2014版大学物理教材课后习题答案
大学物理(上)习题讲解(刚体力学部分)
3 gl 3 2gs 0
亦即 l >6s ; 当 ’ 取负值,则棒向右摆,其条件 为 3 gl 3 2gs 0 亦即l <6s 棒的质心 C 上升的最大高度,与第一阶段情 况相似,也可由机械能守恒定律求得:
11 2 mgh ml 2 2 3 把式(5)代入上式,所求结果为
m2 m1 g M r / r m2 m1 g M / r
J m2 m1 2 r
a m2 m1 g M / r r m m 1 m r 2 1 2
当不计滑轮质量及摩擦阻力矩即令m=0、M=0时,有
2m1m2 T1 T2 g m2 m1
2 3 0
R
R
2
4
1 mR 2 2
例题5-3 一轻绳跨过一定滑轮,滑轮视为圆盘,绳的两 端分别悬有质量为m1和m2的物体1和2,m1< m2 如图所 示。设滑轮的质量为 m , 半径为 r , 所受的摩擦阻力矩 为 m。 绳与滑轮之间无相对滑动。试求物体的加速度和 绳的张力。
解:滑轮具有一定的转动惯 量。在转动中受到阻力矩 的作用,两边的张力不再 相等,设物体1这边绳的张 力为T1、 T1’(T1’= T1) ,
物体2这边的张力为
T2、 T2’(T2’= T2)
m1 m2
T1 T1
T2 T2
a m1 G1
a m2
a G2
因m2>m1,物体1向上运动,物体2向下运动,滑轮以顺 时针方向旋转,Mr的指向如图所示。可列出下列方程
T1 G1 m1a G2 T2 m2 a T2r T1r M J
例题5-7 恒星晚期在一定条件下,会发生超新星爆 发,这时星体中有大量物质喷入星际空间,同时星 的内核却向内坍缩,成为体积很小的中子星。中子 星是一种异常致密的星体,一汤匙中子星物体就有 几亿吨质量!设某恒星绕自转轴每 45 天转一周,它 的 内 核 半 径 R0 约 为 2107m , 坍 缩 成 半 径 R 仅 为 6103m的中子星。试求中子星的角速度。坍缩前后 的星体内核均看作是匀质圆球。 解:在星际空间中,恒星不会受到显著的外力矩,因 此恒星的角动量应该守恒,则它的内核在坍缩前后的 角动量J00和J应相等。因
大学物理学孙厚谦答案
大学物理学孙厚谦答案【篇一:普通物理12章习题解】t>12.1 如图所示,ab长度为0.1m,位于a电子具有大小为v0?10?107m/s的初速度。
试问:(1)磁感应强度的大小和方向应如何才能使电子从a运动到b;(2)电子从a运动到b需要多长时间????解:右。
根据f??e??b?的右手方向规则b的方向应该内(在纸平面)。
?为了电子向右偏转电子上作用的落论磁力的方向在a点应向结果电子在这种磁场中圆周运动根据牛顿第二定律(落仑磁力提供向心力)即e?ob?m?o212.1习题rb?m?oe?1.6?10?19c er1r?ab?0.05m2?m?9.1?10?31kg9.1?10?31?10?107?b??1.14?10?2t ?191.6?10?0.05(2) tab1?t t是周期 212.1习题?b?t?2?r?o?tab??r3.14?0.05??1.57?10?19s 7?o10?10?2答:(1)b?1.14?10t 方向 ?(2)tab?1.57?10s12.2 有一质子,质量是0.5g,带电荷为2.5?10c。
此质子有6?10m/s的水平初速,要使它维持在水平方向运动,问应加最小磁场的大小与方向如何?解:?84?9先分析该质点上所受力的情况该质点没有其他场的作用下只有重力作用,质点平抛运动,所以质点上方向向上的大小为mg的一个力作用才能保证该质点作水平方向运动。
此题中我们用加一磁场来产生落论兹力提供该需要的的力。
???f?q??b?考虑f的方向向上,的方向必须纸平面上向内?如图所示mg0.5?10?3?9.8q?b?mg?b???q?2.5?10?8?6?10?4习题12.212.3 如图所示,实线为载有电流i的导线。
导线由三部分组成,ab 部分为1/4圆周,圆心为o,半径为a,导线其余部分为伸向无限远的直线,求o点的磁感应.强度b。
解:设直导线部分ca和bd产生的磁感应强度b1和b2,而1圆周导线ab产生的磁感应强度为 4?(方向纸平?oib1?4?a面上向上)b2??(方向纸平面上向上) 4?a圆周导线产生的磁感应强度为b??oi2r1圆周导线产生的磁感应强度为 4习题12.4b3b3?1?oi?oi?? ?(方向纸平面上向上) 42a8a????b0?b1?b2?b3b0?b1?b2?b3??oi?oi?oi?oi???(4??) ?(向纸平面上向上)4?a4?a8a8?a12.4 三根平行长直导线处在一个平面内,1,2和2,3之间距离都是3cm,其上电流i1?i2及i3??(i1?i2),方向如图所示。
2014-2015-1大学物理(二)练习题与-答案
大学物理(二)练习题第八章(一)真空中的恒定磁场1.某电子以速率v104 m / s 在磁场中运动,当它沿x 轴正向通过空间 A 点时,受到的力沿 y 轴正向,力的大小为 F 8.01 10 17 N ;当电子沿y轴正向再次以同一速率通过 A 点时,所受的力沿 z 轴的分量 F z 1.39 10 16 N 。
求 A 点磁感应强度的大小和方向。
2.真空中有两根相互平行的无限长直导线L1和 L2,相距10.0cm,通有相反方向的电流,I1 20 A , I 2 10 A 。
求在两导线所在平面内、且与导线L2相距5.0cm的两点的磁感应强度大小。
y3.无限长直导线折成V 形,顶角为,置于x y 平面内,其一边与 x 轴重合,如图所示,通过导线的电流为I 。
求 y 轴上点P(0 , a) 处的磁感应强度。
4.如图所示,用两根相互平行的半无限长直导线L1R和 L2把半径为R的均匀导体圆环联到电源上,已知通过o直导线的电流为I 。
求圆环中心 o 点的磁感应强度。
5.将通有电流 I 的长导线中部弯成半圆形,如图所b示。
求圆心 o 点的磁感应强度。
R II BIoIoAxP(0 , a)Io Ix aL1II L2zIRoyI6.将同样的几根导线焊成立方体,并将其对顶角 A 、 B 接到电源上,则立方体框架中的电流在其中心处所产生的磁感应强度等于。
7.如图所示,半圆形电流在xoz 平面内,且与两半无限长直电流垂直,求圆心o 点的磁感应强度。
