第五章间歇式操作反应器

合集下载

间歇操作釜式反应器的设计—反应器流动模型

间歇操作釜式反应器的设计—反应器流动模型
的一种典型的连续反应器,而理想混合反应器是返混达 到极限状态的一种反应器。
1、返混及其对反应过程的影响
(2)返混对反应过程的影响
间歇釜式反应器存在剧烈的搅拌与混合,但不会导 致高浓度的消失。
间歇釜式反应器中彼此混合的物料是在同一时刻进入反 应器的,在反应器中同样条件下经历了相同的反应时间 ,具有相同的性质和浓度,这种浓度相同的物料之间的 混合,不会使原有的高浓度消失。
它造成了反应物高浓度的迅速消失,导致反应器的生产 能力下降。
流型
一、流型
流型与搅拌的关系
流型与搅拌效果、搅拌功率的关 系十分密切。搅拌器的改进和新 型搅拌器的开发往往从流型着手 。
搅拌机顶插式中心安装 立式圆筒的三种基本流型
流型决定因素
取决于搅拌器的形式、搅拌容器和内 构件几何特征,以及流体性质、搅拌 器转速等因素。
图3 搅拌器与流型 (c) 切向流
(c)切向流
无挡板的容器内,流体绕 轴作旋转运动,流速高时 液体表面会形成漩涡,流 体从桨叶周围周向卷吸至 桨叶区的流量很小,混 合效果很差。
上述三种流型通常同时存在
轴向流与径向流对混合起主要作用
切向流应加以抑制
采用挡板可削弱切向流, 增强轴向流和径向流
除中心安装的搅拌机外,还有偏心式、底插式、侧插式、斜插式、卧式 等安装方式。
返混及其对反应过程的影响
1、返混及其对反应过程的影响
(1)返混
返混不是一般意义上的混合,它专指不同时刻进入反应器
的物料之间的混合,是逆向的混合,或者说是不同年龄质 点之间的混合。返混改变了反应器内的浓度分布,使器内 反应物的浓度下降,反应产物的浓度上升。 返混是连续化后才出现的一种混合现象。 间歇反应器中不存在返混,理想置换反应器是没有返混

化学反应工程1_7章部分答案

化学反应工程1_7章部分答案

第一章绪论习题1.1 解题思路:(1)可直接由式(1.7)求得其反应的选择性(2)设进入反应器的原料量为100 ,并利用进入原料气比例,求出反应器的进料组成(甲醇、空气、水),如下表:组分摩尔分率摩尔数根据式(1.3)和式(1.5)可得反应器出口甲醇、甲醛和二氧化碳的摩尔数、和。

并根据反应的化学计量式求出水、氧及氮的摩尔数,即可计算出反应器出口气体的组成。

习题答案:(1) 反应选择性(2) 反应器出口气体组成:第二章反应动力学基础习题2.1 解题思路:利用反应时间与组分的浓度变化数据,先作出的关系曲线,用镜面法求得反应时间下的切线,即为水解速率,切线的斜率α。

再由求得水解速率。

习题答案:水解速率习题2.3 解题思路利用式(2.10)及式(2.27)可求得问题的解。

注意题中所给比表面的单位应换算成。

利用下列各式即可求得反应速率常数值。

习题答案:(1)反应体积为基准(2)反应相界面积为基准(3)分压表示物系组成(4)摩尔浓度表示物系组成习题2.9 解题思路:是个平行反应,反应物A的消耗速率为两反应速率之和,即利用式(2.6)积分就可求出反应时间。

习题答案:反应时间习题2.11 解题思路:(1)恒容过程,将反应式简化为:用下式描述其反应速率方程:设为理想气体,首先求出反应物A的初始浓度,然后再计算反应物A的消耗速率亚硝酸乙酯的分解速率即是反应物A的消耗速率,利用化学计量式即可求得乙醇的生成速率。

(2)恒压过程,由于反应前后摩尔数有变化,是个变容过程,由式(2.49)可求得总摩尔数的变化。

这里反应物是纯A,故有:由式(2.52)可求得反应物A的瞬时浓度,进一步可求得反应物的消耗速率由化学计量关系求出乙醇的生成速率。

习题答案:(1)亚硝酸乙酯的分解速率乙醇的生成速率(2)乙醇的生成速率第三章釜式反应器习题3.1 解题思路:(1)首先要确定1级反应的速率方程式,然后利用式(3.8)即可求得反应时间。

(2)理解间歇反应器的反应时间取决于反应状态,即反应物初始浓度、反应温度和转化率,与反应器的体积大小无关习题答案:(1)反应时间t=169.6min.(2)因间歇反应器的反应时间与反应器的体积无关,故反应时间仍为169.6min.习题3.5 解题思路:(1)因为B过量,与速率常数k 合并成,故速率式变为对于恒容过程,反应物A和产物C的速率式可用式(2.6)的形式表示。

