铁碳合金相图详解
铁碳合金相图详细讲解

第三章 铁碳合金相图非合金钢[(GB /T 13304-91),将钢分为非合金钢、低合金钢和合金钢三大类]和铸铁是应用极其广泛的重要金属材料,都是以铁为基主要由铁和碳组成的铁碳合金。
了解铁碳合金成分与组织、性能的关系,有助于我们更好地研究和使用钢铁材料。
本章将着重讨论铁碳相图及其应用方面的一些问题。
铁与碳可以形成一系列化合物:C Fe 3、C Fe 2、FeC 等。
C Fe 3的含碳量为6.69%,铁碳合金含碳量超过6.69%,脆性很大,没有实用价值,所以本章讨论的铁碳相图,实际是Fe -C Fe 3相图。
相图的两个组元是Fe 和C Fe 3。
3.1 Fe -C Fe 3系合金的组元与基本相3.l.l 组元⑴纯铁 Fe 是过渡族元素,1个大气压下的熔点为1538℃,20℃时的密度为2/m kg 3107.87⨯。
纯铁在不同的温度区间有不同的晶体结构(同素异构转变),即: δ-Fe (体心)γ-Fe (面心)α-Fe (体心) 工业纯铁的力学性能大致如下:抗拉强度b σ=180~230MPa ,屈服强度2.0σ=100~170MPa ,伸长率=δ30~50%,硬度为50~80HBS 。
可见,纯铁强度低,硬度低,塑性好,很少做结构材料,由于有高的磁导率,主要作为电工材料用于各种铁芯。
⑵C Fe 3 C Fe 3是铁和碳形成的间隙化合物,晶体结构十分复杂,通常称渗碳体,可用符号Cm 表示。
C Fe 3具有很高的硬度但很脆,硬度约为950~1050HV ,抗拉强度b σ=30MPa ,伸长率0=δ。
3.1.2 基本相Fe -C Fe 3相图中除了高温时存在的液相L ,和化合物相C Fe 3外,还有碳溶于铁形成的几种间隙固溶体相:⑴高温铁素体 碳溶于δ-Fe 的间隙固溶体,体心立方晶格,用符号δ表示。
⑵铁素体 碳溶于α-Fe 的间隙固溶体,体心立方晶格,用符号α或F 表示。
F 中碳的固溶度极小,室温时约为0.0008%,600℃时约为0.0057%,在727℃时溶碳量最大,约为0.0218%,但也不大,在后续的计算中,如果无特殊要求可忽略不计。
铁碳合金相图分析

1点以上
1~2点
2~3点
图3-3 共析钢结晶过程示意图
3点~室温
共析钢的室温组织全部为P,呈层片状,其室温下的显微组织如图3-4 所示。
图3-4 共析钢室温下的显微组织
(二)亚共析钢的结晶过程 图 3-2 中的合金Ⅱ为 wC 0.45% 的亚共析钢,其结晶过程如图 3-5 所示。
1点以上
1~2点
A3 线 合金冷却时从奥氏体中开始析出铁素体的析出线
三、铁碳合金的结晶过程
图3-2 简化后的Fe-Fe3C相图
根据碳的质量分数和室温显微组织不同,铁碳合金可以分为工业纯 铁、钢和白口铸铁三大类,具体如下。
(一)共析钢的结晶过程 在图 3-2 中,合金Ⅰ为 wC 0.77% 的共析钢,其结晶过程如图 3-3 所示。
图3-12 亚共晶白口铸铁室温下的显微组织
(六)过共晶白口铸铁的结晶过程 图 3-2 中的合金Ⅵ为 wC 5.0% 的过共晶白口铸铁,其结晶过程如图 3-13
所示。
1点以上
1~2点
2~3点
图3-13 过共晶白口铸铁的结晶示意图
3点~室温
过共晶白口铸铁室温下的显微组织如图 3-14 所示,图中白色条状为 Fe3CⅠ , 黑白 相间的 基 体 为 Ld′ 。所 有过共 晶 白口 铸铁 的 室温 组织 均 为 Ld Fe3CⅠ,只是随着碳含量的增加, Fe3CⅠ量增加。
0.09
碳在 δ-Fe 中的最大溶解度
J
1 495
K
727
0.17 6.69
包晶点 LB δH
A 1495℃ J
Fe3C 的成分
符号 N P S Q
温度 T/℃ 1 394 727
727 室温
铁碳合金相图知识点讲解

铁碳合金相图1、纯铁的同素异构转变许多金属在固态下只有一种晶体结构,如铝、铜、银等金属在固态时无论温度高低,均为面心立方晶格(金属原子分布在立方体的八个角上和六个面的中心,如图a)。
钨、钼、钒等金属则为体心立方晶格(八个原子分布在立方体的八个角上,一个原子处于立方体的中心,如图b所示)。
但有些金属在固态下存在两种或两种以上的晶格形式,如铁、钴、钛等,这类金属在冷却或加热过程中,其晶格形式会发生变化。
金属在固态下随着温度的改变,由一种晶格转变为另一种晶格的现象,称为同素异构转变。
图a 面心立方晶体图b 体心立方晶体图1是纯铁的冷却曲线。
液态纯钛在1538℃进行结晶,得到体心立方晶格的δ-Fe 。
继续冷却到1394℃发生同素异构转变,成为面心立方晶格γ-Fe。
在冷却到912℃又发生一次同素异构转变,成为体心立方晶格α-Fe。
正因为纯铁的这种同素异构转变,才使钢和铸铁通过热处理来改变其组织和性能成为可能。
图1 纯铁的冷却曲线纯铁的同素异构转变与液态金属的结晶过程相似,遵循结晶的一般规律:有一定的平衡转变温度(相变点);转变时需要过冷度;转变过程也是由晶核的形成和晶核的长大来完成。
但是这种转变是在固态下进行的,原子扩散比液态下困难,因此比液态金属结晶具有较大的过冷度。
另外,由于转变时晶格致密度的改变,将引起晶体体积的变化。
如:γ-Fe转变为α-Fe时,他可能引起钢淬火时产生应力,严重时会导致工件变形或开裂。
纯铁的磁性转变温度为770℃。
磁性转变不是相变,晶格不发生转变。
770℃以上无铁磁性,770℃以下有铁磁性。
2、铁碳合金的基本组织在铁碳合金中,铁和碳是两个基本组元。
在固态下,铁和碳有两种结合方式:一是碳溶于铁中形成固溶体,二是铁与碳形成渗碳体,它们构成了铁碳合金的基本组成相。
(1)液相用”L”表示。
是铁碳合金在熔化温度以上形成的均匀液体。
(2)铁素体用符号"F"(或“α”、“δ”)表示。
铁碳合金相图详解