I8.在一通有电流I 的长直导线旁,放置一个长、宽分d b别为 a 和b的矩形线框,线框与长直导线共面,长边与直导线平行,二者相距 d ,如图所示。
求通过线框的磁通量a。
9.在匀强磁场中,取一半径为 R 的圆,圆面的法线n 与磁感应强度 B 成 60o角,如图所示,则通过以该圆周为边线的任意曲面S 的磁通量。
10.在真空中,有两个半径相同的圆形回路L 1 、 L 2 ,圆周内都有稳恒电流 I 1、 I 2,其分布相同。
西南交通大学2014年大学物理AII No.3波的干涉参考答案
(SI)
(SI)
2
三、填空题: 1. S 1 , S 2 为振动频率、振动方向均相同的两个点波源,振动方向垂直纸面,两者相距
M
• S1 • S2 • C
3 1 λ ( λ 为波长) 如图。已知 S1 的初相位为 π 。 2 2 (1) 若使射线 S 2 C 上各点由两列波引起的振动均干涉相消,则 S 2 的初位相应为:
−2
A
O
a
λ
b
2
c
λ
x
解:a 、b 为驻波相邻的两个波节之间的点,则据驻波规律知:振动相位相同,位相差为 0。 所以选 D 4.在弦线上有一简谐波,其表达式是 y1 = 2.0 ×10 cos [2π (t / 0.02 − x / 20) + π / 3] (SI) [ ] (A) y 2 = 2.0 × 10
u
3 4
x
3.某时刻的驻波波形曲线如图所示,则 a、b 两点振动的位相差是
[ D ] (A) π ,且下一时刻 b 点振幅会增大为 A
y
1 (B) π ,且下一时刻 b 点振幅不会增大为 A 2 1 (C) π ,且下一时刻 b 点振幅会增大为 A 4 (D) 0 ,且下一时刻 b 点振幅不会增大为 A
N
π /2 ⋅
。 的初位相应为:
(2) 若使 S1 S 2 连线的中垂线 M N 上各点由两列波引起的振动均干涉相消,则 S 2
3π / 2
。
解:(1) 在 S 2 外侧 C 点,两列波的相位差为:
∆ϕ = ϕ 2 − ϕ 1 −
2π
ϕ2 = π / 2
∆ϕ = ϕ 2 − ϕ 1 −
λ
( r2 − r1 ) = ϕ 2 −
(完整版)大学物理课后习题答案详解
r r r r r r rr、⎰ dt⎰0 dx = ⎰ v e⎰v v1122v v d tv v d tvg 2 g h d tdt [v 2 + ( g t ) 2 ] 12 (v 2 + 2 g h ) 12第一章质点运动学1、(习题 1.1):一质点在 xOy 平面内运动,运动函数为 x = 2 t, y = 4 t 2 - 8 。
(1)求质点 的轨道方程;(2)求 t = 1 s 和 t = 2 s 时质点的位置、速度和加速度。
解:(1)由 x=2t 得,y=4t 2-8可得: r y=x 2-8r 即轨道曲线(2)质点的位置 : r = 2ti + (4t 2 - 8) jr r rr r 由 v = d r / d t 则速度: v = 2i + 8tjr r rr 由 a = d v / d t 则加速度: a = 8 jrr r r r r r r 则当 t=1s 时,有 r = 2i - 4 j , v = 2i + 8 j , a = 8 j r当 t=2s 时,有r = 4i + 8 j , v = 2i +16 j , a = 8 j 2 (习题 1.2): 质点沿 x 在轴正向运动,加速度 a = -kv , k 为常数.设从原点出发时速度为 v ,求运动方程 x = x(t ) .解:dv = -kvdt v1 v 0 vd v = ⎰ t - k dt 0v = v e - k tdx x= v e -k t0 t0 -k t d t x = v0 (1 - e -k t )k3、一质点沿 x 轴运动,其加速度为 a = 4 t (SI),已知 t = 0 时,质点位于 x 0=10 m 处,初速 度 v 0 = 0.试求其位置和时间的关系式.解:a = d v /d t = 4 td v = 4 t d tv 0d v = ⎰t 4t d t v = 2 t 2v = d x /d t = 2 t 2⎰x d x = ⎰t 2t 2 d t x = 2 t 3 /3+10 (SI)x4、一质量为 m 的小球在高度 h 处以初速度 v 水平抛出,求:(1)小球的运动方程;(2)小球在落地之前的轨迹方程; d r d v d v (3)落地前瞬时小球的 ,,.d td td t解:(1)x = v t式(1)v v v y = h - gt 2 式(2)r (t ) = v t i + (h - gt 2 ) j0 (2)联立式(1)、式(2)得y = h -vd r(3) = v i - gt j而落地所用时间t =0 gx 22v 22hgvd r所以 = v i - 2gh jvd vdv g 2t= - g j v = v 2 + v 2 = v 2 + (-gt) 2= =x y 0 0vv v d rv d v 2) v = [(2t )2+ 4] 2 = 2(t 2+ 1)2t t 2 + 1, V a = a - a = m + M m + Mvg gvv v 5、 已知质点位矢随时间变化的函数形式为 r = t 2i + 2tj ,式中 r 的单位为 m , 的单位为 s .求:(1)任一时刻的速度和加速度;(2)任一时刻的切向加速度和法向加速度。
大学物理教材课后习题答案
