高中数学第一章三角函数1.3.1诱导公式导学案1无答案新人教A版必修(1)
高中数学第一章三角函数3三角函数的诱导公式课时练习新人教A必修
三角函数的诱导公式(一)(15分钟30分)的值为( ) A. C.【解析】=tan=tan=-.【补偿训练】tan(5π+α)=m,则的值为( ) A. B.【解析】选A.因为tan(5π+α)=tan α=m,所以原式===.2.在平面直角坐标系中,若角α的终边经过点P,则cos= ( )A. B.【解析】,所以cos α=-,所以cos=-cos α=.3.若c os(π+α)=-,π<α<2π,则sin(α-2π)等于( )A. B.± C.【解析】选D.由cos(π+α)=-,得cos α=,故sin(α-2π)=sin α=-=-=-(α为第四象限角).4.的值等于.【解析】原式=====-2.答案:-2<α<,cos=m(m≠0),求tan的值.【解析】因为-α=π-,所以cos=cos=-cos=-m.由于<α<,所以0<-α<.于是sin==.所以tan==-.(20分钟40分)一、选择题(每小题5分,共20分)=,则cos= ( ) A. C.【解析】+=π,所以cos=-cos=-.2.已知n为整数,化简所得的结果是( )A.tan nαB.-tan nαC.tan αD.-tan α【解析】选C.当n=2k,k∈Z时,===tan α;当n=2k+1,k∈Z时,====tan α.+sin的值为( ) B.C. D.【解析】选C.原式=cos-sin=cos-sin=-cos+sin=.4.若sin(π-α)=log8,且α∈,则cos(π+α)的值为( ) A.C.±【解析】选B.因为sin(π-α)=sin α=log81-log84=0-log822=0-2log82=-,所以cos(π+α)=-cos α=-=-=-.二、填空题(每小题5分,共10分)=,则sin= .【解析】因为sin=,所以sin=sin=-sin=-.答案:-6.已知cos(α-55°)=-,且α为第四象限角,则sin(α+125°)的值为. 【解析】因为cos(α-55°)=-<0且α是第四象限角.所以α-55°是第三象限角. 所以sin(α-55°)=-=-.因为α+125°=180°+(α-55°),所以sin(α+125°)=sin[180°+(α-55°)]=-sin(α-55°)=.答案:三、解答题7.(10分)已知f(α)=.(1)化简f(α).(2)若f(α)=,且<α<,求cos α-sin α的值.(3)若α=-,求f(α)的值.【解析】(1)f(α)==sin α·cos α. (2)由f(α)=sin αcos α=可知(cos α-sin α)2=cos2α-2sin αcos α+sin2α=1-2sin αcos α=1-2×=.又因为<α<,所以cos α<sin α,即cos α-sin α<0.所以cos α-sin α=-.(3)因为α=-=-6×2π+,所以f=cos·sin=cos·sin=cos·sin=cos·sin=cos·=×=-.。
高中数学 第一章 三角函数练习(无答案)新人教A版必修4(2021年整理)
【课堂练习】
1.比较4o与4rad角的大小
2.若两个角的差为1弧度,它们的和为1°,则这两个角的大小分别为___________.
003§1。2.1 任意角的三角函数(一)
【典型例题】
例1.已知角α的终边过点(2a,-3a)(a≠0),求sina、cosa、tana的值.
变式:已知角 终边上一点 ,且 ,求cosa的值.
第一章 三角函数
§1。1.1任意角
【典型例题】
例1.写出与下列各角终边相同的角的集合S,并把S中适合不等式—3600≤β<7200的元素β写出来:
(1)60°;(2)—21°;(3)-843o10′
变式:在0°到360°范围内, 找出与-2046°24′角终边相同的角, 并判断它是第几象限的角?
例2.若 是第二象限角,则 , 分别是第几象限的角?
【课堂练习】
1.证明:函数 的一个周期为 .
2.已知函数f(x+2)=f(x),且xÎ[0,1]时,f(x)=2x, 求f(log26)的值.
§1.4.2 正、余弦函数的性质(二)(总第10课时)
【 典型例题】
例1.判断下列函数的奇偶性。
(1)y=sin( ); (2) .
例2.求下列函数的单调增区间
(1) ;(2)y= sin( ).
变式:求 的单调减区间.
例3.求下列函数的最值
(1)y=2sin(2x+ )(xÎ[0, ];(2)y=cos2x-4sinx+5.
【课堂练习】
1.已知函数y=sin(x+j)(0<j〈p)的图象关于y轴对称,求j的值。
2.比较sin1与sin2的大小.【提示:放在同 一个单调区间上】
人教A版高中数学必修4第一章 三角函数1.3 三角函数的诱导公式导学案
2019-2020年高中数学必修四 1.3 《三角函数的诱导公式》导学案【学习目标】1.诱导公式(一)、(二)的探究、推导借助单位圆的直观性探索正弦、余弦、正切的诱导公式.2.利用诱导公式进行简单的三角函数式的求值、化简和恒等式的证明. 【导入新课】 1.复习公式一,公式二 2.回忆公式的推导过程 新授课阶段 1.诱导公式二:思考:(1)锐角α的终边与180α+o的终边位置关系如何? (2)写出α的终边与180α+o的终边与单位圆交点,'P P 的坐标. (3)任意角α与180α+o呢?结论:任意α与180α+o的终边都是关于原点中心对称的.则有(,),'(,)P x y P x y --,由正弦函数、余弦函数的定义可知:sin y α=, cos x α=;sin(180)y α+=-o , cos(180)x α+=-o .从而,我们得到诱导公式二: sin(180)α+=o sin α-;cos(180)α+=-ocos α.说明:①公式中的α指任意角;②若α是弧度制,即有sin()πα+=sin α-,cos()πα+=-cos α; ③公式特点:函数名不变,符号看象限;④可以导出正切:sin(180)sin tan(180)tan cos(180)cos αααααα+-+===-+-o oo . 2.诱导公式三:思考:(1)360α-o的终边与α-的终边位置关系如何?从而得出应先研究α-; (2)任何角α与α-的终边位置关系如何?可以由学生自己结合一个简单的例子思考,从坐标系看20︒与20180︒+︒,20︒与20180︒-︒的终边的关系.从而易知,,33)k z απαπαπαπαπ+-+-+∈L 与,,,(2k+1),(终边相同,所以三角函数值相等.由α与απ+的终边与单位圆分别相交于P 与 P ´,它们的坐标互为相反数P( x ,y),P ´(-x ,-y) (见课本图1-18),所以有[]cos (21)-cos k απα++=[]sin (21)-sin k απα++= (三) []tan (21)tan k απα++=结论:同诱导公式二推导可得:诱导公式三:sin()sin αα-=-;cos()cos αα-=. 说明:①公式中的α指任意角; ②在角度制和弧度制下,公式都成立; ③公式特点:函数名不变,符号看象限; ④可以导出正切:tan()tan αα-=-. 3.诱导公式四:sin(180)sin αα-=o;cos(180)cos αα-=-o .4.诱导公式五:sin(360)sin αα-=-o;cos(360)cos αα-=o .说明:①公式四、五中的α指任意角; ②在角度制和弧度制下,公式都成立; ③公式特点:函数名不变,符号看象限;④可以导出正切:tan(180)tan αα-=-o;tan(360)tan αα-=-o5.公式六:ααπcos )2sin(=- ααπsin )2cos(=-ααπcos )2sin(=+ ααπsin )2cos(-=+说明:①公式六中的α指任意角; ②在角度制和弧度制下,公式都成立; ③公式特点:函数名变化,符号看象限. 结合公式(一)和(三)可以得出下结论:sin ,sin()sin a n n a n απ-⎧+=⎨⎩当为奇数,当为偶数cos ,cos()cos a n n a n απ-⎧+=⎨⎩当为奇数,当为偶数tan()tan ,n n Z απα+=∈由α与πα-和单位圆分别交于点P ´与点P ,由诱导公式(二)和(三)或P ´与点P 关于y 轴对称,可以得到 α与πα-只见的三角函数关系(见课本图1-19)ααπsin sin(=-) ααπ-cos cos(=-)例1 下列各三角函数值:219sin120cos135tancos()34ππ-oo解:例2 将下列三角函数化为0o 到45o之间角的三角函数:sin 68cos 75tan126oo o解:例3 求下列三角函数值:(1)sin 960o;(2)43cos()6π-. 