实验三 基尔霍夫定律、戴维南定理的的验证
电工及电子技术实验报告(电子档)
电工及电子技术实验报告(电子档)实验一基尔霍夫定律的验证一、实验目的1.验证基尔霍夫定律。
2.加深对参考方向的理解。
3.掌握相对误差的计算方法。
二、实验线路三、实验设备1.双路稳压电源1台2.直流电流表1只3.直流电压表1只4.实验线路板1块5.电流插座板1块四、实验内容及步骤五、实验数据1.基尔霍夫电流定律的验证六、实验结果分析1.基尔霍夫电流定律的验证(1)与理论相符程度(2)误差分析2.基尔霍夫电压定律的验证(1)与理论相符程度(2)误差分析七、实验报告思考题1.已知某支路电流约为3mA,现有量程分别为5mA和10mA的两块电流表,两块电流表的精度一样,应选择哪一块电流表进行测量,为什么?2.电压降与电位的区别是什么?八、实验总结实验二叠加原理的验证一、实验目的1.叠加原理的验证。
2.学会直流稳压电源、直流电流表、直流电压表及万用表的使用方法。
二、实验设备1.双路稳压电源1台2.直流电流表1块3.直流电压表1块4.万用表1块5.实验线路板1块6.电流插板1块三、实验内容及步骤(1)实验线路图(2)实验步骤(3)实验数据(4)实验分析①与定理的相符情况②误差分析四、实验总结实验三戴维南定理的验证一、实验目的1.戴维南定理的验证。
2.学会直流稳压电源、直流电流表、直流电压表及万用表的使用方法。
3.学习有源二端网络等效内阻及开路电压的测量方法。
二、实验设备1.双路稳压电源1台2.直流电流表1块3.直流电压表1块4.万用表1块5.实验线路板1块6.电流插板1块三、实验内容及步骤(1)实验线路(2)实验步骤(3)实验数据1.测量有源二端网络的开路电压U0和等效内阻R0开路电压U0的测量值:U0 =等效电阻R0的测量值:R0 =U0的计算值(需有过程):U0 =R0的计算值(需有过程):R0 =2.接入负载电阻,有源二端网络伏安特性的测量(4)实验分析①与定理的相符情况②在同一坐标上,做出测量与计算两条U-I 特性曲线,并进行误差分析。
第三章 电 路 实 验
电路实验指导江苏科技大学电工电子实验中心实验一 元件特性的示波测量法一、实验目的1、 掌握用示波器测量电压、电流等基本电量的方法2、学习用示波器测量电压、电流基本变量的方法。
3、掌握元件特性的示波器测量法,加深对元件特性的理解。
二、实验原理1、 电压的测量用示波器测量电压的方法主要有直接测量法和比较测量法。
实验中常采用直接测量法,这种方法就是直接从示波器屏幕上测量出被测电压的高度,然后换算成电压值。
计算公式为p p Y U D h -=∙式中h 是被测信号的峰-峰值的高度,单位是cm ,Y D 是Y 轴灵敏度,单位是V/cm (或mV/cm )。
2、 电流的测量用示波器不能直接测量电流。
若要用示波器测量某支路的电流,一般是在该支路中串入一个采样电阻r ,当电路中的电流流过电阻r 时,在r 两端得到的电压与r 中的电流的波形完全一样,测出党的r u 就得到了该支路的电流,r ui r =。
(1) 电阻元件的特性测量电阻元件的特性曲线就是它的伏安关系曲线。
用示波器测量电阻元件的特性曲线就是利用示波器可以把电阻元件的特性曲线在荧光屏上显示出来。
实验原理如图1-3所示,图中,r 是取样电阻,它两端的电压()()t ri t u r r =反映了通过它的电流的变化规律。
r 必须足够小,使得()()t u t u R r <<。
这时把被测电阻R 上的电压()()t u t u s R ≈接入CH1端,即Y 轴输入端,把被测电阻上的电流()()r t u t i r R /=接入CH2端,即X 轴输入端,适当调节X 轴和Y 轴灵敏度旋钮,u 特性曲线。
就是元件的伏安特示波器的荧光屏即可清楚的显示出被测电阻的i性曲线。
图 1-3测电阻伏安特性曲线的电路图 1-4测量二极管伏安特性的电路三、实验任务1、按图1-3接线,测量下列电阻元件的电流、电压波形及相应的伏安特性曲线(输u取频率为1000Hz,峰峰值为5V的正弦波):入信号i(1)线性电阻元件(阻值自选)。
电路基本定理研究实验报告
电路基本定理研究实验报告电路基本定理研究实验报告一、实验目的本实验旨在通过实际操作,深入理解和掌握电路基本定理,包括基尔霍夫定律、欧姆定律、戴维南定理和诺顿定理。
通过实验,期望学生能将理论知识应用于实际电路中,提高实践能力和理论水平。
二、实验原理1.基尔霍夫定律:基尔霍夫定律是电路理论中最基本的定律之一,它包括两个部分,即节点电流定律和回路电压定律。
节点电流定律指出,在任意一个节点上,流入的电流总和等于流出的电流总和;回路电压定律指出,在任意一个闭合回路中,电势升高的总和等于电势降低的总和。
2.欧姆定律:欧姆定律是电路中有关电阻、电流和电压的基本定律。
它指出,在一个线性电阻器件中,电压与电流成正比,电阻保持恒定。
3.戴维南定理:戴维南定理又称为等效电源定理,它可以将一个含源电路等效为一个电压源和一个电阻串联的形式。
该定理实质上是将有源二端网络等效为一个实际电源。
4.诺顿定理:诺顿定理是戴维南定理的反定理,它可以将一个含源电路等效为一个电流源和电阻并联的形式。
该定理也是将有源二端网络等效为一个实际电源。