P31 第一章 习题答案3. 一质点沿x 轴运动,其加速度a 与位置坐标x 的关系为a =2+6 x 2 (SI)如果质点在原点处的速度为零,试求其在任意位置处的速度. 解:设质点在x 处的速度为v ,62d d d d d d 2x txx t a +=⋅==v v ()x x xd 62d 02⎰⎰+=v v v()2 213xx +=v4.有一质点沿x 轴作直线运动,t 时刻的坐标为x = 4.5 t 2 – 2 t 3 (SI) .试求:(1) 第2秒内的平均速度;(2) 第2秒末的瞬时速度; (3) 第2秒内的路程.解:(1) 5.0/-==∆∆t x v m/s (2) v = d x /d t = 9t - 6t 2 v (2) =-6 m/s(3) S = |x (1.5)-x (1)| + |x (2)-x (1.5)| = 2.25 m5. 一质点沿半径为R 的圆周运动.质点所经过的弧长与时间的关系为221ct bt S += 其中b 、c 是大于零的常量,求从0=t 开始到切向加速度与法向加速度大小相等时所经历的时间. 解: ct b t S +==d /d v c t a t ==d /d v()R ct b a n /2+=根据题意: a t = a n 即 ()R ct b c /2+=解得 cbc R t -=6.由楼窗口以水平初速度0v ϖ射出一发子弹,取枪口为原点,沿0v ϖ方向为x 轴,竖直向下为y 轴,并取发射时刻t 为0,试求:(1) 子弹在任一时刻t 的位置坐标及轨迹方程; (2) 子弹在t 时刻的速度,切向加速度和法向加速度. 解:(1) 2021gt y t x == , v 轨迹方程是: 202/21v g x y =(2) v x = v 0,v y = g t ,速度大小为: 222022t g y x +=+=v v v v方向为:与x 轴夹角 θ = tg -1( gt /v 0)22202//d d t g t g t a t +==v v 与v ϖ同向.xyOθ 0v ϖ t a ϖn a ϖg ϖ()222002/122/t g g a g a t n +=-=v v 方向与t a ϖ垂直.7. (1)对于在xy 平面内,以原点O 为圆心作匀速圆周运动的质点,试用半径r 、角速度ω和单位矢量i ϖ、j ϖ表示其t 时刻的位置矢量.已知在t = 0时,y = 0, x = r , 角速度ω如图所示;(2) 由(1)导出速度 v ϖ与加速度 a ϖ的矢量表示式;(3)试证加速度指向圆心.解:(1) j t r i t r j y i x r ϖϖϖϖϖsin cos ωω+=+=(2) j t r i t r trϖϖϖϖ cos sin d d ωωωω+-==vj t r i t r ta ϖϖϖϖ sin cos d d 22ωωωω--==v(3) ()r j t r i t r a ϖϖϖϖ sin cos 22ωωωω-=+-= 这说明 a ϖ与 r ϖ方向相反,即a ϖ指向圆心8. 一男孩乘坐一铁路平板车,在平直铁路上匀加速行驶,其加速度为a ,他向车前进的斜上方抛出一球,设抛球过程对车的加速度a 的影响可忽略,如果他不必移动在车中的位置就能接住球,则抛出的方向与竖直方向的夹角θ 应为多大?解:设抛出时刻车的速度为0v ϖ,球的相对于车的速度为/0v ϖ,与竖直方向成θ角.抛射过程中,在地面参照系中,车的位移20121at t x +=∆v ① 球的位移 ()t x θsin /002v v +=∆ ② ()2/0221cos gt t y -=∆θv ③小孩接住球的条件 0221=∆∆=∆y x x ,即 ()t at /θsin 2102v = , ()t gt θcos 21/02v =两式相比得 tg /θ=g a ,∴ ()g a /tg 1-=θ9.一敞顶电梯以恒定速率v =10 m/s 上升.当电梯离地面h =10 m 时,一小孩竖直向上抛出一球.球相对于电梯初速率200=v m/s .试问:(1) 从地面算起,球能达到的最大高度为多大? (2) 抛出后经过多长时间再回到电梯上?解:(1) 球相对地面的初速度=+='v v v 030 m/s 抛出后上升高度9.4522='=gh v m/s离地面高度 H = (45.9+10) m =55.9 m (2) 球回到电梯上时电梯上升高度=球上升高度 2021)(gt t t -+=v v v xyO ωr(x ,y )j ϖ iϖθa v 0/0v ρ08.420==gt v s 10.一球从高h 处落向水平面,经碰撞后又上升到h 1处,如果每次碰撞后与碰撞前速度之比为常数,问球在n 次碰撞后还能升多高? 解: g h /212v = ;;/21;/21222211ΛΛ v v g h g h ==g h n n /212v =由题意,各次碰撞后、与碰撞前速度之比均为k ,有v v v v v v 2122212222212/;;/;/-===n n k k k ΛΛ将这些方程连乘得出:nn n n n hkh h h k 2222//=== , v v又v v h h k //12212== 故()111//-==n n nn h h h h h h11.一物体悬挂在弹簧上作竖直振动,其加速度为-=a ky ,式中k 为常量,y 是以平衡位置为原点所测得的坐标. 假定振动的物体在坐标y 0处的速度为v 0,试求速度v 与坐标y 的函数关系式.解: yt y y t a d d d d d d d d v v v v ===又 -=a ky ∴ -k =y v d v / d y⎰⎰+=-=-C ky y ky 222121 , d d v v v已知 =y y 0 ,=v v 0 则 20202121ky C --=v)(220202y y k -+=v v12 有一宽为l 的大江,江水由北向南流去.设江中心流速为u 0,靠两岸的流速为零.江中任一点的流速与江中心流速之差是和江心至该点距离的平方成正比.今有相对于水的速度为0v ϖ的汽船由西岸出发,向东偏北45°方向航行,试求其航线的轨迹方程以及到达东岸的地点.解:以出发点为坐标原点,向东取为x 轴,向北取为y 轴,因流速为-y 方向,由题意可得 u x = 0u y = a (x -l /2)2+b 令 x = 0, x = l 处 u y = 0, x = l /2处 u y =-u 0, 代入上式定出a 、b,而得 ()x x l lu u y --=204 船相对于岸的速度v ϖ(v x ,v y )明显可知是 2/0v v =x y y u +=)2/(0v v , 将上二式的第一式进行积分,有 t x 20v =还有,y45 °v 0 u 0xlx y t x x y t y y d d 2d d d d d d 0v v ====()x x l lu --20042v 即 ()x x l l u x y--=020241d d v因此,积分之后可求得如下的轨迹(航线)方程:'32020032422x l u x l u x y v v +-= 到达东岸的地点(x ',y ' )为 ⎪⎪⎭⎫⎝⎛-=='='=003231v , u l y y l x lx13.