解:例4 (1)化简23cot cos()sin (3)tan cos ()απαπααπα⋅+⋅+⋅--; (2)sin120cos330sin(690)cos(660)tan 675cot 765.⋅+--++oooooo解: (1)(2)例5 已知:tan 3α=,求2cos()3sin()4cos()sin(2)παπααπα--+-+-的值.解: .例6 已知3sin 5α=-,且α是第四象限角,求tan [cos(3)sin(5)]απαπα--+的值. 解:例7 化简sin()sin()()sin()cos()n n n Z n n απαπαπαπ++-∈+-.解: 课堂小结1.五组公式可概括如下:360(),,180,360k k Z αααα+⋅∈-±-ooo的三角函数值,等于α的同名函数值,前面加上一个把α看成锐角时原函数值的符号;2.要化的角的形式为α±⋅ok 90(k 为常整数);3.记忆方法:“奇变偶不变,符号看象限”;(k 为奇数还是偶数);4.利用五组诱导公式就可以将任意角的三角函数转化为锐角的三角函数.其化简方向仍为:“负化正,大化小,化到锐角为终了”.作业课本第32页习题B 组第1、2题拓展提升 1.若)cos()2sin(απαπ-=+,则α的取值集合为( )A .}42|{Z k k ∈+=ππααB .}42|{Z k k ∈-=ππααC .}|{Z k k ∈=πααD .}2|{Z k k ∈+=ππαα2.已知,)1514tan(a =-π那么=︒1992sin ( )A .21||aa + B .21aa +C .21aa +-D .211a+-3.设角则,635πα-=)(cos )sin(sin 1)cos()cos()sin(222απαπααπαπαπ+--+++--+的值等于 ( )A .33 B .-33 C .3 D .-3 4.当Z k ∈时,])1cos[(])1sin[()cos()sin(απαπαπαπ+++++⋅-k k k k 的值为( )A .-1B .1C .±1D .与α取值有关5.设βαβπαπ,,,(4)cos()sin()(b a x b x a x f ++++=为常数),且,5)2000(=f 那么=)2004(f ( )A .1B .3C .5D .76.已知3sin()42πα+=,则3sin()4πα-值为( ) A.21 B. —21C. 23D. —237.cos (π+α)= —21,23π<α<π2,sin(π2-α) 值为( ) A.23 B. 21C. 23±D. —23 8.化简:)2cos()2sin(21-•-+ππ得( )A. sin 2cos2+B. cos2sin 2-C. sin 2cos2-D.±cos2sin 2- 9.已知3tan =α,23παπ<<,那么ααsin cos -的值是( )A .231+-B .231+-C .231-D . 231+ 10.已知,0cos 3sin =+αα则=+-ααααcos sin cos sin .11.如果,0sin tan <αα且,1cos sin 0<+<αα那么α的终边在第 象限 12.求值:2sin(-1110º) -sin960º+)210cos()225cos(2︒-+︒-= .13.设()f θ=)cos()7(cos 221)cos(2)(sin cos 2223θθππθπθθ-++++---+-,求()3f π的值.14.已知方程sin(3) = 2cos(4),求)sin()23sin(2)2cos(5)sin(ααπαπαπ----+-的值.参考答案 例1解:3sin120sin(3090)cos30=+==oooo2cos135cos(4590)sin 45=+=-=o o o o 2tantan()cot 33626ππππ=+=-=- 191932cos()cos cos(4)cos()sin 444424πππππππ-==+=+=-= 例2 解:略. 例3解:(1)sin 960sin(960720)sin 240=-=oooo(诱导公式一)sin(18060)sin 60=+=-o o o (诱导公式二)2=-. (2)4343cos()cos66ππ-=(诱导公式三) 77cos(6)cos66πππ=+=(诱导公式一) cos()cos 66πππ=+=-(诱导公式二)=. 例4.解:(1)原式23cot (cos )sin ()tan cos ()ααπααπα⋅-⋅+=⋅+23cot (cos )(sin )tan (cos )ααααα⋅-⋅-=⋅-23cot (cos )sin tan (cos )ααααα⋅-⋅=⋅- 2222cos sin 1sin cos αααα=⋅=. (2)原式sin(18060)cos(36030)sin(720690)cos(720660)=-⋅-+--ooooooootan(675720)cot(765720)+-+-o o o o sin 60cos30sin 30cos 60tan(45)cot 45=++-+o o o o o o11tan 4512222=⨯+⨯-+o 3111144=+-+= 例5解:∵tan 3α=, ∴原式2cos 3sin 23tan 74cos sin 4tan αααααα-+-+===--.例6解:tan [cos(3)sin(5)]απαπα--+tan [cos()sin()]απαπα=--+tan (cos sin )ααα=-+tan sin tan cos αααα=-sin (tan 1)αα=-由已知得:43cos ,tan 54αα==-, ∴原式2120=. 例7解:①当2,n k k Z =∈时,原式sin(2)sin(2)2sin(2)cos(2)cos k k k k απαπαπαπα++-==+-.②当21,n k k Z =+∈时,原式sin[(21)]sin[(21)]2sin[(21)]cos[(21)]cos k k k k απαπαπαπα+++-+==-++-+拓展提升1.D 2.C 3.C 4.A 5.C 6.C 7.A 8.C 9.B 10.2 11.二 12.-213.解:θθθθθθcos cos 221cos 2sin cos 2)(223++++-=f=θθθθθcos cos 221cos 2)cos 1(cos 2223++++-- =θθθθθcos cos 22cos 2cos cos 2223++++=θθθθθθcos 2cos cos 2)2cos cos 2(cos 22=++++ ∴()3f π=cos3π=21 14.解: ∵sin( 3) = 2cos( 4)∴ sin(3) = 2cos(4)∴ sin( ) = 2cos( )∴sin=2c os且cos∴43cos 4cos 3cos 2cos 2cos 5cos 2sin cos 2cos 5sin -=-=--+-=+-+=αααααααααα原式。
高中数学第一章三角函数1.3三角函数的诱导公式教学案新人教A版必修4
= sin 45 ° cos 30 °- cos 30 ° sin 30 °- tan 45 °
2 3 31
6- 3-4
= 2 × 2 - 2 × 2-1=
4
.
讲一讲
3 / 22
cos(-α) tan (7π+α)
2. (1) 化简:
sin (π-α)
= ________;
sin (1 440 °+α)· cos(α- 1 080 °) (2) 化简 cos(- 180°-α)· sin (-α- 180°) = ________.
[ 尝试解答]
cos(-α) tan (7π+α) cos αtan (π+α)
(1)
sin (π-α)
=
sin α
=
cos α· tan α sin α sin α = sin α= 1.
sin (4×360°+α)· cos(3×360°-α) (2) 原式= cos(180°+α)· [ -sin (180°+α) ]
切.
练一练
sin[ (k+1)π+θ ] ·cos[ (k+1)π-θ]
2.化简:
sin (kπ-θ)· cos(kπ+θ)
( k∈ Z) .