三、实验步骤1.准备实验器材:电源、电阻器、电感器、电容器、开关、导线等。
2.搭建实验电路:根据实验要求,设计并搭建实际电路。
3.测量数据:使用万用表等测量仪器,测量电路中的电流、电压、电阻等参数。
4.分析数据:根据测量数据,分析电路的性能和特点,验证电路基本定理的正确性。
5.整理实验结果:整理实验数据,撰写实验报告。
四、实验结果及分析实验一:基尔霍夫定律验证在实验中,我们搭建了一个简单的电路,包含一个电源、一个电阻和一个电流表。
通过测量流入和流出的电流,验证了节点电流定律。
同时,我们还搭建了一个闭合回路,包含一个电源、一个电阻和一个电压表,验证了回路电压定律。
结果表明,实验数据与理论预测相符,证明基尔霍夫定律的正确性。
实验二:欧姆定律验证在实验中,我们选取了三个不同阻值的电阻器,分别测量了它们两端的电压和流过的电流。
《电路基础》实验报告
实验一 基尔霍夫定律一、实验目的1.用实验数据验证基尔霍夫定律的正确性; 2.加深对基尔霍夫定律的理解; 3.熟练掌握仪器仪表的使用方法。
二、实验原理基尔霍夫定律是电路的基本定律之一,它规定了电路中各支路电流之间和各支路电压之间必须服从的约束关系,即应能分别满足基尔霍夫电流定律和电压定律。
基尔霍夫电流定律(KCL ):在集总参数电路中,任何时刻,对任一节点,所有各支路电流的代数和恒等于零。
即∑I=0通常约定:流出节点的支路电流取正号,流入节点的支路电流取负号。
基尔霍夫电压定律(KVL ):在集中参数电路中,任何时刻,沿任一回路内所有支路或元件电压的代数和恒等于零。
即∑U=0通常约定:凡支路电压或元件电压的参考方向与回路绕行方向一致者取正号,反之取负号。
三、实验内容实验线路如图1.1所示。
1. 实验前先任意设定三条支路的电 流参考方向,如图中的I 1、I 2、I 3所示。
2. 分别将两路直流稳压电源接入电 路,令u 1=6V ,u 2 =12V ,实验中调好后保 持不变。
3.用数字万用表测量R 1 ~R 5 电阻元 图 1.1基尔霍夫定律线路图 件的参数取50~300Ω之间。
4.将直流毫安表分别串入三条支路中,记录电流值填入表中,注意方向。
5.用直流电压表分别测量两路电源及电阻元件上的电压值,记录电压值填入表中。
四、实验注意事项1.防止在实验过程中,电源两端碰线造成短路。
2.用指针式电流表进行测量时,要识别电流插头所接电流表的“+、-”极性。
倘若不换接极性,则电表指针可能反偏(电流为负值时),此时必须调换电流表极性,重新测量,R 4R 5u 1u 2此时指针正偏,但读得的电流值必须冠以负号。
五、实验报告内容1、根据实验数据,选定实验电路中的任一个节点,验证KCL的正确性。
2、根据实验数据,选定实验电路中的任一个闭合回路,验证KVL的正确性。
3、实测值与计算结果进行比较,说明产生误差的原因。
六、预习思考根据图1.1的电路参数,计算出待测电流I1、I2、I3和各电阻上的电压值,记入表中,以便实验测量时,可正确选定毫安表和电压表的量程。
电路分析实验报告
本科生实验报告实验课程电路分析学院名称信息科学与技术学院专业名称物联网工程学生姓名葛小源学生学号201513060114指导教师阴明实验地点6B602实验成绩二〇一六年三月——二〇一六年六月实验一、电路元件伏安特性的测绘摘要实验目的1、学会识别常用电路元件的方法。
2、掌握线性电阻、非线性电阻元件伏安特性曲线的测绘。
3、掌握实验台上直流电工仪表和设备的使用方法。
实验步骤测量线性电阻的伏安特性按图接线。
调节直流稳压电源的输出电压U ,从0伏开始缓慢地增加(不得超过10V ),在表中记下相应的电压表和电流表的读数。
R=900Ω时:R=800Ω时:U白炽灯时:伏安特性曲线如下:为IN4007时:二极管的伏安特性曲线如下:实验思考:1、线性与非线性电阻概念是什么?答:电阻两端的电压与通过它的电流成正比,其伏安特性曲线为直线这类电阻称为线性电阻,其电阻值为常数;反之,电阻两端的电压与通过它的电流不是线性关系称为非线性电阻,其电阻值不是常数。
一般常温下金属导体的电阻是线性电阻,在其额定功率内,其伏安特性曲线为直线。
象热敏电阻、光敏电阻等,在不同的电压、电流情况下,电阻值不同,伏安特性曲线为非线性。
2、电阻器与二极管的伏安特性有何区别?答:电阻器流过的电流,正比于施加在电阻器两端的电压,画出的V-A曲线将是一条直线,所以称之为线性元件;二极管流过的电流,会随施加在两端的电压增长,但是增长的倍数是变化的,电压越高,增长的倍数越大,画出的V-A曲线将是一条曲线(类似于抛物线或者N次方线),所以称之为非线性元件。
3、稳压二极管与普通二极管有何区别,其用途如何?答:普通二极管一般都是作为整流、检波使用,耐压值较高。
而稳压管一般都是用于稳压,故耐压值较低,正常使用时,要工作于反向击穿状态。
实验二、基尔霍夫定律的验证(一)摘要实验目的:1、验证基尔霍夫定律的正确性,加深对基尔霍夫定律的理解。
2、学会用电流插头插座测量各支路电流方法。
电路与模电实验指导书
实验一基尔霍夫定律验证和电位的测定一、实验目的1.验证基尔霍夫电流定律(KCL)和电压定律(KVL)。
2.通过电路中各点电位的测量加深对电位、电压及它们之间关系的理解。
