第二章1分布函数

合集下载

工程数学概率 第二章(一)

工程数学概率 第二章(一)

1
2
……
30
3 X ~ b(30, ) 4
设100件产品中有95件合格品,5件次品,先从中 例2、 随机抽取10件,每次取一件,X—10件产品中的次品数, (1)有放回的抽取,求 X的分布律; (2)无放回的抽取,求 X的分布律; (3)有放回的情况,求10件产品中至少有2件次品的概率。 解:(1) A — 取得次品, P(A)=0.05,
1/ 5e x / 5 f ( x) 0
x0 x 0,
机动 目录 上页 下页 返回 结束
3、正态分布
定义1:若随机变量 X 的概率密度函数为
则称X 服从参数为 的正态分布或高斯分布, f (x)的图形:
特点:(52页)
(1) f (x)关于 (2) f (x)在 (3)
定义2、
解 由题意可知
,则
的分布律为
机动
目录
上页
下页
返回
结束

带入可得 的分布律为
34页例2:几何分布
机动
目录
上页
下页
返回
结束
二、常用的离散型随机变量及其分布
Ⅰ. (0—1)分布 定义1.如果随机变量
的分布律为
则称
服从参数为
的(0—1)分布。
(0 —1)分布的分布律也可写成 注:如果随机试验只有两个结果,总能定义一个服从 (0 —1)分布的随机变量。
1. 概率密度 定义1. 设 F(x) 是随机变量 X的分布函数,若存在非负 函数 f x x , ,使对任意实数 x 有
则称 X为连续型随机变量,称 f ( x)为 X 的概率密度函 数,简称概率密度或密度函数。
机动
目录
上页

《概率论与数理统计》课件-第2章随机变量及其分布 (1)

《概率论与数理统计》课件-第2章随机变量及其分布 (1)
则称X服从参数为λ的泊松分布, 记为 X ~ P() .
HAINAN UNIVERSITY
概率论与数理统计
第二五章 基随本机极变限量定及理其分布
泊松分布的应用
“稠密性”问题(一段时间内,电话交换中心接到的呼叫次 数,公共汽车车站候车的乘客数,售票窗口买票的人数, 原子放射的粒子数,保险公司在一定时期内被索赔的次 数等)都服从泊松分布.
随机变量的分布函数
1.定义: 设X为一随机变量, x为任意实数, 称函数 F(x)=P{X≤x}为X的分布函数.
注: ① F(x)是一普通函数, 其定义域为 ,; ② F x的值为事件X x的概率; ③ F x可以完全地描述随机变量取值的规律性.
例如: Pa X b PX b PX a
连续型随机变量及概率密度函数
1.定义: 设X ~ F(x), 若存在一个非负可积的函数 f (x),
使 x R, 有
F ( x)
PX
x
x
f
(t)dt
,
则称X为连续型随机变量, f (x) 称为X的概率密度函数或
分布密度函数.
2.几何意义:
HAINAN UNIVERSITY
概率论与数理统计
第二五章 基随本机极变限量定及理其分布
二、随机变量的概念
定义: 设试验E的样本空间为 , 若对于每个样本
点 , 均有一个实数 X ()与之对应, 这样就得
到一个定义在 上的单值函数 X X () , 称X为随
机变量.
X
样本空间
实数
注: ① 随机变量是一个定义在样本空间上的实函数, 它取值的随机性是由样本点的随机性引起的;
x 1
x0
0 x x
不是 (不满足规范性)

第二章-1分布函数

第二章-1分布函数

P(a ≤ X ≤ b) = F(b) − F(a − 0) P(a < X < b) = F(b − 0) − F(a) P(a ≤ X < b) = F(b − 0) − F(a − 0)
概率论
二、分布函数的性质 (1) F( x) 在(− ∞,+∞) 上是一个不减函数 ,
即对 ∀ x1 , x2 ∈(− ∞,+∞) 且 x1 < x2 , 都有 F( x1 ) ≤ F( x2 ) ;
概率论
F(x)的分布函数图
y
1பைடு நூலகம்
22 35 34 35
0
1
2
x
例4 在区间 [0,a] 上任意投掷一个质点,以 , 上任意投掷一个质点, X 表示这个质点的坐标 . 设这个质点落在 [0, a]中意 中意 小区间内的概率与这个小区间的长度成正比, 小区间内的概率与这个小区间的长度成正比,试求 X 的分布函数 的分布函数. 的分布函数, 解 设 F(x) 为 X 的分布函数, 当 x < 0 时,F(x) = P(X
x→x0
如果一个函数具有上述性质,则一定是某个 如果一个函数具有上述性质,则一定是某个r.v X 的分布函数 也就是说,性质 的分布函数. 也就是说,性质(1)--(3)是鉴别一个函 是鉴别一个函 的分布函数的充分必要条件. 数是否是某 r.v 的分布函数的充分必要条件
概率论
例1 设有函数 F(x)
0 = lim F( x) = lim ( A+ Barctgx) = A− B x→−∞ x→−∞ 2
π
π
概率论
解方程组
π A− 2 B = 0 π A+ B = 1 2