解:当 k 为奇数时,不妨设 k= 2n+1, n∈Z,
sin[ (2n+2)π+θ ] ·cos[ (2n+ 2)π-θ] 则原式= sin (2nπ+π-θ)· cos(2nπ+π+θ)
= sin(360 °+ 225° )cos (3 ×360°+ 210° ) + cos 30 ° sin 210 °+ tan(180 °- 45° )
= sin 225 ° cos 210 °+ cos 30 °sin 210 °- tan 45 °
高中数学 第一章 三角函数 1.3 诱导公式(1)导学案(无答案)新人教A版必修4(2021年整理)
山东省乐陵市高中数学第一章三角函数1.3 诱导公式(1)导学案(无答案)新人教A版必修4编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(山东省乐陵市高中数学第一章三角函数1.3 诱导公式(1)导学案(无答案)新人教A版必修4)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为山东省乐陵市高中数学第一章三角函数1.3 诱导公式(1)导学案(无答案)新人教A版必修4的全部内容。
诱导公式(一)【学习目标】了解诱导公式的推导思路,能用诱导公式解决问题【重、难点】:公式的推导与运用【自主学习】一,诱导公式的推导:1.设角α为锐角,判断下列角分别是第几象限角?απ+k 2是第 象限角, α与απ+k 2终边关系是______απ-k 2是第 象限角; α与απ-k 2终边关系是_________απ++)12(k 是第 象限角;α与απ+k 2终边关系是_________απ-+)12(k 是第 象限角;α与απ+k 2终边关系是_________2.根据三角函数线和单位圆可得(1)1.角α与α+k ·2π(k ∈Z)的三角函数间的关系cos(α+k ·2π)= ; sin(α+k ·2π)= ;tan (α+k ·2π)= 。
(2)。
角α与α-的三角函数间的关系cos (-α)= ;sin(—α)= ;tan (-α)= . (3)。
角α与α+(2k+1)π(k ∈Z)的三角函数间的关系cos[α+(2k+1)π]= ;sin[α+(2k+1)π]= ;tan [α+(2k+1)π]= .【自我检测】1。
高中数学第一章三角函数1.3三角函数的诱导公式1教案新人教A版必修
课题:三角函数的诱导公式(1)))().)() 180cos180α⋅--πα精美句子1、善思则能“从无字句处读书”。
读沙漠,读出了它坦荡豪放的胸怀;读太阳,读出了它普照万物的无私;读春雨,读出了它润物无声的柔情。
读大海,读出了它气势磅礴的豪情。
读石灰,读出了它粉身碎骨不变色的清白。
2、幸福幸福是“临行密密缝,意恐迟迟归”的牵挂;幸福是“春种一粒粟,秋收千颗子”的收获. 幸福是“采菊东篱下,悠然见南山”的闲适;幸福是“奇闻共欣赏,疑义相与析”的愉悦。
幸福是“随风潜入夜,润物细无声”的奉献;幸福是“夜来风雨声,花落知多少”的恬淡。
幸福是“零落成泥碾作尘,只有香如故”的圣洁。
幸福是“壮志饥餐胡虏肉,笑谈渴饮匈奴血”的豪壮。
幸福是“先天下之忧而忧,后天下之乐而乐”的胸怀。
幸福是“人生自古谁无死,留取丹心照汗青”的气节。
3、大自然的语言丰富多彩:从秋叶的飘零中,我们读出了季节的变换;从归雁的行列中,我读出了集体的力量;从冰雪的消融中,我们读出了春天的脚步;从穿石的滴水中,我们读出了坚持的可贵;从蜂蜜的浓香中,我们读出了勤劳的甜美。
4、成功与失败种子,如果害怕埋没,那它永远不能发芽。
鲜花,如果害怕凋谢,那它永远不能开放。
矿石,如果害怕焚烧(熔炉),那它永远不能成钢(炼成金子)。
蜡烛,如果害怕熄灭(燃烧),那它永远不能发光。
航船,如果害怕风浪,那它永远不能到达彼岸。
5、墙角的花,当你孤芳自赏时,天地便小了。
井底的蛙,当你自我欢唱时,视野便窄了。
笼中的鸟,当你安于供养时,自由便没了。
山中的石!当你背靠群峰时,意志就坚了。
水中的萍!当你随波逐流后,根基就没了。
空中的鸟!当你展翅蓝天中,宇宙就大了。
空中的雁!当你离开队伍时,危险就大了。
地下的煤!你燃烧自己后,贡献就大了6、朋友是什么?朋友是快乐日子里的一把吉它,尽情地为你弹奏生活的愉悦;朋友是忧伤日子里的一股春风,轻轻地为你拂去心中的愁云。
朋友是成功道路上的一位良师,热情的将你引向阳光的地带;朋友是失败苦闷中的一盏明灯,默默地为你驱赶心灵的阴霾。
高中数学 第一章 三角函数 1.3 三角函数的诱导公式(一)导学案 新人教A版必修4-新人教A版高一
1.3 三角函数的诱导公式(一)学习目标 1.了解三角函数的诱导公式的意义和作用.2.理解诱导公式的推导过程.3.能运用有关诱导公式解决一些三角函数的求值、化简和证明问题.设角α的终边与单位圆的交点为P,由三角函数定义知P点坐标为(cos α,sin α).知识点一诱导公式二思考角π+α的终边与角α的终边有什么关系?角π+α的终边与单位圆的交点P1(cos(π+α),sin(π+α))与点P(cos α,sin α)呢?它们的三角函数之间有什么关系?答案角π+α的终边与角α的终边关于原点对称,P1与P也关于原点对称,它们的三角函数关系如下:诱导公式二sin(π+α)=-sinα,cos(π+α)=-cosα,tan(π+α)=tan α.知识点二诱导公式三思考角-α的终边与角α的终边有什么关系?角-α的终边与单位圆的交点P2(cos(-α),sin(-α))与点P(cos α,sin α)有怎样的关系?它们的三角函数之间有什么关系?答案角-α的终边与角α的终边关于x轴对称,P2与P也关于x轴对称,它们的三角函数关系如下:诱导公式三sin(-α)=-sinα,cos(-α)=cos α,tan(-α)=-tanα.思考 角π-α的终边与角α的终边有什么关系?角π-α的终边与单位圆的交点P 3(cos(π-α),sin(π-α))与点P (cos α,sin α)有怎样的关系?它们的三角函之间有什么关系?答案 角π-α的终边与角α的终边关于y 轴对称,P 3与P 也关于y 轴对称,它们的三角函数关系如下: 诱导公式四sin(π-α)=sin α, cos(π-α)=-cosα,tan(π-α)=-tanα.梳理 公式一~四都叫做诱导公式,它们分别反映了2k π+α(k ∈Z ),π+α,-α,π-α的三角函数与α的三角函数之间的关系,这四组公式的共同特点是:2k π+α(k ∈Z ),π+α,-α,π-α的三角函数值等于α的同名函数值,前面加上一个把α看成锐角时原函数值的符号.简记为“函数名不变,符号看象限”.类型一 利用诱导公式求值 命题角度1 给角求值问题 例1 求下列各三角函数式的值.(1)cos 210°; (2)sin 11π4;(3)sin(-43π6); (4)cos(-1 920°).解 (1)cos 210°=cos(180°+30°) =-cos 30°=-32. (2)sin 11π4=sin(2π+3π4)=sin 3π4=sin(π-π4)=sin π4=22.(3)sin(-43π6)=-sin(6π+7π6)=-sin 7π6=-sin(π+π6)=sin π6=12.(4)cos(-1 920°)=cos 1 920° =cos(5×360°+120°)=cos 120°=cos(180°-60°)=-cos 60°=-12.反思与感悟 利用诱导公式求任意角三角函数值的步骤: (1)“负化正”:用公式一或三来转化.(2)“大化小”:用公式一将角化为0°到360°间的角. (3)“角化锐”:用公式二或四将大于90°的角转化为锐角. (4)“锐求值”:得到锐角的三角函数后求值. 跟踪训练1 求下列各三角函数式的值.(1)sin 1 320°; (2)cos ⎝⎛⎭⎪⎫-31π6; (3)tan(-945°).解 (1)方法一 sin 1 320°=sin(3×360°+240°) =sin 240°=sin(180°+60°)=-sin 60°=-32. 方法二 sin 1 320°=sin(4×360°-120°)=sin(-120°) =-sin(180°-60°)=-sin 60°=-32. (2)方法一 cos ⎝ ⎛⎭⎪⎫-31π6=cos 31π6=cos ⎝ ⎛⎭⎪⎫4π+7π6=cos(π+π6)=-cos π6=-32.