3.通过实验加强对参考方向的掌握和运用的能力。
4.训练电路故障的诊查与排除能力。
二、原理与说明1.基尔霍夫电流定律(KCL)在任一时刻,流出(或流入)集中参数电路中任一可以分割开的独立部分的端子电流的代数和恒等于零,即:ΣI=0 或ΣI入=ΣI出式(3-1)此时,若取流出节点的电流为正,则流入节点的电流为负。
它反映了电流的连续性。
说明了节点上各支路电流的约束关系,它与电路中元件的性质无关。
要验证基式电流定律,可选一电路节点,按图中的参考方向测定出各支路电流值,并约定流入或流出该节点的电流为正,将测得的各电流代入式(3-1),加以验证。
2.基尔霍夫电压定律(KVL)按约定的参考方向,在任一时刻,集中参数电路中任一回路上全部元件两端电压代数和恒等于零,即:ΣU=0 式(3-2)它说明了电路中各段电压的约束关系,它与电路中元件的性质无关。
式(3-2)中,通常规定凡支路或元件电压的参考方向与回路绕行方向一致者取正号,反之取负号。
3.电压、电流的实际方向与参考方向的对应关系参考方向是为了分析、计算电路而人为设定的。
实验中测量的电压、电流的实际方向,由电压表、电流表的“正”端所标明。
在测量电压、电流时,若电压表、电流表的“正”端与参考方向的“正”方向一致,则该测量值为正值,否则为负值。
4.电位与电位差在电路中,电位的参考点选择不同,各节点的电位也相应改变,但任意两节点间的电位差不变,即任意两点间电压与参考点电位的选择无关。
5.故障分析与检查排除(1) 实验中常见故障①连线:连线错,接触不良,断路或短路;②元件:元件错或元件值错,包括电源输出错;③参考点:电源、实验电路、测试仪器之间公共参考点连接错误等等。
(2) 故障检查故障检查方法很多,一般是根据故障类型,确定部位、缩小范围,在小范围内逐点检查,最后找出故障点并给予排除。
基尔霍夫定律和戴维宁定理实验
基尔霍夫定律和戴维宁定理实验一、实验目的1. 验证基尔霍夫定律的正确性,加深对基尔霍夫定律的理解。
2. 学会用电流插头、插座测量各支路电流。
3. 验证戴维南定理的正确性,加深对该定理的理解。
4. 掌握测量有源二端网络等效参数的一般方法。
二、原理说明1.基尔霍夫定律是电路的基本定律。
测量某电路的各支路电流及每个元件两端的电压,应能分别满足基尔霍夫电流定律(KCL)和电压定律(KVL)。
即对电路中的任一个节点而言,应有ΣI=0;对任何一个闭合回路而言,应有ΣU=0。
运用上述定律时必须注意各支路或闭合回路中电流的正方向,此方向可预先任意设定。
2. 任何一个线性含源网络,如果仅研究其中一条支路的电压和电流,则可将电路的其余部分看作是一个有源二端网络(或称为含源一端口网络)。
戴维南定理指出:任何一个线性有源网络,总可以用一个电压源与一个电阻的串联来等效代替,此电压源的电动势Us等于这个有源二端网络的开路电压Uoc,其等效内阻R0等于该网络中所有独立源均置零(理想电压源视为短接,理想电流源视为开路)时的等效电阻。
Uoc(Us)和R0称为有源二端网络的等效参数。
3. 有源二端网络等效参数的测量方法(1) 开路电压、短路电流法测R0在有源二端网络输出端开路时,用电压表直接测其输出端的开路电压Uoc,然后再将其输出端短路,用电流表测其短路电流Isc ,则等效内阻为Uoc R 0= ── Isc如果二端网络的内阻很小,若将其输出端口短路 则易损坏其内部元件,因此不宜用此法。
(2) 伏安法测R 0用电压表、电流表测出有源二端网络的外特性曲线,如图2-1所示。
根据外特性曲线求出斜率tg φ,则内阻 图2-1 △U U oc R 0=tg φ= ──=── 。
△I Isc也可以先测量开路电压Uoc ,再测量电流为额定值I N 时的输出端电压值U N ,U oc -U N则内阻为 R 0=──── 。
I N 三、实验设备计算机,multisim 仿真软件 四、实验内容U I ABI UOΔUΔIφscoc(一)基尔霍夫定律实验线路如图2—2,用DGJ-03挂箱的“基尔霍夫定律”线路。
电学基础戴维南定理与基尔霍夫定律
电学基础戴维南定理与基尔霍夫定律电学基础:戴维南定理与基尔霍夫定律在电学的世界里,戴维南定理和基尔霍夫定律就像是两座坚固的基石,为我们理解和分析电路提供了重要的理论支持。
无论是简单的电路还是复杂的网络,这两个定律都有着广泛的应用,帮助我们解决各种实际问题。
让我们先来聊聊戴维南定理。
想象一下,你面对一个复杂的电路,其中有很多个电阻、电源等等元件,看起来眼花缭乱,让人不知所措。
这时候,戴维南定理就像一把神奇的剪刀,能把复杂的电路剪切成两部分。
一部分是我们需要研究的“目标电路”,另一部分则是可以被等效成一个简单的电源和电阻串联的组合。
这个等效的电源电压被称为戴维南电压,它的值等于原来电路在断开目标电路后的开路电压。
而等效电阻呢,被称为戴维南电阻,它的值等于原来电路中所有电源都置零(电压源短路,电流源开路)后,从断开处看进去的等效电阻。
比如说,我们有一个电路,其中包含了多个电阻和一个电源。
我们想要研究其中某一部分电阻两端的电压和电流。
通过戴维南定理,我们就可以把这部分电阻之外的电路等效成一个简单的电源和电阻串联,这样计算起来就简单多了。
戴维南定理的优点在于它能够将复杂的电路简化,使得分析和计算变得更加容易。
特别是在解决含有多个电源和复杂电阻网络的电路问题时,它的作用尤为明显。
接下来,我们再谈谈基尔霍夫定律。
基尔霍夫定律分为电流定律(KCL)和电压定律(KVL)。
基尔霍夫电流定律(KCL)说的是,在任何一个节点(也就是电路中三条或三条以上支路的连接点)上,流入节点的电流之和等于流出节点的电流之和。
这就好比是水流进入和流出一个节点,进来的水总量必须等于出去的水总量,不然水就会在节点处堆积或者消失,这显然是不符合实际的。
举个例子,如果一个节点上有三条支路,其中两条支路流入节点的电流分别是 2A 和 3A,那么从第三条支路流出的电流必然是 5A,这样才能满足 KCL。
而基尔霍夫电压定律(KVL)则是说,在任何一个闭合回路中,沿回路绕行一周,所有元件的电压代数和等于零。
《电路基础》实验
实验一 基尔霍夫定律一、实验目的1.用实验数据验证基尔霍夫定律的正确性; 2.加深对基尔霍夫定律的理解; 3.熟练掌握仪器仪表的使用方法。
二、实验原理基尔霍夫定律是电路的基本定律之一,它规定了电路中各支路电流之间和各支路电压之间必须服从的约束关系,即应能分别满足基尔霍夫电流定律和电压定律。
基尔霍夫电流定律(KCL ):在集总参数电路中,任何时刻,对任一节点,所有各支路电流的代数和恒等于零。
即∑I=0通常约定:流出节点的支路电流取正号,流入节点的支路电流取负号。
基尔霍夫电压定律(KVL ):在集中参数电路中,任何时刻,沿任一回路内所有支路或元件电压的代数和恒等于零。
即∑U=0通常约定:凡支路电压或元件电压的参考方向与回路绕行方向一致者取正号,反之取负号。
三、实验内容实验线路如图1.1所示。
1. 实验前先任意设定三条支路的电 流参考方向,如图中的I 1、I 2、I 3所示。
2. 分别将两路直流稳压电源接入电 路,令u 1=6V ,u 2 =12V ,实验中调好后保 持不变。
3.用数字万用表测量R 1 ~R 5 电阻元 图 1.1基尔霍夫定律线路图注意图中E 和F 互换一下 件的参数取50~300Ω之间。
4.将直流毫安表分别串入三条支路中,记录电流值填入表中,注意方向。
5.用直流电压表分别测量两路电源及电阻元件上的电压值,记录电压值填入表中。
四、实验注意事项1.防止在实验过程中,电源两端碰线造成短路。
2.用指针式电流表进行测量时,要识别电流插头所接电流表的“+、-”极性。
倘若不换接极性,则电表指针可能反偏(电流为负值时),此时必须调换电流表极性,重新测量,R 4R 5u 1u 2此时指针正偏,但读得的电流值必须冠以负号。
五、实验报告内容1、根据实验数据,选定实验电路中的任一个节点,验证KCL 的正确性。
选定A 点,列式计算利用三个电流值验证KCL 正确性。
实验数据!2、根据实验数据,选定实验电路中的任一个闭合回路,验证KVL 的正确性。
基尔霍夫定律叠加原理戴维南定理
2.开路
Hale Waihona Puke 3.短路短路是指电源未经负载而直接由 导线(导体)构成通路时的工作状态, 如图2-5所示。短路时,电路中流过 的电流远大于正常工作时的电流,可 能烧坏电源和其他设备。所以,应严 防电路发生短路。
图2-5 电路短路示意图
三、电流、电压及电动势
1.电流的形成
电流是由于电荷的定向移动形成的。在 金属导体中,电子在外电场作用下有规则地 运动就形成了电流。而在某些液体或气体中, 电流则是由于正离子或负离子在电场力作用 下有规则地运动而形成的。
电路及电路中的主要物理量
验证基尔霍夫定律
验证叠加原理及戴维南定理
学习目标
1.了解电路的组成及各部分的作用;
2.了解电路中的基本物理量,并掌握其计算方法; 3.了解电压和电流的方向,并掌握其测量方法; 4.掌握基尔霍夫定律、戴维南定律和叠加原理,并掌握 复杂电路的分析方法。 5.能用仿真的方式验证基尔霍夫定律、戴维南定理及叠 加原理。
图2-3(a)所示是用电气设备的实物图形表示的实际电 路。它的优点是很直观,但画起来很复杂,不便于分析 和研究。因此,在分析和研究电路时,总是把这些实际 设备抽象成一些理想化的模型,用规定的图形符号表示, 如图2-3(b)所示。这种用统一规定的图形符号画出的电 路模型图称为电路图。 理想电路元件分为两类:一类是有实际的元件与它对 应,如电阻器、电感器、电容器、电压源和电流源等; 另一类是没有直接与它相对应的实际电路元件,但是它 们的某种组合却能反映出实际电器元件和设备的主要特 性和外部功能,如受控源等。图2-4所示是电工电子技术 中经常使用的几种理想元件的电路符号。
2.电流的方向
在不同的导电物质中,形成电流的运动电荷可以是正 电荷,也可以是负电荷,甚至两者都有。习惯上把正电荷 移动的方向规定为电流的正方向。 在分析或计算电路时,常常要确定电流的方向。但当 电路比较复杂时,某段电路中电流的实际方向往往难以确 定,此时可先假定电流的参考方向,然后列方程求解,当 解出的电流为正值时,就表示电流方向与参考方向一致, 如图2-6(a)所示;反之,当电流为负值时,就表示电流方 向与参考方向相反,如图2-6(b)所示。
电路基本定理及定律的验证实验报告
一、实验名称:电路基本定律及定理的验证 二、实验目的:1、 通过实验验证并加深对基尔霍夫定律、叠加原理及其适用范围的理解;2、 用实验验证并加深对戴维南定理与诺顿定理的理解;3、 掌握电压源与电流源相互转换的条件和方法;4、 灵活运用等效电源定理来简化复杂线性电路的分析。
三、实验原理基尔霍夫定律:(1)基尔霍夫电流定律: 在任一时刻,流入到电路任一节点的电流的代数和为零。
5个电流的参考方向如图中所示,根据基尔霍夫定律就可写出I 1+I 2+I 3+I 4+I 5=0(2)基尔霍夫电压定律: 在任一时刻,沿闭合回路电压降的代数和总等于零。
把这一定律写成一般形式即为∑U=0。
叠加原理: 几个电压源在某线性网络中共同作用时,也可以是几个电流源共同作用于线性网络,或电压源和电流源混合共同作用。
它们在电路中任一支路产生的电流或在任意两点间所产生的电压降,等于这些电压源或电流源分别单独作用时,在该部分所产生的电流或电压降的代数和。
戴维南定理:对外电路来说,一个线性有源二端网络可以用一个电压源和一个电阻串联的电路来等效代替。
该电压源的电压等于此有源二端网络的开路电压U oc ,串联电阻等于此有源二端网络除去独立电源后(电压源短接,电流源断开)在其端口处的等效电阻R o ,这个电压源和电阻串联的电路称为戴维南等效电路。
四、实验步骤及任务(1):KCL 及KVL 的验证 实验线路图:NI 1I 2 I 3 I 4I 5KCL 定律示意图A B CDE FI 1 I 3I 2510Ω330Ω 510Ω510Ω 1k ΩU 1=10V_+KCL 及KVL 实验数据记录项目支路电流端点电压节点电流回路电压I 1(mA)I 2(mA) I 3(mA) U AC (V) U CD (V) U DA (V) I 1+ I 2- I 3 U AC +U CD + U DA计算值 7.201 -1.996 5.205 -1.996 -0.659 2.655 0 0 测量值7.201-1.9965.205-1.996-0.65872.655-0.0003(2):叠加原理的验证根据实验预习和实验过程预先用叠加原理计算出表中电压、电流计算值,最后通过电路测量验证。
实验课教案模板
实验课教案模板实验课题:测量1分钟的心跳与脉搏次数实验目标:1、了解自己在正常情况下1分钟的心跳跳动的次数以及脉搏跳动的次数;2、认识心跳与脉搏之间的关系实验器材或药品:橡胶管、钟表实验设想:一个人一分钟内心脏跳动多少次、人的脉搏速度是怎样的?心跳和脉搏有什么规律?实验探究过程:1、把橡胶管连在两个漏斗颈上,做成一个简易听诊器;2、用听诊器与同学互相听心跳的声音,记录一分钟心跳的次数;3、与同学互相摸脉搏,记录一分钟脉搏的次数;4、边听对方的心跳边测他的脉搏,观察心跳与脉搏跳动有什么关系。
现象观察:人的心脏跳动一次,人的脉搏就搏动一次实验结论:在正常情况下,人的心跳和脉搏是一致的1实验课题:测肺活量实验目标:1、知道什么是肺活量,掌握测量肺活量的正确方法,并能测量自己的肺活量。
2、知道体育锻炼对呼吸和心脏带来的好处;认识到清新的空气,合理的运动,有助于我们的健康。
实验器材或药品:气球、卷尺、塑料瓶、直尺、吸管实验设想:人的肺活量都一样吗?实验探究过程:一、制作肺活量测量器1.沿塑料瓶的外壁由下向上贴上白纸条;2.用100ml的烧杯装满水,倒入塑料瓶,小心不要把水倒在瓶外,然后用记号笔沿水面标上100ml的记号,依次进行,标到1000ml即可。
二、测肺活量1.测量前,一定要先将塑料中装满水,并盖上盖子;2.把塑料瓶倒扣在水槽中,瓶口一定要没在水的下方;3.在水中旋开盖子,将直角弯头管的一头伸进塑料瓶;4、吸足一口气,尽最大力气向水中吹气;5、读出自己的肺活量,读的时候是读出瓶中空的体积,不是读出瓶中水的体积;6、在第二个同学测之前,也一定要将瓶中的水装满。
现象观察:每个人的肺活量不尽相同。
实验结论:人的肺活量有大有小。
2实验课题:研究心脏的跳动和血液循环实验目标:知道血液循环系统的组成及其作用;知道血液循环系统的组成及其作用。
实验器材或药品:水盆,水,塑料瓶实验设想:心脏为什么要不停地跳动?心脏不停跳动究竟有什么作用呢?实验探究过程:一、模拟心脏跳动。
戴维南定理的验证实验报告
戴维南定理的验证实验报告一、实验目的1、深刻理解并掌握戴维南定理的基本概念和原理。
2、学会使用实验方法测量含源一端口网络的开路电压、短路电流和等效电阻。
3、通过实验数据验证戴维南等效电路与原电路的等效性。
二、实验原理戴维南定理指出:任何一个线性含源一端口网络,对外电路来说,可以用一个电压源和电阻的串联组合来等效替代,此电压源的电压等于该一端口网络的开路电压$U_{oc}$,电阻等于该一端口网络中所有独立源置零后的等效电阻$R_{eq}$。
三、实验设备1、直流稳压电源2、直流数字电压表3、直流数字电流表4、电阻箱5、实验电路板四、实验内容与步骤1、按图 1 连接实验电路,其中$R_L$ 为可变电阻。
!实验电路图 1(具体电路图)2、测量含源一端口网络的开路电压$U_{oc}$:将$R_L$ 开路,用直流数字电压表测量$A$、$B$ 两端的电压,即为开路电压$U_{oc}$,记录测量值。
3、测量含源一端口网络的短路电流$I_{sc}$:将$A$、$B$ 两端短路,用直流数字电流表测量短路电流$I_{sc}$,记录测量值。
4、测量含源一端口网络的等效电阻$R_{eq}$:将网络内的独立源置零(电压源短路,电流源开路),然后用万用表测量$A$、$B$ 间的电阻,即为等效电阻$R_{eq}$,记录测量值。
5、构建戴维南等效电路:根据测量得到的$U_{oc}$和$R_{eq}$,用直流稳压电源和电阻箱组成戴维南等效电路,如图 2 所示。
!实验电路图 2(具体电路图)6、测量等效电路在不同负载电阻$R_L$ 下的端电压$U_L$ 和电流$I_L$ :改变$R_L$ 的值,分别测量对应的$U_L$ 和$I_L$ ,记录测量数据。
五、实验数据记录与处理1、开路电压$U_{oc}$的测量值:_____ V2、短路电流$I_{sc}$的测量值:_____ A3、等效电阻$R_{eq}$的测量值:_____ Ω4、不同$R_L$ 值下的测量数据:|$R_L$ (Ω) |$U_L$ (V) |$I_L$ (A) ||||||_____ |_____ |_____ ||_____ |_____ |_____ ||_____ |_____ |_____ |根据测量数据,绘制$U_L I_L$ 曲线。
电路基本定律及定理的验证
实验二电路基本定律及定理的验证一、实验目的1、通过对KCL、KVL的验证,加深对定律的理解。
2、通过对戴维南定理、叠加定理的验证,加深对定理的理解和灵活应用。
3、明确实际测量中存在的误差,学会分析误差。
二、实验设备和器材直流可调稳压电源0~30 V万用表MF-500型实验电路板三、实验原理与说明1、基尔霍夫定律(KCL、KVL)电路中的基本定律,适用于集总参数电路。
KCL:任一时刻,任一节点,所有流出该节点的电流代数和恒为零,即∑i = 0。
KVL:任一时刻,任一回路,沿某绕行方向所有元件电压的代数和恒为零,即∑u = 0。
2、叠加定理适应线性电路中的电流、电压。
线性电路中含多个独立源时,任一支路的电流或电压是每个独立源单独作用时在该支路产生的电流或电压的代数和。
电源单独作用是指:除该电源外,其他独立源取零,即电压源短路,电流源开路,受控源不变。
3、戴维南定理适应线性含源二端网络。
任一线性含源二端网络,对外电路而言,均可用一个电压源和一个电阻串联的组合来等效——戴维南等效电路。
电压源的电压为含源二端网络的开路电压U oc;等效电阻为对应无源二端网络的等效电阻R0。
4、误差分析(1)测量值与真实值间的差异称误差。
(2)误差有两类:绝对误差=︱测量值-真实值︱相对误差= (绝对误差/ 真实值)×100﹪(3)实际测量中,应利用合理测试手段使误差最小。
四、实验内容及步骤实验电路图如实验图2-1所示。
1、KCL 、KVL 的验证(1)调节两个直流电源,使一个为8V 作为U1接入AB 端,另一个为4V 作为U2接入A ’B ’两端;(2)节点O 处接通,测量I 1、I 2、I 3并填入实验表2-1中;(3)用AOO ’B ’回路,分别测电压U AO 、O O 'U 、B O 'U 、U BA 填入实验表2-1中; (4)验证∑U = U AO +O O 'U +B O 'U + U BA = 0,∑I =I 1 + I 2 + I 3 = 0。
电路实验(附答案)
电路实验(附答案)实验⼀、基尔霍夫定律的验证⼀、实验⽬的1、验证基尔霍夫定律的正确性,加深对基尔霍夫定律普遍性的理解。
2、进⼀步学会使⽤电压表、电流表。
⼆、实验原理基尔霍夫定律是电路的基本定律。
1)基尔霍夫电流定律:对电路中任意节点,流⼊、流出该节点的代数和为零。
即∑I=02)基尔霍夫电压定律:在电路中任⼀闭合回路,电压降的代数和为零。
即∑U=0三、实验设备四、实验内容实验线路如图2-1所⽰图 2-11、实验前先任意设定三条⽀路的电流参考⽅向,2、按原理的要求,分别将两路直流稳压电源接⼊电路。
3、将电流插头的两端接⾄直流数字毫安表的“+,-”两端。
4、将电流插头分别插⼊三条⽀路的三个电流插座中,记录电流值于下表。
5、⽤直流数字电压表分别测量两路电源及电元件上的电压值,记录于下表。
五、实训注意事项1. 同实训六的注意1,但需⽤到电流插座。
附录:1. 本实训线路系多个实训通⽤,本次实训中不使⽤电流插头和插座。
实训挂箱上的k3应拨向330Ω侧,D和D’⽤导线连接起来,三个故障按键均不得按下。
2.所有需要测量的电压值,均以电压表测量的读数为准。
U1、U2也需测量,不应取电源本⾝的显⽰值。
3. ⽤指针式电压表或电流表测量电压或电流时,如果仪表指针反偏,则必须调换仪表极性,重新测量。
此时指针正偏,可读得电压或电流值。
若⽤数显电压表或电流表测量,则可直接读出电压或电流值。
但应注意:所读得的电压或电流值的正确正、负号应根据设定的电流⽅向来判断。
六、基尔霍夫定律的计算值:I1 + I2 = I3 (1)根据基尔霍夫定律列出⽅程(510+510)I1 +510 I3=6 (2)(1000+330)I3+510 I3=12 (3)解得:I1 =0.00193A I2 =0.0059A I3 =0.00792AUFA=0.98V UBA=5.99V UAD=4.04V UDE=0.98VUDC=1.98V七、实验结论数据中绝⼤部分相对误差较⼩,基尔霍夫定律是正确的实验⼆叠加原理实验报告⼀、实验⽬的验证线性电路叠加原理的正确性,加深对线性电路的叠加性和齐次性的认识和理解。