第五章5 分程控制控制系统

第五章5 分程控制控制系统

图1
分程控制系统方框图
分程控制系统中控制器输出信号的分段一般是由附设在控制阀上的阀门定
位器来实现的。阀门定位器相当于一台可变放大系数,且零点可以调整的放
大器。 阀门定位器可以将控制器的输出压力分成几段信号区间。不同段内的压力
有相应的阀门定位器转化为0.02~0.1MPa信号压力,使控制阀全程动作。
例如:A和B两个控制阀 要求:A阀在控制器输出信号压力为0.02~0.06MPa信号压力,使控制 阀全程动作。 A阀上的阀门定位器对应的输出压力为0.02MPa~0.1MPa,B阀上则在控制 器输出压力为0.06MPa~0.1MPa时通过附设在上面的阀门定位器使之也刚好走 完全程。 即,当控制其输出信号小于0.06MPa时,A阀动作,B阀不动作; 当信号大于0.06MPa时,A阀已动至极限,B阀开始动作。
一类是两个控制阀异向动作: 即随着控制器输出信号的增大成减小,一个控制阀开大,另 一个控制阀则关小,如图8—37所示,其中图(a)是A为气关阀、B 为气开阀的情况。图(b)是A为气开阀、B为气关阀的情况。
分程阀同向或异向动作的选择问题,要根据生产工艺的实际需要 来确定。
二、分程控制的应用场合
1.用于扩大控制阀的可调范围,改善控制品质
TCபைடு நூலகம்冷水
A B 蒸汽
FVA:气闭
FVB:气开
TC:反作用
1.反应开始前升温阶段→T测<给定值→TC↑→A阀↓ →( A阀 全关时)B阀↑ →蒸汽加热, T↑→ 达到反应温度时,反应开 始; 2.反应开始后T↑ → T测.>给定值→TC↓ →B阀↓(B阀全关时) A阀↑→ T↓,冷却水把反应热带走,使反应釜温度恒定,反 应继续进行。
5.5
分程控制系统

间歇釜式反应器

间歇釜式反应器

计算方法
1、已知V0与 ,根据已有的设备容积V,求算需用设备个数n 按设计任务每天需要操作的总次数为: α =
24V0 24V0 = VR V
β= 每个设备每天能操作的批数为:
n' =
24 24 = t τ +τ '
则需用设备个数为:
α V0 (τ + τ ') = β V
VR = V = V0 (τ + τ ' ) / n '
物料衡算式 依 据:质量守衡定律。 基 准: 取温度、浓度等参数保持不变的单元体积和 单元时间作为空间基准和时间基准。 衡算式:对任一组分A在单元时间Δτ、单元体积ΔV内: [A的积累量]=[A的进入量] [A的离开量] [A的反应量] [A的积累量]=[A的进入量]-[A的离开量]-[A的反应量] 的积累量]=[A的进入量 的离开量 的反应量 目的:给出反应物浓度或转化率随反应器内位置或时 间变化的函数关系。
热量衡算式 (1)依 据: 能量守衡定律。 (2)基 准: 取温度、浓度等参数保持不变的单元体积和单元时间作为 空间基准和时间基准。 (3)衡算式 在单元时间Δτ、单元体积ΔV内(以放热反应为例): [积累的热量]=[原料带入的热量]+[反应产生的热量]-[出料带走的热量]积累的热量]=[原料带入的热量]+[反应产生的热量] 出料带走的热量] ]=[原料带入的热量]+[反应产生的热量 [传给环境或热载体的热量] 传给环境或热载体的热量] (4)目的:给出温度随反应器内位置或时间变化的函数关系。
BR体积和数量求算 体积和数量求算
已知条件 每天处理物料总体积VD(或反应物料每小时体积流量V0)

操作周期——指生产第一线一批料的全部操作时间,由反应时 间(生产时间)τ和非生产时间τ‘ 组成。 反应时间理论上可以用动力学方程式计算,也可根据实际情 况定。 设备装料系数——设备中物料所占体积与设备实际容积之比, 其具体数值根据实际情况而变化,参见表3-1。

第五章 间歇式操作反应器

第五章 间歇式操作反应器
1、生化反应器?——利用生物催化剂进行生化反应的设备。
回顾一下:生化反应器中可进行的反应类型? 再想想:反应器可采取的操作方式?
2、研究反应器的目的?
◆研究生化反应器的基本反应规律
◆研究生化反应器的基本传递规律 ◆研究生化反应器的设计内容及方法
上一内容
下一内容
回主目录
返回
2013-7-25
第5章 间歇式操作反应器>>5.1生化反应器设计概论
上一内容 下一内容 回主目录
返回
2013-7-25
第5章 间歇式操作反应器>>5.1生化反应器设计概论
5.1.1 生化反应器的分类
( 生化反应器可从不同角度分类)
2、按操作方式分类 ■间歇反应器(分批操作反应器):底物一次加入反应器,在反应过
程中无底物和产物的输入和输出,底物和产物的浓度随反应时间变化。
上一内容
下一内容
回主目录
返回
2013-7-25
第5章 间歇式操作反应器>>5.1生化反应器设计概论
5.1.2 生化反应器的基本设计方程
反应器计算的基本内容 确定最佳操作条件与控制方式 操作条件,如反应器的进口物料配比、流量、温度、压 力和最终转化率等工艺条件,直接影响反应器的反应结果,
也影响反应器的生产能力。对正在运行的装置,因原料组
对细胞,有
体系内累 进入体系 离开体系 体系内生 积细胞质量 细胞质量 细胞质量 长细胞质量
上一内容
下一内容
回主目录
返回
2013-7-25
第5章 生化反应器设计与分析>>5.1生化反应器设计概论

间歇釜式反应器BR

间歇釜式反应器BR

反应器计算的基本方程
反应器计算可以采用经验法和数学模型法。经验计算法是根据已有的 装置生产定额,进行相同生产条件、相同结构生产装置的工艺计算。经 验计算法的局限性很大,只能在相近条件下进行反应器体积的估算。 如果改变反应过程的条件或改变反应器结构,以改进反应器的设计, 或者进一步确定反应器的最优结构、操作条件,经验计算法是不适用的, 这时应该用数学模型法计算。根据小型实验建立的数学模型(一般需经 中试验证),结合一定的求解条件——边界条件和初始条件,预计大型
釜内各点物料的浓度、温度、反应速度相同,随时间而
变,生产周期存在反应时间(生产时间)τ和非生产时间 τ‘。 其结构简单、操作方便、灵活性大、应用广泛。但是
设备生产效率低、不易保持每批质量稳定、高转化率下体
积较大。一般用于液—液相、气—液相等系统,如染料、
医药、农药等小批量多品种的行业。