第二章随机变量及其分布函数

第二章随机变量及其分布函数

28
例2.2.9 设在时间t分钟内通过某交叉路口的汽车 数服从参数与t成正比的泊松分布. 已知在一分钟内 没有汽车通过的概率为0.2,求在2分钟内多于一辆 车通过的概率.
S={红色、白色} ?
将 S 数量化
非数量 可采用下列方法
X ()
红色 白色
S
1 0R
3
即有 X (红色)=1 , X (白色)=0.
1, 红色, X () 0, 白色.
这样便将非数量的 S={红色,白色} 数量化了.
4
实例2 抛掷骰子,观察出现的点数.
则有
S={1,2,3,4,5,6} 样本点本身就是数量 X () 恒等变换
20
泊松分布是一个非常常用的分布律,它常与 单位时间、单位面积等上的计数过程相联系. 例如一小时内来到某百货公司中顾客数、单位 时间内某电话交换机接到的呼唤次数和布匹 上单位面积的疵点数等随机现象都可以用泊
松分布来描述. 附表 2 给出了不同 值对应的
泊松分布函数的值.
21
泊松分布的取值规律
记 P(k; ) k e ,则
P
1 2
X
5
2
P(X
1 X
2)
P(X 1) P(X 2) 5
9
12
例 2.2.2 一只口袋中有 m 只白球, n m 只黑球.连 续无放回地从这口袋中取球,直到取出黑球为止.设 此时取出了 X 只白球,求 X 的分布律.
解 X 的可能取值为 0,1,2,, m ,且事件{X i}意 味着总共取了 i+1 次球,其中最后一次取的是黑球而 前面 i 次取得都是白球.
或 X ~ Bn, p.
二项分布的背景是伯努利试验:如果每次试验中事 件A发生的概率均为p,则在n重伯努利试验中A发生 的次数服从参数为n,p的二项分布。

概率论与数理统计 第二章1

概率论与数理统计 第二章1
College of Science
理学院
概率论与数理统计
定义若随机变量 的可能取值是有限个 可列个, 有限个或 定义若随机变量 X 的可能取值是有限个或可列个 则称 X 为离散型随机变量
为了研究离散型随机变量的统计规律性, 为了研究离散型随机变量的统计规律性,给出分布律的概念 是一个离散型随机变量, 的所有可能取值为 的所有可能取值为x 定义 设X=X(ω)是一个离散型随机变量,X的所有可能取值为 1, ω 是一个离散型随机变量 x2,…,xn,…,称X取值为 i时的概率 取值为x , , 取值为
上海理工大学
University of Shanghai for Science and Technology
College of Science
理学院
概率论与数理统计
是随机变量, −∞, , 定义 设X是随机变量,对于任意实数 ∈(−∞,∞),称函数 是随机变量 对于任意实数x∈ −∞ F(x)=P{X≤x } ≤ 为X的分布函数 的 分布函数有下列性质: 分布函数有下列性质: 1、F(x)单调不减,即任意 1<x2,则F(x1) ≤ F(x2); 单调不减, 、 单调不减 即任意x ; 2、F(x)非负 且不超过1, 2、F(x)非负,且不超过1,即0≤F(x) ≤1; 非负, 1; ≤
P( X = xk ) = pk , k =1 2,⋯ ,
为X的分布律。 的分布律。 分布律也可以用表格形式表示: 分布律也可以用表格形式表示:
X P
x1
p1
x2 ⋯ xk ⋯
p2 ⋯ pk ⋯
上海理工大学
University of Shanghai for Science and Technology

第二章随机变量及其概率分布(概率论)

第二章随机变量及其概率分布(概率论)

当 x ≥ 1 时,F ( x) = P( X ≤ x) =P( X = 0) + P( X = 1) =1 ⎧0 x < 0
所以 F ( x) = ⎪⎨0.3 0 ≤ x < 1. ⎪⎩1 1 ≤ x
⎧0 x < 0 分布函数为 F ( x) = ⎪⎨0.3 0 ≤ x < 1
⎪⎩1 1 ≤ x
分布函数图形如下
F(x) 1 0.3
x 01
3
例 设X的概率分布律如下,求X的分布函数. X012 P 0.4 0.35 0.25

⎧0
x<0
F
(
x)
=
⎪⎪ ⎨

0.4 0.75
0≤ x<1 1≤ x<2
⎪⎩ 1
x≥2
由此可见
(1)离散型随机变量的分布函数是分段函数,分 段区间是由X的取值点划分成的左闭右开区间; (2)函数值从0到1逐段递增,图形上表现为阶梯 形跳跃递增; (3)函数值跳跃高度是X取值区间中新增加点的 对应概率值.
z 泊松在数学方面贡献很多。最突出的是1837 年在提出泊松分布。
z 除泊松分布外,还有许多数学名词是以他的 名字命名的,如泊松积分、泊松求和公式、 泊松方程、泊松定理。
当一个随机事件,以固定的平均瞬时速率 λ随机独立地出现时,那么这个事件在单 位时间(面积或体积)内出现的次数或个数 就近似地服从泊松分布。
解: 依题意, X可取值 0, 1, 2, 3.
设 Ai ={第i个路口遇红灯}, i=1,2,3
路口3
路口2
P(X=0)= P(A1)=1/2,
路口1
X=该汽车首次停下时通过的路口的个数. 设 Ai={第i个路口遇红灯}, i=1,2,3