方法二 cos ⎝ ⎛⎭⎪⎫-31π6=cos ⎝⎛⎭⎪⎫-6π+5π6=cos ⎝⎛⎭⎪⎫π-π6=-cos π6=-32.(3)tan(-945°)=-tan 945°=-tan(225°+2×360°) =-tan 225°=-tan(180°+45°)=-tan 45°=-1. 命题角度2 给值求角问题例2 已知sin(π+θ)=-3cos(2π-θ),|θ|<π2,则θ等于( )A.-π6B.-π3C.π6D.π3答案 D解析 由sin(π+θ)=-3cos(2π-θ),|θ|<π2,可得-sin θ=-3cos θ,|θ|<π2,即tan θ=3,|θ|<π2,∴θ=π3.反思与感悟 对于给值求角问题,先通过化简已给的式子得出某个角的某种三角函数值,再结合特殊角的三角函数值逆向求角.跟踪训练 2 已知sin(π-α)=-2sin(π+β),3cos(-α)=-2cos(π+β),0<α<π,0<β<π,求α,β.解 由题意,得⎩⎨⎧sin α=2sin β, ①3cos α=2cos β. ②①2+②2,得sin 2α+3cos 2α=2, 即sin 2α+3(1-sin 2α)=2, ∴sin 2α=12,∴sin α=±22.∵0<α<π,∴sin α=22, ∴α=π4或α=34π.把α=π4,α=34π分别代入②,得cos β=32或cos β=-32.又∵0<β<π,∴β=π6或β=56π.∴α=π4,β=π6或α=34π,β=56π.类型二 利用诱导公式化简 例3 化简下列各式.(1)tan (2π-α)sin (-2π-α)cos (6π-α)cos (α-π)sin (5π-α);(2)1+2sin 290°cos 430°sin 250°+cos 790°.解 (1)原式=sin (2π-α)cos (2π-α)·sin (-α)cos (-α)cos (π-α)sin (π-α)=-sin α(-sin α)cos αcos α(-cos α)sin α=-sin αcos α=-tan α.(2)原式=1+2sin (360°-70°)cos (360°+70°)sin (180°+70°)+cos (720°+70°)=1-2sin 70°cos 70°-sin 70°+cos 70°=|cos 70°-sin 70°|cos 70°-sin 70°=sin 70°-cos 70°cos 70°-sin 70°=-1.引申探究若本例(1)改为:tan (n π-α)sin (n π-α)cos (n π-α)cos[α-(n +1)π]·sin[(n +1)π-α](n ∈Z ),请化简.解 当n =2k 时,原式=-tan α·(-sin α)·cos α-cos α·sin α=-tan α;当n =2k +1时,原式=-tan α·sin α·(-cos α)cos α·(-sin α)=-tan α.反思与感悟 三角函数式的化简方法(1)利用诱导公式,将任意角的三角函数转化为锐角的三角函数. (2)常用“切化弦”法,即表达式中的切函数通常化为弦函数. (3)注意“1”的变式应用:如1=sin 2α+cos 2α=tan π4.跟踪训练3 化简下列各式. (1)cos (π+α)·sin (2π+α)sin (-α-π)·cos (-π-α); (2)cos 190°·sin (-210°)cos (-350°)·tan (-585°). 解 (1)原式=-cos α·sin α-sin (π+α)·cos (π+α)=cos α·sin αsin α·cos α=1.(2)原式=cos (180°+10°)·[-sin (180°+30°)]cos (-360°+10°)·[-tan (360°+225°)]=-cos 10°·sin 30°cos 10°·[-tan (180°+45°)]=-sin 30°-tan 45°=12.1.sin 585°的值为( ) A.-22 B.22 C.-32 D.32答案 A解析 sin 585°=sin(360°+225°)=sin(180°+45°) =-sin 45°=-22. 2.cos(-16π3)+sin(-16π3)的值为( )A.-1+32B.1-32 C.3-12D.3+12答案 C解析 原式=cos 16π3-sin 16π3=cos 4π3-sin 4π3=-cos π3+sin π3=3-12.3.已知cos(π-α)=32(π2<α<π),则tan(π+α)等于( ) A.12 B.33 C.- 3 D.-33 答案 D解析 方法一 cos(π-α)=-cos α=32,∴cos α=-32. ∵π2<α<π,∴sin α>0. ∴sin α=1-cos 2α=1-34=12, ∴tan(π+α)=tan α=sin αcos α=-33.方法二 由cos α=-32,π2<α<π,得α=56π, ∴tan α=-33,∴tan(π+α)=tan α=-33. 4.sin 750°= . 答案 12解析 ∵sin θ=sin(k ·360°+θ),k ∈Z , ∴sin 750°=sin(2×360°+30°) =sin 30°=12.5.化简:cos (α-π)sin (5π+α)·sin(α-2π)·cos(2π-α).解 原式=cos (π-α)sin (π+α)·[-sin(2π-α)]·cos(2π-α)=-cos α-sin α·sin α·cos α=cos 2α.1.明确各诱导公式的作用诱导公式 作用公式一 将角转化为0~2π之间的角求值 公式二 将0~2π内的角转化为0~π之间的角求值公式三 将负角转化为正角求值 公式四将角转化为0~π2之间的角求值2.诱导公式的记忆这四组诱导公式的记忆口诀是“函数名不变,符号看象限”.其含义是诱导公式两边的函数名称一致,符号则是将α看成锐角时原角所在象限的三角函数值的符号,α看成锐角,只是公式记忆的方便,实际上α可以是任意角.3.已知角求值问题,一般要利用诱导公式三和公式一,将负角化为正角,将大角化为0~2π之间的角,然后利用特殊角的三角函数求解.必须对一些特殊角的三角函数值熟记,做到“见角知值,见值知角”课时作业一、选择题1.cos 600°的值为( ) A.32 B.12 C.-32D.-12答案 D解析 cos 600°=cos(360°+240°)=cos 240° =cos(180°+60°)=-cos 60°=-12.2.若cos(π+α)=-12,32π<α<2π,则sin(α-2π)等于( )A.12B.±32 C.32D.-32答案 D解析 由cos(π+α)=-12,得cos α=12,故sin(α-2π)=sin α=-1-cos 2α =-1-(12)2=-32(α为第四象限角).3.记cos(-80°)=k ,那么tan 100°等于( ) A.1-k2k B.-1-k2kC.k1-k2D.-k1-k2答案 B解析 ∵cos(-80°)=k ,∴cos 80°=k , ∴sin 80°=1-k 2,则tan 80°=1-k2k.∴tan 100°=-tan 80°=-1-k2k.4.已知n 为整数,化简sin (n π+α)cos (n π+α)所得的结果是( )A.tan nαB.-tan nαC.tan αD.-tan α答案 C解析 当n =2k ,k ∈Z 时,sin (n π+α)cos (n π+α)=sin (2k π+α)cos (2k π+α)=sin αcos α=tan α; 当n =2k +1,k ∈Z 时,sin (n π+α)cos (n π+α)=sin (2k π+π+α)cos (2k π+π+α)=sin (π+α)cos (π+α)=-sin α-cos α=tan α.故选C.5.tan(5π+α)=m ,则sin (α-3π)+cos (π-α)sin (-α)-cos (π+α)的值为( )A.m +1m -1B.m -1m +1C.-1D.1答案 A解析 ∵tan(5π+α)=tan α=m ,∴原式=sin α+cos αsin α-cos α=tan α+1tan α-1=m +1m -1.6.若sin(π-α)=log 8 14,且α∈(-π2,0),则cos(π+α)的值为( )A.53 B.-53C.±53D.以上都不对答案 B解析 ∵sin(π-α)=sin α=log 32 2-2=-23,∴cos(π+α)=-cos α=-1-sin 2α =-1-49=-53. 