热量衡算式
(1)依 据: 能量守衡定律。 (2)基 准: 取温度、浓度等参数保持不变的单元体积和单元时间作为 空间基准和时间基准。 (3)衡算式 在单元时间Δτ、单元体积ΔV内(以放热反应为例): [积累的热量]=[原料带入的热量]+[反应产生的热量]-[出料带走的热量][传给环境或热载体的热量] (4)目的:给出温度随反应器内位置或时间变化的函数关系。
设备的行为,实现工程计算。
数学模型法计算的基础是描述化学过程本质的动力学模型以及反映 传递过程特性的传递模型。基本方法是以实验事实为基础,建立上 述模型,并建立相应的求解边界条件,然后求解。
反应器计算的基本方程包括
描述浓度变化的物料衡算式;
描述温度变化的能量衡算式; 描述压力变化的动量衡算式; 描述反应速率变化的动力学方程式。

间歇釜式反应器的特点及其应用

间歇釜式反应器的特点及其应用

• 例题:萘磺化反应器体积的计算。萘磺化生产2萘磺酸,然后通过碱熔得2-萘酚。已知2-萘酚的 收率按萘计为75%,2-萘酚的纯度为99%,工业 萘纯度为98.4%,密度为963kg/m3.磺化剂为98% 硫酸,密度为1.84.萘与磺酸的摩尔比为1:1.07. 每批磺化操作周期为3.67h。萘磺化釜的装料系数 为0.7.年产2-萘酚4000t,年工作日330天。
4390
The end,thank you!
• 应用: • 适用于多品种、小批量生产 • 适应于各种不同相态组合的反应物料 • 几乎所有有机合成的单元操作
反应体积VR
• 反应体积是指设备中物料所占体积,又称有效体 积。
• 确定反应器体积的容积V的前提是确定反应器的 有效容积
• 如果由生产任务确定的VR F单Vt, 位时间的物料处理量为 FV,操作时间为t‘(包括反应时间t和辅助操作时 间t0),则反应器的有效容积V:R FV t,
间歇釜式反应器的特点及其应用
目录
特点
例题分析
• 特点: • 反应物料一次加入,产物一次取出 • 结构简单、加工方便,传质、传热效率高 • 同一瞬间反应器内各点温度、浓度分布均匀 • 非稳态操作,反应过程中,温度、浓度、反应速
度随着反应时间而变
• 操作灵活性大,便于控制和改变反应条件 • 辅助时间占的比例大,劳动强度高,生H2SO4


根据生产任务,每小时需处理工业萘的体积为:
4000 103 0.99 128 1 1000 626 L 330 24 144 0.75 0.984 963
每小时需要处理的硫酸体积为: 4000 10 3 0.99 98 1.07 1 1000 270 L

反应器操作与控制基础知识—反应器的操作方式

反应器操作与控制基础知识—反应器的操作方式
的特点
①是一非定态过程,反应器内物系组 成随时间而改变
②适合于小批量、多品种的产品生产
③不易实现自动化控制,劳动力多
④设备简单
⑤设备利用率低
二、操作方式的特点—— 2.连续操作的特点
二、操作方式的特点——2.连续操作的特点
连续操作的一般流程
01
连续进料
02
03
连续反应
连续出料
温度等的控制
二、操作方式的特点——2.连续操作的特点
连连续式式 操操作作方方 式式
的的特特 点点
①多属于定态操作,反应器内各种物系参数 不随时间而变,但随位置而变
②适合于大规模生产
③便于实现自动化控制,品质量均一
④设备结构复杂
⑤设备利用率高
二、操作方式的特点——3.半连续(半间歇)操作的特点
原料与产物只要其中的一种为连续输入或输出而其余则为分 批加入或卸出的操作均属半连续操作,相应的反应器称为半连续反 应器或半间歇反应器。
《化学反应器操作与控制》
非理想流动
非理想流动模型
理想流动模型
理想置换模型
(a) 间接换热式
二、操作方式的特点——1.间歇操作的特点
二、操作方式的特点——1.间歇操作的特点
间歇操作的一般流程
01
02
03
04
05
06
准备
投料
升温
反应
出料
清洗
关键步骤
二、操作方式的特点——1.间歇操作的特点
间歇式 操作方式
半连续操作具有连续操作和间歇操作的某些特征: 有连续流动的物料,也有分批加入或卸出的物料,因此半连
续反应器的反应物系组成必然既随时间而改变,也随反应器内的位 置而改变。

1-5-1间歇操作釜式反应器

1-5-1间歇操作釜式反应器
1 n
kA单位: kp单位:kmol/m3.h.Pan 一般说来,可以用任一与浓度相当的参数来表达反应 的速率,但动力学方程式中各参数的因次单位必须一致。
kmol m3 h n kmol 3 m