基尔霍夫定律实验报告
基尔霍夫定律实验报告通过实验可以加深对该知识的理解,那么,下面是小编给大家整理的基尔霍夫定律实验报告,供大家阅读参考。
基尔霍夫定律实验报告1 一、实验目的(1)加深对基尔霍夫定律的理解。
(2)学习验证定律的方法和仪器仪表的正确使用。
二、实验原理及说明基尔霍夫定律是集总电路的基本定律,包括电流定律(KCL)和电压定律(KVL)。
基尔霍夫定律规定了电路中各支路电流之间和各支路电压之间必须服从的约束关系,无论电路元件是线性的或是非线性的,时变的或是非时变的,只要电路是集总参数电路,都必须服从这个约束关系。
(1)基尔霍夫电流定律(KCL)。
在集总电路中,任何时刻,对任一节点,所有支路电流的代数和恒等于零,即i=0。
通常约定:流出节点的支路电流取正号,流入节点的支路电流取负号。
(2)基尔霍夫电压定律(KVL)。
在集总电路中,任何时刻,沿任一回路所有支路电压的代数和恒等于零,即沿任回路有u=0。
在写此式时,首先需要任意指定一个回路绕行的方向。
凡电压的参考方向与回路绕行方向一致者,取+号;电压参考方向与回路绕行方向相反者,取一号。
(3)KCL和KVL定律适用于任何集总参数电路,而与电路中的元件的性质和参数大小无关,不管这些元件是线性的、非线性的、含源的、无源的、时变的、非时变的等,定律均适用。
三、实验仪器仪表四、实验内容及方法步骤(1)验证(KCL)定律,即i=0。
分别在自行设计的电路或参考的电路中,任选一个节点,测量流入流出该节点的各支路电流数值和方向,记入附本表1-1~表1-5中并进行验证。
参考电路见图1-1、图1-2、图1-3所示。
(2)验证(KVL)定律,即u=0。
分别在自行设计的电路或参考的电路中任选一网孔(回路),测量网孔内所有支路的元件电压值和电压方向,对应记入表格并进行验证。
参考电路见图1-3。
五、测试记录表格表1-1 线性对称电路表1-2 线性对称电路表1-3 线性不对称电路表1-4 线性不对称电路表1-5 线性不对称电路注:1、USA、USB电源电压根据实验时选用值填写。
叠加原理和戴维南定理实验报告
叠加原理和戴维南定理实验报告篇一:实验报告1:叠加原理和戴维南定理的验证实验报告叠加原理和戴维南定理的验证姓名班级学号叠加原理和戴维南定理的验证一.实验目的:1. 通过实验加深对基尔霍夫定律、叠加原理和戴维南定理的理解。
2. 学会用伏安法测量电阻。
3. 正确使用万用表、电磁式仪表及直流稳压电源。
二.实验原理:1.基尔霍夫定律:1).电流定律(KCL):在集中参数电路中,任何时刻,对任一节点,所有各支路电流的代数和恒等于零,即??=0。
流出节点的支路电流取正号,注入节点的支路电流取负号。
2).电压定律(KVL):在集中参数电路中,任何时刻,对任一回路内所有支路或原件电压的代数和恒等于零,在即??=0。
凡支路电压或原件电压的参考方向与回路绕行方向一致者为正量,反之取负号。
2.叠加原理在多个独立电源共同作用的线性电路中,任一支路的电流(或电压)等于各个电源独立作用时在该支路所产生的电流(或电压)的代数和。
3. 戴维南定理:任一线性有源二端网络对外电路的作用均可用一个等效电压源来代替,其等效电动势EO等于二端网络的开路电压UO,等效内阻RO等于该网络除源(恒压源短路、开流源开路)后的入端电阻。
实验仍采取用图2-3-1所示电路。
可把ac支路右边以外的电路(含R3支路)看成是以a与c为端钮的有源二端网络。
测得a、c两端的开路电压Uab即为该二端网络的等效电动势EO,内阻可通过以下几种方法测得。
(1)伏安法。
将有源二端网络中的电源除去,在两端钮上外加一已知电源E,测得电压U和电流I,则URO=(2)直接测量法。
将有源二端网络中的电压源除去,用万用表的欧姆档直接测量有源二端网络的电阻值即为RO。
本实验所用此法测量,图2中的开关S1合向右侧,开关S2断开,然后用万能表的欧姆挡侧a、c两端的电阻值即可。
(3)测开路电压和短路电流法。
测量有源二端网络的开路电压U0和短路电流IS。
则R0=U0/IS测试如图2-3-3所示,开关S打开时测得开路电压U0,闭合时测得短路电流IS。
理解电路中的基尔霍夫定律与戴维南定理
理解电路中的基尔霍夫定律与戴维南定理电路中的基尔霍夫定律与戴维南定理是电路分析中常用的两个重要原理。
通过理解和应用这两个定律,我们可以更好地理解和解决电路中的问题。
基尔霍夫定律是基于电流守恒和电荷守恒原理的。
它由两个部分组成:基尔霍夫第一定律和基尔霍夫第二定律。
基尔霍夫第一定律也称为电流定律,它指出电路中的节点处的所有电流代数和为零。
这个定律是基于电流守恒原理的,即电流在节点处的进出是平衡的。
基尔霍夫第二定律也称为电压定律,它指出沿着任何闭合路径的电压代数和为零。
这个定律是基于电荷守恒原理的,即电荷在闭合回路中是守恒的。
通过应用基尔霍夫定律,我们可以根据电流和电压的关系来解决电路中的问题。
戴维南定理是基于电压和电流之间的线性关系的。
它可以帮助我们计算电路中的电流和电压。
根据戴维南定理,电路中的任何两个节点的电压差等于电流通过这两个节点的电阻的乘积的代数和。
