益率以吸引投资者。
单个证券风险和收益的关系
• 在均衡状态下,单个证券风险和收益的关 系可以写为:
• 或者
Ri
Rf
(RMRf
M 2
)iM
Ri Rf (RMRf )iM
贝塔系数
• 贝塔系数的一个重要特征是,一个证券组 合的值等于该组合中各种证券值的加权平 均数,权数为各种证券在该组合中所占的 比例,即:
• 尽管如此,如果投资者存在不一致性预 期,市场组合就不一定是有效组合,其 结果是资本资产定价模型不可检验 。
多要素资本资产定价模型
Ri Rf (RMRf)i,M(RF1Rf)i,F1
(RF2Rf )i,F2...(RFK Rf )i,FK
该公式表明,投资者除了承担市场风险需要补偿之
外,还要求因承担市场外风险而要求获得补充。
有效集
• 如果我们用M代表市场组合,用Rf代表无风 险利率,从Rf出发画一条经过M的直线,这 条线就是在允许无风险借贷情况下的线性有
效集,在此我们称为资本市场线 RP
RM
M
Rf
M
P
资本市场线
• 资本市场线的斜率等于市场组合预期收益
投资学《资本资产定价模型》课件
组合投资与风险分散
投资组合风险与组合中证券数目之间的关系
组合风险结构分析 组合的系统风险 组合的非系统风险 结论:随着组合中资产种类的增多,组合的非系统性风险将逐渐趋向于零;分散化投资只能导致系统风险的平均化,而不可能通过分化投资进行消除。
投资组合中的证券数目与风险和回报率
三、β系数的应用 (一)证券类型的划分 : ,同方向运动,普涨共跌; ,反方向运动,逆市; ,保守或防御型资产; ,中性资产; ,较大风险资产; ,高风险资产。
(二)风险报酬测度和证券估值 β系数在风险测度中的应用
四、β系数计量及其相关问题 β 系数估计中的主要关注问题 [1]估计模型的选用 [2]市场组合收益率的选区 [3]市场态势的影响 [4]交易频率问题 1、系数测量方法 [1]历史法 [2]预测法
资本资产定价模型(Capital Asset Pricing Model,CAPM) 1964年,夏普(W.Sharp)在马科维茨投资组合理论的基础上对证券价格的风险-收益关系进行了深入研究,并提出了资本资产定价模型(CAPM)。 此后,林特纳(Lintner,1965)、莫森(Mossin,1966)又分别独立提出资本资产定价模型。
-18.17
0.47
0.53
0.37
0.06
-0.56
11.59
16.71
12.66
1.83
-16.72
0.64
0.56
0.39
0.11
-0.60
16.64
16.55
12.46
3.10
-16.03
0.69
0.48
0.25
-0.12
-0.76
18.03
投资学第四章资本资产定价模型ppt课件
该组合的预期收益率为:RP=X1R1+X2rf 组合的标准差为:σp=X1σ1
考虑以下5种组合:
10
组合A 组合B 组合C 组合D 组合E
X1
0.00 0.25 0.5
0.75 1.00
X2
1.00 0.75 0.5
0.25 0.00
假设风险资产的回报率为16.2%,无风险 资产的回报率为4%,那么根据上面的公式, 5种组合的回报率和标准差如下:
之间的协方差也是零 无风险资产具有确定的回报率,因此:
首先,无风险资产必定是某种具有固定收 益,并且没有任何违约的可能的证券。 其次,无风险资产应当没有市场风险。
7
无风险贷出是投资无风险资产
无风险借入实际上是卖空无风险资产。在现实生活中, 投资者可以借入资金并用于购买风险资产。如果允许投 资者借入资金,那么投资者在决定将多少资金投资于风 险资产时,将不再受初始财富的限制。当投资者借入资 金时,他必须为这笔贷款付出利息。由于利率是已知的, 而且偿还贷款也没有任何不确定性,投资者的这种行为 常常被称为“无风险借入”。同时,为方便起见,我们 假定,为贷款而支付的利率与投资于无风险资产而赢得 的利率相等。
E(RP)
B A
29
σ(RP)
(二)无风险借入并投资于一个风险组合的 情形
30
