反向比例运算电路
反相比例运算放大电路
反相比例运算放大电路反相比例运算放大电路是一种常见的电子电路,它能够将输入信号进行放大并反向输出。
本文将介绍反相比例运算放大电路的工作原理、应用领域以及优缺点。
一、工作原理反相比例运算放大电路是一种基于运算放大器的电路。
运算放大器是一种具有高增益、低失调和低偏置电流的放大器,它具有两个输入端和一个输出端。
反相比例运算放大电路使用了运算放大器的负反馈特性,通过控制输入信号和反馈信号的比例关系来实现放大和反相的功能。
在反相比例运算放大电路中,输入信号通过一个输入电阻连接到运算放大器的非反相输入端,同时通过一个反馈电阻连接到运算放大器的输出端。
当输入信号增大时,根据反馈电阻的连接方式,输出信号将反向放大。
具体来说,当输入信号增大时,运算放大器的输出端电压会减小,根据反馈电阻的连接方式,输入信号会被反向放大并输出。
二、应用领域反相比例运算放大电路在实际应用中具有广泛的应用领域。
其中一个典型的应用是放大音频信号。
在音响系统中,反相比例运算放大电路可以将输入的音频信号进行放大,并反向输出到扬声器上,实现音频信号的放大和反向输出。
反相比例运算放大电路还常用于传感器信号的放大和处理。
传感器通常输出的是微弱的信号,需要通过放大电路进行放大后才能被后续的电路进行处理。
反相比例运算放大电路可以将传感器输出的信号进行放大,并反向输出到后续的电路中进行处理。
三、优缺点反相比例运算放大电路具有一些优点和缺点。
首先,它具有简单、稳定的特点,可以实现高增益的放大效果。
其次,由于采用了负反馈的原理,可以有效地抑制噪声和失真。
此外,反相比例运算放大电路还具有输入电阻高、输出电阻低的特点,可以适应不同的输入和输出条件。
然而,反相比例运算放大电路也存在一些缺点。
首先,由于采用了负反馈,输出信号会有一定的相位延迟。
其次,由于运算放大器本身的限制,反相比例运算放大电路的输入和输出范围可能会受到限制。
此外,由于电路中存在电阻元件,还会产生一定的热噪声和失真。
反相比例电路实验报告
反相比例电路实验报告实验目的:通过实验掌握反相比例电路的调试方法,掌握反相比例电路的各项参数的测量方法,并对其工作原理及应用有深入了解。
实验器材:函数信号发生器、多用表、电容、电阻、运算放大器实验原理:反相比例电路由一个运算放大器和两个电阻组成。
运算放大器的输入电阻极大,因此两个输入端的电流极小,可以近似认为为零。
运放内部有一电路结构,能够输出一个等于负载电阻 R2 与输入电阻 R1 比值的放大倍数,与输入电压 U1 间成反比的电压 Uo,即:Uo = -U1*R2/R1其中负号表示输出电压与输入电压的极性相反。
实验步骤:1. 准备好所需器材和元件,并组装电路,注意电路的连接正确无误。
2. 将多用表的一个端口接入电阻 R1 的一端,另外一个端口接入电阻 R2 的一个端口,通过读出端口电压的大小计算出 R2/R1 的数值,并记录下来。
3. 接通电源,开启函数信号发生器,将输出信号的频率设置为 1kHz,幅度为 5V 。
4. 将信号输入到输入端口,并通过多用表测量输出端口的电压,记录下其大小,通过计算来验证实验结果。
5. 更改输入信号的幅度,并记录下输出信号的幅度变化情况。
6. 更改电阻 R2 的数值,保持输入信号的幅度不变,记录下输出信号的大小和计算出的放大倍数,来验证实验结果。
实验结果:1. 计算出 R2/R1 的比值为2.5 。
2. 当输入信号幅度为 5V 时,输出信号的幅度为-12.5V;当输入信号幅度为 10V 时,输出信号的幅度为-25V。
3. 当电阻 R2 值从1kΩ 变为2kΩ 时,输出信号的幅度也变化了,从 -12.5V 变为 -25V。
本实验利用反相比例电路调试方法,成功地组装了反相比例电路。
通过实验可以得出:2. 反相比例电路与输入电压保持反向,其输出电压与输入电压正相关,且放大倍数为负值。
3. 在固定输入电压的情况下,电路的输出信号幅度随着电阻 R1 和 R2 的变化而变化。
同相比例和反相比例放大器