当一列火车以36 km/h 的速率水平向东行驶时,相对于地面匀速竖直下落的雨滴,在列车的窗子上形成的雨迹与竖直方向成30°角.(1) 雨滴相对于地面的水平分速有多大?相对于列车的水平分速有多大? (2) 雨滴相对于地面的速率如何?相对于列车的速率如何? 解:(1) 题给雨滴相对于地面竖直下落,故相对于地面的水平分速为零.雨滴相对于列车的水平分速与列车速度等值反向为10 m/s ,正西方向.(2) 设下标W 指雨滴,t 指列车,E 指地面,则有WE v ϖ = t W v ϖ+ v ϖtE , v tE =10 m/s v WE 竖直向下,v W t 偏离竖直方向30°,由图求得雨滴相对于地面的速率为 v WE = v tE ctg30o =17.3 m/s雨滴相对于列车的速率 2030sin ==οtEt W v v m/s14.一人自原点出发,25 s 内向东走30 m ,又10 s 内向南走10 m ,再15 s 内向正西北走18 m .求在这50 s 内,(1) 平均速度的大小和方向; (2) 平均速率的大小.解:(1) ++=)45sin )45cos (18)10(30j i j i ϖϖϖϖ︒+︒-+-+= j i ϖϖ73.227.17+=,方向φ =8.98°(东偏北)=∆=∆∆=t t r //ϖ0.35 m/s方向东偏北8.98°(2) (路程)()181030++=∆S m=58m,16.1/=∆∆=t S v m/s15 河水自西向东流动,速度为10 km/h .一轮船在水中航行,船相对于河水的航向为北偏西30°,相对于河水的航速为20 km/h. 此时风向为正西,风速为10 km/h .试求在船上观察到的烟囱冒出的烟缕的飘向.(设烟离开烟囱后很快就获得与风相同的速度)Wt v ϖWEv ϖtEvϖ30°OCAB东y 北φπ/4 西 南x解:记水、风、船和地球分别为w , f ,s 和e ,则水-地、风-船、风-地和船-地间的相对速度分别为we V ϖ、fs V ϖ、fe V ϖ和se V ϖ.由已知条件we V =10 km/h ,正东方向. fe V =10 km/h ,正西方向. sw V =20 km/h ,北偏西030方向.根据速度合成法则: se V ϖ=sw V ϖ+weV ϖ由图可得: se V =310 km/h ,方向正北.同理 fs V ϖ=fe V ϖ-se V ϖ, 由于fe V ϖ=-we V ϖ∴ fs V =sw V , fs V ϖ的方向为南偏西30°在船上观察烟缕的飘向即fs V ϖ的方向,它为南偏西30°.30ofs V ϖsw V ϖfe ϖweϖ北 东30o se V ϖ。
大学物理课堂练习答案(1)
1.28m 的楼顶, 花费了 3 s 的时间.在此过程中, 重力的冲 1.29 水平路面上两个点 A 、 B 的距离为 2 m , 某物体重 500 N , 与地面的摩擦系数为 0.2 , 物体由 A 运动至 B. 若物体沿着直线以 3 m/s 的速度运动, 摩擦力做功 Wf = −200 J 运动, 摩擦力做功 Wf = −200 J ; 若物体沿着长度为 4 m 的曲线运动, 摩擦力做功 Wf = −400 J ; 若鱼沿着直线以 5 m/s 的速度运动, 流体阻力
课堂练习答案 February 16, 2014
第一章 质点力学
1.1 找出下列表达式中的错误, 写出正确表达: (1) r=x+y 解答:r = xi + y j (2) v = vx i + vy j 解答:v = vx i + vy j (3) v = vx i + vy j 解答:v = vx i + vy j (4) v = vx i + vy j 解答:v = vx i + vy j
◦
; 在环绕地球
1.25 质 量 为 m 的 物 体 以 初 速 度 v0 ,仰 角 30 斜 上 抛,到 达 最 高 点.在 此 过 程 中,动 量 的 增 量 为 | Δp| = mv0 sin 30◦, 重力的冲量为 |I| = mv0 /2 1.26 光滑的冰面上由两个物体 A, B ,mA = 3 g ,vA = (i + 2j) m/s ,mB = 5 g ,vB = (9i + 2j) m/s , 两 物体碰撞后粘为一体, 其共同速度 v = (6i + 2j) m/s 1.27 直接用手按钉子, 很难将其钉入木头内; 若首先用 5 N 的力挥动锤子 2 s , 则锤子获得的动量大小 为 10 N · s ; 若该运动的锤子敲击钉子, 与钉子之间的相互作用持续 2 ms , 则锤子与钉子之间的作用 . , 重力做功 W = −1000 J , 此物体的重力势能增加量 ΔEp = 1000 J ; 若物体沿着直线以 5 m/s 的速度 力大小为 5 kN 量 |I| = 300 N · s
(完整版)大学物理课后习题答案详解
第一章质点运动学1、(习题1.1):一质点在xOy 平面内运动,运动函数为2x =2t,y =4t 8-。
(1)求质点的轨道方程;(2)求t =1 s t =2 s 和时质点的位置、速度和加速度。
解:(1)由x=2t 得,y=4t 2-8 可得: y=x 2-8 即轨道曲线 (2)质点的位置 : 22(48)r ti t j =+- 由d /d v r t =则速度: 28v i tj =+ 由d /d a v t =则加速度: 8a j =则当t=1s 时,有 24,28,8r i j v i j a j =-=+= 当t=2s 时,有 48,216,8ri j v i j a j =+=+=2、(习题1.2): 质点沿x 在轴正向运动,加速度kv a -=,k 为常数.设从原点出发时速度为0v ,求运动方程)(t x x =.解:kv dt dv-= ⎰⎰-=t vv kdt dv v 001 tk e v v -=0t k e v dtdx-=0 dt ev dx tk tx-⎰⎰=000)1(0t k e kv x --=3、一质点沿x 轴运动,其加速度为a = 4t (SI),已知t = 0时,质点位于x 0=10 m 处,初速度v 0 = 0.试求其位置和时间的关系式. 