!算法设计与分析总复习

合集下载

《算法设计与分析》复习题

《算法设计与分析》复习题

填空1.直接或间接地调用自身的算法称为 递归 。

2.算法的复杂性是 算法效率 的度量,是评价算法优劣的重要依据。

3.以广度优先或以最小耗费方式搜索问题解的算法称为 分支限界法。

4.回溯法解题的显著特点是在搜索过程中动态产生问题的解空间。

在任何时刻,算法只保存从根结点到当前扩展结点的路径。

如果解空间树中从根结点到叶结点的最长路径的长度为h(n),则回溯法所需的计算空间通常为 o(h(n)) 。

5.人们通常将问题的解决方案分为两大类:一类是可以通过执行若干个步骤就能得出问题6.算法就是一组有穷的 规则 ,它们规定了解决某一特定类型问题的 一系列运算 。

7.在进行问题的计算复杂性分析之前,首先必须建立求解问题所用的计算模型。

3个基本计算模型是 随机存取机、 随机存取存储程序机 、 图灵机 。

8.快速排序算法的性能取决于 划分的对称性 。

9.计算机的资源最重要的是 内存 和 运算 资源。

因而,算法的复杂性有时间 和 空间 之分。

10.贪心算法总是做出在当前看来 最优 的选择。

也就是说贪心算法并不从整体最优考虑,它所做出的选择只是在某种意义上的 局部最优解 。

11.许多可以用贪心算法求解的问题一般具有2个重要的性质: 最优子结构的 性质和 贪心选择的 性质。

12.常见的两种分支限界法为 队列式 和 优先队列式 。

13.解决0/1背包问题可以使用动态规划、回溯法和分支限界法,其中需要排序的是 回溯法 ,不需要排序的是 动态规划和分支限界法 。

14.f ( n ) = 6 × 2n + n 2,f(n)的渐进性态f ( n ) = O ( 2^n )。

15.对于含有n 个元素的排列树问题,最好情况下计算时间复杂性为 ,最坏情况下计算时间复杂性为 n! 。

16.在忽略常数因子的情况下,O 、Ω和Θ三个符号中, Θ 提供了算法运行时间的一个上界。

17.回溯法的求解过程,即在问题的解空间树中,按 深度优先 策略从根结点出发搜索解空间树。

算法设计与分析复习题

算法设计与分析复习题

算法设计与分析复习题算法设计与分析是计算机科学中的一个重要领域,它涉及到如何高效地解决计算问题。

以下是一些复习题,可以帮助学生更好地理解和掌握算法设计与分析的基本概念和技巧。

1. 算法的基本概念:- 什么是算法?请列举算法的基本特性。

- 解释算法的时间复杂度和空间复杂度,并给出一个例子。

2. 算法设计策略:- 描述贪心算法的工作原理,并给出一个实际问题的例子。

- 解释分治算法的基本步骤,并用快速排序算法来说明。

3. 排序算法:- 比较选择排序、插入排序和冒泡排序的时间复杂度。

- 描述归并排序和快速排序的工作原理,并讨论它们的优缺点。

4. 搜索算法:- 解释线性搜索和二分搜索的区别。

- 描述哈希表的工作原理,并讨论其在搜索算法中的应用。

5. 图算法:- 解释深度优先搜索(DFS)和广度优先搜索(BFS)的工作原理。

- 描述迪杰斯特拉(Dijkstra)算法和贝尔曼-福特(Bellman-Ford)算法,并比较它们的使用场景。

6. 动态规划:- 解释动态规划与分治法的区别。

- 给出一个动态规划解决的问题,并描述其解决方案。

7. 复杂度分析:- 什么是大O记号、大Ω记号和大Θ记号?它们如何帮助我们分析算法的效率?- 给出一个算法,并使用大O记号来分析其时间复杂度。

8. 算法优化:- 描述一些常见的算法优化技巧,例如空间换时间或时间换空间。

- 讨论算法优化在实际应用中的重要性。

9. 算法应用:- 举例说明算法在不同领域的应用,如在网络路由、机器学习或数据压缩中。

10. 算法的局限性:- 讨论算法在解决特定问题时可能遇到的局限性。

- 解释为什么某些问题被认为是不可解的或计算上不可行的。

结束语:通过这些复习题的练习,学生应该能够加深对算法设计与分析的理解,掌握不同算法的原理和应用场景,以及如何评估和优化算法的性能。

希望这些题目能够帮助学生在考试或实际工作中更加自信和高效。

!算法设计与分析总复习

!算法设计与分析总复习

!算法设计与分析总复习算法设计与分析是计算机科学中非常重要的一个领域,它涉及到了算法的设计、性能分析和优化等方面。

在准备考试之前,我们需要对算法设计与分析的基本概念和常用算法进行全面复习。

一、算法设计与分析基本概念1.算法的定义:算法是一系列解决特定问题的有限步骤。

2.算法的特性:算法具有明确性、有限性、确定性和输入/输出。

3.算法的正确性:算法必须能够解决问题,并得到正确的答案。

4.算法的效率:算法的时间复杂度和空间复杂度是衡量算法效率的重要指标。

二、常用算法1.排序算法:常见的排序算法包括冒泡排序、插入排序、选择排序、快速排序、归并排序等。

需要了解每种排序算法的思想、时间复杂度和空间复杂度,并能够对其进行实现和优化。

2.查找算法:常用的查找算法包括顺序查找、二分查找、哈希查找等。

需要了解每种查找算法的思想和时间复杂度,并能够对其进行实现和应用。

3. 图算法:图算法包括深度优先(DFS)、广度优先(BFS)、最短路径算法(Dijkstra算法、Floyd算法)等。

需要了解这些算法的思想、时间复杂度和应用场景,并能够对其进行实现和应用。

4.动态规划算法:动态规划算法适用于具有重叠子问题和具有最优子结构性质的问题。

需要了解动态规划算法的基本思想、时间复杂度和应用场景,并能够对具体问题进行动态规划的设计和实现。

5.贪心算法:贪心算法常用于解决最优化问题,每一步都选择当前最优解,以期最终达到全局最优解。

需要了解贪心算法的基本思想、时间复杂度和应用场景,并能够对具体问题进行贪心算法的设计和实现。

三、算法的时间复杂度和空间复杂度1. 时间复杂度:算法的时间复杂度表示算法的执行时间和输入数据规模之间的关系。

常见的时间复杂度有O(1)、O(logn)、O(n)、O(nlogn)、O(n^2)等。

需要掌握各种时间复杂度的计算方法和复杂度的比较。

2.空间复杂度:算法的空间复杂度表示算法的内存消耗和输入数据规模之间的关系。

算法设计与分析复习要点

算法设计与分析复习要点

算法设计与分析的复习要点第一章:算法问题求解基础算法是对特定问题求解步骤的一种描述,它是指令的有限序列。

一.算法的五个特征:1.输入:算法有零个或多个输入量;2.输出:算法至少产生一个输出量;3.确定性:算法的每一条指令都有确切的定义,没有二义性;4.可行性:算法的每一条指令必须足够基本,它们可以通过已经实现的基本运算执行有限次来实现;5.有穷性:算法必须总能在执行有限步之后终止。

二.什么是算法?程序与算法的区别1.笼统地说,算法是求解一类问题的任意一种特殊的方法;较严格地说,算法是对特定问题求解步骤的一种描述,它是指令的有限序列。

2.程序是算法用某种程序设计语言的具体实现;算法必须可终止,程序却没有这一限制;即:程序可以不满足算法的第5个性质“有穷性”。

三.一个问题求解过程包括:理解问题、设计方案、实现方案、回顾复查。

四.系统生命周期或软件生命周期分为:开发期:分析、设计、编码、测试;运行期:维护。

五.算法描述方法:自然语言、流程图、伪代码、程序设计语言等。

六.算法分析:是指对算法的执行时间和所需空间的估算。

算法的效率通过算法分析来确定。

七.递归定义:是一种直接或间接引用自身的定义方法。

一个合法的递归定义包括两部分:基础情况和递归部分;基础情况:以直接形式明确列举新事物的若干简单对象;递归部分:有简单或较简单对象定义新对象的条件和方法八.常见的程序正确性证明方法:1.归纳法:由基础情况和归纳步骤组成。