⑴反应分子数与反应级数
基本概念 a.单一反应与复杂反应
单一反应:指只用一个化学反应式和一个动力学方程 式便能代表的反应。
(1)最大影响是使反应器进口处反应物高浓度区的 消失或减低,即使反应物浓度下降,产物浓度上升。 (2)这种浓度分布的改变对反应的利弊取决于反应
过程的浓度效应。
(3)返混是连续反应器中的一个重要工程因素,任 何过程在连续化时,必须充分考虑这个因素的影响.
(三)返混及其对反应过程的影响
3.降低返混程度的措施 降低返混程度的主要措施是分割,通常有横 向分割和纵向分割两种,其中重要的是横向分割。 (1)连续操作的搅拌釜式反应器 为减少返混,工业上常采用多釜串联的操作。 当串联釜数足够多时,连续多釜串联的操作性能 就很接近理想置换反应器的性能。
排除了物质的传递搅拌良好无需考虑反应器内热量传递非定常态过程c随时间而变化学反应的结果将唯一地由化学反应动力学确定反应进行的程度决定于反应时间的长短具有周期性一个周期包括操作反应时间t也包括辅助非生产性时间t生产灵活性大间歇釜式反应器特点五间歇操作釜式反应器br的动力学计算法间歇釜式反应器的物料衡算对整个反应器中a组分物料进行衡算
aA bB rR sS
反应,各组分的变化量满足
下列关系:
n A0 n A n B 0 n B n R n R 0 n S n S 0 a b r s
各组分的反应速率满足下列关系:
(rA ) (rB ) rR rS a b r s

理想间歇操作釜式反应器的计算

理想间歇操作釜式反应器的计算

理想间歇操作釜式反应器的计算王丽婷 13化工二班 1303022011间歇釜式反应器的特征特点:1、由于剧烈搅拌,反应器内物料浓度达到分子尺度上的均匀,且反应器内浓度处处相等,因而排除了物质传递对反应的影响;2、具有足够强的传热条件,温度始终相等,无需考虑器内的热量传递问题;3、物料同时加入并同时停止反应,所有物料具有相同的反应时间。

优点:操作灵活,适用于小批量、多品种、反应时间较长的产品生产,精细化工产品、制药、染料、涂料生产。

缺点:装料、卸料等辅助操作时间长,产品质量不稳定。

一、基础方程式单位时间进入反应器的物料A 的量-单位时间流出反应器的物料A 的量-单位时间内反应掉的物料A 的量=单位时间内在反应器内物料A 的积累量 )_1(0A A A X n n =RA A A V r dx n dt )(_0= 二、反应时间的计算n A0 ----在t=0时反应器中物料A 的摩尔数n A ----在 t 时反应器中物料A 的摩尔数-r A ----组分 A 在操作条件下的反应速率(消失速率)A x ----在 t 时反应器中物料A 的转化率上式是间歇反应器计算的基本方程式,表达了在一定操作条件下为达到所需求的转化率A x 所需要的反应时间t ,适用于任何间歇反应过程,均相或多相,等温或非等温的,可以直接积分求解,也可以用图解法。

如果是非等温过程,反应速度常数随温度变化,而温度又随转化率变化,则需联立解方程恒温、恒容不可逆时间歇操作釜式反应器中物料达到一定出口转化率所需时间t 取决于反应速度,与处理量无关,所以可用于直接放大。

零级反应k r A )(一级反应二级反应当动力学方程解析式相当复杂或不能做数值积分时,可用图解法。

化工反应器设计及类型介绍

化工反应器设计及类型介绍

3)反应器内物料流动所产生的压强变化与总压相比,如能忽
略不计,则放大后的平均停留时间t 可VR用/ qv,0
计算;
4)对于气相反应,当反应器的管长远大于管径,而产生的压 强变化又影响到反应器内的总压时,除了保证放大前后两反应 系统具有相同的平均停留时间和停留时间分布函数外,还必须
保证压强的变化值相同。
化工反应器设计及类型 介绍
2021年7月13日星期二
第五章 反应器的类型及设 计
1 反应器的设计是针对化学反应过程进行的,如反 应器的选型、条件的优化和放大。
2 反应器放大,应考虑反应器放大前后保持转化率 或收率相等,而反应的转化率和收率是由化学平衡 和反应速率决定的,其中反应速率是根据生产规模 计算所需反应器有效容积的依据。
较小时,则用推进式螺旋桨.
b: 当固、液相对密度较大,若只要求固体离开釜底而不要 求均匀悬浮时,应安装底挡板;如果要求均匀悬浮,则应 同时安装底挡板和壁挡板;
3)对于气体在液体中分散或气体的吸收:
要求良好的容积循环和剪切作用,选用涡轮式搅拌器。
a:当液层深度大时,宜用多层搅拌桨,釜内也应有挡
板,通气管应插入在搅拌桨下面,气体则由搅拌釜下的中
dZ
d
dZ
α为换算因子,压强量纲不同, α值不同,见表5-1
在空管内物料层流流动: 摩擦因子 f=16/Re 在空管内物料湍流流动: f 0.046 Re0.2
如果反应管内填充了固体颗粒,计算压强降时应考虑颗 粒床层产生的阻力。
只用物料衡算式计算: 恒温系统,压强变化很小
物料衡算式和热量衡算式: 变温系统
粒。 流化床反应器:将细小催化剂颗粒在管式或塔式反应器内借流
二体、自按下反而应上物的料鼓的动相作态用分类, 使 之 悬 浮 在 反 应 器 中 。 有均相反应器和非均相反应器