解: =a d v /d t 4=t d v 4=t d t ⎰⎰=vv 0d 4d tt t v 2=t 2v d =x /d t 2=t 2t t x txx d 2d 020⎰⎰= x 2= t 3 /3+10 (SI)4、一质量为m 的小球在高度h 处以初速度0v 水平抛出,求:(1)小球的运动方程;(2)小球在落地之前的轨迹方程; (3)落地前瞬时小球的d d r t ,d d v t ,tv d d . 解:(1) t v x 0= 式(1)2gt 21h y -= 式(2) 201()(h -)2r t v t i gt j =+(2)联立式(1)、式(2)得 22v 2gx h y -=(3)0d -gt d rv i j t = 而落地所用时间 gh2t = 所以 0d -2gh d r v i j t =d d v g j t=- 2202y 2x )gt (v v v v -+=+= 2120212202)2(2])([gh v gh g gt v t g dt dv +=+=5、 已知质点位矢随时间变化的函数形式为22r t i tj =+,式中r 的单位为m ,t 的单位为s .求:(1)任一时刻的速度和加速度;(2)任一时刻的切向加速度和法向加速度。
西南交大 大学物理 2014版no6详细解答
©物理系_2014_09《大学物理AII 》作业 No.6 光的衍射班级 ________ 学号 ________ 姓名 _________ 成绩 _______一、判断题:(用“T ”和“F ”表示)[ F ] 1.无线电波能绕过建筑物,而可见光波不能绕过建筑物。
这是因为光是沿直线传播的。
解:无线电波能绕过建筑物,是因为它的波长长,而可见光不能绕过,是由于其波长同障碍物比起来,数量级差太多,衍射现象不明显。
[ F ] 2.光的夫琅和费单缝衍射图样的特点是各级亮条纹亮度相同。
解:单缝夫琅和费衍射条纹的亮度是非均匀的,中央亮纹最亮,其余明纹随着级次增加亮度减弱。
[ T ] 3.光学仪器的分辨率与仪器的通光孔径成正比,与入射光的波长成反比。
解:光学仪器的分辨率为:λϕD 22.111=Δ,从上式知道题目所述正确。
[ F ] 4.用半波带法处理单缝夫琅禾费衍射时,就是将单缝分成若干个缝宽为2λ的半波带。
解:用半波带法处理单缝夫琅禾费衍射时,是将衍射角为ϕ的一束平行光的在缝外的最大光程差用2λ去分,这样,对应的单缝也被分成若干个半波带,并不是说每个半波带的缝宽是2λ,而是只相邻的两个半波带的对应光线在缝外引起的光程差是2λ。
[ F ] 5.光栅的分辨率与其光栅常数成正比。
解:教材P.140,光栅的分辨率为:kN R =,即:光栅的分辨率与谱线的级次k 和光栅的总缝数N 成正比,与光栅常数d 无关。
二、选择题:1.根据惠更斯--菲涅耳原理, 若已知光在某时刻的波阵面为S , 则S 的前方某点P 的光强度取决于波阵面S 上所有面积元发出的子波各自传到P 点的[ D ] (A) 振动振幅之和 (B) 振动振幅之和的平方(C) 光强之和 (D) 振动的相干叠加解:教材126页。
2.一般情况下光波与声波相比较,光波的衍射现象不显著, 其可能的原因是[ D ] (A) 光波是电磁波, 声波是机械波 (B) 光波传播速度比声波大(C) 光是有颜色的 (D) 光的波长比声波小得多解:光波与声波相比较,光波的衍射现象不显著原因是光的波长比声波小得多,不容易找到同入射波波长相当的障碍物。
2014级西南交大大物答案11
©西南交大物理系_2015_02《大学物理AI 》作业No.11电磁感应班级 ________ 学号 ________ 姓名 _________ 成绩 _______一、判断题:(用“T ”和“F ”表示) [ F ] 1.公式t∆∆Φ-=ε,只适合计算由磁场变化引起感应电动势的情况,不适合计算导体切割磁感应线所产生的感应电动势。
解:都适合。
只是如果遇到导体不闭合的情况,要做辅助线使其成为闭合回路。
[ F ] 2.穿过线圈的磁通量越多,线圈中感应电动势越大。
解:法拉第电磁感应定律:线圈中感应电动势与穿过闭合回路的磁通量的时间变化率成正比。
[ T ] 3.动生电动势的非静电力是洛伦兹力,电动势的方向就是v B ⨯的方向。
解:根据动生电动势动定义()⎰+-⋅⨯=l B vd ε,上述叙述正确。
[ T ] 4.将条形磁铁插入与冲击电流计串联的金属环中时,通过电流计的电荷q 正比于穿过环的磁通变化∆Φ 。
解:()m m m m RR t t R t i q ψψψψ∆-=--=-==⎰⎰11d d d 1d 12,所以上述正确。
[ T ] 5.感应电流的磁场总是阻碍引起感应电流的磁通量的变化。
解:根据楞次定律,感应电流产生的磁场总是阻碍原磁通的变化。
二、选择题:1.如图所示,导体棒AB 在均匀磁场B 中 绕通过C 点的垂直于棒长且沿磁场方向的轴OO ' 转动(角速度ω与B 同方向),BC的长度为棒长的31,则[ A ] (A) A 点比B 点电势高 (B) A 点与B 点电势相等(C) A 点比B 点电势低(D) 有稳恒电流从A 点流向B 点答:(A)。
设棒长为L ,因为2()d 23B C B L U U v B l ω⎛⎫-=⨯⋅=⎪⎝⎭⎰,22()d 23A C B L U U v B l ω⎛⎫-=⨯⋅=⎪⎝⎭⎰,所以()()0A B A C B C U U U U U U -=--->,故A 点电势高。
大学物理教材课后习题参考答案
1.7 一质点的运动学方程为22(1,)x t y t ==-,x 和y 均以为m 单位,t 以s 为单位,试求:(1)质点的轨迹方程;(2)在t=2s 时,质点的速度v 和加速度a 。
解:(1)由运动学方程消去时间t 可得质点的轨迹方程,将t =21)y = 或1=(2)对运动学方程微分求速度及加速度,即 2x dx v t dt == 2(1)y dyv t dt==- 22(1)v ti t j =+- 22y x x y dv dva a dtdt==== 22a i j =+当t=2s 时,速度和加速度分别是42v i j =+ /m s 22a i j =+ 2/m s1.8 已知一质点的运动学方程为22(2)r ti t j =+- ,其中, r ,t 分别以 m 和s 为单位,试求:(1) 从t=1s 到t=2s 质点的位移;(2) t=2s 时质点的速度和加速度;(3) 质点的轨迹方程;(4)在Oxy 平面内画出质点运动轨迹,并在轨迹图上标出t=2s 时,质点的位矢r,速度v 和加速度a 。