归纳法是证明递归算法正确性和进行算法分析的强有力工具;2.反证法。

第二章:算法分析基础一.会计算程序步的执行次数(如书中例题程序2-1,2-2,2-3的总程序步数的计算)。

二.会证明5个渐近记法。

(如书中P22-25例2-1至例2-9)三.会计算递推式的显式。

(迭代法、代换法,主方法)四.会用主定理求T(n)=aT(n/b)+f(n)。

(主定理见P29,如例2-15至例2-18)五.一个好的算法应具备的4个重要特征:1.正确性:算法的执行结果应当满足预先规定的功能和性能要求;2.简明性:算法应思路清晰、层次分明、容易理解、利于编码和调试;3.效率:算法应有效使用存储空间,并具有高的时间效率;4.最优性:算法的执行时间已达到求解该类问题所需时间的下界。

算法设计与分析复习要点

算法设计与分析复习要点

算法设计与分析复习要点一、单项选择题(本大题共15小题,每小题2分,共30分)二、填空题(本大题共15空,每空1分,共15分)三、分析题(本大题共5小题,每小题5分,共25分)四、综合题(本大题共4小题,1、2题每题6分,3题8分,4题10分,共30分)第2章,导引与基本数据结构:1、什么是算法, 算法的5个特性;对一个算法作出全面分析的两个阶段。

P245个特性:确定性、能行性、输入、输出、有穷性两个阶段:事前分析、事后测试2、O(g(n)),Ω(g(n)), (g(n))的含义。

3、多项式时间算法:可用多项式(函数)对其计算时间限界的算法。

4、常见的多项式限界函数所表示算法时间复杂度的排序:Ο(1) <Ο(logn) < Ο(n) < Ο(nlogn) < Ο(n2) < Ο(n3)5、指数时间算法:计算时间用指数函数限界的算法6、常见的指数时间限界函数:Ο(2n) < Ο(n!) < Ο(n n)11()2(1)11()21nn T n T n n T n =⎧=⎨-+>⎩⇒=-7、什么是算法的复杂性:是该算法所需要的计算机资源的多少,它包括时间和空间资源。

8、复习栈和队列、树、图的基本知识,了解二元树、完全二元树,满二元树、二分检索树、了解图的邻接矩阵和邻接表存储方法。

9、能写出图的深度优先序列和广度优先序列。

10、会求如下一些简单的函数的上界表达式: 3n 2+10n =O(n 2)第3、4章 递归与分治算法1、理解递归算法的优缺点,深刻理解递归算法的执行过程。

如能写出解决n 阶汉诺塔问题的解,并能分析写出3阶汉诺塔问题的递归执行轨迹。

2、递归算法的优点:结构清晰,可读性强,容易用数学归纳法来证明算法的正确性,因此它为设计算法、调试程序带来很大方便。

3、递归算法的缺点:运行效率较低,耗费的计算时间和占用的存储空间都多。

为了达到此目的,根据具体程序的特点对递归调用工作栈进行简化,尽量减少栈操作,压缩栈存储空间以达到节省计算时间和存储空间的目的。

算法设计与分析期末备考知识点总结

算法设计与分析期末备考知识点总结

算法设计与分析期末备考知识点总结●通俗地说,算法是解决咨询题的办法,严格地讲,算法是对特定咨询题求解步骤的一种描述,是指令的有限序列。

●算法还必须满脚一下五个重要特性:输入、输出、有穷性、确定性、可行性。

●程序(Program)是对一具算法使用某种程序设计语言的具体实现,原则上,算法能够用任何一种程序设计语言来实现。

啥是算法的计算复杂性?●算法分析指的是对算法所需要的两种计算机资源——时刻和空间(时刻复杂性和空间复杂性举行估算,所需要的资源越多,该算法的复杂性就越高。

●表示计算复杂性的O你掌握了?若存在两个正的常数c和n0,关于任意n≥n0,都有T(n)≤c×f(n),则称T(n)=O(f(n))(或称算法在O(f(n))中)。

我们要紧介绍了哪几种算法设计办法?分治法:将一具难以直截了当解决的大咨询题,分割成一些规模较小的子咨询题,以便各个击破,分而治之。

减治法:减治法在将原咨询题分解为若干个子咨询题后,利用了规模为n 的原咨询题的解与较小规模(通常是n/2)的子咨询题的解之间的关系,这种关系通常表现为:(1)原咨询题的解只存在于其中一具较小规模的子咨询题中;(2)原咨询题的解与其中一具较小规模的解之间存在某种对应关系。

由于原咨询题的解与较小规模的子咨询题的解之间存在这种关系,因此,只需求解其中一具较小规模的子咨询题就能够得到原咨询题的解。

动态规划法、贪心算法、回溯算法、概率RAM程序分治法------合并排序设算法4.3对n个元素排序的时刻复杂性为T(n),则该二路归并排序算法存在如下递推式:二路归并排序的时刻代价是O(nlog2n)。

所需空间只要O(m+n+min(m, n))的空间就够了(假设两个合并串的长度分不为m和n)。

分治法------快速排序在最好事情下在具有n个记录的序列中,一次划分需要对整个待划分序列扫描一遍,则所需时刻为O(n)。

时刻复杂度为O(nlog2n)。

在最坏事情下必须通过n-1次递归调用才干把所有记录定位,而且第i趟划分需要通过n-i 次关键码的比较才干找到第i个记录的基准位置,所以,总的比较次数为:时刻复杂度为O(n2)分治法------最大子段递推式:算法时刻复杂度:O(nlog2n)分治法------棋盘覆盖咨询题T(k)满脚如下递推式:分治法------循环赛日安排咨询题基本语句的执行次数是:算法的其时刻复杂性为O(4k)。

算法设计与分析 复习整理汇编

算法设计与分析 复习整理汇编

《算法设计与分析》复习要点2.算法的概念:答:算法是求解一类问题的任意一种特殊的方法。

一个算法是对特定问题求解步骤的一种描述,它是指令的有限序列。

注:算法三要素:1、操作2、控制结构3、数据结构3.算法有5大特性:答:输入、输出、确定性、能行性、有穷性。

注:输入:一个算法有0个或多个输入;输出:一个算法将产生一个或多个输出。

确定性:一个算法中每一步运算的含义必须是确切的、无二义性的;可行性:一个算法中要执行的运算都是相当基本的操作,能在有限的时间内完成;有穷性:一个算法必须在执行了有穷步运算之后终止;4.算法按计算时间可分为两类:答:多项式时间算法的渐进时间复杂度:O(1)<O(logn)<O(n)<O(nlogn)<O(n^2)<O(n^3),具有此特征的问题称为P为题。

有效算法。

指数时间算法的渐进时间复杂度之间的关系为:O(2^n)<O(n!)< O(n^n),具有此特征的问题称为NP问题。

注:可以带1或2这些数字来判断它们之间的大小关系。

5.一个好算法的4大特性:答:正确性、简明性、效率、最优性。

注:正确性:算法的执行结果应当满足预先规定的功能和性能要求。

简明性:算法应思路清晰、层次分明、容易理解。

利于编码和调试。

效率:时间代价和空间代价应该尽可能的小。

最优性:算法的执行时间已经到求解该类问题所需要时间的下界。

6.影响程序运行时间的因素:1、答:程序所以来的算法。

问题规模和输入数据。

计算机系统系能。

注:算法运行的时间代价的度量不应依赖于算法运行的软件平台,算法运行的软件包括操作系统和采用的编程语言及其编译系统。

时间代价用执行基本操作(即关键操作)的次数来度量,这是进行算法分析的基础。

7.关键操作的概念答:指算法运行中起主要作用且花费最多时间的操作。

1.简述分治法是怎样的一种算法设计策略:答:将一个问题分解为若干个规模较小的子问题,且这些子问题互相独立且与原问题类型相同,递归地处理这些子问题,直到这些子问题的规模小到可以直接求解,然后将各个子问题的解合并得到原问题的解。