二、填空题 7.cos (-585°)sin 495°+sin (-570°)的值是 .答案2-2解析 原式 =cos (360°+225°)sin (360°+135°)-sin (210°+360°)=cos 225°sin 135°-sin 210°=cos (180°+45°)sin (180°-45°)-sin (180°+30°)=-cos 45°sin 45°+sin 30°=-2222+12=2-2.8.已知a =tan ⎝ ⎛⎭⎪⎫-7π6,b =cos 23π4,c =sin ⎝ ⎛⎭⎪⎫-33π4,则a ,b ,c 的大小关系是 .并比较值的大小 答案 b >a >c解析 ∵a =-tan 7π6=-tan π6=-33,b =cos ⎝⎛⎭⎪⎫6π-π4=cos π4=22, c =-sin33π4=-sin π4=-22,∴b >a >c .9.已知cos(π+α)=-35,π<α<2π,则sin(α-3π)+cos(α-π)= . 答案 15解析 ∵cos(π+α)=-cos α=-35, ∴cos α=35, 又∵π<α<2π,∴3π2<α<2π, ∴sin α=-45. ∴sin(α-3π)+cos(α-π)=-sin(3π-α)+cos(π-α)=-sin(π-α)+(-cos α)=-sin α-cos α=-(sin α+cos α)=-⎝ ⎛⎭⎪⎫-45+35=15. 10.已知函数f (x )=a sin(πx +α)+b cos(πx +β),且f (4)=3,则f (2 017)的值为 .答案 -3解析 ∵f (4)=a sin(4π+α)+b cos(4π+β)=a sin α+b cos β=3,∴f (2 017)=a sin(2 017π+α)+b cos(2 017π+β)=a sin(π+α)+b cos(π+β)=-a sin α-b cos β=-3.11.已知sin(π-α)=log 814,且α∈(-π2,0),则tan(2π-α)的值为 . 答案 25512.已知cos(508°-α)=1213,则cos(212°+α)= .答案 1213三、解答题13.化简下列各式.(1)sin(-193π)cos 76π; (2)sin(-960°)cos 1 470°-cos(-240°)sin(-210°).解 (1)sin(-193π)cos 76π =-sin(6π+π3)cos(π+π6)=sin π3cos π6=34. (2)sin(-960°)cos 1 470°-cos 240°sin(-210°) =-sin(180°+60°+2×360°)cos(30°+4×360°) +cos(180°+60°)sin(180°+30°)=sin 60°cos 30°+cos 60°sin 30°=1.四、探究与拓展14.已知f (x )=⎩⎪⎨⎪⎧ sin πx ,x <0,f (x -1)-1,x >0,则f (-116)+f (116)的值为 . 答案 -2解析 因为f (-116)=sin(-11π6) =sin(-2π+π6)=sin π6=12; f (116)=f (56)-1=f (-16)-2=sin(-π6)-2=-12-2=-52, 所以f (-116)+f (116)=-2. 15.已知f (α)=sin (π+α)cos (2π-α)tan (-α)tan (-π-α)sin (-π-α). (1)化简f (α);(2)若α是第三象限角,且sin(α-π)=15,求f (α)的值;(3)若α=-31π3,求f (α)的值. 解 (1)f (α)=-sin αcos α(-tan α)(-tan α)sin α=-cos α. (2)∵sin(α-π)=-sin α=15, ∴sin α=-15.又α是第三象限角, ∴cos α=-265.∴f (α)=265. (3)∵-31π3=-6×2π+5π3, ∴f ⎝ ⎛⎭⎪⎫-31π3=-cos ⎝ ⎛⎭⎪⎫-6×2π+5π3 =-cos 5π3=-cos π3=-12.。
高中数学第一章三角函数1.3三角函数的诱导公式第1课时三角函数的诱导公式(一)限时规范训练新人教A版
第1课时 三角函数的诱导公式(一)【基础练习】1.化简1-sin 21 180°的结果是( ) A .cos 100° B .cos 80° C .sin 80° D .cos 10°【答案】B【解析】原式=1-sin 21 180°=1-sin 2100°=cos 2100°=cos 280°=cos 80°.故选B . 2.(2018年福建厦门校级月考)已知sin(π+α)=35,α是第四象限的角,则cos(α-2π)=( )A .45B .-45C .±45D .35【答案】A【解析】由sin(π+α)=35,得sin α=-35,而cos(α-2π)=cos α且α是第四象限角,所以cos α=1-sin 2α=45.故选A .3.下列等式恒成立的是( ) A .cos(-α)=-cos α B .si n(360°-α)=sin α C .tan(2π-α)=tan(π+α) D .cos(π+α)=cos(π-α) 【答案】D【解析】根据诱导公式可得cos(-α)=cos α,sin(360°-α)=-sin α,tan(2π-α)=tan(-α)=-tan(π+α),可得A ,B ,C 都不正确,再由cos(π+α)=-cos α=cos(π-α),可得D 正确.故选D .4.sin 2(2π-α)+cos(π+α)·cos(π-α)+1的值是( ) A .1 B .2 C .0 D .2sin 2α【答案】B【解析】原式=sin 2α+(-cos α)·(-cos α)+1=sin 2α+cos 2α+1=1+1=2.故选B . 5.化简sin 2?α+π?·cos?π+α?cos 3?-α-π?·tan 2?α-2π?的结果是( ) A .1 B .-1 C .cos αD .1cos α【答案】A【解析】sin 2?α+π?·cos?π+α?cos 3?-α-π?·tan 2?α-2π?=sin 2α·?-cos α??-cos 3α?·tan 2α=sin 2αcos 2α·sin 2αcos 2α=1.故选A . 6.(2019年江西南昌模拟)已知sin ⎝ ⎛⎭⎪⎫π4+α=32,则sin ⎝ ⎛⎭⎪⎫3π4-α的值为________.【答案】32【解析】因为3π4-α=π-⎝ ⎛⎭⎪⎫π4+α,所以sin ⎝ ⎛⎭⎪⎫3π4-α=sin ⎝ ⎛⎭⎪⎫π4+α=32.7.(2019年江苏苏州期末)已知3sin(α-π)=cos α,则tan(π-α)的值是________. 【答案】13【解析】因为3sin(α-π)=-3sin (π-α)=-3sin α,所以-3sin α=cos α,则tan α=sin αcos α=-13.所以tan(π-α)=-tan α=13.8.求值:(1)sin 1 650°;(2)cos ⎝ ⎛⎭⎪⎫-28π3. 【解析】(1)sin 1 650°=sin(4×360°+210°)=sin 210°=sin(180°+30°)=-sin 30°=-12. (2)cos ⎝ ⎛⎭⎪⎫-28π3=cos ⎝ ⎛⎭⎪⎫-10π+2π3=cos 2π3 =cos ⎝ ⎛⎭⎪⎫π-π3=-cos π3=-12.9.已知cos?180°+α?sin?α+360°?sin?540°+α?sin?-α-180°?cos?-180°-α?=lg 1310,求cos ?π+α?cos α[cos ?π-α?-1]+cos?α-2π?cos αcos ?π-α?+cos?α-2π?的值.【解析】∵cos?180°+α?sin?α+360°?sin?540°+α?sin?-α-180°?cos?-180°-α?=-cos α?sin αsin?180°+α?-sin?180°+α?cos?180°+α?=-cos α?sin α?-sin α?sin α?-cos α?=-sin α=lg 1310,∴sin α=-lg1310=lg 310=13.∴cos ?π+α?cos α[cos ?π-α?-1]+cos?α-2π?cos αcos ?π-α?+cos?α-2π?=-cos αcos α?-cos α-1?+cos αcos α?