解: 依题意有 x = 2t (1) y = 22t - (2)(1) 将t=1s,t=2s 代入,有(1)r = 2i j + , (2)42r i j =-故质点的位移为 (2)(1)23r r r i j ∆=-=-(2) 通过对运动学方程求导可得22dx dy v i j i t j dt dt =+=- 22222d x d y a i j j dt dt=+=-当t=2s 时,速度,加速度为 24v i j =- /m s 2a j =- 2/m s(3) 由(1)(2)两式消去时间t 可得质点的轨迹方程 22/4y x =- (4)图略。
1.11 一质点沿半径R=1m 的圆周运动。
t=0时,质点位于A 点,如图。
然后沿顺时针方向运动,运动学方程2s t t ππ=+,其中s 的单位为m ,t 的单位为s ,试求:(1)质点绕行一周所经历的路程,位移,平均速度和平均速率;(2)质点在第1秒末的速度和加速度的大小。
第十章静电场中的导体与电介质2014版答案
第十章 静电场中的导体和电介质一.选择题[B ]1、(基训2) 一“无限大”均匀带电平面A ,其附近放一与它平行的有一定厚度的“无限大”平面导体板B ,如图所示.已知A 上的电荷面密度为+σ ,则在导体板B 的两个表面1和2上的感生电荷面密度为: (A) σ 1 = - σ, σ 2 = + σ. (B) σ 1 = σ21-, σ 2 =σ21+. (C) σ 1 = σ21-, σ 1 = σ21-. (D) σ 1 = - σ, σ 2 = 0. 【解析】 由静电平衡平面导体板B 内部的场强为零,同时根据原平面导体板B 电量为零可以列出σ 1S+σ 2S=0022202010=-+εσεσεσ[ C ]2、(基训3)在一个原来不带电的外表面为球形的空腔导体A 内,放有一带电量为+Q 的带电导体B ,如图10-5所示,则比较空腔导体A 的电势U A 和导体B 的电势U B 时,可得以下结论:(A) U A = U B . (B) U A > U B . (C) U A < U B . (D) 因空腔形状不是球形,两者无法比较.【解析】由静电感应现象,空腔导体A 内表面带等量负电荷,A 、B 间电场线如图所示,而电场线总是指向电势降低的方向),因此U B >U A 。
[C ]3、(基训6)半径为R 的金属球与地连接。
在与球心O 相距d =2R 处有一电荷为q 的点电荷。
如图16所示,设地的电势为零,则球上的感生电荷q '为:(A) 0. (B) 2q . (C) -2q. (D) -q .【解析】利用金属球是等势体,球体上处电势为零。
球心电势也为零。
0442q o o dq qR R πεπε''+=⎰ R qR q d o q oo 244πεπε-='⎰'RqR q 2-=' 2qq -='∴[C ]4、(基训8)两只电容器,C 1 = 8 μF ,C 2 = 2 μF ,分别把它们充电到 1000 V ,然后将它们反接(如图10-8所示),此时两极板间的电势差为: (A) 0 V . (B) 200 V . (C) 600 V . (D) 1000 V AB+σσ1σ2OR dqC 1C2【解析】 C U C U C Q Q Q 32121106-⨯=-=-=V FC C C Q C Q U 600101106''5321=⨯⨯=+==-- [B ]5、(自测4)一导体球外充满相对介电常量为r ε的均匀电介质,若测得导体表面附近场强为E ,则导体球面上的自由电荷面密度0σ为(A) E 0ε. (B) E r εε0 . (C) E r ε. (D) E r )(00εεε- 【解析】导体表面附近场强ro o E εεσεσ0==,E r o εεσ0=. [ B ]6、(自测7)一个大平行板电容器水平放置,两极板间的一半空间充有各向同性均匀电介质,另一半为空气,如图.当两极板带上恒定的等量异号电荷时,有一个质量为m 、带电荷为+q 的质点,在极板间的空气区域中处于平衡.此后,若把电介质抽去 ,则该质点(A) 保持不动. (B) 向上运动. (C) 向下运动. (D) 是否运动不能确定.【解析】在抽出介质前,相当于左右两半两个“电容器”并联,由于这两个“电容器”电压相等,而右半边的电容又小于左半边的,因此由q=CU 公式可知,右半边极板的带电量小于左半边的。
西南交大大学物理版NO详细解答
解:双缝干涉中,光程差满足 Δ = kλ (k = 0, 1, 2,L)为明纹,k=0 为中央明纹,k=1 为
第一级明纹,…。故对第三级明纹有 k=3,光程差为 Δ = 3λ 。将整个装置放入透明液
体中, 3λ = 4 λ → n = 4 = 1.33 。
n
3
2.两束光在界面发生反射和折射,如图所示。a 和 b 在界
O
A
解:(1)明环半径为 r =
2k −1 Rλ , 2
k = 1, 2, 3L
( ) 所以入射光波长
λ
=
2r 2
(2k −1)R
=
2 × 0.30 ×10−2
(2 ×5 −1)× 4
2
= 5×10−7 (m)
(2)由明环半径公式, 2r 2 = (2k −1)Rλ
k
=
r2 Rλ
+
1 2
=
(10−2 )2 4 × 5 ×10−7
两表面反射光线①和②的光程差应为 Δ = 2n2e
故选 A
4.如图,用单色光垂直照射在观察牛顿环的装置上。当平凸透镜垂直
单色光
向上缓慢平移而远离平面玻璃时,可以观察到这些环状干涉条纹
[
] (A) 向右平移
(B) 向中心收缩
空气
(C) 静止不动
(D) 向外扩张
(E) 向左平移向外扩张
解:当平凸透镜垂直向上缓慢平移而远离平面玻璃时,空气膜的中心区域厚度将增加,
[ C ] (A) 凸起,且高度为λ / 4
(B) 凸起,且高度为λ / 2
(C) 凹陷,且深度为λ / 2
空气劈尖
(D) 凹陷,且深度为λ / 4
平玻璃 工件
解:劈尖干涉条纹向相邻低级次弯曲,说明低级次处有膜厚增加的情况(凹陷),而由劈
大学物理课后习题答案
大学物理课后习题答案(共15页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--1—1 一质点在xOy 平面上运动,运动方程为2135,342x t y t t t s x y m =+=+-式中以计,,以计。