间歇式反应器自控设计说明书

间歇式反应器自控设计说明书
住型号:STG944(量程0-140)-316L不锈钢、硅油DC200、1/4“NPT内螺纹
0~0.4Mpa
1
温度变送器
STT2SM-0-TNS-00-C
主型号:STT2SM-现场安装316不锈钢表壳、1/2“NPT电气接口、数显表头-汉语说明书
0~200℃
1
双金属温度计
WSSF-481
表盘直径:φ100mm;外壳材质:304ss;精度:±1.0%;防护等级:IP65;表玻璃材质:仪表玻璃;保护管材质:304SS;保护管尺寸:φ8mm;可动外螺纹连接;连接尺寸:M27×2M;带不锈钢位号牌;
整个系统包括两个控制回路,主回路和副回路。副回路由副变量检测变送、副调节器、调节阀和副过程构成;主回路由主变量检测变送、主调节器、副调节器、调节阀、副过程和主过程构成。
一次扰动:作用在主被控过程上的,而不包括在副回路范围内的扰动。二次扰动:作用在副被控过程上的,即包括在副回路范围内的扰动。
2、串级控制系统的设计
第二周
进行仪表选型及调节阀计算;绘制单回路图。绘制仪表接线端子图;供电系统图,填写自控设备相应表格。
2010.11.5~2010.11.14
第三周
完成并提交课程设计说明书及相关电子文档。课程设计答辩。
2010.11.15~2010.11.19
五、指导教师评语及学生成绩
指导教师评语:
年月日
成绩
指导教师(签字):
主要技术性能:
防爆标志:Ex(ia)ⅡC
传输精度:±0.2%×F.S
危险区允许输入信号:直流电流:0-10mA、4-20mA
2、熟练掌握工业过程控制系统的常规设计过程,培养学生实践动手能力及独立分析和解决工程实际问题的能力;

固体废物处理与资源化利用 课后作业答案第五章

固体废物处理与资源化利用   课后作业答案第五章

1.好氧堆肥化的基本原理、好氧堆肥化的微生物生化过程分别是什么?如何评价堆肥的腐熟程度?(1)基本原理:好氧堆肥是利用好氧微生物代谢使生物质废物降解稳定,不再易腐发臭,成为相容于植物生长的土壤调理剂的过程。

(2)过程:潜伏阶段:部分微生物产生适应酶,其细胞物质开始增加,但微生物总数尚未增加;而另一些微生物因不适应新环境而死亡。

此阶段微生物会大量分泌水解酶,部分固体废物会被水解成可溶性物质。

升温阶段:已适应特定环境的微生物,利用物料中的易降解有机物,旺盛繁殖,在转换和利用生化能的过程中,多余的生化能以热能的形式释放,使堆置环境温度不断上升。

高温阶段:当堆层温度升高到45℃以上,嗜温性微生物受到抑制甚至死亡,嗜热性微生物逐渐替代了嗜温性微生物的活动,无聊中残留的和新形成的可溶性有机物急需分解转化,复杂的有机化合物也开始被剧烈分解。

微生物对易降解有机物的高速降解,必然使其代谢逐步受到有机物可利用性的限制,代谢和生长速率下降,因代谢而产生的热量减少。

当产生的热量低于散失的热量时,堆层温度开始下降。

降温阶段:当堆体温度下降到45℃以下时,嗜温性微生物又重新占据优势。

嗜温性微生物对剩下的较难降解的有机物做进一步分解,并逐渐形成腐殖质。

腐熟阶段:经过以上四个阶段,物料中剩下的是难降解有机物。

此阶段为嗜温性的,细菌和放线菌数目有所下降,真菌会大量繁殖,难降解有机物会被缓慢分解,腐殖质不断增多、聚合度和芳构化程度不断提高。

(3)评价方式:腐熟程度的评价指标有物理学指标、化学指标和生物学指标。

物理学指标包括表观指标和堆层温度。

化学指标包括易降解有机物和难降解有机物、有机物含量、氮试验法、碳氮比和腐殖类物质的变化。

生物指标包括植物分析法、好氧速率法、厌氧产气法和综合评定法。

2.何谓厌氧消化?简述厌氧消化的生物化学过程。

厌氧消化工艺有哪些类型?试比较它们的优缺点。

固体废物厌氧消化反应器搅拌的主要作用是什么?(1)厌氧消化是有机物在厌氧条件下通过微生物的代谢活动而被稳定,同时伴有甲烷和二氧化碳等气体产生的过程。

生物反应器工程课件-5

生物反应器工程课件-5

产物
一、理想间歇反应器——BSTR (batch stirred tank reactor) 特征: 空间位置上不存在混合有关的温度、浓度等参数分布; 这些参数均为时间的单变量函数。
二、 BSTR操作特性方程 进-出=反应量+累积量 dc S t r = − ∫c S 0 rS
cS
A
底物转化率: cS 0 − cS XS = cS 0 dX S t r = c S 0 ∫0 rS
XS
tr CS0
CS
CS
间歇反应器的反应时间的图解积分
5.2.2.1 均相酶反应
dX S t r = c S 0 ∫0 cS rmax K m + cS cS 0 1 rmax t r = c S 0 X S + K m ln rmax t r = (c S 0 − c S ) + K m ln 1− XS cS
YX / S c S 0 + c X 0 − c X cX µmax t r = A ln − B ln cX 0 YX / S c S 0
5.2.2.4 最优反应时间 对一简单反应
S→P
单位时间的产物产量为
VR c P FP = tr + tb
⎡ ⎤ dc P − cP ⎥ V R ⎢ (t r + t b ) dt r dFP ⎣ ⎦=0 = dt r (t r + t b )2
XS
c S 0 << K m 反应呈一级反应特征时 : cS 0 1 rmax t r = K m ln = K m ln 1− XS cS c S 0 >> K m 反应呈零级反应特征时 : rmax t r = c S 0 X S = c S 0 − c S

第五章 停留时间分布与反应器的流动模型 (1)

第五章 停留时间分布与反应器的流动模型 (1)