第二章 一维随机变量及其分布

第二章  一维随机变量及其分布

第二章一维随机变量及其分布第一节随机变量及其分布函数一、内容精要(一)随机变量1.随机变量的引入的背景2.随机变量的严格定义(二)分布函数1.分布函数的定义2.分布函数的性质3.分布函数表示的概率计算公式二、 常考题型分析(一) 与分布函数有关的性质1. 判定给定函数是否为分布函数例1 ()下列函数中,可以做随机变量的分布函数的是()()21.1A F x x =+ ()()31arctan .42B F x x π=+ ()()0,0,,0.1x C F x xx x≤⎧⎪=⎨>⎪+⎩ ()()2arctan 1.D F x x π=+2. 含参数的分布函数形式已知,求未知参数例2 ()()1212F x F x X X 设与分别为随机变量和的分布函数.为使 ()()()12=F x aF x bF x -()是某一随机变量的分布函数,在下列给定的各组值中应取()32,.55A a b ==- ()22,.33B a b == ()13,.22C a b =-= ()13,.22D a b ==-例3 ()()0,1,11,11,84,11,1,1,x x X F x P X ax b x x <-⎧⎪⎪=-⎪===⎨⎪+-<<⎪≥⎪⎩设随机变量的分布函数且,.a b 求未知参数3. 分布函数的连续性例4 ()000X x P X x ==设随机变量对于任意实数有的充要条件为()A X 为离散随机变量. ()B X 不是离散随机变量.()()C X F x 的分布函数为连续函数.()()D X f x 的概率密度为连续函数.例5 ()()()()1221F x X P x X x F x F x <<=-设为随机变量的分布函数,则()()F x 成立的充要条件是在()1A x 处连续. ()2B x 处连续. ()12C x x 和至少一处连续. ()12D x x 和都不连续.例6 ()()1F x F x --设为某个随机变量的分布函数,讨论函数是否为分布.函数(二) 已知分布函数求区间或某点的概率例7 ()()()00,1=01,121,1,xx F x x P X e x <⎧⎪⎪≤<=⎨⎪-≥⎪⎩,设随机变量的分布函数,则为()0.A ()1.2B ()11.2C e -- ()11.D e --例8 3164一个边长为的正立方体容器盛有的液体,假设一个小孔出现在容器 个表面的任何一个部位是等可能的,现在表面出现了一个小孔,液体经此小孔流出,试求()X F x (1)容器中剩余液体液面的高度的分布函数; 3().4P X =(2)例9 ()=()X x R F x P X x ∈<设为随机变量,对于任意,定义函数,且00,1()=01,21,1,x x F x x e x -≤⎧⎪⎪<≤⎨⎪->⎪⎩,,(1)_____________.P X ==则第二节一维随机变量及其分布一、内容精要(一)一维离散型随机变量及其分布1.分布律和性质2.分布函数3.常见分布(二)一维连续型随机变量及其分布1.概率密度及其性质2.分布函数的性质3.常见分布二、 常考题型分析(一) 与概率分布的性质相关的问题1. 判断函数是否为概率密度例1 12()()F x F x 设,为分别两个随机变量的分布函数,其相应的概率密度()12()()f x f x 分别为,,这两个函数均是连续函数,则必为概率密度的是()12()()A f x f x ()21()()B f x F x()12()()C f x F x ()1221()()()()D f x F x f x F x +2. 概率分布已知,求分布中的位置参数 例2 X 设随机变量的概率分布为()()()11,2,,,n kk kn P X k A C p p k n -==⋅-=,01___________.n Z p A +∈<<=其中为已知,则例3 ()1()1,2,2k kP X k k X θ-==⋅= 设为随机变量的分布律的充要条件 为__________.例4 []12()()1,3f x f x -设为标准正态分布的概率密度,为上均匀分布的()()12(),0,()0,0,(),0,af x x f x a b a b bf x x ≤⎧=>>⎨>⎩概率密度,若为概率密度,则应满足例5 2,0,()______.0,0,x ax e x X f x a x -⎧>==⎨≤⎩设随机变量的概率密度函数为则例6 22(),______.x xX f x ae a -+==设随机变量的概率密度函数为则(二) 已知随机试验中的随机变量,求分布律和分布函数例7 413设有三个盒子,第一盒子有个红球,个黑球;第二个盒子装有个红 223球,个黑球;第三盒子装有个红球,个黑球,现在从三个盒子中任取一盒,然后从中任取3个球,试求所取到的红球个数的分布律与分布函数.例8 ()01,p p <<某人向同一目标独立重复射击,每次射击命中概率为2X 记随机变量为第次射中目标所进行的射击的次数.求X 得分布律.(三) 已知分布函数求分布律或已知概率密度函数求分布函数1. 已知分布函数求分布律例9 X 设随机变量的分布函数为()0,1,0.4,11,0.8,13,1,3,x x F x x x <-⎧⎪-≤<⎪=⎨≤<⎪⎪≥⎩ .X 试求的分布律例10 X 已知随机变量的概率分布律为()()22123211X P θθθθ--()()32.4P X X F x θ≥=且,求未知参数及的分布函数2. 已知概率密度函数求分布函数例11 X 设连续型随机变量的密度函数为()12,0,211,1,2332,1,20,,x x x f x x x ⎧≤<⎪⎪⎪<≤⎪=⎨⎪-<≤⎪⎪⎪⎩其它 ().X F x 试求的分布函数(四) 与常见分布有关的概率问题1. 离散型常见分布例12 ()()12~,,X P p p X λ设分别为随机变量取偶数和奇数的概率,则()12.A p p = ()12.B p p < ()12C p p > ()12,D p p 大小关系不定.例13 X 设随机变量的概率密度函数为()()+1,01,0,k k x x f x ⎧<<=⎨⎩其它, 137264Y X A X ⎛⎫=≤ ⎪⎝⎭以表示对的三次独立的重复观察中,事件至少发生一次的概率为,,95%n A X 试求常数使得事件至少发生的一次的概率超过,对至少要做多少次独立重 .复的观察例14 ()01,p p <<某人向同一目标独立重复射击,每次射击命中概率为.X X 直至射中目标为止,记随机变量为射击的次数.求为偶数的概率例15 ()(),,.X B n p k P X k =设随机变量服从二项分布当取何值时,最大2. 连续型常见分布例16 ()()()~,0,0,X E s t P X s t X sλ>>>+>设则对于任意则().A t s 与无关,随的增大而增大 ().B t s 与无关,随的增大而减少 ().C s t 与无关,随的增大而增大 ().D st 与无关,随的增大而减少例17 ()()()2~,1X N P X μσμ<+设,则().A μ随的增大而增大 ().B μ随的增大而减少 ().C σ随的增大而不变 ().D σ随的增大而减少例18 ()211,X N Y μσ设随机变量服从正态分布,随机变量服从正态分布()12.A σσ< ()12.B σσ> ()12.C μμ< ()12.D μμ>例19 ()()21,0,0,03X Y N P X Y σ≤>设随机变量均服从,若概率=, ()0,0______.P X Y ><则=例20 1009010有个零件,其中个一等品,个二等品,随机地取两个,安装在 ()20,1,2i i =一台设备上,若个零件中有个二等品,则该设备的使用寿命服从参数 =1i λ+为的指数分布,试求()11设备寿命超过的概率;()212.若已知该设备寿命超过,则安装在该设备上的个零件均为一等品的概率第三节 一维随机变量函数的分布一、 内容精要(一) 一维离散型随机变量函数的分布律(二) 一维连续型随机变量函数分布求解二、 常考题型分析(一) 求可列无穷多取值的离散型随机变量函数的分布律例1 ()1,1,2,,sin .22n X P X n n Y X π⎛⎫==== ⎪⎝⎭设的分布律为求的分布律(二) 已知连续型随机变量的概率密度,求非单调函数的概率密度例2 X 设随机变量的概率密度为()1,10,21,02,40,.X x f x x ⎧-<<⎪⎪⎪=≤<⎨⎪⎪⎪⎩其它2.Y X Y =令,求的概率密度函数例3 ()20,423X Y X X Y =--设服从区间上的均匀分布,随机变量,试求的 .密度函数例4 1X =max ,.Z X X λ⎛⎫ ⎪⎝⎭设随机变量服从参数为指数分布,求的分布函数(三) 抽象的随机变量函数的分布例5 ()(),,X F x Y F x =设连续型随机变量的分布函数为令求随机变量函数 .Y 的概率分布例6 (),1__________.X F x Y X =-随机变量的分布函数为则的分布函数为。

第二章 随机变量及其分布第一节 随机变量及其分布函数讲解

第二章 随机变量及其分布第一节 随机变量及其分布函数讲解
2
Copyright © 2006 NJUFE
正态分布的概率计算公式:设 ~N (, 2 ),
P( a) (
a

); x2 ) ( x1 );
P( x1 x2 ) (
c P( c) 1 ( ); c c P( c) 2 ( ) ( ); c c P( c) ( ) ( ) 1.
P ( a b) F (b) F ( a )
f ( x)dx;
a
b
若f(x)在x0处连续,则F ( x0 ) f ( x0 )。
连续型随机变量与离散型随机变量的区别: 1) 连续型随机变量没有分布律; 2) 连续型随机变量取个别值的概率为零,即
P( x0 ) 0,x0 (, )。
二、随机变量的分布函数及其基本性质
定义2.2 (教材 p 47)

是随机变量,x 是任意实数,称函数 F ( x) P( x), x 为 的分布函数。
对于任意两实数
x1,x2, x1 x2,有
P( x1 x2 ) P( x2 ) P( x1 ) F ( x2 ) F ( x1 )
5. 几何分布 定义2.6( 若离散型随机变量

的分布律为
P( k ) p(1 p)k 1,k 1 , 2, 0 p 1
则称 服从参数为p的几何分布。 第三节、连续型随机变量 一、连续型随机变量的概念 定义2.7(教材 51) 设F(x) 为随机变量 使对一切实数x,都有
pk P( xk ), k 1 , 2,
为 的分布律(概率分布)。

概率论与数理统计-第二章-随机变量及其分布函数ppt课件

概率论与数理统计-第二章-随机变量及其分布函数ppt课件

表格: X
x1 x2
pk
p1 p2
概率分布图:
1P
xn
pn
0.5
x4 x3
x1
x2
X
.
由概率的性质易知离散型随机变量的分布列
pk
满足下列特征性质:
k 1
① pk 0(k 1,2,) [非负性]

pk 1 [规范性]用于确定待定参数
k 1
③ F( x) P( X x) P(X xi ). xi x
1. 2
.
【例2】设随机变量X的分布函数为
aex b, x 0
F(x)
0,
x0
解: 因为 F(x) 在 x=0 点右连续
求: 常数 a 和 b。
所以 lim F ( x) lim (ae x b) a b 0
x0
x0
又因为 F () lim (ae x b) b 1 x
1、两点分布 或(0 - 1)分布
two-point distribution
定义1 设离散型随机变量X的分布列为
X0 1 pk 1 p p
其中 0<p<1
则称 X 服从(0 - 1)分布,记作 X ~(0 - 1)分布
F(x)
(0 - 1)分布的分布函数
0 , x0 F ( x) 1 p, 0 x 1
X = “三次试验中 A 发生的次数”,
{ X 2} A1A2 A3 A1A2 A3 A1A2 A3 P{X 2} P(A1A2 A3 A1A2 A3 A1A2 A3 )
P(A1A2 A3 ) P(A1A2 A3 ) P(A1A2A3 ) P(A1)P(A2)P(A3) P(A1)P(A2)P(A3) P(A1)P(A2 )P(A3 ) C32 p2(1 p)32

概率论与数理统计第二章--随机变量及其分布

概率论与数理统计第二章--随机变量及其分布

第十四页,编辑于星期二:四点 四十二分。
由于 X的取值点 3,4,5,6将R分成五个区间,
因此我们分段讨论可得,
?0,
x ? 3,
F( x )
F (x) ? ????00..02,5,
3 ? x ? 4, 4 ? x ? 5,
1
0.5
?0.5, 5 ? x ? 6,
0.2
?
0.05
??1,
x ? 6.
且每台设备在一天内发生故障的概率都是
0.01. 为保证设备正常工作,需要配备适量 的维修人员.假设一台设备的故障可由一人 来处理,且每人每天也仅能处理一台设备. 试分别在以下两种情况下求该公司设备发生 故障而当天无人修理的概率。 (1)三名修理工每人负责包修 60台 (2)三名修理工共同负责 180台
则称 X服从参数为 p的两点 (或0-1)分布.
第十九页,编辑于星期二:四点 四十二分。
?二项分布
例4. 设射手每一次击中目标的概率为 p,现连 续射击n次,求击中次数 X 的概率分布 .
若随机变量X的概率分布为
Pn (k)
?
P
(
X
?
k)?C
k
n
p
k
(1
?
p)n?k ,
k ? 0,1,? , n
其中 0< p<1,称X服从参数为n和 p的二项分布,
第二十一页,编辑于星期二:四点 四十二分。
?泊松分布
若随机变量 X的概率分布为
P( X ? k) ?e? ? ? k , k?0,1,2,? ? ,
k!
其中λ>0为常数,则称X服从参数为λ的泊松
分布,简记为 X ~ P (? )

第二节 离散型随机变量及其分布1

第二节 离散型随机变量及其分布1
概率论与数理统计
广



广
大 学
东 工 业
主讲教师:
大 学
上页 下页 返回
第二章 随机变量
§1 随机变量及其分布函数 §2 离散型随机变量及其分布 §3 连续型随机变量及其分布 §4 随机变量函数的分布
广 东 工 业 大 学
上页 下页 返回
§2 离散型随机变量及分布
一、离散型随机变量的定义
有些随机变量,它全部可能取的值只有有限 个,或者,虽然有无限多个可能的值,但这些值 可以无遗漏地一个接一个地排列出来(即可列 个),称这种随机变量为离散型随机变量。
二项分布描述的是n重贝努里试验中出现
“成功”(事件A发生)次数ξ的概率分
布.
在解应用题时需要注意判断问题是否
为贝努利概型,可否用二项分布求解. 广 东 工 业 大 学
上页 下页 返回
例 医生对5个人作某疫苗接种试验,设已知对试验反应呈阳性的
概率为p=0.45,且各人的反应相互独立。若以 记反应为阳性的人数。 (1)写出 的分布律;(2)恰有3人反应为阳性的概率;(3)至少有2
0.453(1
0.45)2
0.276;
广
(3)至 少 有2人 反 应 呈 阳 性 的 概 率 是
东 工
P( 2) 1 p( 0) p( 1)
业 大
1
(1
0.45)
5
C
1 5
0.45(1
0.45)4 0.744.
上页 下页
返回

若X : b(n,p),则明显地成立以下公式:
1.在n重贝努利 试验中,事件A发生的次 数在k1与k2之间的概 率是
下面求P{ξ=k}

概率论与数理统计第二章笔记

概率论与数理统计第二章笔记

第二章 随机变量及其分布 §1.随机变量与分布函数一、随机变量的概念定义:假设Ω为试验E 的样本空间,对任意的ω∈Ω都赋予一个实数X (ω)与之对应,则实值函数X ()称为随机变量,一般用X ,Y ,Z 或者,ξη 注:1、Z (ω)由ω唯一确定2、随机变量X 与实数x 的区别3、对实数x ,事件{X ≤x}有一定的概率,P{X ≤x} 二、分布函数定义:设(Ω, ,P )为概率空间,还为定义在Ω上的随机变量,对任意x ∈R ,一元实值函数F (x )= P{X ≤x},称为r ,v ,X 的概率分布函数,简称分布函数 注:1、F (x )= P{X ≤x},x ∈R2、分布函数是指描述随机变量分布的根本方法3、分布函数的性质性质1、(单调性)对任意的12X X ≤,有F (1X )≤F (2X ) 注:P (a X b <≤)=F (b )-F (a )P (a X b ≤≤)= F (b )-F (a )+P (X=a )P (a X b ≤<)= F (b )-F (a )+P (X=a )-P (X=b ) P (a X b <<)= F (b )-F (a )-P (X=b ) P (X a ≤)= F (a ) P (a X <)=1- F (a ) 性质2、(有界性):0≤F (x )1≤ 性质3、()lim ()1x F F x →+∞+∞==()lim ()0x F F x →-∞-∞==性质4、(右连续性) 对任意x ∈R ,有F (x+0)=F (x ) 证明:设x A ={X ≤x+1n} 则123......A A A ⊇⊇⊇且n ={}n A X x +∞=-∞⋂≤所以F(x)=P{X ≤x}=P(1n n A ∞=⋂)=lim ()n n P A →+∞=n +11lim (x+)=lim ()nn P X F x n→+∞→∞≤+由F(x)的单调性 F(x)=F(x+0)例:设r.v.X 的分布函数为F(x)=A+Barctanx x ∈R 求待定系数A.B 由F(+∞)=1 F(-∞)=0 得到lim (arctan )12x A B x A B π→+∞+=+=lim (arctan x )=a-02x A B B π→∞+= 所以A=12B=1π第二节 离散型r .v .及其分布一.基本概念定义:设X 为样本空间Ω的随机变量,若存在一个有限或可列无限集B ,使得P{X ∈B}=1则称X 为离散型r . v . 设其所有可列取值为{k X } K=1.2.3……n …则k P =P(X=k X ) K=1.2.3…..n …则称为X 的概率分布列[注]:1.概率分布列是描述离散型随机变量的概率分布的方法之一分布矩阵1212........................n n x x x p p p ⎛⎫⎪⎝⎭3.非负性:k P >0.k=1.2….. 归一性:K kP ∑=14.求离散型r . v . 分布列的步骤Step1:列出r . v . X 的所有可能取值 Step2:计算几个取值对应的概率例:甲乙两队进行比赛,规定谁先赢三局获胜。

随机变量的分布函数

随机变量的分布函数
a , b (a ≤ b ) 均成立 .
例2.6某人投篮, 命中率为0.7 , 规则是: 投中或投了 4次后就停止投篮, 设X表示“此人投篮次数” , 求X 解 由题意可知X的可能值为 1, 2 , 3 , 4 , 概率分别为 所以 X 的概率分布为 的分布函数 .
P
0.7 0.21 0.063 0.027
(2) 随机变量 X 落在( 0.3 , 0.7 ]内的概率
例2.8设F1(x) , F2(x) 都是分布函数, a1 , a2都是正常数,
且 a1+a2=1 , 试证a1F1(x) + a2F2(x) 也是分布函数 .
证 由于F1(x) , F2(x) 都是分布函数, 故知
0≤F1(x) ≤1 , 0≤F2(x) ≤1 对一切 x∈R 成立 . 于是
根据分布函数定义可知 X 的分布函数为
F(x) =
0 , -∞< x <1
0.7 , 1 ≤x <2
0.7+0.21=0.91 , 2 ≤x <3
0.91+0.063=0.973 , 3 ≤x <4
且右连续的 .

从而 a1F1(x) + a2F2(x) 也是分布函数 .
于是 a1F1(x) + a2F2(x) 满足分布函数的所有性质,
0≤a1F1(x) ≤a1 , 0≤a2F2(x) ≤a2 . 所以有
①0≤a1F1(x)+ a2F2(x) ≤a1+ a2 =1 对一切x∈R 均成立.
②由于 F1(x) , F2(x) 均是单调不减且右连续的, 又因
且 a1> 0 , a2> 0 , 故a1F1(x) + a2F2(x) 也是单调不减