同样,由无风险借款和风险资产组合构成的投资 组合,其预期收益率和风险的关系与由无风险贷款 和一种风险资产构成的投资组合相似。
我们仍然假设风险资产组合P是由风险资产C和D 组成的,则由风险资产组合P和无风险借款A构成的 投资组合的预期收益率和标准差一定落在AP线段向 右边的延长线上:
组合 X1
A
0.00
B
考虑以下5种组合:
10
组合A 组合B 组合C 组合D 组合E
X1
0.00 0.25 0.5
0.75 1.00
X2
1.00 0.75 0.5
0.25 0.00
假设风险资产的回报率为16.2%,无风险 资产的回报率为4%,那么根据上面的公式, 5种组合的回报率和标准差如下:
之间的协方差也是零 无风险资产具有确定的回报率,因此:
首先,无风险资产必定是某种具有固定收 益,并且没有任何违约的可能的证券。 其次,无风险资产应当没有市场风险。
7
无风险贷出是投资无风险资产
无风险借入实际上是卖空无风险资产。在现实生活中, 投资者可以借入资金并用于购买风险资产。如果允许投 资者借入资金,那么投资者在决定将多少资金投资于风 险资产时,将不再受初始财富的限制。当投资者借入资 金时,他必须为这笔贷款付出利息。由于利率是已知的, 而且偿还贷款也没有任何不确定性,投资者的这种行为 常常被称为“无风险借入”。同时,为方便起见,我们 假定,为贷款而支付的利率与投资于无风险资产而赢得 的利率相等。
E(RP)
B A
29
σ(RP)
(二)无风险借入并投资于一个风险组合的 情形
30
同样,由无风险借款和风险资产组合构成的投资 组合,其预期收益率和风险的关系与由无风险贷款 和一种风险资产构成的投资组合相似。
我们仍然假设风险资产组合P是由风险资产C和D 组成的,则由风险资产组合P和无风险借款A构成的 投资组合的预期收益率和标准差一定落在AP线段向 右边的延长线上:
组合 X1
A
0.00
B
精品课件-资本资产定价模型
2020/6/25
20
第三节 资本资产定价模型
rp
资本市场 线CML
rm
(rm , m )
m
rf
σm
rp
rf
rm rf
m
p
报酬与波动性比率。
σp
其中,rf
为市场无风险收益率;rm
,
为市场组合的期望收益与
m
风险;rp
,
为加入无风险资产后的资产组合的期望收益与风险。
p
2020/6/25
21
第三节 资本资产定价模型
➢ 条件:可以自由地以无风险利率借贷资金。 ➢ 意义:不论投资者偏好如何,M点由F点惟一确定。无需先确
知投资者偏好,就可以确定风险资产最优组合。 风险厌恶较低的投资者可以多投资风险基金M,少投资
无风险证券F,但总是会选择合适比例的M或者F。
2020/6/25
12
第一节 单基金定理
单基金定理的启示
若市场是有效的,由分离定理,资产组合选择问题可以 分为两个独立的工作,即资本配置决策(Capital allocation decision)和资产选择决策(Asset allocation decision)。
➢ 资本资产定价模型(Capital Asset Pricing Model,CAPM) 是由美国Stanford大学教授夏普等人在马克维茨的证券投 资组合理论基础上提出的一种证券投资理论。
➢ CAPM解决了所有的人按照组合理论投资下,资产的收 益与风险的问题。
➢ CAPM 理论包括两个部分:资本市场线(CML)和证券 市场线(SML)。
William Sharp
论文
刊物
“Portfolio Selection”
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
If w = 1, E(rp) = 1(0.15) + 0(0.07) =0 .15;σp = 1(0.22) = 0.22
If w = 0, E(rp) = 0(0.15) + 1(0.07) =0.07,σp = 0(0.22) = 0
2021/2/12
10
❖ 3.你的风险资产组合的风险回报率是多少?你的委托人的呢?