35
F (35) 0 E(t)dt
右边的积分值应等于图中带斜线的面积,其值为 0.523,此即t=35s时的停留时间分布函数值。
阶跃输入法
阶跃法的实质是将在系统中作定常流动的流体 切换 为流量相同的含有示踪剂的流体,或者相反。
前一种做法称为升阶法 (或称正阶跃法),后一种则叫 降阶法 (或称负阶跃法)。
返混对自催化反应等的影响
对于自催化反应,由于反应系统中需要一 定的产物浓度,因此一定程度的返混对反 应是有利的。有时候需要采用全混流反应 器 串联 活塞流反应器使用,就是出于此 目的。
返混的影响--对于某些复杂反应
对于某些复杂反应系统,如果反应组分在主 反应中的浓度级数低于其在副反应中的浓度 级数,降低反应物浓度,即存在一定的返混 则有利于反应选择性的提高。
一般情况下所说的停留时间分布是指流体粒子的寿命 分布
停留时间分布所适应的系统---------
闭式系统
一般所讨论的停留时间分布只 限于仅有一个进口和一个出口 的闭式系统。
所谓闭式系统,其基本假定是 流体粒子一旦进入系统再也不 返回到输入流体的导管中,而 由输出管流出的流体粒子也再 不返回到系统中。
流体系统的停留时间分布
对流体不能对单个分子考察其停留时间,而是对 一堆分子进行研究。这一堆分子所组成的流体, 称之为流体粒子或微团(微元)。
流体微元(物料粒子) :研究流体流动的最小单 元。
流体粒子的体积比起系统的体积小到可以忽略不 计,但其所包含的分子又足够多,具有确切的统 计平均性质。
流动体系的停留时间分布
流动系统 , 连续 流入 流出,-----比较复杂。 通常所说的停留时间---- 是指流体以进入系统时起,
到其离开系统时为止,在系统内总共经历的时间, 即流体从系统的进口至出口所耗费的时间。 同时进入系统的流体,是否也同时离开系统? 由于流体是连续的,而流体分子的运动又是无序的, 所有分子都遵循同一的途径向前移动是不可能的, 因此,流体微元的停留时间完全是一个随机过程。

间歇式反应器课程设计

间歇式反应器课程设计

间歇式反应器课程设计一、课程目标知识目标:1. 理解间歇式反应器的基本原理与结构,掌握其工作过程及特点;2. 掌握间歇式反应器在化工生产中的应用及其优缺点;3. 学会运用化学反应动力学的基本知识分析间歇式反应器中的反应过程。

技能目标:1. 能够运用所学知识对间歇式反应器进行设计与计算,包括反应器体积、反应时间等参数的确定;2. 能够运用图表、数据和文字等形式对间歇式反应器运行结果进行有效表达和分析;3. 能够运用批判性思维和合作学习的方法,探讨间歇式反应器在实际应用中存在的问题及改进措施。

情感态度价值观目标:1. 培养学生对化学工程学科的兴趣,激发其探索未知、勇于创新的精神;2. 培养学生具备良好的团队合作意识,学会倾听、交流、分享与合作;3. 增强学生的环保意识,使其认识到化学反应器在环境保护和资源利用方面的重要性。

课程性质:本课程为化学工程学科的专业课程,旨在帮助学生掌握间歇式反应器的基本理论、设计与计算方法,培养学生解决实际工程问题的能力。

学生特点:学生为高中二年级学生,已具备一定的化学基础和实验操作技能,具有较强的求知欲和动手能力。

教学要求:结合学生特点,注重理论联系实际,采用案例教学、实验演示等多种教学方法,提高学生的实践操作能力和创新能力。

通过课程学习,使学生能够达到上述课程目标,为今后的学术研究和工程实践打下坚实基础。

二、教学内容1. 间歇式反应器原理:讲解间歇式反应器的基本概念、工作原理及分类,结合教材第二章第一节内容,重点分析不同类型的间歇式反应器特点。

2. 间歇式反应器设计与计算:根据教材第二章第二节,教授反应器体积、反应时间等参数的计算方法,并通过实例进行讲解。

- 反应器体积的计算;- 反应时间的确定;- 物料平衡与能量平衡分析。

3. 间歇式反应器在化工生产中的应用:结合教材第二章第三节,介绍间歇式反应器在实际生产中的应用案例,分析其优缺点。

4. 化学反应动力学在间歇式反应器中的应用:根据教材第二章第四节,讲解反应动力学在间歇式反应器设计中的应用,包括反应速率、反应级数等概念。

第五章+反应器及其放大

第五章+反应器及其放大

多釜串联反应器的相似条件应当是每一釜的停
留时间分布相同、温度相同和反应转化率相同,
而且反应速率不受搅拌速率的影响。
对于非均相系统,放大判据为相界面积相同,
但要测定实际系统的相界面积很困难,一般用
单位容积输入功率相等取代。
第四节
其它反应器型式
一、循环(回路)式反应器
根据物料返回量的大小,介于平推流反应器和 连续操作搅拌釜之间。
C A 2C A C A Ez u (rA ) 2 t l l
三、放大应注意的问题
在保持放大前后两系统几何相似的同时,应 保持两系统内物料流动的停留时间分布函数 相等。
为保持放大前后反应器内物料的停留时间分 布相同,无论物料呈层流流动还是湍流流动, 应保持两系统流动的雷诺数相等。 对于气相反应,当反应器管长远大于管径, 而产生的压强变化又影响反应器内的总压时, 必须考虑压强的变化值相等。
装置。
床式:用于多相催化或非催化反应,可分为固定
床、 流化床、移动床等。
3、按反应相态分类
均相反应器、非均相反应器
第二节
一、反应时间
物料衡算方程 热量衡算方程
间歇操作搅拌釜
t nA0
xA
0
dx A (rA )V
dxA dT UA (T Tm ) dt dt CV V
如果过程仅由化学反应控制,反应主要在液相中进行,
虽然要求有较大的相界面积,但液相体积是主要条件, 一般选用半间歇式鼓泡反应器或连续式鼓泡反应器。
3) 气、液、固三相系统
由于存在两种相界面,而固、液界面的传质阻 力通常都大于气、液界面的传质阻力,对反应 过程起决定作用的是固、液间的传质。为了加 快反应速率,缩小反应器体积,多采用气体和