算法设计与分析复习知识点

算法设计与分析复习知识点

算法设计与分析复习知识点算法设计与分析是计算机科学中的重要概念,它涉及到各种问题的解决方法和效率分析。

在本文中,我将回顾一些算法设计与分析的核心知识点。

一、算法的基本概念1. 算法的定义:算法是一系列明确指定的步骤,用于解决特定问题或执行特定任务。

2. 算法的特性:输入、输出、确定性、可行性和有穷性。

3. 算法的效率:时间复杂度和空间复杂度是衡量算法效率的两个重要指标。

4. 算法的分类:常见的算法分类有分治法、贪心法、动态规划、回溯法等。

二、时间复杂度和空间复杂度1. 时间复杂度:描述算法的时间耗费,通常使用大O符号表示。

常见的时间复杂度有O(1)、O(log n)、O(n)、O(n log n)、O(n^2)等。

2. 空间复杂度:描述算法在执行过程中所需的额外空间,也使用大O符号表示。

常见的空间复杂度有O(1)、O(n)、O(n^2)等。

三、常见的算法思想和技巧1. 分治法:将一个大问题划分成若干个小问题,然后逐个解决,并将结果合并得到最终解。

2. 贪心法:在每一步选择中都采取当前状态下最好或最优的选择,从而希望能得到全局最优解。

3. 动态规划:将一个大问题分解成若干个子问题,通过求解子问题得到最优解,从而得到原问题的解。

4. 回溯法:通过不断地尝试所有可能的选择,然后进行回溯,找到问题的解。

四、常见算法的应用1. 排序算法:快速排序、归并排序、插入排序等。

2. 搜索算法:深度优先搜索、广度优先搜索、A*算法等。

3. 图算法:最短路径算法、最小生成树算法、拓扑排序等。

4. 字符串匹配算法:暴力匹配算法、KMP算法、Boyer-Moore算法等。

五、算法复杂度分析1. 最优复杂度:最好情况下算法执行所需的最小资源。

2. 平均复杂度:在所有输入情况下算法执行所需的资源的平均值。

3. 最坏复杂度:最坏情况下算法执行所需的最大资源。

六、常见问题和优化技巧1. 递归算法的优化:尾递归优化、记忆化搜索等。

算法设计与分析考试题目及答案

算法设计与分析考试题目及答案

算法设计与分析考试题目及答案Revised at 16:25 am on June 10, 2021I hope tomorrow will definitely be better算法分析与设计期末复习题一、 选择题1.应用Johnson 法则的流水作业调度采用的算法是DA. 贪心算法B. 分支限界法C.分治法D. 动态规划算法塔问题如下图所示;现要求将塔座A 上的的所有圆盘移到塔座B 上,并仍按同样顺序叠置;移动圆盘时遵守Hanoi 塔问题的移动规则;由此设计出解Hanoi 塔问题的递归算法正确的为:B3. 动态规划算法的基本要素为C A. 最优子结构性质与贪心选择性质 B .重叠子问题性质与贪心选择性质 C .最优子结构性质与重叠子问题性质 D. 预排序与递归调用4. 算法分析中,记号O 表示B , 记号Ω表示A , 记号Θ表示D ; A.渐进下界 B.渐进上界 C.非紧上界 D.紧渐进界 E.非紧下界5. 以下关于渐进记号的性质是正确的有:A A.f (n)(g(n)),g(n)(h(n))f (n)(h(n))=Θ=Θ⇒=Θ B. f (n)O(g(n)),g(n)O(h(n))h(n)O(f (n))==⇒= C. Ofn+Ogn = Omin{fn,gn} D. f (n)O(g(n))g(n)O(f (n))=⇔=Hanoi 塔A. void hanoiint n, int A, int C, int B { if n > 0 {hanoin-1,A,C, B; moven,a,b;hanoin-1, C, B, A; } B. void hanoiint n, int A, int B, int C { if n > 0 {hanoin-1, A, C, B; moven,a,b; hanoin-1, C, B, A; }C. void hanoiint n, int C, int B, int A { if n > 0 { hanoin-1, A, C, B; moven,a,b; hanoin-1, C, B, A; }D. void hanoiint n, int C, int A, int B { if n > 0 {hanoin-1, A, C, B; moven,a,b;hanoin-1, C, B, A; }6.能采用贪心算法求最优解的问题,一般具有的重要性质为:AA. 最优子结构性质与贪心选择性质B.重叠子问题性质与贪心选择性质C.最优子结构性质与重叠子问题性质D. 预排序与递归调用7. 回溯法在问题的解空间树中,按D策略,从根结点出发搜索解空间树;广度优先 B. 活结点优先 C.扩展结点优先 D. 深度优先8. 分支限界法在问题的解空间树中,按A策略,从根结点出发搜索解空间树;A.广度优先 B. 活结点优先 C.扩展结点优先 D. 深度优先9. 程序块A是回溯法中遍历排列树的算法框架程序;A.B.C.D.10.xk的个数;11. 常见的两种分支限界法为DA. 广度优先分支限界法与深度优先分支限界法;B. 队列式FIFO分支限界法与堆栈式分支限界法;C. 排列树法与子集树法;D. 队列式FIFO分支限界法与优先队列式分支限界法;12. k带图灵机的空间复杂性Sn是指BA.k带图灵机处理所有长度为n的输入时,在某条带上所使用过的最大方格数;B.k带图灵机处理所有长度为n的输入时,在k条带上所使用过的方格数的总和;C.k带图灵机处理所有长度为n的输入时,在k条带上所使用过的平均方格数;D.k带图灵机处理所有长度为n的输入时,在某条带上所使用过的最小方格数;13. N P类语言在图灵机下的定义为DA.NP={L|L是一个能在非多项式时间内被一台NDTM所接受的语言};B.NP={L|L是一个能在多项式时间内被一台NDTM所接受的语言};C.NP={L|L是一个能在多项式时间内被一台DTM所接受的语言};D.NP={L|L是一个能在多项式时间内被一台NDTM所接受的语言};14. 记号O的定义正确的是A;A.Ogn = { fn | 存在正常数c和n0使得对所有n≥n0有:0≤ fn ≤cgn };B.Ogn = { fn | 存在正常数c和n0使得对所有n≥n0有:0≤ cgn ≤fn };>0使得对所有n≥n0C.Ogn = { fn | 对于任何正常数c>0,存在正数和n有:0 ≤fn<cgn };>0使得对所有n≥n0D.Ogn = { fn | 对于任何正常数c>0,存在正数和n有:0 ≤cgn < fn };15. 记号Ω的定义正确的是B;A.Ogn = { fn | 存在正常数c和n0使得对所有n≥n0有:0≤ fn ≤cgn };B.Ogn = { fn | 存在正常数c和n0使得对所有n≥n0有:0≤ cgn ≤fn };>0使得对所有n≥n0有:C.gn = { fn | 对于任何正常数c>0,存在正数和n0 ≤fn<cgn };D.gn = { fn | 对于任何正常数c>0,存在正数和n0 >0使得对所有n≥n0有:0 ≤cgn < fn };二、 填空题1. 下面程序段的所需要的计算时间为 2O(n ) ;2.3.4. 5.6. 用回溯法解题的一个显着特征是在搜索过程中动态产生问题的解空间;在任何时刻,算法只保存从根结点到当前扩展结点的路径;如果解空间树 中从根结点到叶结点的最长路径的长度为hn,则回溯法所需的计算空间通常为Ohn ;7. 回溯法的算法框架按照问题的解空间一般分为子集树算法框架与排列树算法框架;8. 用回溯法解0/1背包问题时,该问题的解空间结构为子集树结构; 9.用回溯法解批处理作业调度问题时,该问题的解空间结构为排列树结构; 10.用回溯法解0/1背包问题时,计算结点的上界的函数如下所示,请在空格中填入合适的内容:11. n m12. 用回溯法解图的m着色问题时,使用下面的函数OK检查当前扩展结点的每一个儿子所相应的颜色的可用性,则需耗时渐进时间上限Omn;13.;设分分解为k个子问题以及用merge将k个子问题的解合并为原问题的解需用fn个单位时间;用Tn表示该分治法解规模为|P|=n的问题所需的计算时间,则有:(1)1 ()(/)()1O nT nkT n m f n n=⎧=⎨+>⎩通过迭代法求得Tn的显式表达式为:log1log()(/)nmk j jmjT n n k f n m-==+∑试证明Tn的显式表达式的正确性;2. 