随机变量的分布函数

随机变量的分布函数
y
1
O
1
2
x
3
P{0 X 2} k 2 2 1 k 1/ 4 2 x 当 时 存在 , 令 F ( x ) x X 2P F (0 x) P { X x} X 0} P{0 X x} x0 20, ,x P { {x 0} 4 t ,0 {X x } 故 tS , 2, 若 x 2, F由题意有 ( x) 处处连续 , 故 f (t ) 2 F (t ) (t 0, t 2) F ( x) P {P (S )x 01 X } 0 其它 0, 即 X 的分布函数为 F ( x) 则 0 , x x 0, 怎样理解这一结论? 2 x) x F ( x) F ( ,0 f (t x)dt 2, / 4 , x2 1 END
例 一个半径为 2 米的圆盘靶子 , 设 R2m 击中靶上任一同心圆盘上的点的概率与该 X 圆盘的面积成正比 , 且射击都能中靶 , 记 X表示弹着点与圆心的距离.求X的分布函数. 显然当 x 0时 ,{ X x} , 故称这样的随机变量 F ( x) P{ X x} 0 为连续型随机变量 若 0 x 2, 由题意有 P{0 X x} kx 2 , k 为常数
3、F ( x)在R上右连续:
F ( x 0) F ( x);
4、F () 0,F () 1.
三、离散型随机变量的分布函数与分布律之 间的关系 (1)已知分布律 pk 求 F ( x);
F ( x ) P{ X x}
xi x
P{ X x } p
第二章 随机变量及其分布 2.3 随机变量分布函数
一、定义 设X为随机变量,对于任意实数x,称函数 F(x)=P{X ≤ x} ( -∞< x <+∞ ) 为பைடு நூலகம்机变量X的分布函数。

《概率统计》第二章习题解答

《概率统计》第二章习题解答

解 ,可认为进行5次独立试验,设Y为寿命大于1500小时的只数,Y~b(5,2/3), 至少有2只寿命大于1500小时的概率是
23.设顾客在某银行的窗口等待服务的时间X(以小时计算)服从指数分布,其概率密度为
某顾客在窗口等待服务,若超过10分钟,他就离开,他一个月要到银行5次,以Y表示一个月内他未等到服务而离开窗口的次数,写出Y的分布律,并求概率。
解 离开的概率为
=0.5167
24.设k在(0,5)上服从均匀分布,求方程
有实根的概率。
解 当 时,方程有实根,即或时,有实根,则有实根的概率为
当x[-1,1]时;
当x时,F(x)=1, 即
F(x)=
(2)利用分段积分可求F(x)
21.(1)由统计物理学知,分子运动速度的绝对值X服从马克思韦尔分布,其概率密度为
f(x)=
其中为常数,T为绝对温度,m是分子的质量,试确定常数A。
3/10
6/10
2. 一颗骰子抛掷两次,以X表示两次得到的点数之和,以X表示两次中得到的小的点数,
试分别求X的分布律。
解:两颗骰子相互独立,利用古典概型的算法可求出结果如下
(1)
2
3
4
5
6
7
8
9
10
111
解 (1)可视为古典概型问题,总挑法种数为,则成功一次的概率为
(2)设成功次数为X,则X~b(10,1/70)
因为能成功次的概率特别小所以可认为他确有区分的能力。
10.有一繁忙的汽车站,每天有大量汽车通过,设每辆汽车在一天的某时段内出事
p
(3) 参数为,=0.918

概率论与随机过程:2-1 随机变量及其分布函数

概率论与随机过程:2-1 随机变量及其分布函数

例3 设有函数 F(x)
F(x)
sin
x 0
0 x
其它
试说明F(x)能否是某个r.v 的分布函数.
解: 注意到函数 F(x)在[ 2, ]上下降,
不满足性质(1),故F(x)不能是分布函数.
或者
F() lim F(x) 0 x
不满足性质(2), 可见F(x)也不能是r.v 的 分布函数.
练:设连续型随机变量X的分布函数为
第二章教学计划(第1次课)
教学内容:
1.随机变量及其分布函数; 2.离散型随机变量及其分布。 教学目的及目标:
1.理解随机变量、分布函数、分布律的概念; 2.能对实际问题建立适当的随机变量,会求其分布函数; 3.能熟练求离散型随机变量的分布律,熟练掌握三种重要的
离散型分布; 4. 熟练掌握分布函数、分布律的性质及二者间的关系,并能熟
随机变量概念的产生是概率论发展史上的重大 事件. 引入随机变量后,对随机现象统计规律的研 究,就由对事件及事件概率的研究转变为对随机变 量及其取值规律的研究.
事件及 事件概率
随机变量及其 取值规律
对于随机试验,要求能够定义适当的随机变量表示 试验结果。
(*)例3: 考虑“测试灯泡寿命”这一试验。试验结 果本身是用数字描述的,令X表示灯泡的寿命 (以小时计),则X是随机变量,定义域为样本 空间 ={t|t≥0},值域为RX=[0,+∞)。 {X<500}:“任取出的灯泡的寿命小于500小时”;
随机变量的分布:对一个随机变量的统计规律性
的完整描述。
2、引入随机变量的意义
随机变量实际上就是定义域为事件域,值 域为实数集或其子集的一种实值函数.
ω.
X(ω)
Ω
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。