间歇式操作反应器

间歇式操作反应器
特点
间歇式操作反应器通常具有固定的反 应体积,需要在反应完成后进行排渣 或出料,操作过程不连续。
工作原理
反应物混合
将原料和催化剂等物质在反应前 混合均匀,确保反应物浓度和催 化剂的分散度。
加热与冷却
通过外部加热或冷却装置,控制 反应温度,以实现所需的化学反 应条件。
压力控制
通过调节压力来控制反应速率和 化学平衡,通常采用加压或减压 的方式。
等。
酿造业
03
间歇式操作反应器可用于酿造业中,如啤酒、葡萄酒、黄酒等
的酿造。
其他领域
环境治理
间歇式操作反应器可用于环境治理领域,如废水处理、废气 处理等。
农业
间歇式操作反应器可用于农业领域,如农药合成、肥料生产 等。
03
间歇式操作反应器的操 作与控制
操作步骤
准备阶段
进料阶段
反应阶段
出料阶段
清理阶段
分类与比较
分类
根据不同的工作原理和应用需求,间 歇式操作反应器可分为搅拌釜式、填 充床式、喷射器式等类型。
比较
不同类型的间歇式操作反应器各有优 缺点,适用于不同的化学反应和物质 转化过程。选择合适的反应器类型需 要根据实际需求进行评估和比较。
02
间歇式操作反应器的应 用化学 Nhomakorabea业01
合成高分子材料
间歇式操作反应器可用于合成各 种高分子材料,如聚乙烯、聚丙 烯、聚氯乙烯等。
02
精细化学品生产
在精细化学品生产中,间歇式操 作反应器可用于合成染料、颜料、 香料、表面活性剂等。
03
化学品的提纯与分 离
间歇式操作反应器可用于化学品 的提纯与分离,如蒸馏、萃取、 重结晶等。
制药工业
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
H -亨利常数; KL -以液膜为基准的总传质系数。
N
推动力 阻力
ci
c 1
c * ci 1
c *c 1 H
KL (c * c)
kL
kG
kL kG
对于易溶气体,如氨气溶于水中时,液膜的传质阻力相对于气膜可忽略 对于难溶气体,如氧气溶于水中时,气膜的传质阻力相对于液膜可忽略
当1 kL
1 HkG
N
kL (c * c)
1 cX
dcX
maxt r
A ln
cX cX0
Bln
YX/ScS0 (cX cX0 ) YX /ScS0
A YX/SKS YX/ScS0 cX0 YX / cS S0 cX0
B
YX /SKS
YX / cS S0 cX0
4 最优反应时间的确定
FP
VR c P tr tb
dFP dtr
(1 L )VRrS
LVR
dcS dt
t r
L 1 L
cS dcS cS0 rS
cS0 L XS dXS
1 L 0 rS
cS0
VL VP
XS dXS 0 rS
如反应速本以单位催化剂的质量来定义,并表示为rSW,则有
t r
cS0
VL W
XS dXS 0 rSW
通常当酶反应为一级反应,即cS<<K m时.内扩散有效因子η 与转化率Xs的大小无关,等于常数。此时有:
rmax t r
(1
L
L
)
K
M
ln
cS0 cS
1 KM ln 1 XS
当固定化酶的颗粒很小,内扩散的影响可以忽略时, 有效因子η =1,则反应时间可由下式计算,即
rmax
tr
(1 L ) L
cS0 XS
KM
ln
1 1 XS
3 细胞反应过程
rX
dcX dt
cX
1
cS
cS0
YX / S
(cX
cX0 )
max
cS0
1 YX /S
(cX
cX0 )
KS
cS0
1 YX /S
(cX
cX0
)
max
YX
YX /SKS
/ ScS0 YX
(cX cX0 ) /ScS0 (cX
cX0
)
maxtr
cX cX0
YX/SKS YX/ScS0 (cX cX0 ) YX/ cS S0 (cX cX0 )
②较适合反应速率较慢的生物反应。由于多数生 物反应的速率较化学反应慢,故工业过程使用 具有间歇操作特征的大容量生物反应器。
③分批进行的过程染菌率较低。
缺点
① 间歇操作反应器的缺点是.这种操作需要一 定的辅助操作时间,生产效率较低;
② 细胞或酶的反应环境随时间改变,产物生成 速率与反应时间有关;
③ 下游产物分离必须分批进行等。
式中:K-稠度系数;n-流动特性指数
特点:K越大,流体越粘稠;n值越小,流体的非牛顿
特性越明显。
a
K n1
2 涨塑性流体(膨胀型) 流动特性表达式:=K n (n>1); n值越大,流体的非牛顿特性越明显。
a
K n1
3 宾汉(Bingham)塑型流体
流动特性表达式: = 0+ 式中: 0-屈服应力; -刚度系数 特点:当< 0 时,流体不发生流动。
生物反应速度