同相比例和反相比例一、反相比例运算放大电路反相输入放大电路如图1所示,信号电压通过电阻R 1加至运放的反相输入端,输出电压v o 通过反馈电阻Rf 反馈到运放的反相输入端,构成电压并联负反馈放大电路。
R ¢为平衡电阻应满足R ¢= R 1//R f 。
利用虚短和虚断的概念进行分析,v I=0,v N=0,i I =0,则即∴该电路实现反相比例运算。
反相放大电路有如下特点1.运放两个输入端电压相等并等于0,故没有共模输入信号,这样对运放的共模抑制比没有特殊要求。
2.v N= v P ,而v P=0,反相端N 没有真正接地,故称虚地点。
3.电路在深度负反馈条件下,电路的输入电阻为R 1,输出电阻近似为零。
二、同相比例运算电路图 1 反相比例运算电路同相输入放大电路如图1所示,信号电压通过电阻R S 加到运放的同相输入端,输出电压v o 通过电阻R 1和R f 反馈到运放的反相输入端,构成电压串联负反馈放大电路。
根据虚短、虚断的概念有v N= v P= v S ,i 1= if于是求得所以该电路实现同相比例运算。
同相比例运算电路的特点如下 1.输入电阻很高,输出电阻很低。
2.由于v N= v P= v S ,电路不存在虚地,且运放存在共模输入信号,因此要求运放有较高的共模抑制比。
三、加法运算电路图1所示为实现两个输入电压v S1、v S2的反相加法电路,该电路属于多输入的电压并联负反馈电路。
由于电路存在虚短,运放的净输入电压v I=0,反相端为虚地。
利用v I=0,v N=0和反相端输入电流i I=0的概念,则有或由此得出图 1 同相比例运算电路图 1 加法运算电路若R 1= R 2= R f ,则上式变为 –v O= v S1+ v S2式中负号为反相输入所致,若再接一级反相电路,可消去负号,实现符 合 常规的算术加法。
该加法电路可以推广到对多个信号求和。
从运放两端直流电阻平衡的要求出发,应取R ´=R 1//R2//R f 。
比例放大电路
比例放大电路同相比例和反相比例一、反相比例运算放大电路反相输入放大电路如图1所示,信号电压通过电阻R 1加至运放的反相输入端,输出电压v o 通过反馈电阻R f 反馈到运放的反相输入端,构成电压并联负反馈放大电路。
R ¢为平衡电阻应满足R ¢= R 1//R f 。
利用虚短和虚断的概念进行分析,v I=0,v N=0,i I=0,则即 ∴该电路实现反相比例运算。
反相放大电路有如下特点图 1 反相比例运算电路同相输入放大电路如图1所示,信号电压通过电阻R S加到运放的同相输入端,输出电压v o通过电阻R1和R f反馈到运放的反相输入端,构成电压串联负反馈放大电路。
根据虚短、虚断的概念有v N=v P=v S,i1= i f于是求得所以该电路实现同相比例运算。
同相比例运算电路的特点如下1.输入电阻很高,输出电阻很低。
2.由于v N=v P=v S,电路不存在虚地,且运放存在共模输入信号,因此要求运放有较高的共模抑制比。
三、加法运算电路图1所示为实现两个输入电压v S1、v S2的反相加法电路,该电路属于多输入的电压并联负反馈电路。
由于电路存在虚短,运放的净输入电压v I=0,反相端为虚地。
利用v I=0,v N=0和反相端输入电流i I=0的概念,则有或由此得出若R 1= R 2= R f ,则上式变为 –v O= v S1+ v S2式中负号为反相输入所致,若再接一级反相电路,可消去负号,实现符 合 常规的算术加法。
该加法电路可以推广到对多个信号求和。
图 1 加法运算电路从运放两端直流电阻平衡的要求出发,应取R ´=R 1//R2//R f 。
四、减法运算电路1、反相求和式运算电路 图1所示是用加法电路构成的减法电路,第一级为反相比例放大电路,若R f1=R 1,则v O1= –v S1;第二级为反相加法电路,可以推导出若取R 2= R f2,则v O = v S1–v S2由于两个运放构成的电路均存在虚地,电路没有共模输入信号,故允许v S1、v S2的共模电压范围较大。
反相比例运算电路引入的负反馈
反相比例运算电路引入的负反馈
反相比例运算电路是一种常见的模拟电路,它可以将输入信号放大或缩小到指定的比例。
然而,在实际应用中,由于元器件的误差、温度漂移等因素影响,反相比例运算电路的放大倍数可能会出现偏差,导致输出信号与期望值不符。
为了解决这个问题,可以引入负反馈。
负反馈指的是将输出信号重新引入到电路中,与输入信号相比较,产生一个误差信号,通过放大器增益的控制,调节输出信号的大小,使其逐渐逼近期望值。
这样,在一定程度上可以抵消元器件误差的影响,提高电路的稳定性和精度。
具体来说,可以将反相比例运算电路的输出端连接到电阻分压器上,将分压器的输出作为负反馈输入,经过运算放大器的放大后再输出。
这样,当输出信号偏离期望值时,负反馈电路会自动调节运放的增益,使输出信号逐渐趋近于期望值。
需要注意的是,负反馈的引入会降低电路的增益,因此需要适当调整电路的参数,以达到设计要求。
同时,负反馈也会增加电路的稳定性和抗干扰能力,是一种常用的电路设计方法。
- 1 -。
反相比例运算电路仿真分析
1反相比例运算电路1.1 综述反相比例运算电路实际上是深度的电压并联负反馈电路。
在理想情况下,反相输入端的电位等于零,称为“虚地”。
因此加在集成运放输入端的共模电压很小。
输出电压与输入电压的幅值成正比,但相位相反,因此,电路实现了反相比例运算。
比例系数的数值决定于电阻RF与R1之比,而与集成运放内部各项参数无关。
只要RF 和R1的阻值比较准确和稳定,即可得到准确额比例运算关系。
比例系数的数值可以大于或等于1,也可以小于1。
由于引入了深度电压并联负反馈,因此电路的输入电阻不高,而输出电阻很低。
1.2 工作原理1.2.1 原理图说明图1.2.1.1 反相比例运算电路如图所示,输入电压V1经电阻R1接到集成运放的反相输入端,运放的同相输入端经电阻R2接地。
输出电压经反馈电阻RF引回到反相输入端。
集成运放的反相输入端和同相输入端,实际上是运放内部输入级两个差分对管的基极。
为使差分放大电路的参数保持对称,应使两个差分对管基极对地的电阻尽量一致,以免静态基流流过这两个电阻时,在运放输入端产生附加的偏差电压。
因此,通常选择R2的阻值为R2=R1// RF经过分析可知,反相比例运算电路中反馈的组态是电压并联负反馈。
由于集成运放的开环差模增益很高,因此容易满足深度负反馈的条件,故可以认为集成运放工作在线性区。
所以,可以利用理想运放工作在线性区时“虚短”和“虚断”的特点来分析反相 比例运算电路的输出输入关系。
由于“虚断”,U +=0又因“虚短”,可得 U -=U +=0由于I - = 0 ,则由图可见 I I =l F即 (U-U -) /R 仁(U — U 0)/RF上式中u=o,由此可求得反相比例运算电路的输出电压与输入电压的关系为U 0=-RF • U I /R1 1.2.2元件表1.3 仿真结果分析图1.3.1仿真分析结果图由于输入电压为1V,所以根据公式可得输出电压为-1.997,符合理论r窃 Multimeter-.,.2音频功率放大器2.1 综述功率放大器,简称“功放”。
同相比例和反相比例电路
同相比例和反相比例一、反相比例运算放大电路反相输入放大电路如图1所示,信号电压通过电阻R 1加至运放的反相输入端,输出电压v o 通过反馈电阻R f 反馈到运放的反相输入端,构成电压并联负反馈放大电路。
R ¢为平衡电阻应满足R ¢= R 1//R f 。
利用虚短和虚断的概念进行分析,v I=0,v N=0,i I=0,则即∴该电路实现反相比例运算。
反相放大电路有如下特点1.运放两个输入端电压相等并等于0,故没有共模输入信号,这样对运放的共模抑制比没有特殊要求。
2.v N= v P ,而v P=0,反相端N 没有真正接地,故称虚地点。
3.电路在深度负反馈条件下,电路的输入电阻为R 1,输出电阻近似为零。
二、同相比例运算电路同相输入放大电路如图1所示,信号电压通过电阻R S 加到运放的同相输入端,输出电压v o 通过电阻R 1和R f 反馈到运放的反相输入端,构成电压串联负反馈放大电路。
根据虚短、虚断的概念有v N= v P= v S ,i 1= i f 于是求得图 1 反相比例运算电路 图 1 同相比例运算电路所以该电路实现同相比例运算。
同相比例运算电路的特点如下 1.输入电阻很高,输出电阻很低。
2.由于v N= v P= v S ,电路不存在虚地,且运放存在共模输入信号,因此要求运放有较高的共模抑制比。
三、加法运算电路图1所示为实现两个输入电压v S1、v S2的反相加法电路,该电路属于多输入的电压并联负反馈电路。
由于电路存在虚短,运放的净输入电压v I=0,反相端为虚地。
利用v I=0,v N=0和反相端输入电流i I=0的概念,则有或由此得出若R 1= R 2= R f ,则上式变为 –v O= v S1+ v S2式中负号为反相输入所致,若再接一级反相电路,可消去负号,实现符 合 常规的算术加法。
该加法电路可以推广到对多个信号求和。
从运放两端直流电阻平衡的要求出发,应取R ´=R 1//R2//R f 。
反相比例运算电路特点
销售公司售后培训计划一、前言在竞争日益激烈的市场环境下,售后服务已经成为企业获取竞争优势的关键。
为了提高销售公司的售后服务水平,我们制定了以下售后培训计划,以提升员工的专业技能和服务质量,从而满足客户的需求,提升客户满意度和忠诚度。
二、培训目标1. 加强员工的服务意识和客户导向思维,使员工能够主动了解和满足客户的需求。
2. 提高员工的专业知识和技能,使其能够更好地解决客户问题和提供优质的售后服务。
3. 提升员工的沟通能力和处理投诉的能力,使其能够有效地与客户进行沟通并解决问题。
4. 增强员工的团队合作意识,促进部门间的协作,提升整体售后服务水平。
三、培训内容1. 客户服务意识和技巧培训- 了解客户服务的重要性和意义- 如何建立良好的客户关系- 如何主动了解客户需求- 如何处理客户投诉和解决问题- 如何保持客户的满意度和忠诚度2. 产品知识培训- 了解公司的产品和服务- 掌握产品的特点和使用方法- 掌握产品的常见故障和解决方法- 掌握竞争产品的优势和劣势3. 沟通和协作能力培训- 提升员工的口头和书面沟通能力- 提升员工的团队合作能力- 培养员工的心理素质和应变能力- 增强员工的危机处理能力四、培训方式1. 理论培训- 定期组织专业培训课程,邀请行业专家或公司内部专家讲解相关知识和技能。
- 制定培训手册和资料,供员工自学和参考。
- 定期举办内部学习交流会,让员工分享经验和提升共同的知识储备。
2. 在岗培训- 督导员工在工作中运用所学知识和技能,及时给予指导和反馈。
- 指派专人为新员工和低绩效员工进行一对一辅导,提升其能力和表现。
3. 情景模拟- 结合实际案例,进行情景模拟培训,让员工在模拟情境中实践解决问题。
- 编排售后服务案例,进行角色扮演,模拟投诉处理过程。
四、培训实施1. 确定培训计划- 根据公司整体发展规划和员工的培训需求确定售后培训计划。
- 确定培训时间和地点,制定详细的培训时间表和培训内容。
比例放大电路
同相比例和反相比例一、反相比例运算放大电路反相输入放大电路如图1所示,信号电压通过电阻R 1加至运放的反相输入端,输出电压v o 通过反馈电阻R f 反馈到运放的反相输入端,构成电压并联负反馈放大电路。
R ¢为平衡电阻应满足R ¢= R 1//R f 。
利用虚短和虚断的概念进行分析,v I=0,v N=0,i I =0,则即∴该电路实现反相比例运算。
反相放大电路有如下特点1.运放两个输入端电压相等并等于0,故没有共模输入信号,这样对运放的共模抑制比没有特殊要求。
2.v N= v P ,而v P=0,反相端N 没有真正接地,故称虚地点。
3.电路在深度负反馈条件下,电路的输入电阻为R 1,输出电阻近似为零。
二、同相比例运算电路图 1 反相比例运算电路同相输入放大电路如图1所示,信号电压通过电阻R S 加到运放的同相输入端,输出电压v o 通过电阻R 1和R f 反馈到运放的反相输入端,构成电压串联负反馈放大电路。
根据虚短、虚断的概念有v N= v P= v S ,i 1= if于是求得所以该电路实现同相比例运算。
同相比例运算电路的特点如下 1.输入电阻很高,输出电阻很低。
2.由于v N= v P= v S ,电路不存在虚地,且运放存在共模输入信号,因此要求运放有较高的共模抑制比。
三、加法运算电路图1所示为实现两个输入电压v S1、v S2的反相加法电路,该电路属于多输入的电压并联负反馈电路。
由于电路存在虚短,运放的净输入电压v I=0,反相端为虚地。
利用v I=0,v N=0和反相端输入电流i I=0的概念,则有或由此得出图 1 同相比例运算电路图 1 加法运算电路若R 1= R 2= R f ,则上式变为 –v O= v S1+ v S2式中负号为反相输入所致,若再接一级反相电路,可消去负号,实现符 合 常规的算术加法。
该加法电路可以推广到对多个信号求和。
从运放两端直流电阻平衡的要求出发,应取R ´=R 1//R2//R f 。
反相比例电路.ppt
Au
R RP
R
(1
Rf R1
)
P(1
Rf R1
)
两种形式的同向运算电路,电压放
大倍数的公式仅相差一个分压比P。
11
4、同相比例电路特例——电压跟随器
电压跟随器是同相比例运算的特例 。假如对普通的同相
比例电路,令Rf =0(或R1=∞),则电路变成如下图所示 的形式。
根据式:
Au
uo ui
电路的反馈组态是: 电压并联负反馈
图6-1反相比例运算电路
4
反相比例电路的特点:
因反向比例运算电路带有负反馈网络,所以,集 成运放工作在线性工作区。利用“虚断”和“虚短” 的概念可分析输出电压和输入电压的关系。
(1)运放两个输入端电压相等并等于0,故没 有共模输入信号,这样对运放的共模抑制比没有 特殊要求。 (2)uN= uP,而uP=0,反相端R1没有真正接地, 故称“虚地”点。 (3)电路在深度负反馈条件下,电路的输入电 阻为R1,输出电阻近似为零。
5
2、反相比例电路电压放大倍数
由虚断得: I+=I= 0 及 If=I1,U+=I+R0=0(V) 由虚短可知:U=U+=0(V),即“虚地”
I1
Ui U R1
U1 0 Ui
R1
R1
If
U Uo Rf
0 Uo Rf
Uo Rf
Ui Uo
R1
R1
Uo
(1)输入电阻高;
(2)由于 u u ui ,电路的共模输入信号高,
10
因此集成运放的共模抑制比要求高。
3、改进型同相比例电路
集成运算放大器构成的反相比例运算电路
集成运算放大器构成的反相比例运算电路集成运算放大器(Operational Amplifier,简称OP-AMP)是一种重要的电子元件,广泛应用于各种电路中。
它具有高增益、高输入阻抗、低输出阻抗等特点,常用于信号放大、滤波、求和、积分、微分等运算。
本文将介绍一种由集成运算放大器构成的反相比例运算电路。
反相比例运算电路是一种基本的运算电路,它可以实现输入信号的放大和反向输出。
其基本原理是将输入信号经过集成运算放大器进行放大,然后通过负反馈的方式将输出信号反向输入放大器,从而实现反向输出。
具体电路图如下所示:(此处省略电路图)在这个电路中,集成运算放大器的反向输入端与输出端相连,形成了负反馈回路。
通过选择合适的电阻比例,可以实现输入信号的放大倍数。
当输入信号为正电压时,集成运算放大器的输出电压将会是负电压;当输入信号为负电压时,输出电压则会是正电压。
因此,这个电路具有反向输出的功能。
反相比例运算电路的放大倍数可以通过电阻的比例关系来确定。
具体而言,输入信号经过输入电阻R1进入集成运算放大器的反向输入端,而输出信号通过输出电阻R2反向输入放大器。
根据放大器的反馈原理,在稳态下,输入端的电压与输出端的电压相等。
因此,可以根据欧姆定律和电压分压原理得出以下公式:Vout = -Vin * (R2 / R1)其中,Vin表示输入信号的电压,Vout表示输出信号的电压。
通过调整电阻R1和R2的比例关系,可以改变输出信号的放大倍数。
当R2/R1的比值较大时,输出信号的放大倍数也会较大;反之,当R2/R1的比值较小时,输出信号的放大倍数也会较小。
因此,反相比例运算电路可以实现不同的放大倍数,具有较大的灵活性和可调性。
除了放大功能外,反相比例运算电路还可以实现信号的反向输出。
这是由于集成运算放大器的特殊工作方式决定的。
在集成运算放大器中,反向输入端的电压与非反向输入端的电压相等。
当输入信号为正电压时,反向输入端的电压将会比非反向输入端的电压高,从而使集成运算放大器的输出电压为负电压;反之,当输入信号为负电压时,反向输入端的电压将会比非反向输入端的电压低,从而使集成运算放大器的输出电压为正电压。
反相比例运算电路引入的负反馈
反相比例运算电路引入的负反馈
反相比例运算电路是一种常见的电路,其具有放大信号和反转信号相位的功能。
然而,该电路也可能存在一些问题,如温漂和漂移,这可能会影响电路的性能和稳定性。
为了解决这些问题,可以在电路中引入负反馈。
在反相比例运算电路中,负反馈通过将输出信号与输入信号的一部分相加,从而减小了输入信号的影响,使电路更稳定。
引入负反馈可以改善反相比例运算电路的精度和稳定性,并使其更适用于高精度测量和控制应用。
然而,负反馈的引入也会增加电路的复杂性和成本,因此需要在设计过程中进行合理的权衡。
- 1 -。
反相比例运算放大电路实验报告
反相比例运算放大电路实验报告实验名称:反相比例运算放大电路实验实验目的:1. 熟悉反相比例运算放大电路的原理与性质;2. 掌握反相比例运算放大电路的电路设计方法;3. 了解反相比例运算放大电路的实际应用。
实验内容:1. 接线连通反相比例运算放大电路;2. 测量电路的增益与输出波形;3. 调节电路参数,观察电路增益与输出波形的变化。
实验仪器:1. 反相比例运算放大器;2. 功能发生器;3. 示波器;4. 万用表。
实验原理:反相比例运算放大电路是运放反相输入端与输出端相连,通过改变反馈电阻的阻值,从而改变电路的放大倍数。
根据电路原理图,可以分别推导出电路的输入电阻、输出电阻以及放大倍数等参数,在实验中可用万用表进行测量实验验证。
实验步骤:1. 按照实验原理将反相比例运算放大电路接线连接好;2. 打开功能发生器,设置所需的频率波形和电压值;3. 打开示波器,将示波器的探头分别接在输出端和输入端;4. 使用万用表分别测量输入电阻、输出电阻和放大倍数等参数,记录测量结果;5. 调节反馈电阻的阻值,观察电路增益与输出波形的变化;6. 根据实验现象总结反相比例运算放大电路的特性。
实验数据记录:输入电压(V)输出电压(V)放大倍数0.2 -1.6 -80.4 -3.2 -80.5 -4.0 -80.6 -4.8 -80.8 -6.4 -81.0 -8.0 -8实验结果分析:实验数据表明反相比例运算放大电路具有较高的放大倍数,且其输入电阻较大,输出电阻较小,这些是反相比例运算放大电路应用广泛的原因之一。
调节反馈电阻的阻值可以改变电路的放大倍数,进而改变输出波形的幅度和形态,这为反相比例运算放大电路的应用提供了更多的灵活性和可行性。
实验结论:通过本次实验,可以总结出反相比例运算放大电路的特性,即具有较高的放大倍数,输入电阻较大,输出电阻较小,能够进行精确的功率放大和信号控制,广泛应用于电子电路中。
反相比例运算放大电路的电路设计方法要掌握好,调节反馈电阻的阻值可以改变电路的放大倍数,进而改变输出波形的幅度和形态,在实际应用中具有较强的适应性。
单电源反相比例集成运放电路实验原理
单电源反相比例集成运放电路实验原理一、实验目的1、掌握用运算放大器组成反向放大电路的特点及性能;2、学会反向放大电路的测试和分析方法;3、掌握反相放大器的工作原理;4、学习线上仿真实验操作放大。
二。
实验原理反相比例运算电路输入电压Ui经电阻R1加到集成运放的反相输入端,其同相输入端经电阻R2接地,输出电压Uo经Rf接回到反相输出端,三、实验仪器信号源、示波器、运算放大器,电阻四、实验步骤(1)按照原理图连接电路图;(2)将信号源设置为正弦波信号;(3)调节示波器,并观察波形;(4)改变输入电压,观察波形变化。
五、、实验步骤及数据(1)连接电路图;(2)将信号源设置为正弦波信号并调节示波器,观察波形;(3)改变输入电压,观察波形变化。
测量结果:理论上增益为Av=—100k/10k=—10倍的关系,实际上系统存在误差,但基本符合理论。
超过一定的输入电压范围,波形会出现失真的情况。
出现的问题:与电源连接的电阻太小和仪器本身的阻值存在,导致出现的误差太大,达不到理想的效果。
六、误差分析1、信号源输入的过程中存在仪器本身的误差因素;2、所给的示波器本身带有一定的误差;3、实验中的导线存在一定的电阻;4、当电压加大到某一个值时,任凭输入电压怎么增大,输出电压不会再改变了,这应该和运算放大器的本身构造及运放所加电压有关。
七、实验感悟我第一次接触这种网上教学实验,对操作平台的不熟悉,增大了本次实验的难度。
通过该实验,我对反相放大器有了更加深刻地认识,增加了我对模拟电子技术的兴趣。
在实验当中我遇到一些问题,但还是完成了实验。
希望在今后的学习生活中,我能在这门学科上取得更大的进步。
验证实验--运算放大电路同相、反相与加减法电路实验
验证实验四 运算放大电路同相、反相及加减法电路实验一、实验目的(1)掌握由集成运算放大器组成的比例、加法、减法和积分等模拟运算电路功能。
(2)熟悉运算放大器在模拟运算中的应用。
二、主要设备及器件函数信号发生器、双踪示波器、交流毫伏表、数字万用表、直流稳压电源、实验电路板。
三、实验原理1、反相比例运算电路反相比例运算电路如图1所示。
对于理想运放,该电路的输出电压与输入电压之间的关系为:i 1foUR R U -=为减小输入级偏置电流引起的运算误差,在同相输入端应接入平衡电阻R ´=R1||Rf 。
实验中采用10 k Ω和100 k Ω两个电阻并联。
图1 反相比例运算电路2、同相比例运算电路图2是同相比例运算电路,它的输出电压与输入电压之间的关系为i 1fo )1(UR R U +=当R1→∞时,Uo=Ui ,即为电压跟随器。
图2 同相比例运算电路3、反相加法电路反相加法电路电路如图3所示,输出电压与输入电压之间的关系为)+(=B 2f A 1f o U R RU R R U - R ´ = R1 || R2 || Rf图3 反相加法电路4、同相加法电路同相加法电路电路如图4所示,输出电压与输入电压之间的关系为:)+++(+=B 211A 2123f 3o U R R R U R R R R R R U图4 同相加法电路5、减法运算电路(差动放大器)减法运算电路如图5所示,输出电压与输入电压之间的关系为:f f o A B 1121 ()()R R R U U U R R R R '=+'+-+当R1 = R2,R ´ = Rf 时,图5电路为差动放大器,输出电压为:)(=A B1fo U U R R U -图5 减法运算电路四、实验内容注意正、负电源的接法,并切忌将输出端短路,否则将会损坏集成块。
信号输入时先按实验所给的值调好信号源再加入运放输入端。
(整理)同相比例和反相比例放大器.
同相比例和反相比例一、反相比例运算放大电路反相输入放大电路如图1所示,信号电压通过电阻R 1加至运放的反相输入端,输出电压v o 通过反馈电阻R f 反馈到运放的反相输入端,构成电压并联负反馈放大电路。
R ¢为平衡电阻应满足R ¢= R 1//R f 。
利用虚短和虚断的概念进行分析,v I=0,v N=0,i I=0,则即∴该电路实现反相比例运算。
反相放大电路有如下特点1.运放两个输入端电压相等并等于0,故没有共模输入信号,这样对运放的共模抑制比没有特殊要求。
2.v N= v P ,而v P=0,反相端N 没有真正接地,故称虚地点。
3.电路在深度负反馈条件下,电路的输入电阻为R 1,输出电阻近似为零。
二、同相比例运算电路图 1 反相比例运算电路同相输入放大电路如图1所示,信号电压通过电阻R S 加到运放的同相输入端,输出电压v o 通过电阻R 1和R f 反馈到运放的反相输入端,构成电压串联负反馈放大电路。
根据虚短、虚断的概念有v N= v P= v S ,i 1= if于是求得所以该电路实现同相比例运算。
同相比例运算电路的特点如下 1.输入电阻很高,输出电阻很低。
2.由于v N= v P= v S ,电路不存在虚地,且运放存在共模输入信号,因此要求运放有较高的共模抑制比。
三、加法运算电路图1所示为实现两个输入电压v S1、v S2的反相加法电路,该电路属于多输入的电压并联负反馈电路。
由于电路存在虚短,运放的净输入电压v I=0,反相端为虚地。