第三章 铁碳合金相图非合金钢[(GB /T 13304-91),将钢分为非合金钢、低合金钢和合金钢三大类]和铸铁是应用极其广泛的重要金属材料,都是以铁为基主要由铁和碳组成的铁碳合金。
了解铁碳合金成分与组织、性能的关系,有助于我们更好地研究和使用钢铁材料。
本章将着重讨论铁碳相图及其应用方面的一些问题。
铁与碳可以形成一系列化合物:C Fe 3、C Fe 2、FeC 等。
C Fe 3的含碳量为6.69%,铁碳合金含碳量超过6.69%,脆性很大,没有实用价值,所以本章讨论的铁碳相图,实际是Fe -C Fe 3相图。
相图的两个组元是Fe 和C Fe 3。
3.1 Fe -C Fe 3系合金的组元与基本相3.l.l 组元⑴纯铁 Fe 是过渡族元素,1个大气压下的熔点为1538℃,20℃时的密度为2/m kg 3107.87⨯。
纯铁在不同的温度区间有不同的晶体结构(同素异构转变),即:δ-Fe (体心)γ-Fe (面心)α-Fe (体心) 工业纯铁的力学性能大致如下:抗拉强度b σ=180~230MPa ,屈服强度2.0σ=100~170MPa ,伸长率=δ30~50%,硬度为50~80HBS 。
可见,纯铁强度低,硬度低,塑性好,很少做结构材料,由于有高的磁导率,主要作为电工材料用于各种铁芯。
⑵C Fe 3 C Fe 3是铁和碳形成的间隙化合物,晶体结构十分复杂,通常称渗碳体,可用符号Cm 表示。
C Fe 3具有很高的硬度但很脆,硬度约为950~1050HV ,抗拉强度b σ=30MPa ,伸长率0=δ。
3.1.2 基本相Fe -C Fe 3相图中除了高温时存在的液相L ,和化合物相C Fe 3外,还有碳溶于铁形成的几种间隙固溶体相:⑴高温铁素体 碳溶于δ-Fe 的间隙固溶体,体心立方晶格,用符号δ表示。
⑵铁素体 碳溶于α-Fe 的间隙固溶体,体心立方晶格,用符号α或F 表示。
F 中碳的固溶度极小,室温时约为0.0008%,600℃时约为0.0057%,在727℃时溶碳量最大,约为0.0218%,但也不大,在后续的计算中,如果无特殊要求可忽略不计。
第三章铁碳合金相图详解版

第 二 节 铁碳合金状态图
铁和碳可形成一系列稳定化合物: Fe3C、 Fe2C、 FeC,它们都可以作为纯组元看待。
含碳量大于Fe3C成分(6.69%)时,合金太脆, 已无实用价值。
实际所讨论的铁碳合金相图是Fe- Fe3C相图。
Fe
Fe3C Fe2C
FeC
C
C%(at%) →
一、Fe - Fe3C 相图的建立
4. 铁碳合金分类
(1) 工业纯铁 <0.0218% C 亚共析钢 <0.77% C
(2) 碳钢 共析钢 0.77% C 过共析钢 >0.77% C 亚共晶白口铸铁<4.3% C
(3) 白口铸铁 共晶白口铸铁 4.3% C 过共晶白口铸铁 >4.3% C
三、典型铁碳合金的结晶过程
1 1)共析钢的结晶过程
1 3)过共析钢的结晶过程
T12钢组织
室温组织:P+Fe3CⅡ
1
补充:工业纯铁的结晶过程
4)共晶白口铁结晶过程
室温组织为: Ld‘ ( P+ Fe3C共晶+ Fe3CⅡ )
1
5)亚共晶白口铁的结晶过程 室温组织为P+Fe3CⅡ+Ld’。
1
6)过共晶白口铁的结
晶过程
室温组织为:Fe3CⅠ +Ld‘ Ld‘( P+ Fe3C共晶+ Fe3CⅡ )
1
第三节 含碳量对碳钢组织与性能的影响
一 、含碳量对碳钢室温平衡组织的影响 含碳量与缓冷后相及组织组成物之间的定量关系为:
钢铁 分类
工
钢
业
共析钢
纯
铁 亚共析钢 过共析钢
白口 铸 铁
共晶白口铸铁
Fe-C相图解析

铁碳合金中的根本组织
含碳量小于2.11%的合金为碳钢,含碳量大于2.11% 的合金为白口铸铁。全部碳钢和白口铸铁在室温下的 组织均有铁素体〔F〕和渗碳体〔Fe3C〕这两个根本 相所组成。只是因含碳量不同,铁素体和渗碳体的相 对数量及分布形态有所不同,因而呈不同的组织形态。
✓ 在铁碳合金中,当wc=0.77%,温度在727℃时,会 产生共析转变。所共析转变是指在某一恒定温度时,
合金⑤是碳的质量分数为共晶成分〔wc=4.3%〕的共晶铁碳合金。从相图上可 看到当温度在1点〔1148 C〕之上是均匀的液相状态,当温度降到1点之后发 生恒温共晶转变。即 L4.3→(A2.11+Fe3C)≡Ld。液相全部以共晶转变的方式结 晶成高温莱氏体〔Ld〕。组成高温莱氏体的奥氏体和渗碳体分别被称为共晶奥 氏体和共晶渗碳体。共晶奥氏体通常以树枝状分布在共晶渗碳体的基体上。但 当温度降到1点以下,随温度的下降,碳在奥氏体中溶解度的下降,Ld中的共晶 奥氏体也同样会析出Fe3CⅡ,并与Ld中作为基体的共晶渗碳体混成一体。在 1~2点之间合金⑤的显微组织是Ld。当Ld中的共晶奥氏体析出Fe3CⅡ,时其 本身的碳的质量分数也不断下降,当温度降到2点〔727℃〕时共晶奥氏体的wc =0.77%,随即发生共析转变,共晶奥氏体转变成珠光体,从2点直到室温,合 金⑤的显微组织是在渗碳体的基体上分布着树枝状的珠光体。这种显微组织称 为低温莱氏体,也称为变态莱氏体,符号是Fe3CⅡ+Ld` 。
室温组织 过共析钢其组织由珠光体和先共析渗碳体〔即二次渗碳体〕组 成。钢中含碳量越多,二次渗碳体数量就越多。图为含碳量1.2 %的过共析钢的显微组织。组织中存在片状珠光体和网络状二 次渗碳体,经浸蚀后珠光体成暗黑色,而二次渗碳体则呈白色 网络状。
铁碳合金相图讲解

海洋材料科学与工程研究院
刘LO伯G洋O
纯铁
屈服强度(σ0.2):100~170MPa
抗拉强度(σb):180~270MPa
伸长率(δ):30%~50%
纯 铁
断面收缩率(ψ);70%~80%
的 冷
冲击韧度(αK);160~200J/cm2
却
硬度HBS:50~80
该类钢兼有奥氏体和铁素体不锈钢的特点。其中双相 不锈钢的耐孔蚀性能、耐腐蚀性能优于超低碳合金钢 (316L)
与铁素体相比,塑性、韧性更高,无室温脆性,耐晶 间腐蚀性能和焊接性能均显著提高,导热系数高,具 有超塑性等特点。
与奥氏体不锈钢相比,强度高且耐晶间腐蚀和耐氯化 物应力腐蚀有明显提高。具有优良的耐孔蚀性能。
含碳量少,铁素体多,塑性好,所以塑性直线下降。 综上所述,T12钢的硬度最高,45钢的硬度最低;T12
的塑性最差,45钢塑性最好;T8钢均居中,而T8钢的 强度最高。
绑轧物件一般用铁丝(镀锌低碳钢丝),而起重机吊重物却 用钢丝绳(用 60、65、70、75 等钢制成)
绑轧物件的性能要求有很好的韧性,因此选 用低碳钢有很好的塑韧性,镀锌低碳钢丝;
珠光体性能:力学性能介于铁素体与渗碳体之间,强度较 高,硬度适中,塑性和韧性较好。
重要固态转变线
GS线:GS线又称A3线,冷却 时,γ析出α的开始线,或加热 时α全部溶入γ的终了线。
ES线:碳在γ中的固溶度曲线 。 常 称 Acm 线 。 当 温 度 低 于 此 线,γ将析出Fe3C、即二次渗 碳体Fe3CⅡ,从液相中经CD线 析出一次渗碳体Fe3CⅠ 。
对于铁碳合金来说,由于包晶反应温度高,碳原子的扩散较 快,所以包晶偏析并不严重。但对于高合金钢来说,合金元 素的扩散较慢,就可能造成严重的包晶偏析。
铁碳合金相图简析

铁碳合金相图简析合金相图中的特殊点线区点:16个。
线:两条磁性转变线;三条等温转变线;其余三条线:GS,ES,PQ。
区:5个单相区,7个两相区,3个三相区。
相图标注:相组成物标注的相图。
组织组成物标注的相图。
(即第二图)具体分析:1)J为包晶点合金在平衡结晶过程中冷却到1495℃时,点成分的L与H点成分的δ发生包晶反应,生成J点成分的A。
2)C点为共晶点合金在平衡结晶过程中冷却到1148℃时,C点成分的L发生共晶反应,生成E点成分的A和Fe3C。
共晶反应的产物是奥氏体与渗碳体的共晶混合物,称莱氏体,以符号Ld表示。
在显微镜下莱氏体的形态是:块状或粒状A(室温时转变成珠光体)分布在渗碳体基体上。
3)S点为共析点合金在平衡结晶过程中冷却到727℃时,S点成分的A发生共析反应,生成P点成分的F和Fe3C。
共析反应产物是铁素体与渗碳体的共析混合物,称珠光体,以符号P表示。
在显微镜下珠光体的形态呈片状。
在放大倍数很高时,可清楚看到相间分布的渗碳体片(窄条)与铁素体(宽条)。
珠光体的强度很高,塑性、韧性和硬度介于渗碳体和铁素体之间。
4)液相线ABCD,固相线AHJECF。
两条磁性转变线:MO---铁素体的磁性转变线;过230 ℃的虚线---渗碳体的磁性转变线5)三条水平线HJB---包晶转变线1495 ℃,LB+δH——AJ即L0.53+ δ0.09——A0.17ECF---共晶转变线L4.3——A2.11+Fe3C(共晶渗碳体)Le4.3 高温莱氏体PSK---共析转变线——A1线A S——F P+Fe3C(共析渗碳体)A0.77—— F0.0218+Fe3C——P(珠光体)珠光体的强度较高,塑性、韧性和硬度介于Fe3C和F之间6)五个基本相区:ABCD以上---液相区AHNA---δNJESGN---A(γ)GPQG---F(α)DFKL--- Fe3C或Cm 7)七个两相区:ABJHA---L+ δJBCEJ---L+ γDCFD--- L+ Fe3CHJNH--- δ+ γGSPG--- α+ γECFKSE--- γ + Fe3CQPSKL以下--- α + Fe3C不同碳含量的冷却过程分析用图。
(最新整理)铁碳合金的相图的最全详细讲解

钢中的渗碳体
由于碳在-Fe中的溶解度很小,
因而常温下碳在铁碳合金中主 要以Fe3C或石墨的形式存在。
2021/7/26
铸铁中的石墨
7
渗碳体组织金相图
2021/7/26
8
⑷珠光体:铁素体与Fe3C的机械混合物,用P表示。
珠光体的组织特点是两相 呈片层相间分布,性能介 于两相之间。
选择材料方面的应用
制定热加工工艺方面的应用
2021/7/26
42
一.选择材料方面的应用
1. 分析零件的工作条件, 根据铁碳合金 成分、组织、性能之间的变化规律进 行选择材料。
2. 根据铁碳合金成分、组织、性能之间 的变化规律 , 确定选定材料的工作范 围。
2021/7/26
43
二.制定热加工工艺方面的应用
好,钢材热加工都在 区
进行.
碳钢室温组织中无奥氏体。
2021/7/26
奥氏体
5
奥氏体组织金相图
2021/7/26
6
⑶ 渗碳体:即Fe3C, 含碳6.69%, 用Fe3C或Cm表示。 Fe3C硬度高、强度低(b35MPa), 脆性大, 塑性几乎为零
Fe3C是一个亚稳相,在一定 条件下可发生分解:
珠光体
2021/7/26
9
珠光体 ( P )
2021/7/26
10
⑸莱氏体: 与Fe3C的机械混合物
高温莱氏体:727 ℃以上,奥氏体与渗碳体,以Le表示 低温莱氏体:727 ℃以下,珠光体与渗碳体,以L’e表示 为蜂窝状, 以Fe3C为基,性能硬而脆。
2021/7/26
莱氏体
11
铁碳相图详解

三、典型铁碳合金的平衡结晶过程铁碳相图上的合金,按成分可分为三类:⑴ 工业纯铁(〈0.0218% C ),其显微组织为铁素体晶粒,工业上很少应用。
⑵ 碳钢(0.0218%~2。
11%C ),其特点是高温组织为单相A,易于变形,碳钢又分为亚共析钢(0.0218%~0。
77%C)、共析钢(0.77%C )和过共析钢(0。
77%~2.11%C )。
⑶ 白口铸铁(2。
11%~6。
69%C ),其特点是铸造性能好,但硬而脆,白口铸铁又分为亚共晶白口铸铁(2。
11%~4。
3%C )、共晶白口铸铁(4.3%C )和过共晶白口铸铁(4.3-6.69%C)下面结合图3-26,分析典型铁碳合金的结晶过程及其组织变化.图3—26 七种典型合金在铁碳合金相图中的位置㈠ 工业纯铁(图3-26中合金①)的结晶过程合金液体在1~2点之间通过匀晶反应转变为δ铁素体.继续降温时,在2~3点之间,不发生组织转变。
温度降低到3点以后,开始从d 铁素体中析出奥氏体,在3~4点之间,随温度下降,奥氏体的数量不断增多,到达4点以后,d 铁素体全部转变为奥氏体。
在4~5点之间,不发生组织转变。
冷却到5点时,开始从奥氏体中析出铁素体,温度降到6点,奥氏体全部转变为铁素体。
在6-7点之间冷却,不发生组织转变.温度降到7点,开始沿铁素体晶界析出三次渗碳体Fe 3C III 。
7点以下,随温度下降,Fe 3C III 量不断增加,室温下Fe 3C III 的最大量为:%31.0%1000008.069.60008.00218.03=⨯--=ⅢC Fe Q .图3—27为工业纯铁的冷却曲线及组织转变示意图。
工业纯铁的室温组织为a+Fe 3C III ,如图3—28所示,图中个别部位的双晶界内是Fe 3C III 。
图3-27 工业纯铁的冷却曲线及组织转变示意图 图3-28 工业纯铁的显微组织 400× ㈡ 共析钢(图3-26中合金②)的结晶过程共析钢的含碳量为0.77%,超过了包晶线上最大的含碳量0。
铁碳合金相图详解版

>2.11%C,组织中有以
Fe3C为基的Ld’,合金太脆.
1
2020/7/1
• 三、 含碳量对工艺性能的影响
• ① 切削性能: 中碳钢合适
铣
• ② 可锻性能: 低碳钢好
车
钻
• ③ 焊接性能: 低碳钢好
刨
• ④ 铸造性能: 共晶合金好 • ⑤ 热处理性能: 第四章介绍
磨 切削加工的基本形式
焊
铸
模锻
1
第三节 含碳量对碳钢组织与性能的影响
• 一 、含碳量对碳钢室温平衡组织的影响 • 含碳量与缓冷后相及组织组成物之间的定量关系为:
钢铁 分类
工
钢
业
共析钢
纯
铁 亚共析钢 过共析钢
白口 铸 铁
共晶白口铸铁
亚共晶白口铸铁
过共晶白口铸铁
含碳量% 0 0.0218 0.77
2.11
4.3
6.69
100
组织组 铁素体 成物相
在铁碳合金中碳既可溶入α – Fe、γ-Fe ,也可以 溶入δ-Fe ,形成不同的固溶体。
2020/7/1
1)铁素体 ➢碳溶于a-Fe中形成的间隙固溶体,以F或α表示;
➢铁素体的溶碳能力很低,为体心立方晶格;
➢铁素体的组织为多边形晶粒,其力学性能几乎与
体心立方结构
纯铁相同。
2020/7/1
铁素体
2)奥氏体:
2020/7/1
4. 铁碳合金分类
• (1) 工业纯铁 <0.0218% C 亚共析钢 <0.77% C
• (2) 碳钢 共析钢 0.77% C 过共析钢 >0.77% C 亚共晶白口铸铁<4.3% C
• (3) 白口铸铁 共晶白口铸铁 4.3% C 过共晶白口铸铁 >4.3% C
铁碳合金相图解析

b
23
4、在焊接生产上的应用
焊接时,由于局部区域(焊缝)被快速加热,所以从焊缝到母材各区域 的温度是不同的,由Fe- Fe3C相图可知,温度不同,冷却后的组织性能 就不同,为了获得均匀一致的组织和性能,就需要在焊接后采用热处理 方法加以改善。
5、在热处理方面的应用
从Fe- Fe3C相图可知,铁碳合金在固态加热或冷却过程中均有相的
b
5
知识点二 Fe- Fe3C相图分析
b
6
图1-30 Fe- Fe3C相图
简化的Fe- Fe3C相图
b
7
1、主要特性点
表1-4简化Fe- Fe3C相图中的特性点
特性点 符号
A
温度/℃ ωc(%)
1538
0
含义 熔点:纯铁的熔点
C
1148
4.3 共晶点:发生共晶转变L4.3—→Ld(A2.11%+Fe3C共晶)
b
4
二、铁碳全合金的基本相及其性能
3、奥氏体。 碳在γ-Fe中形成的间隙固溶体称为奥氏体,
用符号A表示。
4、渗碳体。 渗碳体是一种具有复杂晶体结组元,又是基本相。
5、珠光体。 用符号P表示,它是铁素体与渗碳体薄层片相间
的机械机械混合物。
6、莱氏体 用符号Ld表示,奥氏体和渗碳体所组成的共晶体。
知识点三 典型合金的结晶过程及组织
根据铁碳合金的含碳量及组织的不同,可将铁碳合金分为:
1)工业纯铁 ωc<0.0218%。
2)钢 0.0218%<ωc<2.11%,又可分为:
亚共析钢 0.0218%<ωc<0.77%;
共析钢 ωc=0.77%;
过共析钢 0.77%<ωc<2.11%。
铁碳合金的相图的最全详细讲解

过共晶白口铁组织金相图
Fe - Fe3C 相图的应用
选择材料方面的应用
制定热加工工艺方面的应用
一.选择材料方面的应用
1. 分析零件的工作条件, 根据铁碳合金 成分、组织、性能之间的变化规律进 行选择材料。
2. 根据铁碳合金成分、组织、性能之间 的变化规律 , 确定选定材料的工作范 围。
二.制定热加工工艺方面的应用
§2-5 铁碳合金的组织与状态图
铁碳合金—碳钢和铸铁,是工业应用最广的合金。 含碳量为0.0218% ~2.11%的称钢 含碳量为 2.11%~ 6.69%的称铸铁。
铁和碳可形成一系列稳定化合物: Fe3C、 Fe2C、 FeC,都可作为 纯组元看待。
含碳量大于Fe3C成分(6.69%)时,合金太脆,已无实用价值。
共晶产物是A与Fe3C的机械混合 物,称作莱氏体, 用Le表示。为 蜂窝状, 以Fe3C为基,性能硬而 脆。
莱氏体
(二)铁碳合金的组织转变
工业纯铁 ( ingot iron )
共析钢
( eutectoid steel )
亚共析钢 ( hypoeutectoid steel )
过共析钢 ( hypereutectoid steel )
共晶白口铁 ( eutectoid white iron )
亚共晶白口铁( hypoeutectoid white iron )
过共晶白口铁( hypereutectoid white iron )
1.工业纯铁 ( Wc < 0.0218% )
工业纯铁组织金相图
2. 共析钢 ( Wc = 0.77% )
共析钢组织金相图
3.亚共析钢 ( Wc = 0.45% )
亚共析钢组织金相图
铁碳合金的相图的详细讲解 PPT

一、铁碳合金的基本组织
⒈ 组元:Fe、 Fe3C ⒉相
⑴ 铁素体:
碳在-Fe中的固溶体称铁素 体, 用F 或 表示。
铁素体
是体心立方间隙固溶体。铁素体的溶碳能力很低,在727℃时 最大为0.0218%,室温下仅为0.0008%。
铁素体的组织为多边形晶粒,性能与纯铁相似。
高温莱氏体:727 ℃以上,奥氏体与渗碳体,以Le表示 低温莱氏体:727 ℃以下,珠光体与渗碳体,以L’e表示 为蜂窝状, 以Fe3C为基,性能硬而脆。
莱氏体
莱氏体 ( Ld )
相图的建立
相图的建立
热分析法
温 度
温
温
度
度
时间 A 90 70 50 30 B
温
度
L
a
L + S
S
A
ab : 液相线 ab : 固相线 L : 液相区 S : 固相区 L+S:液固共存区
亚共晶白口铁( hypoeutectoid white iron )
过共晶白口铁( hypereutectoid white iron )
1.工业纯铁 ( Wc < 0.0218% )
工业纯铁组织金相图
2. 共析钢 ( Wc = 0.77% )
共析钢组织金相图
3.亚共析钢 ( Wc = 0.45% )
莱氏体
(二)铁碳合金的组织转变
工业纯铁 ( ingot iron )
共析钢
( eutectoid steel )
亚共析钢 ( hypoeutectoid steel )
过共析钢 ( hypereutectoid steel )
共晶白口铁 ( eutectoid white iron )
Fe-C合金相图详解

组织组成物
相组成物
§4.4 铁碳合金的成分、组织和性能之间的关系 1 含碳低于2.11%的合金 性能上,随碳含量增加,强度提高,塑性降低。 ● C=1%时,抗拉强度最大 ● C >1%时,网状碳化物析出,强度降低 2 含碳为2.11%-6.6%的合金 ● 莱氏体硬、脆,可用于球磨机的磨球 ● 石墨化处理,得到铁和石墨的组织, 软,强度低。 3 对加工性能的影响 ● 可锻性:碳含量过高,可锻性差 锻造温度选在γ区, 锻造温度:固相线+100-200℃ ● 流动性 :液固线温差小,流动性好
3 铁碳合金相 铁素体(ferrite): 碳溶入α-Fe或δ-Fe中形成的固溶体, 记作:α(或F)及δ 奥氏体(austenite): 碳溶入γ-Fe中形成的固溶体, 记作γ(或A)
§4.2 铁碳合金相图分析 1 点(T, w(c)%) E :碳在γ-Fe中的最大溶解度 C:共晶点(eutectic point) S:共析点(eutectoid point) A:纯铁熔点 G :α-Fe和γ-Fe同素异构转变点 N :δ-Fe和γ-Fe同素异构转变点 P :碳在α-Fe中的最大溶解度 J :包晶点(peritectic point) H :碳在δ-Fe中的最大溶解度 B :包晶反应时液态合金的浓度 Q :室温时碳在α-Fe中的溶解度 D :渗碳体熔点
也称acm线碳在中的固溶度曲线中析出渗碳体称为二次渗碳体渗碳体的磁性转变温度230每个人都希望可以和他人相互信任否则就会缺乏安全感
第四章 铁-碳合金相图
(Chapter 4 The Iron-Iron Carbide Phase Diagram ) §4.1 铁碳合金的组元与基本相 1 纯铁(pure iron) 1538 1394 912 L ← ℃→ δ ← ℃→ γ ←℃→ α δ和α相是bcc相,γ是fcc相, 同素异构转变 (polymorphic transformation) 纯铁的塑性好(延伸率:30-50%) 强度低(抗拉强度:180-270MPa), 一般不用作结构材料
铁碳合金相图图文解析

铁碳合金相图图文解析一、铁碳图相简介:Fe-C合金相图实际上是Fe-Fe3C相图,铁碳合金的基本组元也应该是纯铁和Fe3C。
铁碳合金相图是研究铁碳合金的工具,是研究碳钢和铸铁成分、温度、组织和性能之间关系的理论基础,也是制定各种热加工工艺的依据。
1、Fe-C相图中重要的点2、Fe-C相图中重要的线3、Fe-C合金平衡结晶过程Fe-Fe3C相图中的相:Ⅳ、过共析钢(0.77%<2.11%)Ⅴ、共晶白口铁(C%=4.3%)Ⅶ、过共晶白口铸铁(C%>4.3%)二、钢中常见组织分类:奥氏体:碳与合金元素溶解在γ-Fe中的固溶体,仍保持γ-Fe的面心立方晶格特征:奥氏体塑性很好,强度较低,具有一定韧性,不具有铁磁性铁素体:碳与合金元素溶解在a-Fe中的固溶体,具有体心立方晶格,溶碳能力极差;特征:具有良好的韧性和塑性;呈明亮的多边形晶粒组织;马氏体:碳溶于α-Fe的过饱和的固溶体,体心正方结构;常见的马氏体形态:板条、片状;板条马氏体:在低、中碳钢及不锈钢中形成,由许多成群的、相互平行排列的板条所组成的板条束。
空间形状是扁条状的,一个奥氏体晶粒可转变成几个板条束(通常3到5个);片状马氏体(针状马氏体):常见于高、中碳钢及高Ni的Fe-Ni合金中;当最大尺寸的马氏体片小到光学显微镜无法分辨时,便称为隐晶马氏体。
在生产中正常淬火得到的马氏体,一般都是隐晶马氏体。
回火马氏体:低温(150~250oC)回火产生的过饱和程度较低的马氏体和极细的碳化物共同组成的组织。
这种组织极易受腐蚀,光学显微镜下呈暗黑色针状组织(保持淬火马氏体位向),与下贝氏体很相似,只有在高倍电子显微镜下才能看到极细小的碳化物质点。
渗碳体:碳与铁形成的一种化合物Fe3C;特征:含碳量为6.67%,具有复杂的斜方晶体结构;硬度很高,脆性极大,韧性、塑性几乎为零;珠光体:铁碳合金中共析反应所形成的铁素体与渗碳体组成的片层相间的机械混合物;特征:呈现珍珠般的光泽;力学性能介于铁素体与渗碳体之间,强度较高,硬度适中,塑性和韧性较好;片状珠光体:铁素体和渗碳体以薄层形式,交替重叠形成的混合物;根据珠光体片间距的大小不同可以分为:珠光体(片间距450~150nm,形成温度范围A1~650℃,在光学显微镜下能明显分辨出来)索氏体(片间距150~80nm,形成温度范围650~600℃,只有高倍光学显微镜下才分辨出来)屈氏体(片间距80~30nm,形成温度范围600~550℃,只能用电子显微镜才能分辨出来)粒状珠光体:由铁素体和粒状碳化物组成。
铁碳合金的相图解读

D1227
L+ Fe3CⅠ F
912 G
A
Ld
A+Ld+Fe3CⅡ P+Ld’+Fe3CⅡ Ld’ ( P+Fe3C )
Ld+Fe3CⅠ
727℃ K Ld’+Fe3CⅠ
S A+ Fe3CⅡ A+F F P ( F+ Fe3C )
P
O 0.0218%C 0.77%C Fe
Q P+F
P+Fe3CⅡ
2.11%C
在1148℃时最大,为2.11%。727 ℃时为0.77%
奥氏体强度硬度不高但具 有良好塑性,钢材热加工 都在 区进行。
一般情况奥氏体不存在于
室温中。
奥氏体
⑶ 渗碳体Fe3C: 渗碳体是一种具有复杂斜方晶格的金属化合物。含碳量为 6.69%,熔点为1227℃。 Fe3C具有硬度高、强度低(b35MPa), 脆性大, 塑性几乎为 零
谢谢!
铁碳合金相图
•一、纯铁的同素异构转变 •二、铁碳合金的基本相及组织 •三、铁碳合金相图
•四、铁碳合金相图的应用
一、纯铁的同素异构转变
纯铁在 结晶为固态 后继续冷却 至室温的过 程中,还会 发生两次晶 格结构的转 变。
二、铁碳合金的基本相及组织
⑴ 铁素体F:
铁素体是碳固溶于-Fe中形 成的间隙固溶体, 用F 表示。
4.3%C
6.69%C Fe3C
特征线 ⑴ 液相线—ACD, 固相线—AECF
⑵ 水平线:
ECF:共晶线LC⇄ A+Fe3C 共晶产物是A与Fe3C的机械混合 物,称作莱氏体, 用Ld表示。为 蜂窝状, 以Fe3C为基,性能硬而
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第三章 铁碳合金相图非合金钢[(GB /T 13304-91),将钢分为非合金钢、低合金钢和合金钢三大类]和铸铁是应用极其广泛的重要金属材料,都是以铁为基主要由铁和碳组成的铁碳合金。
了解铁碳合金成分与组织、性能的关系,有助于我们更好地研究和使用钢铁材料。
本章将着重讨论铁碳相图及其应用方面的一些问题。
铁与碳可以形成一系列化合物:C Fe 3、C Fe 2、FeC 等。
C Fe 3的含碳量为6.69%,铁碳合金含碳量超过6.69%,脆性很大,没有实用价值,所以本章讨论的铁碳相图,实际是Fe -C Fe 3相图。
相图的两个组元是Fe 和C Fe 3。
3.1 Fe -C Fe 3系合金的组元与基本相3.l.l 组元⑴纯铁 Fe 是过渡族元素,1个大气压下的熔点为1538℃,20℃时的密度为2/m kg 3107.87⨯。
纯铁在不同的温度区间有不同的晶体结构(同素异构转变),即: δ-Fe (体心)γ-Fe (面心)α-Fe (体心) 工业纯铁的力学性能大致如下:抗拉强度b σ=180~230MPa ,屈服强度2.0σ=100~170MPa ,伸长率=δ30~50%,硬度为50~80HBS 。
可见,纯铁强度低,硬度低,塑性好,很少做结构材料,由于有高的磁导率,主要作为电工材料用于各种铁芯。
⑵C Fe 3 C Fe 3是铁和碳形成的间隙化合物,晶体结构十分复杂,通常称渗碳体,可用符号Cm 表示。
C Fe 3具有很高的硬度但很脆,硬度约为950~1050HV ,抗拉强度b σ=30MPa ,伸长率0=δ。
3.1.2 基本相Fe -C Fe 3相图中除了高温时存在的液相L ,和化合物相C Fe 3外,还有碳溶于铁形成的几种间隙固溶体相:⑴高温铁素体 碳溶于δ-Fe 的间隙固溶体,体心立方晶格,用符号δ表示。
⑵铁素体 碳溶于α-Fe 的间隙固溶体,体心立方晶格,用符号α或F 表示。
F 中碳的固溶度极小,室温时约为0.0008%,600℃时约为0.0057%,在727℃时溶碳量最大,约为0.0218%,但也不大,在后续的计算中,如果无特殊要求可忽略不计。
力学性能与工业纯铁相当。
⑶奥氏体 碳溶于γ-Fe 的间隙固溶体,面心立方晶格,用符号γ或A 表示。
奥氏体中碳的固溶度较大,在1148℃时最大达2.11%。
奥氏体强度较低,硬度不高,易于塑性变形。
3.2 Fe -C Fe 3相图3.2.1 Fe -C Fe 3相图中各点的温度、含碳量及含义Fe -C Fe 3相图及相图中各点的温度、含碳量等见图3.1及表3.1所示。
图3.1及表3.1中代表符号属通用,一般不随意改变。
C, %(重量) →图3.1 Fe -C Fe 3相图表3.1相图中各点的温度、含碳量及含义符号 温度(℃)含碳量[%(质量)]含 义A B C D E F G H J K N P S Q1538 1495 1148 1227 1148 1148 912 1495 1495 727 1394 727 727 600 (室温)0 0.53 4.30 6.69 2.11 6.69 0 0.09 0.17 6.69 0 0.0218 0.77 0.0057 (0.0008)纯铁的熔点包晶转变时液态合金的成分 共晶点Fe 3C 的熔点碳在γ-Fe 中的最大溶解度 Fe 3C 的成分α-Fe →γ-Fe 同素异构转变点 碳在δ-Fe 中的最大溶解度 包晶点Fe 3C 的成分γ-Fe →δ-Fe 同素异构转变点 碳在α-Fe 中的最大溶解度 共析点600℃(或室温)时碳在α-Fe 中的最大溶解度Fe -C Fe 33.2.2.1 三个重要的特性点⑴J 点为包晶点 合金在平衡结晶过程中冷却到1495℃时。
B 点成分的L 与H 点成分的δ 发生包晶反应,生成J 点成分的A 。
包晶反应在恒温下进行,反应过程中L 、δ、A 三相共存,反应式为:H B L δ+J A 或 09.053.0δ+L 17.0A 。
⑵C 点为共晶点 合金在平衡结晶过程中冷却到1148℃时。
C 点成分的L 发生共晶反应,生成E 点成分的A 和C Fe 3。
共晶反应在恒温下进行,反应过程中L 、A 、C Fe 3三相共存,反应式为:CL C Fe A E 3+ 或 3.4L C Fe A 311.2+。
共晶反应的产物是A 与C Fe 3的共晶混合物,称莱氏体,用符号Le 表示,所以共晶反应式也可表达为: 3.4L 3.4Le 。
莱氏体组织中的渗碳体称为共晶渗碳体。
在显微镜下莱氏体的形态是块状或粒状A (727℃时转变为珠光体)分布在渗碳体基体上。
⑶S 点为共析点 合金在平衡结晶过程中冷却到727℃时S 点成分的A 发生共析反应,生成P 点成分的F 和C Fe 3。
共析反应在恒温下进行,反应过程中A 、F 、C Fe 3三相共存,反应式为:S A C Fe F P 3+ 或 77.0A C Fe F 30218.0+共析反应的产物是铁素体与渗碳体的共析混合物,称珠光体,用符号P 表示,因而共析反应可简单表示为:77.0A 77.0PP 中的渗碳体称为共析渗碳体。
在显微镜下P 的形态呈层片状。
在放大倍数很高时,可清楚看到相间分布的渗碳体片(窄条)与铁素体片(宽条)。
P 的强度较高,塑性、韧性和硬度介于渗碳体和铁素体之间,其机械性能如下:抗拉强度(b σ) 770MPa延伸率(δ) 20~35%冲击韧性(k a ) 30~402/cm J硬度(HB ) 1802/mm kgf3.2.2.2 相图中的特性线相图中的ABCD 为液相线;AHJECF 为固相线。
⑴水平线HJB 为包晶反应线。
碳含量0.09~0.53%的铁碳含金在平衡结晶过程中均发生包晶反应。
⑵水平线ECF 为共晶反应线。
碳含量在2.11~6.69%之间的铁碳合金,在平衡结晶过程中均发生共晶反应。
⑶水平线PSK 为共析反应线。
碳含量0.0218~6.69%之间的铁碳合金,在平衡结晶过程中均发生共析反应。
PSK 线在热处理中亦称1A 线。
⑷GS 线是合金冷却时自A 中开始析出F 的临界温度线,通常称3A 线。
⑸ES 线是碳在A 中的固溶线,通常称cm A 线。
由于在1148℃时A 中溶碳量最大可达2.11%,而在727℃时仅为0.77%,因此碳含量大于0.77%的铁碳合金自1148℃冷至727℃的过程中,将从A 中析出C Fe 3。
析出的渗碳体称为二次渗碳体(II C Fe 3)。
cm A 线亦是从A 中开始析出II C Fe 3的临界温度线。
⑹PQ 线是碳在F 中的固溶线。
在727℃时F 中溶碳量最大可达0.0218%,室温时仅为0.0008%,因此碳含量大于0.0008%的铁碳合金自727℃冷至室温的过程中,将从F 中析出C Fe 3。
析出的渗碳体称为三次渗碳体(III C Fe 3)。
PQ 线亦为从F 中开始析出III C Fe 3的临界温度线。
III C Fe 3数量极少,往往可以忽略。
下面分析铁碳合金平衡结晶过程时,均忽略这一析出过程。
3.3 典型铁碳合金的平衡结晶过程根据Fe -C Fe 3相图,铁碳含金可分为三类: ⑴ ()0.0218%C 工业纯铁≤⑵ ()()()()⎪⎩⎪⎨⎧≤〈=〈〈≤〈 2.11C 0.77过共析钢0.77%C 共析钢0.77%C 0.0218%亚共析钢2.11%C 0.0218%钢 ⑶ ()()()()⎪⎩⎪⎨⎧〈〈=〈〈〈〈 6.69%C 4.3%过共晶白口铸铁 4.3%C 共晶白口铸铁 4.3%C 2.11%亚共晶白口铸铁6.69%C 2.11%白口铸铁 下面分别对以上七种典型铁碳含金的结晶过程进行分析。
3.3.1 工业纯铁以含碳0.01%的铁碳合金为例,其冷却曲线(如图3.2)和平衡结晶过程如下。
合金在1点以上为液相L 。
冷却至稍低于1点时,开始从L 中结晶出δ,至2点合金全 部结晶为δ。
从3点起,δ逐渐转变为A ,至4点全部转变完了。
4-5点间A 冷却不变。
自5点始,从A 中析出F 。
F 在A 晶界处生核并长大,至6点时A 全部转变为F 。
在6-7点间F 冷却不变。
在7-8点间,从F 晶界析出III C Fe 3。
因此合金的室温平衡组织为F +III C Fe 3。
F 呈白色块状;III C Fe 3量极少,呈小白片状分布于F 晶界处。
若忽略III C Fe 3,则组织全为F 。
图3.2工业纯铁结晶过程示意图3.3.2 共析钢其冷却曲线和平衡结晶过程如图3.3所示。
合金冷却时,于1点起从L 中结晶出A ,至2点全部结晶完了。
在2-3点间A 冷却不变。
至3点时,A 发生共析反应生成P 。
从3′继续冷却至4点,P 皆不发生转变。
因此共析钢的室温平衡组织全部为P ,P 呈层片状。
共析钢的室温组织组成物也全部是P ,而组成相为F 和C Fe 3,它们的相对质量为:%%%881006.690.776.69=⨯-=F ;%%%3121=-=F C Fe图3.3 共析钢结晶过程示意图3.3.3 亚共析钢以含碳0.4%的铁碳含金为例,其冷却曲线和平衡结晶过程如图3.4所示。
合金冷却时,从1点起自L 中结晶出δ,至2点时,L 成分变为0.53%C ,δ变为0.09%C ,发生包晶反应生成17.0A ,反应结束后尚有多余的L 。
2′点以下,自L 中不断结晶出A ,至3点合金全部转变为A 。
在3-4点间A 冷却不变。
从4点起,冷却时由A 中析出F ,F 在A 晶界处优先生核并长大,而A 和F 的成分分别沿GS 和GP 线变化。
至5点时,A 的成分变为0.77%C ,F 的成分变为0.0218%C 。
此时A 发生共析反应,转变为P ,F 不变化。
从5′继续冷却至6点,合金组织不发生变化,因此室温平衡组织为F +P 。
F 呈白色块状;P 呈层片状,放大倍数不高时呈黑色块状。
碳含量大于0.6%的亚共析钢,室温平衡组织中的F 常呈白色网状,包围在P 周围。
图3.4 亚共析钢结晶过程示意图含0.4%C 的亚共析钢的组织组成物(F 和P )的相对质量为:%%%511000.020.770.020.4=⨯--=P ;%%%49511=-=F组成相(F 和C Fe 3)的相对质量为:%%%%;%%36941941006.690.46.69=-==⨯-=C Fe F由于室温下F 的含碳量极微,若将F 中的含碳量忽略不计,则钢中的含碳量全部在P 中,所以亚共析钢的含碳量可由其室温平衡组织来估算。
即根据P 的含量可求出钢的含碳量为:%%%0.77⨯=P C 。
由于P 和F 的密度相近,钢中P 和F 的含量(质量百分数)可以近似用对应的面积百分数来估算。
图3.5 过共析钢结晶过程示意图3.3.4 过共析钢以碳含量为1.2%的铁碳合金为例,其冷却曲线和平衡结晶过程如图3.5所示。