2021/2/12
7
❖ 在CAL的推导中,假设投资者以无风险收益率借入资金;而 实际中,存款利率要低于贷款利率。如果把存款利率视为 无风险收益率,那么投资者的贷款利率就要高于无风险利 率。此时,资本配置线就变成一条折线。
2021/2/12
8
一个例子:
假设:无风险资产为F,无风险资产与风险资产构成 组合为P,且有,
现代理论金融经济学的一个核心内容就是如何在不确定 市场环境下为金融资产进行定价。换句话说,就是给定某 种金融资产在未来所有可能状态下的价值,如何确定这一 资产在当前的价值。
两种主流的金融资产定价方法: ➢ 一般均衡定价模型 ➢ 套利定价模型
2021/2/12
2
一、一般均衡模型 在一个经济体中有两类经济活动人员:消费者:追求消费效用的 最大化;生产者:追求的是生产利润的最大化。 二者的经济活动分别形成市场上各种商品的需求和供给。随着 供给和需求的不断调整,市场上每一个商品最终都会有一个确 定的价格水平,在这个水平下,总供给和总需求相等,而每个 消费者和生产者也都能实现他们最大化的目标。这个时候,我 们称经济达到了一个理想的一般均衡状态。
一、两个风险资产的组合 ➢ 假设市场中的资产是两个风险资产,例如一个股票和一
个公司债券,且投资到股票上的财富比例为w,则投资组 合的期望收益和标准差为:
E r p w E r S (1 w )E r B
p 2 w 2S 2 (1 w )2B 2 2 w (1 w )C o v (r S ,r B ) w 2S 2 (1 w )2B 2 2 w (1 w )S ,BSB
➢优势:某种程度上讲,无套利假设只是“均衡定价论”
的一个推论,即达到一般均衡的价格体系一定是无套利
的。但是,这种方法不需要对投资者的偏好以及禀赋进
行任何假设,也不需要考虑金融资产的供给和需求等问
题。
➢缺陷:
2021/2•/1只2 能就事论事,由此无法建立全市场的理论框架。
5
•只有在非常理想的市场条件下才会成立。
Erp rf Errf p
Hale Waihona Puke 2021/2/126❖ E收rp益-标rf 准E差r”坐rf 标p体在系“中期对望
应着一条直线,穿过无风险资 产 rf 和风险资产r,我们称这条 直线为资本配置线(Capital Allocation Line)
❖ 资本配置线的斜率等于资产 组合每增加以单位标准差所 增加的期望收益,也即每单 位额外风险的额外收益。因 此,我们有时候也将这一斜 率称为报酬与波动性比率。
你的风险回报率=(18-8)/28=0.3571
客户的风险回报率=(15-8)/19.6=0.3571
4.在预期收益与标准差的图表上作出你的资产组合的资本配
置线(CAL),资本配置线的斜率是多少?在你的基金的资本配置
线上标出你的委托人的位置。
Erp
rf
Er
rf
p
E(r)
斜率=0.3571
rf = 7% E(r) = 15%
w = % in p
f = 0% = 22%
(1-w) = % in F
2021/2/12
9
E(r)
E(r) = 15% E(rp) = 13%
rf = 7% F
P
C
)斜率 S = 8/22
CAL E(rp) - rf = 8%
0
p 22%
If w = 0.75, E(rp) = 0.75(0.15) + 0.25(0.07) = 0.13;σp = 0.75(0.22) = 0.165
Debreu认为金融产品(或者说证券)是不同时间、不同状态下 有着不同价值的商品。金融市场和一般商品市场之间存在一个 本质的不同,那就是金融市场的不确定性。
2021/2/12
3
Von Neunmann 和 Morgenstern 在1944年提出期望效用函数理 论,将经济个体在不确定环境下的决策行为描述为最大化期望 效用函数的过程。 证券市场一般均衡的形成过程 ➢给定市场中可供交易的证券,特别是它们未来的支付以及现 在的价格,每一投资者从最大化个人期望效用的角度选择最 优的证券持有量。 ➢投资者对证券的需求会共同影响证券的价格,一旦价格使 得对证券的需求恰好等于它的供给,这时,投资者选择了他 们的最优持有量,并且市场出清,达到了均衡。
第5章 资本资产定价模型
❖ 5.1 两种基本的资产定价方法 ❖ 5.2无风险资产与风险资产之间的资本配置
❖ 5.3最优风险资产组合 ❖ 5.4资本资产定价模型的假定 ❖ 5.5资本市场线(CML)与证券市场线(SML)
❖ 5.6 CAPM的实证检验(略)
2021/2/12
1
5.1 两种基本的资产定价方法
2021/2/12
4
二、无套利定价模型
Modigliani和Miller的无套利假设:指在一个完善的金融
市场中不存在套利机会,也就是无成本地获取无风险利
润的机会。从微观的角度看,无套利假设是指如果两个
资产 (组合)在未来每一个状态下的支付都是一样的,
那么这两种资产(组合)的价格应该是一样的。
套利定价方法与均衡定价方法
18
P
15
委托人
2021/2/12
0
19.6 28
11
5.2 无风险资产与风险资产之间的配置
E(r)
借入资金购买风险资产
9% 7%
2021/2/12
P ) S = .36
p = 22%
CAL ) S =0 .27
12
无差异曲线与资本配置线
E(r) P
7%
2021/2/12
p = 22%
13
5.3最优风险资产组合
5.2一个无风险资产与一个风险资产的配置
➢ 假设投资者投资到风险资产的财富比例为w,投资到无风 险资产的财富比例为1-w,则投资组合的期望收益和标准 差可以写成如下形式:
E r p w E r ( 1 w ) r f, p w
➢ 简单推导,进而容易得到投资组合期望收益与标准差之 间的关系: