人教初中数学八上《平方差公式》教案

合集下载

人教版数学八年级上册14.2.1《平方差公式》教学设计

人教版数学八年级上册14.2.1《平方差公式》教学设计

人教版数学八年级上册14.2.1《平方差公式》教学设计一. 教材分析人教版数学八年级上册14.2.1《平方差公式》是初中数学中的重要内容,它为学生提供了简化代数表达式和解决实际问题的一种方法。

本节课通过平方差公式的学习,使学生能够理解和掌握两个数的平方差可以表示为它们的和与差的乘积,即(a^2 - b^2 = (a + b)(a - b))。

二. 学情分析学生在之前的学习中已经掌握了有理数的乘方、完全平方公式等基础知识,具备一定的观察、分析、归纳能力。

但平方差公式与完全平方公式在形式上相似,易于混淆,因此需要通过实例分析、自主探究等方式,帮助学生加深对平方差公式的理解。

三. 教学目标1.知识与技能:使学生理解和掌握平方差公式的推导过程及应用。

2.过程与方法:培养学生观察、分析、归纳的能力,提高自主探究和解决问题的能力。

3.情感态度与价值观:激发学生学习数学的兴趣,培养学生的合作意识。

四. 教学重难点1.重点:平方差公式的推导和应用。

2.难点:对平方差公式与完全平方公式的区分和灵活运用。

五. 教学方法1.情境教学法:通过生活实例引入平方差公式,激发学生的学习兴趣。

2.自主探究法:引导学生分组讨论,发现平方差公式的规律。

3.讲解法:对平方差公式的推导和应用进行详细讲解,引导学生理解。

4.练习法:设计不同难度的练习题,巩固所学知识。

六. 教学准备1.教学课件:制作包含动画、图片、例题的教学课件。

2.练习题:准备不同难度的练习题,用于课堂练习和课后作业。

3.教学工具:黑板、粉笔、投影仪等。

七. 教学过程导入(5分钟)通过一个实际问题引入:某商店举行打折活动,一件商品原价为 (200) 元,打八折后的价格为 (160) 元,请问这件商品打了几折?呈现(10分钟)引导学生思考:如何用数学公式表示这个问题?(200) 元和 (160) 元之间的差值可以表示为 (200 - 160 = 40) 元,而这个差值实际上是原价和打折后的价格的平方差。

人教版数学八年级上册14.3.2平方差公式教案

人教版数学八年级上册14.3.2平方差公式教案
b.学会运用平方差公式进行简便计算,如计算a²-b²、(a+b)²-(a-b)²等;
c.能够将平方差公式应用于解决实际问题,的例子(如:2²-1²、3²-2²等)引导学生观察、总结,强调公式中的“相同项”与“相反项”在运算过程中的关键作用。
2.教学难点
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解平方差公式的概念。平方差公式是(a+b)(a-b)=a²-b²,它可以帮助我们简便地计算两个数的平方差。这个公式在数学运算和实际问题中有着广泛的应用。
2.案例分析:接下来,我们来看一个具体的案例。计算9²-5²,通过平方差公式可以快速得到结果。这个案例展示了平方差公式在实际中的应用,以及它如何帮助我们解决问题。
3.增强学生数学应用意识:将平方差公式应用于解决实际问题,培养学生运用数学知识解决实际问题的能力,提高数学应用意识;
4.培养学生合作交流能力:在小组讨论和分享过程中,鼓励学生积极参与、表达观点,提升合作交流能力。
三、教学难点与重点
1.教学重点
-核心内容:平方差公式的推导及其应用。
-详细内容:
a.让学生掌握平方差公式的结构特点,即(a+b)(a-b)=a²-b²;
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是《平方差公式》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过需要计算两个数的平方差的情况?”(如:计算地面的长方形区域和其中一块正方形区域的面积差)这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索平方差公式的奥秘。
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。

《平方差公式》教案(精选15篇)

《平方差公式》教案(精选15篇)

《平方差公式》教案(精选15篇)《平方差公式》教案1教学目的进一步使学生理解把握平方差公式,并通过小结使学生理解公式数学表达式与文字表达式在应用上的差异。

教学重点和难点:公式的应用及推广。

教学过程:一、复习提问1.(1)用较简洁的代数式表示下图纸片的面积.(2)沿直线裁一刀,将不规章的右图重新拼接成一个矩形,并用代数式表示出你新拼图形的面积.讲评要点:沿HD、GD裁开均可,但肯定要让学生在裁开之前知道HD=BC=GD=FE=a-b,这样裁开后才能重新拼成一个矩形.期望推出公式:a2-b2=(a+b)(a-b)2.(1)叙述平方差公式的数学表达式及文字表达式;(2)试比较公式的两种表达式在应用上的差异.说明:平方差公式的数学表达式在使用上有三个优点。

(1)公式详细,易于理解;(2)公式的特征也表现得突出,易于初学的人“套用”;(3)形式简洁。

但数学表达式中的a与b有概括性及抽象性,这样也就造成对详细问题存在一个判定a、b的问题,否则简单对公式产生各种主观上的误会。

依照公式的文字表达式可写出下面两个正确的式子:经对比,可以让人们体会到公式的文字表达式抽象、准确、概括.因而也就“欠”明确(如结果不知是谁与谁的平方差).故在使用平方差公式时,要全面理解公式的实质,敏捷运用公式的'两种表达式,比如用文字公式推断一个题目能否使用平方差公式,用数学公式确定公式中的a与b,这样才能使自己的计算即准确又敏捷.3.推断正误:(1)(4x+3b)(4x-3b)=4x2-3b2;(×)(2)(4x+3b)(4x-3b)=16x2-9;(×)(3)(4x+3b)(4x-3b)=4x2+9b2;(×)(4)(4x+3b)(4x-3b)=4x2-9b2;(×)二、新课例1运用平方差公式计算:(1)102×98;(2)(y+2)(y-2)(y2+4).解:(1)102×98(2)(y+2)(y-2)(y2+4)=(100+2)(100-2)=(y2-4)(y2+4)=1002-22=10000-4=(y2)2-42=y4-16.=9996;2.运用平方差公式计算:(1)103×97;(2)(x+3)(x-3)(x2+9);(3)59.8×60.2;(4)(x-)(x2+)(x+).3.请每位同学自编两道能运用平方差公式计算的题目.例2填空:(1)a2-4=(a+2)();(2)25-x2=(5-x)();(3)m2-n2=()();思考题:什么样的二项式才能逆用平方差公式写成两数和与这两数的差的积?(某两数平方差的二项式可逆用平方差公式写成两数和与这两数的差的积)练习填空:1.x2-25=()();2.4m2-49=(2m-7)();3.a4-m4=(a2+m2)()=(a2+m2)()();例3计算:(1)(a+b-3)(a+b+3);(2)(m2+n-7)(m2-n-7).解:(1)(a+b-3)(a+b+3)(2)(m2+n-7)(m2-n-7)=[(a+b)-3][(a+b)+3]=[(m2-7)+n][(m2-7)-n]=(a+b)2-9=a2+2ab+b2-9.=(m2-7)2-n2=m4-14m2+49-n2.三、小结1.什么是平方差公式?一般两个二项式相乘的积应是几项式?2.平方差公式中字母a、b可以是那些形式?3.怎样推断一个多项式的乘法问题是否可以用平方差公式?四、布置作业1.运用平方差公式计算:(1)(a2+b)(a2-b);(2)(-4m2+5n)(4m2+5n);(3)(x2-y2)(x2+y2);(4)(9a2+7b2)(7b2-9a2).2.运用平方差公式计算:(1)69×71;(2)53×47;(3)503×497;(4)40×39.《平方差公式》教案2平方差公式一、学习目标:1.经历探究平方差公式的过程.2.会推导平方差公式,并能运用公式进行简洁的运算.二、重点难点重点:平方差公式的推导和应用难点:理解平方差公式的结构特征,敏捷应用平方差公式.三、合作学习你能用简便方法计算下列各题吗?12001×19992998×1002导入新课:计算下列多项式的积.1x+1x-12m+2m-232x+12x-14x+5yx-5y结论:两个数的和与这两个数的差的`积,等于这两个数的平方差.即:a+ba-b=a2-b2四、精讲精练例1:运用平方差公式计算:13x+23x-22b+2a2a-b3-x+2y-x-2y例2:计算:1102×982y+2y-2-y-1y+5随堂练习计算:1a+b-b+a2-a-ba-b33a+2b3a-2b4a5-b2a5+b25a+2b+2ca+2b-2c6a-ba+ba2+b2五、小结:a+ba-b=a2-b2《平方差公式》教案3学习目标:1、经历探究完全平方公式的过程,发展学生观察、交流、归纳、猜想、验证等能力。

人教版数学八年级上册《14.2.1平方差公式》教案1

人教版数学八年级上册《14.2.1平方差公式》教案1

人教版数学八年级上册《14.2.1平方差公式》教案1一. 教材分析《14.2.1平方差公式》是人教版数学八年级上册中的一章,主要介绍了平方差公式的概念、推导过程以及应用。

本节课的内容是学生进一步学习代数知识的基础,对于培养学生的逻辑思维能力和数学素养具有重要意义。

平方差公式的推导过程涉及到了完全平方公式,需要学生熟练掌握。

二. 学情分析学生在学习本节课之前,已经掌握了有理数的乘方、完全平方公式等基础知识,具备了一定的代数运算能力。

但部分学生对于代数式的理解和运算仍存在困难,对于公式的推导过程可能感到抽象难懂。

因此,在教学过程中,需要关注学生的学习情况,针对性地进行辅导。

三. 教学目标1.让学生理解平方差公式的概念,掌握公式的推导过程。

2.培养学生运用平方差公式解决实际问题的能力。

3.提高学生的代数运算能力,培养学生的逻辑思维能力。

四. 教学重难点1.平方差公式的推导过程。

2.平方差公式的应用。

五. 教学方法1.采用问题驱动法,引导学生思考和探索。

2.使用多媒体辅助教学,直观展示公式的推导过程。

3.运用例题讲解法,让学生在实际问题中运用公式。

4.采用小组合作学习,培养学生的团队协作能力。

六. 教学准备1.准备相关的教学PPT,展示平方差公式的推导过程和应用实例。

2.准备练习题,用于巩固所学知识。

3.准备小组合作学习的任务,引导学生进行讨论和交流。

七. 教学过程1.导入(5分钟)利用多媒体展示一些生活中的平方差问题,如面积计算、距离计算等,引导学生思考和讨论。

通过这些问题,激发学生的学习兴趣,引出本节课的主题——平方差公式。

2.呈现(15分钟)教师通过PPT展示平方差公式的推导过程,引导学生理解和记忆公式。

在这个过程中,教师可以适时提出问题,引导学生思考和探索。

3.操练(15分钟)教师给出一些例题,让学生运用平方差公式进行解答。

在解答过程中,教师要注意引导学生理解和掌握公式的应用。

对于学生的解答,教师要及时给予反馈和指导。

人教版数学八年级上册《平方差公式》教学设计2

人教版数学八年级上册《平方差公式》教学设计2

人教版数学八年级上册《平方差公式》教学设计2一. 教材分析人教版数学八年级上册《平方差公式》是学生在学习了整式的乘法运算、完全平方公式的基础上进行学习的。

平方差公式是数学中重要的公式之一,对于学生理解数学概念、解决实际问题具有重要意义。

本节课的内容包括平方差公式的推导、理解和应用,通过学习,学生应能熟练掌握平方差公式,并能够运用其解决相关问题。

二. 学情分析学生在学习本节课之前,已经掌握了整式的乘法运算、完全平方公式等知识,具备了一定的数学基础。

但学生在理解和应用平方差公式方面还存在一定的困难,需要通过本节课的学习,进一步理解和掌握平方差公式,提高解决实际问题的能力。

三. 教学目标1.理解平方差公式的含义,掌握平方差公式的推导过程。

2.能够运用平方差公式解决实际问题,提高解决问题的能力。

3.培养学生的逻辑思维能力,提高学生的数学素养。

四. 教学重难点1.教学重点:平方差公式的推导过程,平方差公式的应用。

2.教学难点:理解和掌握平方差公式的推导过程,灵活运用平方差公式解决实际问题。

五. 教学方法1.采用问题驱动的教学方法,引导学生通过自主探究、合作交流,推导出平方差公式。

2.运用实例讲解,让学生在实际问题中感受平方差公式的应用,提高解决问题的能力。

3.采用激励性评价,鼓励学生积极参与课堂活动,培养学生的自信心。

六. 教学准备1.准备相关的教学PPT,包括平方差公式的推导过程、实例讲解等内容。

2.准备一些实际问题,用于引导学生运用平方差公式解决实际问题。

七. 教学过程1.导入(5分钟)利用一个实际问题,引导学生回顾整式的乘法运算、完全平方公式等知识,为新课的学习做好铺垫。

2.呈现(15分钟)通过PPT展示平方差公式的推导过程,引导学生观察、思考,理解平方差公式的含义。

3.操练(20分钟)让学生通过自主探究、合作交流,尝试运用平方差公式解决实际问题。

教师给予指导、点拨,引导学生掌握平方差公式的应用。

4.巩固(15分钟)针对学生掌握的情况,设计一些练习题,让学生巩固所学知识,提高解决问题的能力。

平方差公式教学设计(精选10篇)

平方差公式教学设计(精选10篇)

平方差公式教学设计平方差公式教学设计(精选10篇)作为一名辛苦耕耘的教育工作者,往往需要进行教学设计编写工作,借助教学设计可使学生在单位时间内能够学到更多的知识。

写教学设计需要注意哪些格式呢?以下是小编收集整理的平方差公式教学设计,欢迎大家借鉴与参考,希望对大家有所帮助。

平方差公式教学设计篇1一、教材分析本节课选自人教版八年级上册第14章第二节内容,它是在学生已经掌握了多项式乘法之后,自然过渡到具有特殊形式的多项式的乘法,是从一般到特殊的认知规律的典型范例。

对它的学习和研究,不仅给出了特殊的多项式乘法的简便算法,而且为以后的因式分解、分式的化简等内容奠定了基础,同时也为学习完全平方公式提供了方法。

因此,平方差公式作为初中阶段的第一个公式,在教学中具有很重要地位,同时也是最基本、用途最广泛的公式之一。

二、学情分析1.学生的知识技能基础:学生在前面的学习中,已经学习了整式的有关内容,并经历了用字母表示数量关系的过程,有了一定的符号感。

经过一个学期的培养,学生已经具备了小组合作、交流的能力。

学生刚学过多项式的乘法,已具备学习并运用平方差公式的知识结构,通过创造问题情境,让学生承担任务,在探究相应问题中,建立并运用公式,从而使拓展学生知识技能结构成为可能。

通过实际问题的探究,学生已感受到多项式乘法运算的重要性,同时,具备了对式的运算基础“快”“准”的积极心理,学生已具备学习公式的知识与技能结构,通过新课程教学的实施,培养学生具有独立探索、合作交流的习惯。

2.学生活动经验基础:学生已熟练掌握了幂的运算和整式乘法,但在进行多项式乘法运算时常常会出现符号错误及漏项等问题;另外,数学公式中字母具有高度概括性、广泛应用性。

三、教学目标1.知识目标:经历平方差公式的探索及推导过程,掌握平方差公式的结构特征并能熟练应用。

2.能力目标:运用公式进行简单的运算,获得一些数学活动的经验,进一步增强学生的符号感、推理和归纳能力及解决问题的能力。

人教版八年级数学上册14.2.1《平方差公式》教案

人教版八年级数学上册14.2.1《平方差公式》教案

第十四章整式的乘法与因式分解14.2乘法公式14.2.1平方差公式一、教学目标1.理解22a b a b a b +−=−()(),能运用公式进行计算.2.在探索平方差公式的过程中,感悟从具体到抽象地研究问题的方法,在验证平方差公式的过程中,感知数形结合思想.二、教学重点及难点重点:理解平方差公式的基本结构和特征,会用符号表示公式,能用文字语言表述公式内容.难点:利用数形结合的数学思想方法解释平方差公式,及平方差公式的变式运用.三、教学用具电脑、多媒体、课件四、相关资源图片五、教学过程(一)提出问题问题1 计算下列多项式的积,你能发现什么规律?(1)11x x +−()()= ;(2)22m m +−()()= ;(3)1122a b a b +−()()= ; (4)2121x x +−()()= .设计意图:承前启后,为本节内容的引入作铺垫,让学生在每个算式的计算中进一步巩固多项式乘法法则,体会多项式乘法与本节内容的关系——“一般到特殊”.追问1:上述问题中相乘的两个多项式有什么共同点?追问2:相乘的两个多项式的各项与他们的积中的各项有什么关系?追问3:你能将发现的规律用式子表示出来吗?追问4:你能对发现的规律进行推导吗?师生活动:学生观察并独立思考,尝试着进行概括,发现相乘的两个多项式均为相同的两个数的和、两个数的差的形式,而且这两个多项式的积恰好是这个数的平方差.设计意图:让学生经历具体到抽象的过程,即经历观察、抽象、概括、推理的过程,从中体会研究数学问题的基本思想方法——“具体到抽象”.(二)合作探究,形成知识问题2:探究前面所得的式子22a b a b a b +−=−()(),被称为乘法的平方差公式,你能将平方差公式用文字语言表述吗?师生活动:学生回答问题,相互补充.可得到:两个数的和与这两个数的差的积,等于这两个数的平方差,这个公式叫做(乘法的)平方差公式.设计意图:让学生将符号语言转化为文字语言,发展学生的语言表达能力.问题3:你能根据图中图形的面积说明平方差公式吗?a-bHGB(1)长方形AMHG 的长和宽分别是什么?怎样求面积?(2)如果长方形AMHG 中的一部分长方形FEHG 被分割下来,并补到长方形MBCD 的位置,就形成多边形ABCDEF ,此时多边形ABCDEF 的面积又可以怎样表示?(3)上述两种方法表示的面积有什么关系?师生活动:教师提出问题,学生先独立思考,然后小组交流,学生代表展示求解过程. 设计意图:通过探究活动,让学生认识平方差公式的几何意义,使学生更好地理解这一公式,并在此过程中体会数形结合思想.(三)初步应用,巩固知识【例1】运用平方差公式计算:(1)5454x x +−()(); (2)33x y x y −+−−()()解:(1)2225454542516x x x x +−=−=−()()();(2)22223339x y x y x y x y −+−−=−−=−()()()(). 设计意图:让学生熟悉公式的结构特征,并运用公式进行计算.练习1:下面各式运用平方差公式对不对?如果不对,应当怎样改正?(1)22232323x a x b x a +−=−()()()();(×)(2)22232323a b a b a b −−=−()()()();(×)(3)2222x x x +−=−()();(×)(4)2323294a a a −−−=−()().(×)师生活动:学生独立思考,并说明答案,对错误的问题相互交流、订正答案.设计意图:通过正误辨析与纠错、改错,让学生进一步理解平方差公式的结构特征,准确运用公式进行计算.问题4:从例题1和练习1中,你认为运用公式解决问题时应注意什么?师生活动:进一步通过练习加深对平方差公式的理解,两数(式)的和与这两数(式)的差的积,即两因式中,有两个数(式)相等,有两个数(式)互为相反数.设计意图:引导学生深入分析平方差公式的结构特征,明确a ,b 的意义,在运用公式进行计算时一定要抓住关键——括号内的数有前后不变的数和前后互为相反数的数.【例题2】计算:(1)2215y y y y +−−−+()()()(); (2)102×98. 解:原式 原式=(100+2)(100-2)24669x bx ax ab=−+−224129a ab b =−+22224x x =−=−222(2)(3)49a a =−−=−22445y y y =−−+−()2210021000049996=−=−==师生活动:师生共同分析得出:(1)中的前两个多项式的积可以直接利用平方差公式,后两个多项式的积不具备平方差公式的结构特征,不能用此公式;(2)是两个数乘积的简捷计算,这两个因数恰好可以分解成两个数(100与2)的和与这两个数的差,且这两个数的平方容易计算.设计意图:使学生将平方差公式的知识迁移到新的问题情境中,既巩固新知,又能培养学生分析和解决问题的能力.(四)综合应用,深化提高练习2:运用平方差公式计算:(1))33a b a b +−()(); (2)3232a a +−+()();(3)51×49; (4)34342332x x x x +−−+−()()()()解:(1)33a b a b +−()(); (2)3232a a +−+()();2222(3)9a b a b =−=− 222(2)349a a =−=−(3)51×49; (4)34342332x x x x +−−+−()()()().2(501)(501)501250012499=+−=−=−= 222222(3)4(6496)91664663510x x x x x x x x x x ⎡⎤=−−−+−⎣⎦=−−+−+=−− 师生活动:找四名学生板书,其他学生在练习本上完成,教师巡视,指导,师生交流. 设计意图:通过同类项题的练习,帮助学生更好地理解平方差公式,较熟练地运用平方差公式进行有关计算.六、课堂小结教师与学生一起回顾本节课所学的主要内容,并请学生回答以下问题:(1)本节课学习了哪些主要内容?(2)平方差公式的结构特征是什么?(3)应用平方差公式时要注意什么?41y =−+设计意图:通过小结,使学生梳理本节课所学的内容,把握本节课的主要内容,平方差公式及平方差公式的运用.本图片资源介绍了平方差公式及其特点,适用于平方差公式的教学.若需使用,请插入图片【知识点解析】平方差公式.七、板书设计14.2.乘法公式第1课时 平方差公式平方差公式 :22a b a b a b +−=−()() 两个数的和与这两个数的差的积,等于这两个数的平方差,这个公式叫做(乘法的)平方差公式.。

人教版数学八年级上册15.2.1《平方差公式》教学设计

人教版数学八年级上册15.2.1《平方差公式》教学设计

人教版数学八年级上册15.2.1《平方差公式》教学设计一. 教材分析《平方差公式》是人在教版数学八年级上册15.2.1节的内容,它是学生学习代数式求值、解方程、不等式等知识的基础。

平方差公式既是一种特殊的乘法公式,也是一种重要的恒等变形手段。

它不仅在数学教学中占有重要地位,而且在日常生活和生产实践中也有广泛的应用。

通过学习平方差公式,学生可以培养自己的观察、分析、归纳能力,为后续学习更复杂的数学知识奠定基础。

二. 学情分析学生在学习《平方差公式》之前,已经学习了有理数的乘法、完全平方公式等知识,对代数式有一定的认识。

但平方差公式的推导过程需要学生具有一定的逻辑思维能力和归纳总结能力。

通过学情分析,我发现学生在学习过程中容易混淆平方差公式和完全平方公式,因此在教学过程中需要加以区分和引导。

三. 教学目标1.知识与技能目标:学生能正确记忆并运用平方差公式进行计算。

2.过程与方法目标:学生通过观察、分析、归纳等方法,理解并推导出平方差公式。

3.情感态度与价值观目标:学生培养对数学的兴趣,增强自信心,培养合作和探究的精神。

四. 教学重难点1.重点:平方差公式的推导和运用。

2.难点:平方差公式的灵活运用和与完全平方公式的区分。

五. 教学方法1.情境教学法:通过生活实例引入平方差公式,激发学生的学习兴趣。

2.引导发现法:引导学生观察、分析、归纳平方差公式的推导过程。

3.小组合作学习:学生分组讨论,培养合作和探究的精神。

六. 教学准备1.教学课件:制作平方差公式的课件,以便进行直观展示。

2.练习题:准备一些有关平方差公式的练习题,用于巩固所学知识。

3.教学黑板:准备一块黑板,用于板书平方差公式。

七. 教学过程1.导入(5分钟)通过一个生活实例,如正方形的面积和长方形的面积的计算,引出平方差公式。

激发学生的学习兴趣,引发思考。

2.呈现(10分钟)引导学生观察、分析生活实例中的数量关系,引导学生发现并总结平方差公式的规律。

平方差公式优秀教案(多场景)

平方差公式优秀教案(多场景)

平方差公式优秀教案一、教学目标1.知识与技能目标:使学生理解平方差公式的概念,掌握平方差公式的推导过程,并能熟练运用平方差公式进行计算。

2.过程与方法目标:通过自主探究、合作交流,培养学生运用平方差公式解决问题的能力,提高学生的逻辑思维和推理能力。

3.情感态度与价值观目标:激发学生对数学的兴趣,培养学生主动探索、积极参与的精神,增强学生的团队合作意识。

二、教学内容1.平方差公式的定义:平方差公式是指两个数的平方差可以表示为两个数的和与差的乘积。

2.平方差公式的推导:通过具体的例子,引导学生观察、分析,发现平方差公式,并运用多项式乘法进行验证。

3.平方差公式的应用:解决实际问题,如计算平方差、因式分解等,培养学生运用平方差公式解决问题的能力。

三、教学重点与难点1.教学重点:平方差公式的推导和应用。

2.教学难点:平方差公式的理解和灵活运用。

四、教学过程1.导入新课:通过实际生活中的例子,如计算土地面积、求解速度问题等,引出平方差的概念。

2.自主探究:让学生观察具体的平方差例子,如\(a^2b^2\),引导学生发现平方差公式。

3.合作交流:分组讨论,让学生互相分享自己的发现,共同推导平方差公式。

4.课堂讲解:对学生的发现进行总结,给出平方差公式的定义,并进行推导。

5.案例分析:通过具体的例题,讲解平方差公式的应用,如计算平方差、因式分解等。

6.练习巩固:布置相关练习题,让学生独立完成,巩固平方差公式的运用。

7.课堂小结:总结本节课的主要内容,强调平方差公式的推导和应用。

8.课后作业:布置课后作业,让学生运用平方差公式解决实际问题。

五、教学评价1.过程评价:观察学生在课堂上的参与程度、合作交流的表现,评价学生在自主探究、合作交流中的表现。

2.练习评价:检查学生在练习中的完成情况,评价学生对平方差公式的理解和运用能力。

3.课后作业评价:批改课后作业,评价学生对平方差公式的掌握程度,以及运用平方差公式解决问题的能力。

平方差公式-人教版八年级数学上册教案

平方差公式-人教版八年级数学上册教案

平方差公式-人教版八年级数学上册教案一、教学目标1.理解平方差公式的含义;2.能够正确地运用平方差公式计算两数之差的平方。

二、教学重点和难点教学重点1.理解平方差公式的含义;2.能够正确地运用平方差公式计算两数之差的平方。

教学难点1.理解平方差公式的含义;2.能够正确地运用平方差公式计算两数之差的平方。

三、教学内容及步骤教学内容1.平方差公式的含义;2.计算两数之差的平方。

教学步骤第一步:引入1.老师出示一道题目:“已知a=5,b=7,求(a−b)2的值。

”2.学生思考并回答:(a−b)2=(5−7)2=4。

3.老师引导学生思考:是否这道题目可以用一种更简便的方法来计算呢?第二步:讲解平方差公式1.老师出示平方差公式:(a−b)2=a2−2ab+b2。

2.老师讲解公式的含义:将a2、−2ab、b2三个量相加就得到(a−b)2的值。

3.老师对公式进行分解和讲解:(a−b)2可以分解为一个平方数减去两倍的一个数乘以另一个数再加上一个平方数。

4.老师通过样例演示,使学生理解和掌握平方差公式的运用。

第三步:练习1.老师让学生通过练习,巩固平方差公式的运用。

2.老师在课上布置作业,要求学生运用平方差公式计算两数之差的平方。

四、课堂小结1.通过本节课的讲解,学生理解并掌握了平方差公式的含义和运用;2.学生通过课上练习,巩固和加深了对平方差公式的理解和掌握;3.学生在作业中进一步加深了对平方差公式的理解和掌握。

五、课后作业1.完成课上作业;2.再次练习平方差公式的运用;3.预习下一节课内容。

人教版数学八年级上册《平方差公式》教学设计1

人教版数学八年级上册《平方差公式》教学设计1

人教版数学八年级上册《平方差公式》教学设计1一. 教材分析《平方差公式》是初中数学中的重要内容,也是八年级上册的教学难点。

平方差公式不仅涉及到代数的知识,还涉及到几何的知识,对于培养学生的逻辑思维能力和空间想象力有重要作用。

本节课的教学内容主要包括平方差公式的推导、理解和应用。

通过本节课的学习,学生应该能够理解和掌握平方差公式,并能够运用平方差公式解决一些实际问题。

二. 学情分析八年级的学生已经具备了一定的代数基础,对于一些基本的代数运算和几何图形有一定的了解。

但是,学生在学习过程中可能会对平方差公式的推导和理解存在一定的困难。

因此,在教学过程中,需要注重学生的引导和启发,让学生通过自主学习、合作学习和探究学习的方式,理解和掌握平方差公式。

三. 教学目标1.理解平方差公式的含义和推导过程。

2.能够运用平方差公式解决一些实际问题。

3.培养学生的逻辑思维能力和空间想象力。

四. 教学重难点1.平方差公式的推导和理解。

2.平方差公式的应用。

五. 教学方法1.自主学习:让学生通过自主学习,理解平方差公式的推导过程。

2.合作学习:让学生通过小组合作,共同解决一些实际问题。

3.探究学习:让学生通过探究学习,深入理解平方差公式的应用。

六. 教学准备1.PPT课件:制作相关的PPT课件,用于辅助教学。

2.练习题:准备一些相关的练习题,用于巩固学生的学习效果。

七. 教学过程1.导入(5分钟)利用PPT课件,展示一些实际问题,引导学生思考如何解决这些问题。

例如,展示一个正方形的面积和它的边长的平方差,让学生思考这个差值是多少。

2.呈现(15分钟)利用PPT课件,呈现平方差公式的推导过程。

通过几何图形的演示和代数运算的推导,让学生理解和掌握平方差公式。

3.操练(15分钟)让学生通过小组合作,解决一些实际的数学问题。

例如,给定一个正方形的边长,让学生计算它的面积和边长的平方差。

4.巩固(10分钟)让学生通过自主学习,巩固对平方差公式的理解和掌握。

《平方差公式》教学教案

《平方差公式》教学教案

《平方差公式》教学教案第一章:导入教学目标:1. 引导学生回顾已学的有理数乘法法则,为学生学习平方差公式奠定基础。

2. 激发学生对平方差公式的兴趣,培养学生主动探索数学问题的意识。

教学内容:1. 复习有理数乘法法则。

2. 提出问题,引导学生思考并发现平方差公式的规律。

教学步骤:1. 复习有理数乘法法则,通过例题回顾引导学生巩固知识点。

2. 提出问题,让学生尝试计算两数和的平方与两数差的平方,观察结果。

教学评价:1. 检查学生对有理数乘法法则的掌握程度。

2. 观察学生在探索平方差公式过程中的表现,评价其思维能力与合作精神。

第二章:平方差公式的推导与应用教学目标:1. 让学生掌握平方差公式的推导过程,理解公式含义。

2. 培养学生运用平方差公式解决实际问题的能力。

教学内容:1. 平方差公式的推导。

2. 平方差公式的应用。

教学步骤:1. 通过具体例题,引导学生推导出平方差公式。

2. 讲解平方差公式的含义,让学生理解公式在数学中的作用。

3. 练习运用平方差公式解决实际问题,巩固知识点。

教学评价:1. 检查学生对平方差公式的掌握程度。

2. 观察学生在解决实际问题时的运用能力,评价其运用平方差公式的熟练程度。

第三章:平方差公式的拓展与应用教学目标:1. 引导学生发现平方差公式的拓展规律。

2. 培养学生运用平方差公式解决复杂问题的能力。

教学内容:1. 平方差公式的拓展规律。

2. 平方差公式在实际问题中的应用。

教学步骤:1. 通过例题,引导学生发现平方差公式的拓展规律。

2. 讲解拓展规律的含义,让学生理解其在数学中的作用。

3. 练习运用拓展规律解决实际问题,巩固知识点。

教学评价:1. 检查学生对平方差公式拓展规律的掌握程度。

2. 观察学生在解决复杂问题时的运用能力,评价其运用平方差公式及其拓展规律的熟练程度。

教学目标:1. 帮助学生巩固所学知识,提高学生对平方差公式的理解与应用能力。

教学内容:2. 复习平方差公式在实际问题中的应用。

人教版数学八年级上册15.2.1《平方差公式》教案

人教版数学八年级上册15.2.1《平方差公式》教案

人教版数学八年级上册15.2.1《平方差公式》教案一. 教材分析《平方差公式》是人教版数学八年级上册第15章第二节第一小节的内容。

平方差公式是基本的代数公式之一,对于学生理解和掌握代数知识有着重要的意义。

本节课的内容对于学生来说比较抽象,需要通过具体例子让学生理解公式的含义,并能够熟练运用公式进行计算。

二. 学情分析学生在学习本节课之前,已经学习了有理数的乘法、乘方等基础知识,对于代数知识有一定的了解。

但是,对于平方差公式的理解和运用还需要通过具体的例子来引导学生。

另外,学生对于抽象的代数公式的理解可能存在一定的困难,需要通过具体的情境和操作来帮助学生理解和掌握。

三. 教学目标1.知识与技能目标:让学生理解和掌握平方差公式的含义,能够熟练运用平方差公式进行计算。

2.过程与方法目标:通过具体例子和操作,培养学生的观察能力、思考能力和解决问题的能力。

3.情感态度与价值观目标:激发学生对数学的兴趣,培养学生的自主学习能力和团队合作精神。

四. 教学重难点1.重点:平方差公式的理解和运用。

2.难点:对于平方差公式的理解和运用,特别是对于公式的推导和证明。

五. 教学方法1.情境教学法:通过具体的情境和例子,引导学生理解和掌握平方差公式。

2.问题驱动法:通过提问和引导,激发学生的思考和解决问题的能力。

3.小组合作学习法:通过小组合作学习和讨论,培养学生的团队合作精神和自主学习能力。

六. 教学准备1.准备相关的例子和练习题,用于引导学生理解和运用平方差公式。

2.准备课件和黑板,用于展示和推导平方差公式。

七. 教学过程1.导入(5分钟)通过一个具体的例子,引导学生思考如何计算两个平方数的差。

例如,计算(2+3)(2−3)的结果。

2.呈现(10分钟)呈现平方差公式:a2−b2=(a+b)(a−b)。

解释公式的含义和推导过程。

3.操练(10分钟)让学生通过计算具体的例子,运用平方差公式进行计算。

例如,计算(4+5)(4−5)的结果。

《平方差公式》教学教案

《平方差公式》教学教案

《平方差公式》教学教案第一章:导入1.1 教学目标让学生理解平方差公式的概念及意义。

培养学生对平方差公式的兴趣和好奇心。

1.2 教学内容平方差公式的定义和表达式。

平方差公式的推导过程。

1.3 教学步骤1. 引入平方差公式的概念,让学生回顾已学的平方和乘法运算。

2. 通过示例,引导学生观察和总结平方差公式的规律。

3. 让学生尝试推导平方差公式,并提供必要的提示和指导。

1.4 教学评价观察学生在推导过程中的理解和应用能力。

评估学生对平方差公式的掌握程度。

第二章:平方差公式的应用2.1 教学目标培养学生应用平方差公式解决问题的能力。

培养学生运用平方差公式进行简便计算的能力。

2.2 教学内容平方差公式的应用场景和问题类型。

平方差公式在实际问题中的应用方法。

1. 引入平方差公式的应用场景,让学生理解平方差公式的实际意义。

2. 通过示例,展示平方差公式在实际问题中的应用方法。

3. 让学生尝试解决一些实际问题,应用平方差公式进行计算和解答。

2.4 教学评价观察学生在解决实际问题时的应用能力和计算准确性。

评估学生对平方差公式应用的理解和掌握程度。

第三章:平方差公式的拓展3.1 教学目标让学生理解平方差公式的拓展概念和性质。

培养学生运用平方差公式解决更复杂问题的能力。

3.2 教学内容平方差公式的拓展概念和性质。

平方差公式在其他数学领域的应用。

3.3 教学步骤1. 引导学生思考平方差公式的拓展概念和性质,让学生进行自主探索。

2. 通过示例,介绍平方差公式在其他数学领域的应用,如二次方程的解法等。

3. 让学生尝试解决一些更复杂的题目,运用平方差公式进行计算和解答。

3.4 教学评价观察学生在探索平方差公式拓展概念和性质时的理解和思考能力。

评估学生对平方差公式在解决更复杂问题中的运用能力和创造力。

第四章:巩固练习巩固学生对平方差公式的理解和掌握。

提高学生运用平方差公式解决问题的能力。

4.2 教学内容设计一些练习题目,让学生运用平方差公式进行计算和解答。

平方差公式教案(公开课)

平方差公式教案(公开课)

平方差公式教案(公开课)章节一:平方差公式的引入1. 教学目标让学生通过实际例子,感受平方差公式的实际意义,培养学生的数学思维能力。

2. 教学内容通过具体的数字例子,引导学生发现平方差公式的规律。

3. 教学步骤(1) 教师出示一组数字,如2^2, 3^2, 4^2等,引导学生计算它们的差值。

(2) 学生发现,这些差值都可以表示为平方差的形式,如2^2 1^2, 3^2 2^2, 4^2 3^2等。

4. 教学评价通过具体的数字例子,检查学生对平方差公式的理解和掌握程度。

章节二:平方差公式的应用1. 教学目标让学生掌握平方差公式的应用,能够灵活运用平方差公式解决实际问题。

2. 教学内容通过具体的数字例子,引导学生掌握平方差公式的应用。

3. 教学步骤(1) 教师出示一组数字,如2^2, 3^2, 4^2等,引导学生运用平方差公式计算它们的差值。

(2) 学生运用平方差公式,计算出这些差值,如2^2 1^2 = (2 + 1)(2 1) = 3,3^2 2^2 = (3 + 2)(3 2) = 5,4^2 3^2 = (4 + 3)(4 3) = 7等。

4. 教学评价通过具体的数字例子,检查学生对平方差公式的应用理解和掌握程度。

章节三:平方差公式的拓展1. 教学目标让学生掌握平方差公式的拓展,能够运用平方差公式解决更复杂的问题。

2. 教学内容通过具体的数字例子,引导学生掌握平方差公式的拓展。

3. 教学步骤(1) 教师出示一组数字,如2^2, 3^2, 4^2等,引导学生运用平方差公式计算它们的差值。

(2) 学生运用平方差公式,计算出这些差值,如2^2 1^2 = (2 + 1)(2 1) = 3,3^2 2^2 = (3 + 2)(3 2) = 5,4^2 3^2 = (4 + 3)(4 3) = 7等。

4. 教学评价通过具体的数字例子,检查学生对平方差公式的拓展理解和掌握程度。

章节四:平方差公式的运用1. 教学目标让学生能够灵活运用平方差公式解决实际问题,提高学生的数学应用能力。

《平方差公式》教学教案

《平方差公式》教学教案

《平方差公式》教学教案第一章:导入1.1 教学目标:让学生理解平方差公式的概念和意义。

引导学生通过实际例子发现平方差公式的规律。

1.2 教学内容:平方差公式的定义和表达式。

平方差公式的推导过程。

1.3 教学步骤:1.3.1 引入平方差的概念,让学生回顾平方的定义和性质。

1.3.2 通过实际例子,引导学生发现平方差的现象,并总结规律。

1.3.3 给出平方差公式的表达式,解释其含义和适用范围。

1.4 教学评估:提问学生对平方差公式的理解和应用。

让学生完成一些相关的练习题,检验其对平方差公式的掌握程度。

第二章:平方差公式的推导2.1 教学目标:让学生理解平方差公式的推导过程。

培养学生通过逻辑推理和数学思维解决问题的能力。

2.2 教学内容:平方差公式的推导方法。

平方差公式的证明过程。

2.3 教学步骤:2.3.1 引导学生回顾平方的定义和性质,复习平方差的概念。

2.3.2 引导学生通过实际例子和数学推理,推导出平方差公式。

2.3.3 给出平方差公式的证明过程,解释其逻辑和数学依据。

2.4 教学评估:提问学生对平方差公式的推导过程和证明的理解。

让学生完成一些相关的练习题,检验其对平方差公式的推导和证明的掌握程度。

第三章:平方差公式的应用3.1 教学目标:让学生掌握平方差公式的应用方法。

培养学生运用平方差公式解决实际问题的能力。

3.2 教学内容:平方差公式的应用场景和例题。

平方差公式的变形和扩展。

3.3 教学步骤:3.3.1 引导学生理解平方差公式的应用场景,例如解决几何问题、物理问题等。

3.3.2 给出一些例题,引导学生运用平方差公式进行计算和解决问题。

3.3.3 引导学生对平方差公式进行变形和扩展,探讨其适用范围和限制条件。

3.4 教学评估:提问学生对平方差公式的应用场景和例题的理解。

让学生完成一些相关的练习题,检验其对平方差公式的应用和解决问题的掌握程度。

第四章:练习与巩固4.1 教学目标:让学生通过练习题巩固对平方差公式的理解和应用。

人教版八年级数学上册《平方差公式》教案

人教版八年级数学上册《平方差公式》教案
情感与价值观
1.通过学生的拼图、解题等活动,感受探索几何图形面积对的多种拼接方法的乐趣,体验巧妙运用公式解题的价值.
2.培养学生自主探究和合作交流意识和能力,体会数学的应用价值.
教学难点
理解公式中字母的广泛含义,并灵活运用公式,把公式中的结构特征与实际问题联系起来.
教学重点
理解并运用平方差公式化简计算并解决数学问题.
选做作业:
自主学习99-100页,10—13题
通过引用柯南进一步激发学生学习兴趣,完成应用题目,提高学生对平方差公式的灵活运用能力。
通过分层作业完成对不同程度孩子的课后督促学习。
本课教育评注(课堂设计理念,实际教学效果及改进设想)
《数学课程标准》指出:“学生是数学学习的主人”,“动手实践、自主探索与合作交流是学生学习数学的重要方式”.
教学过程(师生活动)
设计理念
情景引入
设计游戏:利用游戏图片,引导学生完成图片背后题目
情景创设,引发学生的学习兴趣,同时激发学生的好奇心和求知欲,顺利引入新课。
探究新知
1、计算下列各题:
观察以上算式及其运算结果,你发现了什么规律?并验证你的猜想.
2、验证猜Leabharlann :(1)代数验证:让学生动手操作通过结合图形的变换进一步验证猜想.
通过抢答让学生判断让学生进一步掌握平方差公式的公式结构,同时通过抢答让学生参与到其中,调动学生的积极性。
尝试运用
让学生熟悉公式结构特征,找准哪个数或者式子相当于公式中的“第一个数”a,哪个数或者式子相当于公式中的“第二个数”b,并运用公式进行计算。
挑战自我
乘法公式在数的乘法中的应用,属于两个数乘积的简便运算问题,可以使学生将平方差公式的知识迁移到新的问题情境中,即巩固新知识,又培养学生分析和解决问题的能力。

《平方差公式》教学设计(优秀7篇)

《平方差公式》教学设计(优秀7篇)

《平方差公式》教学设计(优秀7篇)平方差公式教学反思篇一平方差公式与完全平方公式是初中数学代数学知识方面应用最广泛的公式,也是学生代数运算的基础公式,在今后的数学学习过程中,更能体现其重要性,所以这两个公式的教学要求很高,需要每一名学生都必须熟练掌握这两个公式,并因此可以灵活运用公式进行因式分解和分解因式,解决很多代数问题。

如同勾股定理在全世界数学基础教学中地位显著,全世界各地数学教科书都要求学生掌握一样,平方差公式与完全平方公式也是全世界以致全国各地教科书都必讲必学的内容之一,作为整式的乘法公式,人教版教科书把平方差公式与完全平方公式安排在整式的乘法这一章的第二节,在第一节内容上先让学生掌握整式乘法的各项法则,当学生熟练掌握多项式与多项式的乘法后,再由此让学生来学生我们的乘法公式,本节内容分两部分,先介绍平方差公式,再介绍完全平方公式。

在学生熟练掌握多项式与多项式的乘法后,开始介绍平方差公式,教科书上是由找规律开始,让学生利用多项式乘法法则计算,从而发现平方差公式,由找规律得出公式的猜想,再介绍平方差公式的几何面积验证方法,来验证公式猜想的正确性,从而由代数探究及几何论证来得出平方差公式,得出公式后再来实际应用。

我一直严格要求自己,认真备教材,当然也认真备学生,使课堂教学符合学生的实际需要。

学生基础较差,教学内容要求生动、易学易懂,让学生能在活动教学中进行简单探究从而掌握好基础知识。

,我认真准备,仔细研读教材,精心制作出课件和教案,按教科书的教学顺序和过程,既安排学生计算上的运算探究猜想,又安排几何实践剪纸法,利用面积来验证公式。

我从实际问题出发,给出动手操作的实际几何问题引出本课,得出平方差公式的猜想,让学生动手实践,数形结合得出平方差公式,在利用多项式的乘法法则计算验证,最后辨析、应用,让学生熟悉平方差公式,最后应用提高,给出实际生活中的一个问题,利用平方差公式计算较大的数字,让学生明白学习,平方差公式不但可以在实际生活中运用,而且还可以简便计算,激发学生对平方差公式学习的兴趣,从而很好地掌握好平方差公式。

八年级数学上册《平方差公式》教案、教学设计

八年级数学上册《平方差公式》教案、教学设计
3.多样化练习,巩固知识:
设计不同难度的练习题,让学生在练习中巩固平方差公式。同时,注重练习的多样性,包括选择题、填空题、解答题等,提高学生的运算能力和解题技巧。
4.பைடு நூலகம்组合作,互帮互助:
开展小组合作学习,让学生在交流讨论中共同解决问题,培养学生的团队协作能力和交流表达能力。同时,鼓励学生互相提问、解答,共同突破难点。
3.教师点评:针对每个小组的讨论成果进行点评,指出优点和不足,引导学生进一步理解和掌握平方差公式。
(四)课堂练习
1.设计不同难度的练习题,让学生在课堂上进行独立练习。练习题包括选择题、填空题、解答题等,涵盖平方差公式的各种应用场景。
2.教师巡回指导:在学生练习过程中,教师巡回指导,解答学生的疑问,纠正错误,确保学生正确掌握平方差公式。
四、教学内容与过程
(一)导入新课
1.利用生活实例导入:以一块长方形土地为例,假设长为a+b,宽为a-b,引导学生计算该土地的面积。通过这个问题,让学生回顾有理数的乘法运算,为新课的学习做好铺垫。
2.提出问题:引导学生观察长方形土地的长和宽有什么特点,进而提出平方差公式的问题。这样既能激发学生的兴趣,又能让学生带着问题进入新课的学习。
五、作业布置
为了巩固本节课的学习内容,检验学生对平方差公式的掌握程度,特布置以下作业:
1.基础巩固题:完成课本第32页练习题1、2、3,要求学生在规定时间内独立完成,家长签字确认。通过这些基础题目,帮助学生巩固平方差公式的运算方法和应用场景。
2.提高拓展题:选取课本第33页拓展题1、2、3,要求学生尝试用平方差公式解决问题,并简要说明解题思路。此类题目旨在提高学生运用平方差公式解决复杂问题的能力。
1.学生对平方差公式的理解程度。大部分学生可能只是停留在公式表面的记忆,对公式的推导过程和内涵理解不够深入,需要通过具体实例和引导,帮助学生理解平方差公式的本质。

人教版数学八年级上册 14.2.1 平方差公式 教案

人教版数学八年级上册   14.2.1 平方差公式 教案

14.2.1平方差公式教学目标:知识与技能:理解和掌握平方差公式,会运用平方差公式进行简单的运算过程与方法:①培养学生动手操作、合作探究能力②引发和培养学生观察、分析和归纳能力,进一步培养学生逆向思维能力和数学应用意识,感悟整体思想情感与态度:让学生在合作探究学习的过程中体验成功的喜悦;在感悟数学美同时激发学习数学兴趣和信心重难点:重点是认识平方差公式,在探究公式的过程中培养学生观察、分析问题和归纳的能力。

难点:是准确理解和掌握公式的结构特征。

一、自主探究1、平方差公式内容2、用公式表示平方差公式。

3、平方差公式有何特点。

公式中的a,b可以表示什么?二、复习引入多项式与多项式是如何相乘的?算一算:看谁算得又快又准.计算下列多项式的积,你能发现什么规律?①(x +1)( x-1);②(m +2)( m-2);③(2m+1)(2m-1);④(5y +z)(5y-z).合作探究想一想:这些计算结果有什么特点?成果展示平方差公式(a+b)(a−b)=a2−b2两数和与这两数差的积,等于这两数的平方差.公式变形:1.(a – b ) ( a + b) = a2 - b22.(b + a )( -b + a ) = a2 - b2点拨提升平方差公式的几何验证边长为a 的正方形纸板缺了一个边长为b 的正方形角,经裁剪后拼成了一个长方形.(1)你能分别表示出裁剪前后的的纸板的面积吗?(2)你能得到怎样的一个结论?典例精析例1 计算:(1) (3x +2 )( 3x -2 )(2)(-x+2y)(-x-2y)掌握平方差公式的结构特征以及平方差公式的运用在青青草原上,村长把一块长为a 米的正方形的土地租给喜羊羊种植,有一天,他对喜羊羊说:“ 我把这块地的一边减少5米,另一边增加5米,继续租给你,你看如何?”喜羊羊一听觉得没有吃亏,就答应了 。

同学们,你们觉得喜羊羊吃亏了吗?根据多项式乘法进行验证平方差公式()()22a b ab a b -=-+两数和与这两数差的积,等于这两数的平方差. 公式变形:平方差公式实质是多项式乘法的特殊情形1.(a – b ) ( a + b ) = a 2 - b 22.(b + a )( -b + a ) = a 2 - b 2课堂小结平方差公式内容两个数的和与这两个数的差的积,等于这两个数的平方差注意1.符号表示:(a+b)(a-b)=a2-b22. “一同一反”结构特征,在应用时,只有两个特殊的二项式的积形式才能应用平方差公式;对于不能直接应用公式的,可能要经过变形才可以应用通过本节学习我们掌握了如下知识.(1)平方差公式两个数的和与这两个数的差的积等于这两个数的平方差.•这个公式叫做乘法的平方差公式.即(a+b)(a-b)=a2-b2.(2)公式的结构特征①公式的字母a、b可以表示数,也可以表示单项式、多项式;②要符合公式的结构特征才能运用平方差公式;③有些式子表面上不能应用公式,但通过适当变形实质上能应用公式.•课后作业1.课本P151练习1。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

14.2.1平方差公式
教学目标
1、会推导平方差公式并掌握公式的结构特征,能运用公式进行简单的计算;
2、了解平方差公式的几何背景,体会数形结合的思想方法。

重点难点
重点:平方差公式的推导及应用.
难点:用公式的结构特征判断题目能否使用公式.
教学设计
一、板书标题,揭示教学目标
教学目标
1、会推导平方差公式并掌握公式的结构特征,能运用公式进行简单的计算;
2、了解平方差公式的几何背景,体会数形结合的思想方法。

二、指导学生自学
自学内容与要求
看教材:课本第151页------第153页,把你认为重要部分打上记号,完成第153页练习题。

想一想:1、平方差公式实质是什么?
2、满足什么条件的两个多项才能运用平方差公式?
3、你对152页思考中的图形理解吗?
8分钟后,检查自学效果
三、学生自学,教师巡视
学生认真自学,并完成P153练习,老师巡视,并指导学生完成练习。

四、检查自学效果
1、学生回答老师所提出的问题;
2、你能根据下面的两个图形解释平方差公式吗?
3、学生抢答P153练习结果,并要求学生是否有不同意见。

4、学生板演:
计算:
(1)x2+(y-x)(y+x)
(2)20082-2009×2007
(3)(-0.25x-2y)(-0.25x+2y)
(4)(a+1
2
b)(a-
1
2
b)-(3a-2b)(3a+2b)
五、归纳,矫正,指导运用
1、概念归纳:平方差公式的字母表示形式
(a+b)(a-b)=a2-b2.其中a、b表示任意数,也可以表示任意的单项式、多项式。

即:两个数的和与这两个数的差的积,等于这两个数的平方差。

2、应用:
下列计算是否正确?如不正确,应怎样改正?
(1)(a-4)(a+4)=a2-4
(2)(2x+5)(2x-5)=2x2-25
(3)(-a-b)(a+b)=a2-b2
(4)(mn-1)(mn+1)=mn2-1
计算:
(1)(a+b)(-b+a)(2)(-a-b)(a-b)
(3)(3a+2b)(3a-2b)(4)(a5-b2)(a5+b2)
(5)(a+2b+2c)(a+2b-2c)(6)(a-b)(a+b)(a2+b2)
六、随堂练习
1、用简便方法计算
(1)2001×1999 (2)998×1002
2、计算:
(1)(x+1)(x-1)
(2)(m+2)(m-2)
(3)(2x+1)(2x-1)
(4)(x+5y)(x-5y)
七、布置作业
课本第156页 1
设计思想:
《新课程标准》中明确指出:“数学教学是数学活动的教学,学生是数学学习的主人。

教师的职责在于向学生提供从事数学活动的机会,在活动中激发学生的学习潜能,引导学生积极自主探索、合作交流与实践创新。

”在教学设计时,我以新课标理念为指导思想,以多媒体教学课件为辅助教学手段,突出对平方差公式的推导和应用。

自主探究、举一反三、语言叙述、推导验证、几何解释、应用巩固等活动都是根据学生的认知特点和所学知识的特征,让学生经历数学知识的形成与应用过程,以促进学生有效学习。

在教学活动的组织中始终注意:(1)以问题为活动的核心。

在组织活动前,结合学习内容和学生实际,更好地使用教科书(如对平方差公式进行几何解释时,将书中图形一分为二),创设问题情境.(2)促进学生发展是活动的目的。

数学教育要以获取知识为首要目标转变为首先关注人的发展,这是义务教育阶段数学课程的基本理念和基本出发点.因此,本节课我组织活动的目的,不是为了单纯地传授知识,而是注意让学生在参与平方差公式的探究推导、归纳证明、解释应用的过程中促进学生代数推理能力、表达能力、与人合作意识、数学思想方法等各方面的进一步发展。

相关文档
最新文档