利用v I=0,v N=0和反相端输入电流i I=0的概念,则有或由此得出图 1 同相比例运算电路图 1 加法运算电路若R 1= R 2= R f ,则上式变为 –v O= v S1+ v S2式中负号为反相输入所致,若再接一级反相电路,可消去负号,实现符 合 常规的算术加法。
该加法电路可以推广到对多个信号求和。
从运放两端直流电阻平衡的要求出发,应取R ´=R 1//R2//R f 。
反相和同相比例运算电路
一、集成运放的线性应用
(一)反相和同相比例运算电路
1.反相比例运算电路
(1)绘制仿真反相比例运算电路
电路组成
实物图片如图所示(暂缺)
ห้องสมุดไป่ตู้
图4-7 反相比例运算电路
输入信号通过送到集成运放的反相输入端,输出信号经反馈至反相输入 端,同相端接地。
积件 4-1-3-1:同相、反相运算放大的仿真研究
2)推断输入输出关系: Au uO / uI 1 Rf / R1
积件 4-1-3-1:同相、反相运算放大的仿真研究
(3)结论 电压增益Au为正值,输出电压uo与ui输入同相,故称为同相比例 运算电路。 若取Rf= 0,则有Au= 1,uo=ui,则电路成为电压跟随器。
(图4-9 电压跟随器
积件 4-1-3-1:同相、反相运算放大的仿真研究
2.同相比例运算电路 (1)电路组成
实物图片如图所示(暂缺)
图4-8 同相比例运算电路
输入信号ui通过R2馈送到集成运放的同相输入端,输出信号uo经Rf反馈 至反相输入端。
(2)电压增益 1)仿真测试:输入信号= ,输出信号= ,
计算: Au uO / uI
(2)电压增益 1)仿真测试:输入信号= ,输出信号= ,
计算: Au uO / uI
2)推断输入输出关系:
Au uO / uI (iF Rf )/(iI RI ) Rf / RI
(3)结论 电压增益Au为负值,uo与ui反相,故称为反相比例运算电路。 Au的大小仅与R1和Rf有关,选取阻值稳定、精度高的电阻R1和Rf,是提 高电压增益精度的重要途径。 若取R1=Rf,则Au=1,即uo=-ui,则电路成为反相器。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
反向比例运算电路(1)电路的组成
图—1
反向比例运算电路的组成如图—1所示。
由图可见,输入电压u
i 通过电阻R
1
加在运放的反向输入端。
R
f
是沟通输出和输入的通道,是电路的反馈网络。
同向输入端所接的电阻R
P
为电路的平衡电阻,该电阻等于从运放的同向输入端往外看除源以后的等效电阻,为了保证运放电路工作在平衡的状态下,同相输入端的电阻应该取
R P =R1//R f
(2)电压放大倍数
图-2
理想运算放大器组成的反相比例运算电路见图-2,显然是一个电压并联负反馈电路。
在输入信号作用下,输入端有电流i I、i′I、 i f 。
根据虚断的特性有i'I≈0
于是i I≈i f
根据虚短的特性,有u+ ≈ u-
所以
放大倍数A u为
(3)反向比例运算电路的输入电阻
为了保证运放电路工作在平衡的状态下,同相输入端的电阻应该取
R P =R1//R f
(4)由于反向比例运算电路具有虚地的特点。
所以共模输入电压为
反相比例运算电路由于具有“虚地”的特点,运放的同相输入端和反相输入端均为0电位,所以反相比例运算电路的共模输入电压等于0。
结论:
1. 电路是深度电压并联负反馈电路,理想情况下,反相输入端“虚地”,共模输入电压低。
2. 实现了反相比例运算。
|Au| 取决于电阻 R f和 R1之比。
U0与 U i反相, | Au | 可大于1、等于 1 或小于 1 。
3. 电路的输入电阻不高,输出电阻很低。
4. 虽然理想运放的输入电阻为无穷大,由于引入并联负反馈后,电路的输入电阻减少了,变成R
1
,要提高反向比例运算放大器的输入电阻,需加大电阻
R 1的值。
R
1
的值越大,R
f
的值也必需加大,电路的噪声也加大,稳定性越差。
1
f
i
o
u R
R
u
u
A-
≈
=
f
o
1
I
R
u
R
u
-
≈
1
I
I
I
I
i
R
i
u
i
u
R=
-
=
=。