(1)以时间t 为变量,写出质点位置矢量的表示式; (2)计算第1秒内质点的位移;(3)计算0t = s 时刻到4t = s 时刻内的平均速度;(4)求出质点速度矢量表示式,计算4t = s 时质点的速度; (5)计算0t = s 到4t = s 内质点的平均加速度;(6)求出质点加速度矢量的表示式,计算4t = s 是质点的加速度。
(位置矢量、位移、平均速度、瞬时速度、平均加速度、瞬时加速度都表示成直角坐标系中的矢量式)解:(1) 质点t 时刻位矢为:j t t i t r⎪⎭⎫ ⎝⎛-+++=4321)53(2(m)(2) 第一秒内位移 j y y i x x r)()(01011-+-=∆)(5.33)101(3)01(21)01(32m j i j i +=⎥⎦⎤⎢⎣⎡-+--=(3) 前4秒内平均速度 )s m (53)2012(411-⋅+=+=∆∆=j i j i t r V(4) 速度)s m ()3(3d d 1-⋅++==j t i tr V ∴ )s m (73)34(314-⋅+=++=j i j i V(5) 前4秒平均加速度)s m (43704204-⋅=-=--=∆∆=j j V V t V a(6) 加速度)s m ()s m (d d 242--⋅=⋅==j a j tV a1—2 质点沿直线运动,速度32132()v t t m s -=++,如果当时t=2 s 时,x=4 m,求:t=3 s 时质点的位置、速度和加速度。
解:23d d 23++==t t txv c t t t c t v x x +++=+==⎰⎰241d d 34 当t =2时x =4代入求证 c =-12 即1224134-++=t t t x tt tv a t t v 63d d 23223+==++= 将t =3s 代入证)s m (45)s m (56)(414123133--⋅=⋅==a v m xP .31 1—9 一个半径R= m 的圆盘,可依绕一个水平轴自由转动,一根轻绳子饶在盘子的边缘,其自由端拴一物体。
大学物理第一章习题参考答案
θ
+
v = vmax / 2
(B) (D)
v = 3v max / 2
v0 r A
O
v = 2v max / 2 v = v max / 2
o
t=0
解:如图画出已知所对应矢量 A,可知 A 与 x 轴正向的夹角 为 θ = 60 ,则根据简谐运动与旋转矢量的对应关系可得
7.5 x(cm)
v = ωA sin θ = 3v max / 2
4. 一弹簧振子作简谐振动,总能量为 E1 ,如果简谐振动振幅增加为原来的两倍,重物的 质量增加为原来的四倍,则它的总能量 E 变为 [ D ] (A) E1 /4 (B) E1 /2 解:原来的弹簧振子的总能量 E1 = (C) 2 E1 (D) 4 E1
1 1 2 2 2 kA1 = m1ω1 A1 ,振动增加为 A2 = 2 A1 ,质量增 2 2
1 π 3
。
解: 由矢量图可知,x1 和 x2 反相,合成振动的振幅
A = A1 − A2 = 0.05 − 0.03 = 0.02(m) ,初相 ϕ = ϕ1 =
四、计算题: 1.一定滑轮的半径为 R,转动惯量为 J,其上挂一轻绳,绳的一端 系一质量为 m 的物体,另一端与一固定的轻弹簧相连,如图所示。 设弹簧的倔强系数为 k, 绳与滑轮间无滑动,且忽略摩擦力及空气的 阻力。现将物体 m 从平衡位置拉下一微小距离后放手,证明物体作 简谐振动,并求出其角频率。 解:取如图 x 坐标,平衡位置为坐标原点,向下为正方向。 m 在平衡位置,弹簧伸长 x0, 则有 mg = kx0 ……………………(1) 现将 m 从平衡位置向下拉一微小距离 x, m 和滑轮 M 受力如图所示。 由牛顿定律和转动定律列方程, mg − T1 = ma ………………… (2)
大学物理课后习题答案14电磁场习题_图文_图文
习题总目录
结束 目录
)EyBy
+
(1
v2 c2
)EzBz
=ExBx+EyBy+EzBz = E .B
结束 目录
(2) E´2 c2B´2=
= E´x 2+E´y2+E´z 2 c2B´x2 c2B´y2 c2B´z2
= Ex2 c Bx2
+ g 2 Ey2+v2Bz2 2EyBz + Ez2+v2By2+2EzBy
c2( cv42Ey2 + Bz2
cosω
t
结束 目录
14-8 已知无限长载流导线在空间任一点 的磁感应强度为:m0I/2pr 。试证明满足方 程式
.B
=
Bx x
+
By y
+
Bz z
=0
结束 目录
证明: Bx = =
.B
=
Bx x
+
By y
+
Bz z
=0
m0I
2pr
sinq
m0Iy
2pr2
=
m0Iy
2p(x2+y2)
g
2pf
=
5.7×107
8.85×10-12×2p×3×1011
= 2.0×1016
结束 目录
14-5 有一平板电容器,极板是半径为R 的圆形板,现将两极板由中心处用长直引线 连接到一远处的交变电源上,使两极板上的 电荷量按规律q=q0sinω t变化。略去极板边 缘效应,试求两极板间任一点的磁场强度。
By
=
m0Ix
2p(x2+y2)
Bz =0
第十一章 恒定电流的磁场(一) 作业及参考答案 2014
一.选择题:1.(基础训练1)[D ]载流的圆形线圈(半径a1)与正方形线圈(边长a2 )通有相同电流I.若两个线圈的中心O1、O2处的磁感强度大小相同,则半径a1与边长a2之比a1∶a2为(A) 1∶1 (B) π2∶1(C) π2∶4 (D) π2∶8提示()82,,22135cos45cos244,2212212121ππμπμμ===-⨯⨯⨯==aaBBaIaIBaIBoooo得由2.(基础训练3)[B ].有一无限长通电流的扁平铜片,宽度为a,厚度不计,电流I在铜片上均匀分布,在铜片外与铜片共面,离铜片右边缘为b处的P点(如图)的磁感强度B的大小为(A))(2baI+πμ.(B)bbaaI+πln2μ.(C)bbabI+πln2μ.(D))2(baI+πμ.提示:bbaaIrdraIrrdIdBdraIdIabb+======⎰⎰⎰+ln222dIBBB,BdB,2P,)(drrPπμπμπμπμ的大小为:,的方向也垂直纸面向内据方向垂直纸面向内;根处产生的它在,电流为导线相当于一根无限长的直的电流元处选取一个宽度为点为在距离3. .(基础训练4)[D ]如图,两根直导线ab和cd沿半径方向被接到一个截面处处相等的铁环上,稳恒电流I从a端流入而从d端流出,则磁感强度B沿图中闭合路径L的积分⎰⋅LlBd(A) I0μ.(B) I031μ.(C) 4/Iμ.(D) 3/2Iμ.提示⎰∑⎰=⋅∴=-==∴===⋅LLIl dBIIslIIslIslIIIl dB32322)(RRRIRI11122112122111Lμρρρμμ得为两条支路的电阻。