-cos α?+cos α=1cos α+1+11-cos α=?1-cos α?+?1+cos α?1-cos 2α =2sin 2α=18. 【能力提升】10.(2018年湖南株洲期中)已知tan(π-α)=-23,则cos?-α?+3sin?π+α?cos?π-α?+9sin α的值为( )A .-15B .-37C .15D .37【答案】A【解析】tan(π-α)=-tan α=-23,可得tan α=23,∴cos?-α?+3sin?π+α?cos?π-α?+9sin α=cos α-3sin α-cos α+9sin α=1-3tan α9tan α-1=1-3×239×23-1=-15.故选A .11.已知角α与角β终边关于y 轴对称,有四个等式:①sin α=sin(π+β);②sin α=sin β;③cos α=cos(π+β);④cos α=cos(-β),其中恒成立的是( )A .②③B .①④C .①③D .②④ 【答案】A【解析】设角α终边上一点P (x ,y ),则点P 关于y 轴对称的点为P ′(-x ,y )且点P 与点P ′到原点的距离相等,设为r ,则P ′(-x ,y )在β的终边上,由三角函数的定义得sin α=y r ,sin β=y r,cosα=x r ,cos β=-xr,∴sin α=sin β,cos α=-cos β.故①④错误,②③正确.故选A .12.设f (x )=a sin(πx +α)+b cos(πx +β),其中a ,b ,α,β为非零常数.若f (2 018)=-1,则f (2 019)=________.【答案】1【解析】∵f (2 019)=a sin(2 019π+α)+b cos(2 019π+β)=a sin(π+2 018π+α)+b cos(π+2 018π+β)=-a sin(2 018π+α)-b cos(2 018π+β)=-f (2 018),又f (2 018)=-1,∴f (2 019)=1.13.化简:1+2sin 280°·cos 440°sin 260°+cos 800°.【解析】原式=1+2sin?360°-80°?·cos?360°+80°? sin?180°+80°?+cos?720°+80°?=1-2sin 80°·cos 80°-sin 80°+cos 80°=sin280°+cos280°-2sin 80°·cos 80°-sin 80°+cos 80°=sin 80°-cos 80°2-sin 80°+cos 80°=|sin 80°-cos 80°|cos 80°-sin 80°=sin 80°-cos 80°cos 80°-sin 80°=-1.。
高中数学1.3《三角函数的诱导公式》导学案
1.3《三角函数的诱导公式一》导学案整体设计三维目标1.通过学生的探究,明了三角函数的诱导公式的来龙去脉,理解诱导公式的推导过程;培养学生的逻辑推理能力及运算能力,渗透转化及分类讨论的思想.2.通过诱导公式的具体运用,熟练正确地运用公式解决一些三角函数的求值、化简和证明问题,体会数式变形在数学中的作用.3.进一步领悟把未知问题化归为问题的数学思想,通过一题多解,一题多变,多题归一,提高分析问题和解决问题的能力.重点难点教学重点:三个诱导公式的推导和四个组诱导公式的灵活运用,三角函数式的求值、化简和证明等.教学难点:四组诱导公式的灵活运用.教学过程导入新课思路1.①利用单位圆定义任意角的正弦值、余弦值和正切值.②复习诱导公式一及其用途.思路2.通过公式一我们可以将任意角的三角函数值转化到[0,2π〕以内,我们解决了形如sin750°,如果遇到sin150°,sin210°,sin330°。
我们又该怎样求解呢?推进新课新知探究1由公式一我们知道sin750°=sin〔720°+30°〕=sin30°=2提出问题①锐角α的终边与 απ+、-α、π-α角的终边位置关系如何? ②它们与单位圆的交点的位置关系如何? ③任意角α与απ+、-α、π-α呢?活动:以απ+为例,在单位圆中作出α、π+α的终边,并标出终边与单位圆的交点P 、P ´,如图1.ααπααπtan )tan(cos )cos(==+-=-=+x yx学生活动:参照公式二的推导过程,在以下第一个单位圆中分别画出α和-α终边,并标出α终边与单位圆交点,-α终边与单位圆交点P ´,写出-α与α三角函数的关系.参照公式二的推导过程,在以下第二个单位圆中分别画出α和π-α终边,并标出α终边与单位圆交点,π-α终边与单位圆交点P ´,写出π-α与α三角函数的关系.请结合单位圆中三角函数的定义通过上图中各角终边与单位圆交点坐标写x出-α、π-α的三角函数值,观察找出他们与α角三角函数值的关系。
高中数学第一章三角函数1.3.1三角函数的诱导公式1教案新人教A版必修
1. 3.1三角函数的诱导公式(一)一、教学目标:1.借助单位圆,推导出正弦、余弦和正切的诱导公式,能正确运用诱导公式将任意角的三角函数化为锐角的三角函数,并解决有关三角函数求值、化简和恒等式证明问题2.通过公式的应用,了解未知到已知、复杂到简单的转化过程,培养学生的化归思想,以及信息加工能力、运算推理能力、分析问题和解决问题的能力。
二、重点与难点:重点:四组诱导公式的记忆、理解、运用。
难点:四组诱导公式的推导、记忆及符号的判断;三、学法与教学用具:(1)、与学生共同探讨,应用数学解决现实问题;(2)、通过模拟试验,感知应用数字解决问题的方法,自觉养成动手、动脑的良好习惯.四、教学过程:创设情境:我们知道,任一角α都可以转化为终边在)2,0[π内的角,如何进一步求出它的三角函数值? 我们对)2,0[π范围内的角的三角函数值是熟悉的,那么若能把)2,2[ππ内的角β的三角函数值转化为求锐角α的三角函数值,则问题将得到解决,这就是数学化归思想 研探新知1. 诱导公式的推导由三角函数定义可以知道:终边相同的角的同一三角函数值相等,即有公式一:)(tan )2tan()(cos )2cos()(sin )2sin(Z k k Z k k Z k k ∈=+∈=+∈=+απααπααπα (公式一) 诱导公式(一)的作用:把任意角的正弦、余弦、正切化为)2,0[π之间角的正弦、余弦、正切。
【注意】:运用公式时,注意“弧度”与“度”两种度量制不要混用,如写成 ︒=+︒80sin )280sin(πk ,3cos )3603cos(ππ=︒⋅+k 是不对的【讨论】:利用诱导公式(一),将任意范围内的角的三角函数值转化到)2,0[π角后,又如何将)2,0[π角间的角转化到)2,0[π角呢?除此之外还有一些角,它们的终边具有某种特殊关系,如关于坐标轴对称、关于原点对称等。
那么它们的三角函数值有何关系呢?若角α的终边与角β的终边关于x 轴对称,那么α与β的三角函数值之间有什么关系?特别地,角α-与角α的终边关于x 轴对称,由单位圆性质可以推得:ααααααtan )tan(cos )cos(sin )sin(-=-=--=- (公式二)特别地,角απ-与角α的终边关于y 轴对称,故有ααπααπααπtan )tan(cos )cos(sin )sin(-=--=-=- (公式三)特别地,角απ+与角α的终边关于原点O 对称,故有ααπααπααπtan )tan(cos )cos(sin )sin(=+-=+-=+ (公式四)所以,我们只需研究απαπαπ-+-2,,的同名三角函数的关系即研究了βα与的关系了。
人教A版高中数学必修4第一章 三角函数1.3 三角函数的诱导公式教案(1)
课题:1. 3三角函数的诱导公式(第1课时)教材:人教A版高中数学必修4Ⅰ.教学内容解析本节课的教学内容是三角函数的诱导公式中的公式二至公式四,是三角函数的主要性质。
前面学生已经学习了诱导公式一和任意角的三角函数的定义,在此基础上继续学习公式二至公式四为下节课研究公式五,公式六以及以后的三角函数求值、化简打好基础。
三角函数的诱导公式是圆的对称性的“代数表示”,利用对称性,让学生自主发现终边分别关于原点或坐标轴对称的角的三角函数值之间的关系,使得“数”与“形”得到紧密结合,成为一个整体.诱导公式的学习和推证过程还体现了三角函数之间的内部联系,是定义的延伸与应用,在本章中起着承上启下的作用.诱导公式的重要作用是把求任意角的三角函数值问题转化为求0°~90°角的三角函数值.诱导公式的推导过程,体现了“数形结合”和复杂到简单的“转化”的数学思想方法,反映了从特殊到一般的归纳思维形式.对培养学生的创新意识、发展学生的思维能力,掌握数学的思想方法具有积极的作用.本节课的重点是诱导公式的探究,即利用三角函数的定义借助单位圆,通过寻找角的终边的对称性与角终边与单位圆交点的对称性发现并推导出诱导公式,从而提高对数学知识之间(圆的对称性与三角函数性质)联系的认识。