F(x) = P(X x)
X的所有可能取值为: X 0,1,2 3 22 C13 P{ X 0} 3 35 C15 2 1 C13 C 2 12 P{ X 1} 3 C15 35
1 2 C13 C2 1 P{ X 2} 3 C15 35
当 当
x<0 时,{ X
概率论
y
1
22 35 34 35
F ( x )的分布函数图
0
1
2
x
例4 在区间 [0,a] 上任意投掷一个质点,以 X 表示这个质点的坐标 . 设这个质点落在 [0, a]中意 小区间内的概率与这个小区间的长度成正比,试求 X 的分布函数.
解 设 F(x) 为 X 的分布函数, 当 x < 0 时,F(x) = P(X
22 F(x) = P{Xx} = P{ X 0} 35 x 2 x X0 x X1
当 1 x < 2 时,
0 x < 1 时,
x } = , 故
F(x) =0
概率论
F(x) = P(X x)
34 F(x) P{ X 0} P{ X 1} 35
概率论
F ( x ) P ( X x ), x
注 意: (1) F(x) 是r.v X 取值不大于 x 的概率,其取值是确定的.
分布函数是一个普通的函数, 正是通过它,我们可以用高等数 学的工具来研究随机变量.
概率论
(2) 对任意实数 x1<x2,随机点落在区间( x1 , x2 ]内的 概率为:
x 0.5(1 e x ), C) F ( x ) 0,
x0 x0
2

D) F ( x )
x

p( t )d 1
解:由F ( x )的性质
0 F ( x) 1 F ( ) 1
F ( x ) 不减 F ( x ) 右连续
P ( X a ) lim P (a X a )
0
lim[ F (a ) F (a )] F (a ) F (a 0)
0
请 填 空
P(a X b) F (b) F (a 0) P(a X b) F (b 0) F (a) P(a X b) F (b 0) F (a 0)
x
不满足性质(2), 可见F(x)也不能是r.v 的分布函数.
概率论
练习 F1(x)和F2(x)都是分布函数,为使C1F1(x) –C2F2(x)是 分布函数,C1和C2应取下列哪组值( )。
( A) C 1 3 2 C2 1 2

2 ( B ) C1 3
1 C2 3
3 ( C ) C1 2
概率论
一、分布函数的定义
设 X 是一个 r.v,称
F ( x ) P ( X x ) ( x )
为 X 的分布函数 , 记作 F (x) .
o X
x X
x
如果将 X 看作数轴上随机点的坐标,那么分 布函数 F(x) 的值就表示 X落在区间 ( , x ] 内的 概率.
概率论
x) = 0
0
a
当 x > a 时,F(x) =1 当 0 x a 时, P(0 X x) = kx
(k为常数 ) 由于 P(0 X a) = 1 ka=1,k =1/a
F(x) = P(X x) = P(X<0) + P(0 X x) =x / a
概率论

0, x 0 x F ( x) , 0 x a a xa 1,
这就是在区间 [0,a]上服从均匀分布的随机变量 的分布函数.
概率论
精品课件!
概率论
精品课件!
概率论
三、布置作业
1. 《概率统计》练习册 习题6; 2.《概率统计》P59:3,5,6;
1 C2 2
( D ) C1
2 3
C2
1 3
x
lim [C1 F1 ( x ) C 2 F2 ( x )] C1 C 2 1
概率论
3)下列函数中,可作为某一随机变量的 B 分布函数是 1 1 1 A) F ( x ) 1 2 B) F ( x ) arctan x
概率论
解方程组
A 2 B 0 A B 1 2
得解
1 1 A , B . 2
概率论
在其 例3 设在 15 只同类型零件中有 2 只是次品, 中取三次,每次任取一只,作不放回抽样,以 X 表示取出次品的只数, (1) 求 X 的分布函数, (2)画出分布函数的图形。
F ( ) 0
以及 p( x ) 0 得 B 正确
概率论
例2 设随机变量 X 的分布函数为
F x A Barctgx
x
试求常数A、B。
解: 由分布函数的性质,我们有
0 lim F x lim A Barctgx A B x x 2 1 lim F x lim A Barctgx A B x x 2

x 2 时,
F(x) = P{X=0} + P{X=1} + P{X=2}= 1
0
1

x X2 x Xx

概率论

x0 0, 22 , 0 x1 35 F ( x) 34 , 1 x 2 35 x2 1,
下面我们从图形上来看一下.
注意右连续
P{ x1 X x2 } P{ X x2 } P{ X x1 } F ( x2 ) F ( x1 ).
] x2 因此,只要知道了随机变量X的分布函数, 它 的统计特性就可以得到全面的描述. ( ( ] x1
概率论
P (a X b) F (b) F (a ) P ( X a ) 1 P ( X a ) 1 F (a )
概率论
二、分布函数的性质
(1) F x 在 , 上是一个不减函数 ,
即对 x1 , x 2 , 且 x1 x 2 , 都有 F x1 F x 2 ;
F x2 F x1 P x1 X x2 0
概率论
(2) F ( ) lim F x 0
x x
F ( ) lim F x 1
o X
(3) F(x) 右连续,即
x x0
x
x
F ( x 0) lim F ( x ) F ( x0 )
如果一个函数具有上述性质,则一定是某个r.v X 的分布函数. 也就是说,性质(1)--(3)是鉴别一个函 数是否是某 r.v 的分布函数的充分必要条件.
概率论
例1 设有函数 F(x)
sin x 0 x F ( x) 0 其它
试说明F(x)能否是某个r.v 的分布函数. 解 注意到函数 F(x)在 [ / 2, ] 上下降, 不满足性质(1),故F(x)不能是分布函数.
或者
F () lim F ( x ) 0
相关文档
最新文档