举反例证明0/1背包问题若使用的算法是按照p i/w i的非递减次序考虑选择的物品,即只要正在被考虑的物品装得进就装入背包,则此方法不一定能得到最优解此题说明0/1背包问题与背包问题的不同;证明:举例如:p={7,4,4},w={3,2,2},c=4时,由于7/3最大,若按题目要求的方法,只能取第一个,收益是7;而此实例的最大的收益应该是8,取第2,3 个;3. 求证:Ofn+Ogn = Omax{fn,gn} ;证明:对于任意f1n∈ Ofn ,存在正常数c1和自然数n1,使得对所有n≥n1,有f1n≤ c1fn ;类似地,对于任意g1n ∈ Ogn ,存在正常数c2和自然数n2,使得对所有n≥n2,有g1n ≤c2gn ;令c3=max{c1, c2}, n3 =max{n1, n2},hn= max{fn,gn} ;则对所有的 n ≥ n3,有f1n +g1n ≤ c1fn + c2gn≤c3fn + c3gn= c3fn + gn≤ c32 max{fn,gn} = 2c3hn = Omax{fn,gn} .4. 求证最优装载问题具有贪心选择性质;最优装载问题:有一批集装箱要装上一艘载重量为c 的轮船;其中集装箱i 的重量为Wi;最优装载问题要求确定在装载体积不受限制的情况下,将尽可能多的集装箱装上轮船; 设集装箱已依其重量从小到大排序,x 1,x 2,…,x n 是最优装载问题的一个最优解;又设1min{|1}i i nk i x ≤≤== ;如果给定的最优装载问题有解,则有1k n ≤≤;证明: 四、 解答题1. 机器调度问题;问题描述:现在有n 件任务和无限多台的机器,任务可以在机器上得到处理;每件任务的开始时间为s i ,完成时间为f i ,s i <f i ;s i ,f i 为处理任务i 的时间范围;两个任务i,j 重叠指两个任务的时间范围区间有重叠,而并非指i,j 的起点或终点重合;例如:区间1,4与区间2,4重叠,而与4,7不重叠;一个可行的任务分配是指在分配中没有两件重叠的任务分配给同一台机器;因此,在可行的分配中每台机器在任何时刻最多只处理一个任务;最优分配是指使用的机器最少的可行分配方案;问题实例:若任务占用的时间范围是{1,4,2,5,4,5,2,6,4,7},则按时完成所有任务最少需要几台机器提示:使用贪心算法画出工作在对应的机器上的分配情况;2. 已知非齐次递归方程:f (n)bf (n 1)g(n)f (0)c =-+⎧⎨=⎩ ,其中,b 、c 是常数,gn 是n 的某一个函数;则fn 的非递归表达式为:nnn i i 1f (n)cb b g(i)-==+∑;现有Hanoi 塔问题的递归方程为:h(n)2h(n 1)1h(1)1=-+⎧⎨=⎩ ,求hn 的非递归表达式;解:利用给出的关系式,此时有:b=2, c=1, gn=1, 从n 递推到1,有: 3. 单源最短路径的求解;问题的描述:给定带权有向图如下图所示G =V,E,其中每条边的权是非负实数;另外,还给定V 中的一个顶点,称为源;现在要计算从源到所有其它各顶点的最短路长度;这里路的长度是指路上各边权之和;这个问题通常称为单源最短路径问题;解法:现采用Dijkstra 算法计算从源顶点1到其它顶点间最短路径;请将此过程填入下表中;4. 请写出用回溯法解装载问题的函数; 装载问题:有一批共n 个集装箱要装上2艘载重量分别为c1和c2的轮船,其中集装箱i 的重量为wi,且121ni i w c c =≤+∑;装载问题要求确定是否有一个合理的装载方案可将这n 个集装箱装上这2艘轮船;如果有,找出一种装载方案;解:void backtrack int i{用分支限界法解装载问题时,对算法进行了一些改进,下面的程序段给出了改进部分;试说明斜线部分完成什么功能,以及这样做的原因,即采用这样的方式,算法在执行上有什么不同;初始时将;也就是说,重量仅在搜索进入左子树是增加,因此,可以在算法每一次进入左子树时更新bestw 的值;43 2 110030maxint10 - {1} 初始 dist5 dist4 dist3 dist2 u S 迭代7. 最长公共子序列问题:给定2个序列X={x 1,x2,…,xm }和Y={y 1,y2,…,yn },找出X 和Y 的最长公共子序列;由最长公共子序列问题的最优子结构性质建立子问题最优值的递归关系;用cij 记录序列Xi 和Yj 的最长公共子序列的长度;其中, Xi={x1,x2,…,xi};Y j={y1,y2,…,yj};当i=0或j=0时,空序列是Xi 和Yj 的最长公共子序列;故此时Cij=0;其它情况下,由最优子结构性质可建立递归关系如下:00,0[][][1][1]1,0;max{[][1],[1][]},0;i j i ji j c i j c i j i j x y c i j c i j i j x y ⎧==⎪=--+>=⎨⎪-->≠⎩在程序中,bij 记录Cij 的值是由哪一个子问题的解得到的;8.1.2.3.4.5.用回溯法解问题时,应明确定义问题的解空间,问题的解空间至少应包含___________;6.动态规划算法的基本思想是将待求解问题分解成若干____________,先求解___________,然后从这些____________的解得到原问题的解;7.以深度优先方式系统搜索问题解的算法称为_____________;背包问题的回溯算法所需的计算时间为_____________,用动态规划算法所需的计算时间为____________;9.动态规划算法的两个基本要素是___________和___________;10.二分搜索算法是利用_______________实现的算法;二、综合题50分1.写出设计动态规划算法的主要步骤;2.流水作业调度问题的johnson算法的思想;3.若n=4,在机器M1和M2上加工作业i所需的时间分别为ai 和bi,且a 1,a2,a3,a4=4,5,12,10,b1,b2,b3,b4=8,2,15,9求4个作业的最优调度方案,并计算最优值;4.使用回溯法解0/1背包问题:n=3,C=9,V={6,10,3},W={3,4,4},其解空间有长度为3的0-1向量组成,要求用一棵完全二叉树表示其解空间从根出发,左1右0,并画出其解空间树,计算其最优值及最优解;5.设S={X1,X2,···,Xn}是严格递增的有序集,利用二叉树的结点来存储S中的元素,在表示S的二叉搜索树中搜索一个元素X,返回的结果有两种情形,1在二叉搜索树的内结点中找到X=Xi ,其概率为bi;2在二叉搜索树的叶结点中确定X∈Xi ,Xi+1,其概率为ai;在表示S的二叉搜索树T中,设存储元素Xi的结点深度为C i ;叶结点Xi,Xi+1的结点深度为di,则二叉搜索树T的平均路长p为多少假设二叉搜索树Tij={Xi ,Xi+1,···,Xj}最优值为mij,Wij= ai-1+bi+···+bj+aj,则mij1<=i<=j<=n递归关系表达式为什么6.描述0-1背包问题;三、简答题30分1.流水作业调度中,已知有n个作业,机器M1和M2上加工作业i所需的时间分别为ai 和bi,请写出流水作业调度问题的johnson法则中对ai和bi的排序算法;函数名可写为sorts,n2.最优二叉搜索树问题的动态规划算法设函数名binarysearchtree答案:一、填空1.确定性有穷性可行性 0个或多个输入一个或多个输出2.时间复杂性空间复杂性时间复杂度高低3. 该问题具有最优子结构性质4.{BABCD}或{CABCD}或{CADCD}5.一个最优解6.子问题子问题子问题7.回溯法8. on2n omin{nc,2n}9.最优子结构重叠子问题10.动态规划法二、综合题1.①问题具有最优子结构性质;②构造最优值的递归关系表达式;③最优值的算法描述;④构造最优解;2. ①令N1={i|ai<bi},N2={i|ai>=bi};②将N1中作业按ai的非减序排序得到N1’,将N2中作业按bi的非增序排序得到N2’;③N1’中作业接N2’中作业就构成了满足Johnson法则的最优调度;3.步骤为:N1={1,3},N2={2,4};N 1’={1,3}, N2’={4,2};最优值为:384.解空间为{0,0,0,0,1,0,0,0,1,1,0,0,0,1,1,1,0,1, 1,1,0,1,1,1}; 解空间树为:该问题的最优值为:16 最优解为:1,1,0 5.二叉树T 的平均路长P=∑=+ni 1Ci)(1*bi +∑=nj 0dj *aj{mij=0 i>j6.已知一个背包的容量为C,有n 件物品,物品i 的重量为W i ,价值为V i ,求应如何选择装入背包中的物品,使得装入背包中物品的总价值最大; 三、简答题 1.void sortflowjope s,int n {int i,k,j,l;fori=1;i<=n-1;i++ag=0 k++; ifk>n break;ag==0ifsk.a>sj.a k=j; swapsi.index,sk.index; swapsi.tag,sk.tag;} }l=i;<sj.b k=j;swapsi.index,sk.index; ag,sk.tag; }mij=Wij+min{mik+mk+1j} 1<=i<=j<=n,mii-1=0}2.void binarysearchtreeint a,int b,int n,int m,int s,int w{int i,j,k,t,l;fori=1;i<=n+1;i++{wii-1=ai-1;mii-1=0;}forl=0;l<=n-1;l++Init-single-sourceG,s2. S=Φ3. Q=VGQ<> Φdo u=minQS=S∪{u}for each vertex 3do 4四、算法理解题本题10分根据优先队列式分支限界法,求下图中从v1点到v9点的单源最短路径,请画出求得最优解的解空间树;要求中间被舍弃的结点用×标记,获得中间解的结点用单圆圈○框起,最优解用双圆圈◎框起;五、算法理解题本题5分设有n=2k个运动员要进行循环赛,现设计一个满足以下要求的比赛日程表:①每个选手必须与其他n-1名选手比赛各一次;②每个选手一天至多只能赛一次;③循环赛要在最短时间内完成;1如果n=2k,循环赛最少需要进行几天;2当n=23=8时,请画出循环赛日程表;六、算法设计题本题15分分别用贪心算法、动态规划法、回溯法设计0-1背包问题;要求:说明所使用的算法策略;写出算法实现的主要步骤;分析算法的时间;七、算法设计题本题10分通过键盘输入一个高精度的正整数nn的有效位数≤240,去掉其中任意s个数字后,剩下的数字按原左右次序将组成一个新的正整数;编程对给定的n 和s,寻找一种方案,使得剩下的数字组成的新数最小;样例输入178543S=4样例输出13一、填空题本题15分,每小题1分1.规则一系列运算2. 随机存取机RAMRandom Access Machine;随机存取存储程序机RASPRandom Access Stored Program Machine;图灵机Turing Machine3. 算法效率4. 时间、空间、时间复杂度、空间复杂度5.2n6.最好局部最优选择7. 贪心选择最优子结构二、简答题本题25分,每小题5分1、分治法的基本思想是将一个规模为n的问题分解为k个规模较小的子问题,这些子问题互相独立且与原问题相同;对这k个子问题分别求解;如果子问题的规模仍然不够小,则再划分为k个子问题,如此递归的进行下去,直到问题规模足够小,很容易求出其解为止;将求出的小规模的问题的解合并为一个更大规模的问题的解,自底向上逐步求出原来问题的解;2、“最优化原理”用数学化的语言来描述:假设为了解决某一优化问题,需要依次作出n个决策D1,D2,…,Dn,如若这个决策序列是最优的,对于任何一个整数k,1 < k < n,不论前面k个决策是怎样的,以后的最优决策只取决于由前面决策所确定的当前状态,即以后的决策Dk+1,Dk+2,…,Dn也是最优的;3、某个问题的最优解包含着其子问题的最优解;这种性质称为最优子结构性质;4、回溯法的基本思想是在一棵含有问题全部可能解的状态空间树上进行深度优先搜索,解为叶子结点;搜索过程中,每到达一个结点时,则判断该结点为根的子树是否含有问题的解,如果可以确定该子树中不含有问题的解,则放弃对该子树的搜索,退回到上层父结点,继续下一步深度优先搜索过程;在回溯法中,并不是先构造出整棵状态空间树,再进行搜索,而是在搜索过程,逐步构造出状态空间树,即边搜索,边构造;5、PPolynomial问题:也即是多项式复杂程度的问题;NP就是Non-deterministicPolynomial的问题,也即是多项式复杂程度的非确定性问题;NPCNP Complete问题,这种问题只有把解域里面的所有可能都穷举了之后才能得出答案,这样的问题是NP里面最难的问题,这种问题就是NPC问题;三、算法填空本题20分,每小题5分1、n后问题回溯算法1 Mj&&Li+j&&Ri-j+N2 Mj=Li+j=Ri-j+N=1;3 tryi+1,M,L,R,A4 Aij=05 Mj=Li+j=Ri-j+N=0 2、数塔问题; 1c<=r2trc+=tr+1c 3trc+=tr+1c+1 3、Hanoi 算法 1movea,c2Hanoin-1, a, c , b 3Movea,c 4、1pv=NIL 2pv=u3 v ∈adju 4Relaxu,v,w四、算法理解题本题10分五、18天2分;2当n=23=8时,循环赛日程表3分;六、算法设计题本题15分 1贪心算法 Onlogn ➢ 首先计算每种物品单位重量的价值Vi/Wi,然后,依贪心选择策略,将尽可能多的单位重量价值最高的物品装入背包;若将这种物品全部装入背包后,背包内的物品总重量未超过C,则选择单位重量价值次高的物品并尽可能多地装入背包;依此策略一直地进行下去,直到背包装满为止; ➢ 具体算法可描述如下:void Knapsackint n,float M,float v,float w,float x {Sortn,v,w; int i;for i=1;i<=n;i++ xi=0; float c=M;for i=1;i<=n;i++ {if wi>c break; xi=1; c-=wi; }if i<=n xi=c/wi; }2动态规划法 Oncmi,j 是背包容量为j,可选择物品为i,i+1,…,n 时0-1背包问题的最优值;由0-1背包问题的最优子结构性质,可以建立计算mi,j 的递归式如下;void KnapSackint v,int w,int c,int n,int m11 {int jMax=minwn-1,c;for j=0;j<=jMax;j++ /mn,j=0 0=<j<wn/ mnj=0;1 2 3 4 5 6 7 82 1 43 6 5 8 73 4 1 2 7 8 5 64 3 2 1 8 7 6 55 6 7 8 1 2 3 4 6 5 8 7 2 1 4 37 8 5 6 3 4 1 28 7 6 5 4 3 2 1for j=wn;j<=c;j++ /mn,j=vn j>=wn/mnj=vn;for i=n-1;i>1;i--{ int jMax=minwi-1,c;for j=0;j<=jMax;j++ /mi,j=mi+1,j 0=<j<wi/mij=mi+1j;for j=wi;j<=c;j++/mn,j=vn j>=wn/mij=maxmi+1j,mi+1j-wi+vi;}m1c=m2c;ifc>=w1m1c=maxm1c,m2c-w1+v1;}3回溯法 O2ncw:当前重量 cp:当前价值 bestp:当前最优值voidbacktrack int i//回溯法 i初值1{ifi>n //到达叶结点{ bestp=cp; return; }ifcw+wi<=c //搜索左子树{cw+=wi;cp+=pi;backtracki+1;cw-=wi;cp-=pi;}ifBoundi+1>bestp//搜索右子树backtracki+1;}七、算法设计题本题10分为了尽可能地逼近目标,我们选取的贪心策略为:每一步总是选择一个使剩下的数最小的数字删去,即按高位到低位的顺序搜索,若各位数字递增,则删除最后一个数字,否则删除第一个递减区间的首字符;然后回到串首,按上述规则再删除下一个数字;重复以上过程s次,剩下的数字串便是问题的解了;具体算法如下:输入s, n;while s > 0{ i=1; //从串首开始找while i < lengthn && ni<ni+1{i++;}deleten,i,1; //删除字符串n的第i个字符s--;}while lengthn>1&& n1=‘0’deleten,1,1; //删去串首可能产生的无用零输出n;。