Ⅱ.教学目标设置1.能借助三角函数的定义及单位圆的对称性推导出诱导公式,会利用诱导公式进行简单的三角函数式的求值与化简.2.学生经历自主探究发现问题(任意角的三角函数值与ααπαπ-+-,,的三角函数值之间的内在联系),提出研究方法(利用坐标的对称关系,从三角函数的定义得出相应的关系式)并完成推导过程,体会数形结合及转化思想的运用.3.在探究活动中,学生通过独立思考和合作交流,发展思维,从探索中获得成功的体验,感受数学中结构的对称美,形式的简洁美。
Ⅲ.学生学情分析授课班级学生敦化市实验中学实验班学生.1.学生已有认知基础学生已经学习了三角函数的定义、各象限角的三角函数值的符号和公式一,这些内容是学生理解、归纳公式二至公式四的基础,推导公式的关键是明确单位圆上对称点的坐标关系,这一点对于实验班的学生来说是可以独立完成的,学生数学基础与思维能力较好,具有一定的分析问题和解决问题的能力,初步养成了独立思考、合作交流的学习习惯.2.难点及突破策略难点:1、如何引导学生从单位圆的对称性与任意角终边的对称性中发现问题,提出研究方法。
高中数学 第一章 三角函数 1.3 三角函数的诱导公式(第1课时)教学设计1 新人教A版必修4(2
江苏省苏州市高中数学第一章三角函数1.3 三角函数的诱导公式(第1课时)教学设计1 新人教A版必修4编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(江苏省苏州市高中数学第一章三角函数1.3 三角函数的诱导公式(第1课时)教学设计1 新人教A版必修4)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为江苏省苏州市高中数学第一章三角函数1.3 三角函数的诱导公式(第1课时)教学设计1 新人教A版必修4的全部内容。
三角函数的诱导公式(第1课时)一、教学背景分析1。
教材的地位和作用本节教学内容是4组三角函数诱导公式的推导过程及其简单应用。
承上,有任意角三角函数正弦、余弦和正切的比值定义、三角函数线、同角三角函数关系等;启下,学生将学习利用诱导公式进行任意角三角函数的求值化简,以及三角函数的图象与性质(包括三角函数的周期性)等内容。
同时,学生在初中就接触过对称等知识,对几何图形的对称等知识相当熟悉。
这些构成了学生的知识基础。
诱导公式的作用主要在于把任意角的三角函数化归成锐角的三角函数,体现了把一般化特殊、复杂化简单、未知化已知的数学思想。
2。
目标定位诱导公式可以帮助我们把任意角的三角函数化为锐角三角函数,但是随着计算器的普及,上述意义不是很大。
我们认为,诱导公式的教学价值主要体现在以下几个方面:第一,感受探索发现,通过几何对称这个研究工具,去探索发现任意角三角函数间的数量关系式,即三角函数的基本性质乃是圆的几何性质(主要是其对称性质)的代数解析表示.第二,学会初步应用,能够选用恰当的诱导公式将任意角的三角函数转化为锐角三角函数问题并求解。
第三,领悟思想方法,在诱导公式的学习过程中领悟化归、数形结合等思想方法.第四,积累数学经验,为学生认识任意角三角函数既是一个起源于圆周运动的周期函数又是研究现实世界中周期变化现象的“最有表现力的函数”做好准备。
高中数学 第一章 三角函数 1.3.1 三角函数的诱导公式(1)教案 新人教A版必修4(1)
1.3.1 诱导公式(1)1.知识与技能(1)理解正弦、余弦的诱导公式.(2)培养学生化归、转化的能力.2.过程与方法(1)能运用任意角的三角函数定义推导诱导公式二、三、四.(2)掌握诱导公式并运用其进行三角函数式的求值、化简以及简单三角恒等式的证明.3.情感、态度与价值观通过诱导公式推导,培养学生思维的严密性与科学性等思维品质以及孜孜以求的探索精神等良好的个性品质.重点:诱导公式的探究,运用诱导公式进行简单三角函数式的求值、化简与恒等式的证明,提高对数学内部联系的认识.难点:本节的难点是发现单位圆的几何性质(特别是对称性)与三角函数性质的联系.重、难点的突破:在教学中,建议以“思考”和“探究”为引导,利用单位圆的对称性,让学生自主发现终边分别关于原点或坐标轴对称的角的三角函数值之间的关系,使得诱导公式(数)与单位圆(形)得到紧密结合,成为一个整体,不仅大大简化了诱导公式的推导过程,缩减了认识、理解诱导公式的时间,而且还有利于学生对公式的记忆,减轻了学生的记忆负担.运用诱导公式进行简单三角函数式的求值、化简及恒等式的证明要加大力度训练,达到熟练掌握.1.将cos(π+2)化为某个锐角的三角函数为()A.cos 2B.-cos 2C.-cos(π-2)D.cos(π-2)解析:cos(π+2)=-cos 2=-cos[π-(π-2)]=cos(π-2).又0<π-2<,故选D.答案:D2.已知函数f(x)=a sin(πx+α)+b cos(πx+β)+1,且f(2 014)=-1,求f(2 015)的值.解:∵f(2 014)=a sin(2 014π+α)+b cos(2 014π+β)+1=a sin α+b cos β+1=-1,∴a sin α+b cos β=-2.∴f(2 015)=a sin(2 015π+α)+b cos(2 015π+β)+1=a sin(π+α)+b cos(π+β)+1=-a sin α-b cos β+1=3.。
【新教材】新人教A版必修一三角函数诱导公式教案
三角函数诱导公式(二)【教材分析】《三角函数的诱导公式》是普通高中课程标准实验教科书必修四第一章第三节,其主要内容是三角函数的诱导公式中的公式二至公式六。
这节是诱导公式(二)的推导,在诱导公式(一)的推导中用到了一次对称变换,这节是利用两次对称变换推导&到2的诱导公式,充分体现对称变换思想在数学中的应用,住练习中加以应用,让学生进一步体会&的任意性:综合诱导公式(一)、(二)总结出记忆诱导公式的口诀:“奇变偶不变,符号看象限”,了解从特殊到一般的数学思想的探究过程,培养学生用联系、变化的辩证唯物主义观点去分析问题的能力。
诱导公式在三角函数化简、求值中具有非常重要的工具作用,要求学生能熟练的掌握和应用。
【教学目标】lo借助单位圆,推导出正弦、余弦第五、六组的诱导公式,能正确运用诱导公式将任意角的三角函数化为锐角的三角函数,并解决有关三角函数求值、化简和恒等式证明问题2o通过公式的应用,了解未知到已知、复杂到简单的转化过程,培养学生的化归思想, 以及信息加工能力、运算推理能力、分析问题和解决问题的能力.3o培养学生的化归思想,使学生认识到转化“矛盾〃是解决问题的一条行之有效的途径.【教学重点难点】教学重点:学握巳± a角的正弦、余弦的诱导公式及其探求思路2教学难点:工±a角的正弦、余弦诱导公式的推导。
2【学情分析】学生在前面第一类诱导公式学习中感受了数形结合思想、对称变换思想在研究数学问题中的应用,初步形成用对称变换思想思考问题的习惯,对于两次对称变换思想的应用是上一节课的深化:学生对高中数学知识有了一定了解和掌握,也形成了自己的学习方法和习惯,对学习高中数学有了一定兴趣和信心,且具有了一定的分析、判断、理解能力和交流沟通能力。
但由于诱导公式多,学生记忆困难,应用时易错,应该渗透归纳总结的学习方法,让学生找规律,体现自主探究、共同参与的新课改理念.【教学方法】1.学案导学:见后面的学案。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.3.1 诱导公式
【学习目标】
1. 借助单位圆,推导出正弦、余弦和正切的诱导公式,能正确运用诱导公式将任意角的三角函数化为锐角的三角函数,并解决有关三角函数求值、化简和恒等式证明问题
2. 通过公式的应用,了解未知到已知、复杂到简单的转化过程,培养学生的化归思想,以及信息加工能力、运算推理能力、分析问题和解决问题的能力。
【新知自学】
知识回顾:
1、背诵30度、45度、60度角的正弦、余弦、正切值;
2、在平面直角坐标系中做出单位圆,并分别找出任意角的正弦线、余弦线、正切线。
新知梳理:
α都可以转化为终边在)2,0[π内的角,如何进一步求出它的三角函数值?