反 反反 应
应 应应 器
2 基本设计方程
器 器器 操 型 结体 作 式 构积 方

生物反应器设计的主要目标是寻求反应目的产物的高
生成速率和高浓度,从而达到优质高产低成本的目的。
生物反应器设计的基本内容包括:
①选择合适的反应器型式与操作方式。即根据生物催化剂和生 物反应动力学特征,以及物料的特性和生产工艺特点,选择 合理的结构类型、流动方式和相关的传递过程条件;
营养物质的种类和浓度、培养温度、pH、有害代谢物的 积累、挥发性中间代谢物的损失等等。
三.氧的传递过程
(1)气相扩散到气-液界面阻力R1; (2)通过气液界面的阻力R2; (3)通过滞流区的阻力R3; (4)液相传递阻力R4;
(5)细胞团外液膜阻力R5; (6)液体与细胞团界面阻力R6; (7)细胞之间的扩散阻力R7; (8)进入细胞的阻力R8
tr
cS0
X S dX S 0 rS
表示反应组分转化至一定程度所需的反应时间,它取
决于反应速率的大小,反应速率越大,反应时间越小
1 均相酶反应过程
如酶反应为单底物无抑制反应,且动力学关系符合M-M方

rp
k2cE0
cS
cS KM
rP ,m a x
cS
cS KM
(5)
tr
cS0
XS 0
几种酶反应器
几种细胞反应器
生物反应器分析(优化和放大)与设计
生物反应器的选型与几何尺寸确定及运行模式
生物反应器设计、
优化与放大
反 应
反 应
反 应
反 应 器
器 器器操
型 式Βιβλιοθήκη 结 构体 积作 方 式
传递特性、流动与混合特性
生物反应动力学
( 微本 观征 动动 力力 学学 )
( 总宏 包观 动动 力力 学学 )
当颗粒所占的体积分率较大时,可按下式计算。
s=L(1+2.5+7.352)
4.3.3 流体的剪切作用 4.3.3.1 机械搅拌的剪切力
ISF uL 2nd
x D d
对于处于较高雷诺数(ReM>>625)的反应器系统.这时可得df/d=0.625
(3)最小湍流漩涡长度
4.3.3.2 气流搅拌的剪切力
(即全混流和平推流)。 ➢实际的连续流动反应器的流动和混合状态处于它
们之间,为非理想流动,对生物反应器进行这种 分类有利于对反应器进行模拟与放大。
➢根据反应器的结构:包括罐式、管式、塔式、 膜式等。 ➢若根据反应器所需能量的输入方式不同来分, 则有通过机械搅拌输入能量的机械搅拌反应器、 利用气体喷射动能的气流搅拌反应器和利用泵对 液体的喷射作用而使液体强制循环的反应器。
Da
rO 2 ,max KO2 kLa
氧的传递速率与氧的消耗速率的关系
六.最低溶氧浓度
(OUR )* (qO2cX )* (OTR )max
(OTR)max kLa(cO* L cOL,min)
cOL,min
cO* L(1
(qO2cX )* kLacO* L
)
4.4.3影响氧传递的因素
两别同时乘以a(单位体积反应液中气液比表面积)
Na kLa(c*c)
kLa------体积传质系数
五.氧传递对细胞生长的影响
dcOL dt
OTR
RO2
kLa(cO* L
cOL ) qO2 cX
RO2
qO2 cX
qO2,m ax
cOL KO2 cOL
cX
kLa(cO* L cOL )
tr
1 kd
ln 1
kd K2cE0
cS0 XS
cEKM
ln
1 1 XS
举例5-1
2 固定化酶反应过程
假定反应过程发生在固定化酶颗粒内,反应速率不受外扩 散限制,但受内扩散限制。 设反应器中的空隙串(液相体积/反应器有效体积)为L,则 固定化酶颗粒所占的体积分数为(1- L)。 在单位时间内、反应器中底物的消耗量为(1- L)VRrS,累 积项则为反应器内液相中底物随时间的变化率为 LVRdcS/dt
第四章 生物反应器的操作模型
4.1 操作模型概论
分类与特征
➢ 按照生物反应过程所使用的生物催化剂不同:酶 反应器;细胞生物反应器
➢ 根据反应器物料的加入和排出方式的不同:间歇 反应器;连续反应器;半间歇半连续反应器
➢ 根据生物催化剂在反应器的分布力式:生物团块 反应器;生物膜反应器
➢根据相态来分:有均相反应器;非均相反应器。 ➢理想的机械搅拌反应器和理想管式反应器的流型
4.3.2 影响流变性质的因素
下图是金色链霉菌发酵液的稠度系数K和流动特性指数n 随发酵时间的变化情况。
当发酵液中的颗粒呈球形或接近球形,且其浓度较低时,悬 浮液一般为牛顿流体,其粘度可根据Einstein公式计算:
s=L(1+2.5)
式中:s-悬浮液粘度;
L-悬浮液中纯液相粘度;
-颗粒的体积分率。
V间歇反应釜 V0CA0
dx x Af
A
0 rA
VCSTR
V0CA0 (XAf CA0 ) rAf
4.2 间歇式操作反应器的设计
4.2.1 间歇式操作的特点
✓ 非稳态过程 ✓ 所有物料具有相同的停留时间和反应时间 ✓ 随着反应的进行,反应器的效率将降低
优点
①较适合多品种、小批量的生产过程。有不少生 物制品是小批量生产的,因此使用同一台反应 装置,可进行多品种的生产。
当cS0>>Km时,即反应呈零级反应特征时:
rmax t r cS0 XS cS0 cS
KM (k2 k1) / k1 KS (k1) / k1 KM KS k2 / k1
对于存在酶失活的反应,如果符合一级失活模 型.则有:
rmax K2cE K2cE0 exp( kd t r )
4 凯松(Casson)流体
流动特性表达式:0.5= 00.5+Kc 0.5
Kc-凯松粘度
总之,流体特性因素都会对生化反应器内的质量与 热量传递、混合特性及菌体生长等产生影响,这给 工艺过程控制与设备放大带来困难。
相关文档
最新文档