算法设计与分析(期末总复习)【精选】

算法设计与分析(期末总复习)【精选】

复习一、简答题(每小题5分,选答2题,共10分)1. 什么是算法?试说明算法设计分析过程的一般框架和主要步骤。

2. 简述非递归算法时间效率分析的通用方案。

3. 简述递归算法时间效率的通用方案。

4. 简述蛮力法、分治法、减治法,变治法、时空权衡、动态规划、贪婪技术、迭代改进八种算法设计技术中至少三种技术基本思想或原理。

二、分析题(每小题10分,共20分)1. 考虑下面的算法。

P52算法Mystery(n) //输入:非负整数nS=0for i ← 1 to n doS ← S + i*iReturn Sa.该算法求的是什么?b.它的基本操作是什么?c.该基本操作执行了多少次?d.该算法的效率类型是什么?2. 考虑下面的递归算法。

P52算法Secret(A[0..n-1]) //输入:包含n个实数的数组A[0..n-1]minval ← A[0]; maxval ← A[0]for i ←1 to n-1 doif A[i] < minvalminval ← A[i]if A[i] > maxvalmaxval ← A[i]return maxval – minvala.该算法求的是什么?b.它的基本操作是什么?c.该基本操作执行了多少次?d.该算法的效率类型是什么?3. 考虑下面的递归算法P59算法Q(n) //输入:正整数if n=1 return 1else return Q(n-1) + 2*n -1a. 建立该函数值的递推关系并求解,以确定该算法计算的是什么;b. 建立该算法所做的乘法运算次数的递推关系并求解;c. 建立该算法所做的加减运算次数的递推关系并求解。

三、算法设计题(每小题10分,共20分)1. 应用快速排序对序列E,X,A,M,P,L,E按照字母顺序排序。

并画出相应的递归调用树。

(4章分治法)P1022. 对于下面的有向图,应用基于DFS 的算法来解拓扑排序问题。

(5章减治法)P133.)P1753. 用自底向上算法为列表1, 8, 6, 5, 3, 7, 4进行堆排序。

计算机算法设计与分析总复习

计算机算法设计与分析总复习

第三步
[13 27 38 49 65 76 97]
快速排序
private static void qSort(int p, int r) { if (p<r) { int q=partition(p,r); //以a[p]为基准元素将a[p:r]划分成3段a[p:q-1],a[q]和a[q+1:r],使得a[p:q-1]中任何元素小于等于a[q],a[q+1:r]中任何元素大于等于a[q]。下标q在划分过程中确定。 qSort (p,q-1); //对左半段排序 qSort (q+1,r); //对右半段排序 } }
=时间复杂性+空间复杂性
= 算法所需要的计算机资源
算法复杂性
算法渐近复杂性
1)上界函数
定义1 如果存在两个正常数c和n0,对于所有的n≥n0,有 |f(n)| ≤ c|g(n)| 则记作f(n) = Ο(g(n)) 含义: 如果算法用n值不变的同一类数据在某台机器上运行时,所用的时间总是小于|g(n)|的一个常数倍。所以g(n)是计算时间f(n)的一个上界函数。 f(n)的数量级就是g(n)。 f(n)的增长最多像g(n)的增长那样快 试图求出最小的g(n),使得f(n) = Ο(g(n))。
3)“平均情况”限界函数
问题的计算时间下界为(f(n)),则计算时间复杂性为O(f(n))的算法是最优算法。
01
例如,排序问题的计算时间下界为(nlogn),计算时间复杂性为O(nlogn)的排序算法是最优算法。
02
最优算法
第2章 递归与分治策略
单击此处添加文本具体内容,简明扼要的阐述您的观点,以便观者准确的理解您传达的思想。
复杂度分析 T(n)=O(nlogn) 渐进意义下的最优算法

!算法设计与分析总复习资料

!算法设计与分析总复习资料

4、public static int binarySearch4(int[] a,int x,int n) { if(n>0 && x>=a[0]){ int left=0;int right=n-1; while(left<right){ int middle=(left+right)/2; if(x<a[middle])right=middle-1; else left=middle; } if(x==a[left])return left ; } return -1; }
分析与解答:
(1)设新机器用同一算法在 t 秒内能解输入规模
为n1的问题。T(n1)=64T(n)=64*3*2n=3*2n+6因此,
解得n1=n+6 。 (2)n12=64n2=(8n)2n1=8n。 (3)由于T(n)=常数,因此算法可解任 意规模的
问题
2、硬件厂商XYZ公司宣称他们最新研制的微处理器运行速度为 竞争对手ABC公司同类产品的100倍。对于计算复杂性分析 分别为n,n2,n3和n!的各算法,若用ABC公司的计算机能在1 小时能接输入规模为n的问题,那么用XYZ公司的计算机在1 小时内分别能接输入规模为多大的问题? 供选择的答案: ①a n b 10n c 100n d 与旧机器处理相同规模 ② a 10n b 2 100 n c log10n d 与旧机器处理相同规模 ③ a 2 100n b 3 100 n c 100n d 与旧机器处理相同规模 ④ a 100n b n+log100 c 1000n d 与旧机器处理相同 规模
的一个 ① 连同定义在该模型上并作为 ② 4、设f(N)和g(N)是定义在正数集上的正函数,当N充分大时, f(N)=O(g(N))表示g(N)是f(N)的一个①; f(N)=Ω(g(N))表示g(N)是f(N)的一个②; f(N)=θ(g(N))表示g(N)是f(N)③。

算法分析与设计总复习

算法分析与设计总复习

2011-3-22
23 of 158
求递归关系T(n) = 5T(n–1) –6T(n–2) (n≥2) 例 求递归关系 满足初始条件T(0) =0, T(1) =1的解 满足初始条件 的解 解 此递归关系的特征方程为 x2–5x+6=0 即(x–2)(x–3) =0 所以,特征根为x 所以,特征根为 1= 2, x2=3 因此递归关系的通解为T(n) = A12n+A23n 因此递归关系的通解为
2011-3-22 20 of 158
例 算法A 例:算法 1,A2的时间复杂性分别是 n,2n,设100µs是一个单位时间,求 是一个单位时间, 设 是一个单位时间 A1,A2在1s内能处理的问题规模。 内能处理的问题规模。 内能处理的问题规模 已知lg2=0.301 已知 T(n) = n T(n)*10-4 = 1 即 n*10-4 = 1 所以 n = 104
2011-3-22 5 of 158
NP类问题
NP类问题:非多项式 (non polynomial)时间 NP类问题:非确定的多项式时间 (nondeterministic polynomial-time) 存在以多项式时间运行的非确定性算法。 1.非确定(猜测)阶段 非确定性算法 2.确定(验证)阶段
符号 一、符号说明 1.取整函数 . x :小于等于 的最大整数 小于等于x的最大整数 x :大于等于 的最小整数 大于等于x 性质 x-1 < x ≤ x ≤ x < x+1 2. 对数
2011-3-22 16 of 158
符号
二、阶乘
n n 1 n! = 2πn ( ) (1 + Θ( )) e n n! = o(nn)
2011-3-22 27 of 158

算法设计与分析复习重点

算法设计与分析复习重点

0/1背包问题:给定n 个重量为{w 1,w 2,...,w n }、价值为{v 1,v 2,...,v n }的物品和一个容量为C 的背包,应选择哪些物品装入背包,才能使装入背包的物品价值最高? 蛮力法:给出所有子集,计算子集的总重量和总价值,进行比较。

动态规划法:证明0/1背包问题,满足最优性原理,分支限界法:用贪心法求得背包问题的下界,再求得上界:将背包中剩余容量全部装入第i+1个物品,并可以将背包装满,限界函数:ub=v+(W-w)*(v i+1/w i+1)。

总结:1.剪枝函数给出每个可行结点相应的子树可能获得的最大价值的上界。

2.如这个上界不会比当前最优值更大,则可以剪去相应的子树。

3.也可将上界函数确定的每个结点的上界值作为优先级,以该优先级的非增序抽取当前扩展结点。

由此可快速获得最优解。

贪心法:选择单位重量价值最大的物品。

哈密顿回路问题:共有n 个城市,要求从一个城市出发,经过每个城市恰好一次,最后回到出发城市。

蛮力法:对于给定的无向图G=(V ,E ),依次考察图中所有顶点的全排列,满足以下条件的全排列(v i1,v i2,...,v in )构成的回路就是哈密顿回路:(1)相邻顶点之间存在边,即(v ij ,v ij+1)∈E (1≤j ≤n-1)(2)最后一个顶点和第一个顶点之间存在边,即(v in ,v i1)∈E回溯法:假定图G=(V ,E )的顶点集为V={1,2,…,n },则哈密顿回路的可能解表示为n 元组X=(x 1,x 2,…,x n ),其中,xi {1,2,…,n }。

根据题意,有如下约束条件:{(x i ,x i+1)∈E(1≤i ≤n −1)(x n ,x 1)∈E x i ≠x j (1≤i,j ≤n,i ≠j )首先把所有顶点的访问标志初始化为0,然后依次为每个顶点着色。

在解空间树中,如果从根结点到当前结点对应一个部分解,即满足上述约束条件,则在当前结点处选择第一棵子树继续搜索,否则,对当前子树的兄弟子树继续搜索,即为当前顶点着下一个颜色。

算法设计与分析复习题目及答案

算法设计与分析复习题目及答案

算法设计与分析复习题目及答案一、算法的基本概念1、什么是算法?算法是指解决特定问题的一系列明确步骤,它具有确定性、可行性、有穷性、输入和输出等特性。

例如,计算两个数的最大公约数的欧几里得算法,就是通过反复用较小数去除较大数,然后将余数作为新的较小数,直到余数为 0,此时的除数就是最大公约数。

2、算法的复杂度包括哪些?它们的含义是什么?算法的复杂度主要包括时间复杂度和空间复杂度。

时间复杂度是指算法执行所需要的时间量,通常用大 O 记号来表示。

例如,一个算法的时间复杂度为 O(n),表示其执行时间与输入规模 n成正比。

空间复杂度则是算法在运行过程中所需要的额外存储空间的大小。

比如说,一个算法需要创建一个大小为 n 的数组来存储数据,那么其空间复杂度就是 O(n)。

二、分治法1、分治法的基本思想是什么?分治法的基本思想是将一个规模为 n 的问题分解为 k 个规模较小的子问题,这些子问题相互独立且与原问题结构相同。

然后分别求解这些子问题,最后将子问题的解合并得到原问题的解。

2、请举例说明分治法的应用。

例如归并排序算法。

将一个未排序的数组分成两半,对每一半分别进行排序,然后将排好序的两部分合并起来。

其时间复杂度为 O(nlogn),空间复杂度为 O(n)。

三、动态规划1、动态规划的基本步骤有哪些?动态规划的基本步骤包括:(1)定义问题的状态。

(2)找出状态转移方程。

(3)确定初始状态。

(4)计算最终的解。

2、解释最长公共子序列问题,并给出其动态规划解法。

最长公共子序列问题是指找出两个序列的最长公共子序列的长度。

假设我们有两个序列 X 和 Y,用 dpij 表示 X 的前 i 个字符和 Y 的前 j 个字符的最长公共子序列长度。

状态转移方程为:如果 Xi 1 == Yj 1,则 dpij = dpi 1j 1 + 1否则 dpij = max(dpi 1j, dpij 1)四、贪心算法1、贪心算法的特点是什么?贪心算法在每一步都做出当前看起来最优的选择,希望通过这种局部最优选择达到全局最优解。

算法设计与分析 复习

算法设计与分析 复习

算法设计与分析复习算法与程序算法:解决问题的方法或过程,是满足下述性质的指令序列。

输入:有零个或多个外部量作为算法的输入。

输出:算法产生至少一个量作为输出。

确定性:组成算法的每条指令明晰、无歧义。

有限性:算法中每条指令的执行次数有限,执行每条指令的时间也有限。

程序:程序是算法用某种程序设计语言的详细实现。

程序可以不满足算法的性质(4)即有限性。

例如操作系统,是一个在无限循环中执行的程序,因此不是一个算法。

操作系统的各种任务可看成是单独的问题,每一个问题由操作系统中的一个子程序通过特定的算法来实现。

该子程序得到输出结果后便终止。

描绘算法与算法设计算法分析的根本原那么算法分析的根本原那么时间复杂度(time complexity)T(n)时间复杂度指程序执行时所用的时间。

在使用解析方法时程序p的时间复杂度表示为输入量的函数T。

机器独立的分析方法-解析的方法.在解析地分析时间复杂度时,使用以下两种时间单位并计算:操作计数(operation count):算法的根本操作(程序)步计数(step count):分析全部程序要点:根本操作或程序步的执行时间必须是常数。