这个定理是基于欧姆定律的推论,即电流与电压之间存在线性关系。
通过应用戴维南定理,我们可以计算电路中的电流和电压分布,从而了解电路的行为和特性。
理解电路中的基尔霍夫定律与戴维南定理对于解决电路问题至关重要。
它们提供了一种分析电路的有效方法,帮助我们理解电路中的各种参数和变量之间的关系。
通过使用这两个定律,我们可以计算电流、电压、功率等电路参数,预测电路的稳定性和性能。
此外,它们还能帮助我们设计和优化电路,提高电路的效率和可靠性。
为了更好地应用基尔霍夫定律与戴维南定理,我们需要有一些基础的电路知识和分析技巧。
首先,我们需要了解基本的电路元件,如电阻、电感和电容等,并熟悉它们的性质和特性。
其次,我们需要了解电路拓扑结构,如串联、并联和混合连接等,并能够分析和计算电路中的参数。
此外,我们还需要学习使用符号和方程表示电路,并掌握解方程的技巧和方法。
在实际应用中,我们可以将基尔霍夫定律和戴维南定理与其他电路分析方法和工具结合起来使用。
例如,我们可以使用模拟电路仿真软件来模拟和验证电路的性能。
大学电路实验报告
大学电路实验报告电路试验,作为一门实实在在的试验学科,是电路学问的根底和依据。
它能够帮助我们进一步理解稳固电路学的学问,激发我们对电路的学习兴趣。
在大二上学期将要完毕之际,我们进展了一系列的电路试验,从简洁基尔霍夫定律的验证到示波器的使用,再到一阶电路——,一共五个试验,经过这五个试验,我对电路试验有了更深刻的了解,体会到了电路的奇妙与微妙。
可是说实话在做这次试验之前,我以为不会难做,就像以前做的试验一样,操作应当不会很难,做完试验之后两下子就将试验报告写完,直到做完这次电路试验时,我才明白其实并不简单做。
它真的不像我想象中的那么简洁,天真的以为自我把平常的理论课学好就能够很顺当的完成试验,事实证明我错了,当我走上试验台,我意识到要想以优秀的成绩完成此次全部的试验,难度很大,但我明白这个难度是与学到的学问成正比的,所以我想说,虽然我在试验的过程中遇到了不少困难,但最终的成绩还是不错的,由于我究竟在这次试验中学到了很多在课堂上学不到的东西,终究使我在这次试验中受益匪浅。
下头我想谈谈我在所做的试验中的心得体会:在基尔霍夫定律和叠加定理的验证明验中,进一步学习了基尔霍夫定律和叠加定理的应用,依据所画原理图,连接好实际电路,测量出试验数据,经计算试验结果均在误差范围内,说明该试验做的胜利。
我认为这两个试验的试验原理还是比拟简洁的,但实际操作起来并不是很简洁,至少我觉得那些行行色色的导线就足以把你绕花眼,所以我想说这个试验不仅仅是对你所学学问把握情景的考察,更是对你的`急躁和视力的一种考验。
在戴维南定理的验证明验中,了解到对于任何一个线性有源网络,总能够用一个电压源与一个电阻的串联来等效代替此电压源的电动势us等于这个有源二端网络的开路电压uoc,其等效内阻ro等于该网络中全部独立源均置零时的等效电阻。
这就是戴维南定理的详细说明,我认为其实质也就是在阐述一个等效的概念,我想无论你是学习理论学问还是进展实际操作,只要抓住这个中心,我想可能你所遇到的续都问题就能够迎刃而解。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验三 基尔霍夫定律、戴维南定理的的验证
一、实验目的
1. 加深对基尔霍夫定律、戴维南定理的理解。
2. 加深对参考方向、等效电路概念的理解。
3. 进一步熟悉直流稳压电源、万用表的使用。
二、实验仪器及设备
电工实验箱、直流稳压电源、万用表 三、实验原理
基尔霍夫定律是电路的基本定律。
测量某电路的各支路电流及每个元件两端的电压,应能分别满足基尔霍夫电流定律(KCL )和电压定律(KVL )。
即对电路中的任一个节点而言,应有ΣI =0;对任何一个闭合回路而言,应有ΣU =0。
戴维南定理指出:任何一个线性有源网络,总可以用一个电压源与一个电阻的串联来等效代替,此电压源的电动势Us 等于这个有源二端网络的开路电压Uoc , 其等效内阻R 0等于该网络中所有独立源均置零(理想电压源视为短接,理想电流源视为开路)时的等效电阻。
四、实验内容及步骤
1. 基尔霍夫定律的验证
⑴验证KCL 定律,在图3-1所示电路中,任选一个节点,测量流入流出节点的各支路电流数值和方向,记入表3-1. ⑵验证KVL 定律,在图3-1所示电路中,任选一回路,测量回路内所有支路的元件电压值和电压方向,对应记入表3-1。
图3-1
2. 验证戴维南定理
⑴在图3-2所示电路中,测量有源二端网络的开路 电压U oc (1-1′)。
⑵在图3-2所示电路中,测量有源二端网络的等效电阻R 0。
⑶验证戴维南定理, 理解等效概念
1〉戴维南等效电路外接负载。
首先组建戴维南等效电路,即用外电源Us2(其值调到U oc 值)与戴维南等效电阻R 0相串后,外接R L =100Ω的负载,然后测电阻R L 两端电压U RL 和流过R L 的电流值I RL ,记入表3-2。
2〉原有源二端网络1-1′外接负载。
同样接R L =100Ω的负载,测电压U RL 与电流I RL ,结果记入表3-2,与1〉测试结果进行比较,验证戴维南定理。
五、数据记录与分析
表3-1基尔霍夫定律的验证
图3-2
120Ω
360Ω
240Ω
180Ω。