我们对)2,
0[π范围内的角的三角函数值是熟悉的,那么若能把)2,2
[ππ
内的角β的三角函数值转化为求锐角α的三角函数值,则问题将得到解决。
那么如何实现这种转化呢?
探究1. 诱导公式的推导
由三角函数定义可以知道:终边相同的角的同一三角函数值相等,即有公式一:
)
(tan )2tan()(cos )2cos()
(sin )2sin(Z k k Z k k Z k k ∈=+∈=+∈=+α
πααπααπα (公式一) 诱导公式(一)的作用:把任意角的正弦、余弦、正切化为)2,0[π之间角的正弦、余弦、正切。
注意:运用公式时,注意“弧度”与“度”两种度量制不要混用,如写成
︒=+︒80sin )280sin(πk ,3
cos
)3603
cos(
π
π
=︒⋅+k 是不对的
问题2:利用诱导公式(一),将任意范围内的角的三角函数值转化到)2,0[π角后,又如何将)2,0[π角间的角转化到)2
,
0[π
角呢?
除此之外还有一些角,它们的终边具有某种特殊关系,如关于坐标轴对称、关于原点对称等。
那么它们的三角函数值有何关系呢?
探究2:若角α的终边与角β的终边关于x 轴对称,那么α与β的三角函数值之间有什么关系?特别地,角α-与角α的终边关于x 轴对称,由单位圆性质可以推得: (公式二)
特别地,角απ-与角α的终边关于y 轴对称,故有
(公式三)
特别地,角απ+与角α的终边关于原点O 对称,故有 (公式四)
所以,我们只需研究απαπαπ-+-2,,的同名三角函数的关系即研究了βα与的关系了。
说明:①公式中的α指任意角;
②在角度制和弧度制下,公式都成立;
③记忆方法:“函数名不变,符号看象限”;
方法小结:用诱导公式可将任意角的三角函数化为锐角的三角函数,其一般方向是: ① ; ② ; ③ 。
可概括为: ”(有时也直接化到锐角求值)。
对点练习:
1、tan690°的值为( )
A .-
33 B.33
C. 3 D .- 3 2、已知sin(π+α)=3
5
,且α是第四象限角,则cos(α-2π)的值是( )
A .-45 B.45 C .±45 D.35
3已知sin 5π7=m ,则cos 2π
7
的值等于( )
A .m
B .-m C.1-m 2
D .-1-m 2
4设cos(-80°)=k ,那么tan100°=( )
A.1-k
2
k B .-1-k
2
k C.
k
1-k
2
D .-
k
1-k
2
5若sin ⎝ ⎛⎭⎪⎫π6-θ=33,则sin ⎝ ⎛⎭⎪⎫7π6-θ=________.
【合作探究】
典例精析:
例1:求下列三角函数值:(1)sin 960; (2)43cos()6
π
-
.
变式练习:1:sin 2π5,cos 6π5,tan 7π
5
,从小到大的顺序是________.
例2、化简23
cot cos()sin (3)
tan cos ()
απαπααπα⋅+⋅+⋅--.
变式练2::
化简:(1)sin(α-)cos(α--π)tan(2π+α); (2)sin 2
(α+π)cos(π+α)
tan(π-α)cos 3
(-α-π)tan(-α-2π)
.
【课堂小结】
【当堂达标】 1.若)cos()2
sin(
απαπ
-=+,则α的取值集合为( )
A .}4
2|{Z k k ∈+=ππαα
B .}4
2|{Z k k ∈-=ππαα
C .}|{Z k k ∈=παα
D .}2
|{Z k k ∈+=π
παα
2.已知,)15
14
tan(a =-
π那么=︒1992sin ( )
A .
2
1||a a +
B .
2
1a
a +
C .2
1a
a +-
D .2
11a
+-
3.设角则,635
πα-
=
)
(cos )sin(sin 1)cos()cos()sin(222απαπααπαπαπ+--+++--+的值等于( )
A .
3
3 B .-
3
3 C .3 D .-3 4.当Z k ∈时,
]
)1cos[(])1sin[()cos()sin(απαπαπαπ+++++⋅-k k k k 的值为 ( )
A .-1
B .1
C .±1
D .与α取值有关 5.设βαβπαπ,,,(4
)cos()sin()(b a x b x a x f ++++=为常数),且,5)2000(=f 那么
=)2004(f ( )
A .1
B .3
C .5
D .7 6.已知,0cos 3sin =+αα则=+-α
αα
αcos sin cos sin .
【课时作业】 1.已知3sin(
)4
π
α+=
3sin()4
πα-值为( ) A.
21 B. —2
1
C. 23
D. —23
2.cos (π+α)= —
21,2
3π
<α<π2,sin(π2-α) 值为( )
A.
23 B. 2
1
C. 23±
D. —23 3.化简:)2cos()2sin(21-•-+ππ得( )
A. sin 2cos2+
B. cos2sin 2-
C. sin 2cos2-
D.±cos2sin 2- 4.已知3tan =
α,2
3π
απ<
<,那么ααsin cos -的值是( ) A 231+-
B 2
3
1+- C
231- D 2
3
1+ 5.如果,0sin tan <αα且,1cos sin 0<+<αα那么α的终边在第 象限
6.求值:2sin(-1110º) -sin960º+
)210cos()225cos(2︒-+︒-= .
7.设()f θ=)
cos()7(cos 221)cos(2)(sin cos 22
23θθππθπθθ-++++---+-,求()3f π
的值.
8.已知方程sin(
3) = 2cos( 4),求
)
sin()2
3sin(2)
2cos(5)sin(ααπ
απαπ----+-的
值。
【延伸探究】
1、设f (x )=a sin(πx +α)+b cos(πx +β),其中a ,b ,α,β∈R ,且ab ≠0,α≠k π(k ∈Z ).若f (2009)=5,则f (2010)等于( )
A .4
B .3
C .-5
D .5
2、设tan(α+87π)=m .求证:sin(157π+α)+3cos(α-137π)
sin(20π7-α)-cos(α+227
π)
=m +3
m +1
.。