最好,最坏和平均情形时间复杂度当长度一样的不同输入有不同的计算时间时,时间复杂度分析分别考虑三种情形:即最好,最坏和平均. 当应用对计算时间有严格要求时,应做最坏情形分析-upper bound.最好情形分析给出一个算法的计算时间的下界,用来否认一个算法.渐近分析,符号(О,Ω,Θ)计算机科学使用最多的符号-讨论算法时使用的共同语言.渐近分析-随n的增加T(n)的增长率渐近分析(续)大Ωf(n)=Ω(g(n)) iff 存在常数c和n0使得对所有n>n0,有f(n)>cg(n)成立.渐近分析(续)称g(n)为f(n)的渐近下界例如,f(n)=0.001n2-10n-1000=Ω(n2)因为:limf(n)/n2=0.001渐近分析(续)符号Θ假如f(n)=O(g(n))同时f(n)=Ω(g(n))那么f(n)=Θ(g(n)),并称f(n)与g(n)同阶.Lim f(n)/g(n)=c, 0<c<唴那么f(n)=Θ(g(n))g(n)取上述初等函数渐近分析(续)当f(n)为算法的时间复杂度函数时,称g(n)为该算法的复杂度的阶。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
的一个 ① 连同定义在该模型上并作为 ② 4、设f(N)和g(N)是定义在正数集上的正函数,当N充分大时, f(N)=O(g(N))表示g(N)是f(N)的一个①; f(N)=Ω(g(N))表示g(N)是f(N)的一个②; f(N)=θ(g(N))表示g(N)是f(N)③。
的一组运算。
5、直接或间接地调用自身的算法称为 ① ,在定义该算法
3、解递推关系 X(n)=X(n/3)+1 于n=3k的情况求解 x(n)=x(n/3)+1
其中
n>1,X(1)=1对
=x(n/3/3)+1+1 =x(n/32)+2 …….. =x(n/3k)+k 因为 n=3k 所以 k=㏒3n X(n)=1+㏒3n
4、下面的说法错误的是________。(可多选)
参考答案
1、 ①输入 ② 输出 ③ 确定性 ④ 有限性 ⑤ 可行性
2、 ①有限性 3、 ① 数据模型 ② 算法构件 4、 ① 上界 ② 下界 ③ 同阶
5、 ① 递归 ② 非递归定义的 6、 ① 重复计算 ②一个表 7、 ① 全部解 ② 一个解 8、 ① 深度优先 ② 广度优先 ③ 最小耗费优先
9、概率算法可分为4类:数值算法、蒙哥特卡罗算法、拉斯 维加斯算法和舍伍德算法。 蒙哥特卡罗算法常用于求问题的准确解,其缺点是①; 拉斯维加斯算法不会得到不正确的解,其缺点是②; 使用舍伍德算法求解得好处在于,可以③。
6、public static int binarySearch6(int[] a,int x,int n) { if(n>0 && x>=a[0]){ int left=0; int right=n-1; while(left<right){ int middle=(left+right+1)/2; if(x<a[middle])right=middle-1; else left=middle+1; } if(x==a[left]) return left; } return -1; }
分析与解答:
(1)设新机器用同一算法在 t 秒内能解输入规模
为n1的问题。T(n1)=64T(n)=64*3*2n=3*2n+6因此,
解得n1=n+6 。 (2)n12=64n2=(8n)2n1=8n。 (3)由于T(n)=常数,因此算法们最新研制的微处理器运行速度为 竞争对手ABC公司同类产品的100倍。对于计算复杂性分析 分别为n,n2,n3和n!的各算法,若用ABC公司的计算机能在1 小时能接输入规模为n的问题,那么用XYZ公司的计算机在1 小时内分别能接输入规模为多大的问题? 供选择的答案: ①a n b 10n c 100n d 与旧机器处理相同规模 ② a 10n b 2 100 n c log10n d 与旧机器处理相同规模 ③ a 2 100n b 3 100 n c 100n d 与旧机器处理相同规模 ④ a 100n b n+log100 c 1000n d 与旧机器处理相同 规模
5、public static int binarySearch5(int[] a,int x,int n) { if(n>0 && x>=a[0]){ int left=0; int right=n-1; while(left<right){ int middle=(left+right+1)/2; if(x<a[middle])right=middle-1; else left=middle; } if(x==a[left]) return left; } return -1; }
A 1 2 3 F 4 L 3 M C G 4 N 4 2 H 2 O B 3 D I 3 P 4 E 2 J 2 Q K 3 4
25
25
邻接矩阵
1 2 3 4
1 0 30 6 4
2 30 0 5 10
3 6 5 0 20
4 4 10 20 0
2、给出4个顶点的图如下: 只给出三种颜色,如何给4个顶点着色,使之有连边 关系的顶点颜色不同,一共有多少种着色方法,请绘图 说明。
10、建立计算模型的目的是为了使问题的计算复杂性分 析有一个共同的客观尺度,其中最主要的三个模型是 RAM随机存储机、 ①和 ②。
9、① 一般情况下,无法有效地判定所得到的解是否肯定 正确。 ② 有时找不到解。 ③ 消除或减少问题的好坏实例间的计算复杂性差别。
10、① RASP随机存取存储程序机 ②图灵机
7、public static int binarySearch7(int[] a,int x,int n) { if(n>0 && x>=a[0]){ int left=0; int right=n-1; while(left<right){ int middle=(left+right+1)/2; if(x<a[middle])right=middle; else left=middle; } if(x==a[left]) return left; } return -1; }
四、算法分析理解
1、设G=<V,E>是一个带权图。图中各边的费用 (权)为正数。图的一条周游路线是包括V中的每个顶点 在内的一条回路。请画出邻接矩阵并按照解空间树,并给 出回溯法和分支限界法求第一个解的搜索路径。
30 5 6 3 20 4 4 10
1
2
A 1 2 3 F 4 L 3 M C G 4 N 4 2 H 2 O B 3 D I 3 P 4 E 2 J 2 Q K 3 4
R L R G G L
L
R
G
R
L
G
L
R
G
R
L
G
R
L
R
G
G
L
R G
G L G
R L
G R R
R L
L G
R G L G G L
L R
L R G R
L R G L
L G G R
G R R L
R L R G
L L G
G L R
五、简答与证明题
1、给出NP 完全问题的定义,写出证明一问题属于NPC
问题的基本思想 。
《算法设计与分析》 总复习
北方民族大学 计算机科学与技术学院 白静
一、填空题
1、算法是指解决问题的方法或过程,算法所描述的指令序列必
须满足下列性质① 、② 、③ 、④ 、⑤ 。
2、程序是算法用某种程序设计语言的具体实现,程序可以不满 足算法的 ① 性质。所以像操作系统这样的软件不是算法。
3、抽象数据类型是算法设计的重要概念。严格地讲,它是算法
参考答案
1、数组段左右游标left和right 的调整不正确,导致陷入 死循环。 2 数组段左右游标left和right 的调整不正确,导致当 x=a[n-1]时返回错误。 3、数组段左右游标left和right 的调整不正确,导致当 x=a[n-1]时返回错误。 4、数组段左右游标left和right 的调整不正确,导致陷入 死循环。 5、算法正确,且当数组中有重复元素时,返回满足条件 的最右元素。 6、数组段左右游标left和right 的调整不正确,导致当 x=a[n-1]时返回错误。 7、数组段左右游标left和right 的调整不正确,导致当 x=a[0]时陷入死循环
三、判断分析
请判别下面给出的7个二分算法java程序的正确性,若算 法不正确,说明产生错误的原因,若正确给出算法正确性 证明。 1、public static int binarySearch1(int[] a,int x,int n) { int left =0;int right=n-1; while(left<=right){ int middle=(left+right)/2 if(x==a[middle])return middle; if(x>a[middle])left=middle; else right=middle; } return -1; }
a、算法原地工作的含义是指不需要任何额外的辅助
空间; b、在相同的规模n下,时间复杂度为O(n)的算法在
时间上总是优于时间复杂度为O(2n)的算法。
c、所谓时间复杂度是指最坏情况下,估算算法执行 时间的一个上界;
d、同一算法,实现语言的级别越高,执行效率越低。
参考答案 a、 d 一个原地算法(in-place algorithm)是一种使用小的,固定数量的额外 之空间来转换资料的算法。
2、public static int binarySearch2(int[] a,int x,int n) { int left =0; int right=n-1; while(left<right-1){ int middle=(left+right)/2 if(x<a[middle])right=middle; else left=middle; } if(x==a[left]) return left; else return -1; }
时,除了提供必须的计算公式外,还必须提供 ② 初始 值。 6、动态规划算法与分治法的基本思想都是将待求解问题分解 成若干个子问题,先求解子问题,然后从这些子问题的解 得到原问题的解。它们的主要区别是分治法求解时,对有 些子问题会 ① ,而动态规划法采用 ② 避免子问 题重复计算。 7、回溯法的求解目标是找出解空间中满足约束条件的 ① , 而分支限界法的求解目标则是找出满足约束条的 ② 或在 某种意义下的最优解。 8、回溯法以 ① 优先的方式搜索解空间树,而分支限界法则 以 ② 优先或以 ③ 优先的方式搜索解空间树。
语言L是NP完全的当且仅当L∈NP,对于所有L’∈NP 有 L’∝PL。 一个问题X定义为NP完全性问题,如果:X在NP中,而 且NP中的每一个其他问题都可以在多项式时间归约到X。 根据定理的推论,一旦建立了问题L的NP完全性后,对 于L1∈NP,只要证明问题L在多项式时间内变换为L1, 即L∝p L1,就可证明L1 也是NP完全的。
相关文档
最新文档