,,其中,而内4. 自测提高7[C ]如图,正方形的四个角上固定有四个电荷量均为q 的点电荷.此正方形以角速度ω 绕AC 轴旋转时,在中心O 点产生的磁感应强度大小为B 1;此正方形同样以角速度ω 绕过O 点垂直于正方形平面的轴旋转时,在O 点产生的磁感应强度的大小为B 2,则B 1与B 2间的关系为(A) B 1 = B 2. (B) B 1 = 2B 2.(C) B 1 =21B 2. (D) B 1 = B 2 /4. 提示: 设正方形边长为a ,)22(a b b OC AO ===式中, 两种情况下正方形旋转时的角速度ω 相同,所以每个点电荷随着正方形旋转时形成的等效电流相同, 为 πω2q I =当正方形绕AC 轴旋转时,一个点电荷在O 点产生的磁感应强度的大小为bIB 20μ=,实际上有两个点电荷同时绕AC 旋转产生电流,在O 点产生的总磁感应强度的大小为b IbIB B 001222μμ=⨯==同理,当正方形绕过O 点垂直于正方形平面的轴旋转时,在O 点产生的磁感应强度的大小为bIb IB B 0022244μμ=⨯== 故有122B B =5. 附录C 2[ B ]有一半径为R 的单匝圆线圈,通以电流I ,若将该导线弯成匝数为2=N 的平面圆线圈,导线长度不变,并通以同样的电流,则线圈中心的磁感应强度和磁矩分别是原来的:(A) 4倍和1/8 (B) 4倍和1/2 (C) 2倍和1/4 . (D) 2倍和1/2提示:由半径为R 的单匝线圈弯成匝数为2=N 的线圈以后,每一个线圈的半径变为R r 21=,故磁感应强度变为原来的4倍,磁矩变为原来的1/2,总的变化为4倍和1/2二. 填空题6.(基础训练11)均匀磁场的磁感强度B与半径为r 的圆形平面的法线n的夹角为α ,今以圆周为边界,作一个半球面S ,S 与圆形平面组成封闭面如所示.则通过S 面的磁通量Φ = απcos 2B r -。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
P31 第一章 习题答案3. 一质点沿x 轴运动,其加速度a 与位置坐标x 的关系为a =2+6 x 2 (SI)如果质点在原点处的速度为零,试求其在任意位置处的速度. 解:设质点在x 处的速度为v ,62d d d d d d 2x txx t a +=⋅==v v ()x x xd 62d 02⎰⎰+=v v v()2 213xx +=v4.有一质点沿x 轴作直线运动,t 时刻的坐标为x = 4.5 t 2 – 2 t 3 (SI) .试求:(1) 第2秒内的平均速度;(2) 第2秒末的瞬时速度; (3) 第2秒内的路程.解:(1) 5.0/-==∆∆t x v m/s (2) v = d x /d t = 9t - 6t 2 v (2) =-6 m/s(3) S = |x (1.5)-x (1)| + |x (2)-x (1.5)| = 2.25 m5. 一质点沿半径为R 的圆周运动.质点所经过的弧长与时间的关系为221ct bt S += 其中b 、c 是大于零的常量,求从0=t 开始到切向加速度与法向加速度大小相等时所经历的时间. 解: ct b t S +==d /d v c t a t ==d /d v()R ct b a n /2+=根据题意: a t = a n 即 ()R ct b c /2+=解得 cbc R t -=6.由楼窗口以水平初速度0v射出一发子弹,取枪口为原点,沿0v方向为x 轴,竖直向下为y 轴,并取发射时刻t 为0,试求:(1) 子弹在任一时刻t 的位置坐标及轨迹方程; (2) 子弹在t 时刻的速度,切向加速度和法向加速度. 解:(1) 2021gt y t x == , v202/21v g x y =(2) v x = v 0,v y = g t ,速度大小为: 222022t g y x +=+=v v v v方向为:与x 轴夹角 θ = tg -1( gt /v 0)22202//d d t g t g t a t +==v v 与v 同向.()222002/122/t g g a g a t n +=-=v v 方向与t a 垂直.7. (1)对于在xy 平面内,以原点O 为圆心作匀速圆周运动的质点,试用半径r 、角速度ω和单位矢量i 、j表示其t 时刻的位置矢量.已知在t = 0时,y = 0, x = r , 角速度ω如图所示;(2) 由(1)导出速度 v 与加速度 a的矢量表示式;(3)试证加速度指向圆心.解:(1) j t r i t r j y i x rsin cos ωω+=+=(2) j t r i t r trcos sin d d ωωωω+-==vj t r i t r ta sin cos d d 22ωωωω--==v(3) ()r j t r i t r a sin cos 22ωωωω-=+-= 这说明 a 与 r方向相反,即a 指向圆心8. 一男孩乘坐一铁路平板车,在平直铁路上匀加速行驶,其加速度为a ,他向车前进的斜上方抛出一球,设抛球过程对车的加速度a 的影响可忽略,如果他不必移动在车中的位置就能接住球,则抛出的方向与竖直方向的夹角θ 应为多大?解:设抛出时刻车的速度为0v,球的相对于车的速度为/0v ,与竖直方向成θ角.抛射过程中,在地面参照系中,车的位移 20121at t x +=∆v ① 球的位移 ()t x θsin /002v v +=∆ ②()2/0221cos gt t y -=∆θv ③小孩接住球的条件 0221=∆∆=∆y x x ,即 ()t at /θsin 2102v = , ()t gt θcos 21/02v =两式相比得 tg /θ=g a ,∴ ()g a /tg 1-=θ9.一敞顶电梯以恒定速率v =10 m/s 上升.当电梯离地面h =10 m 时,一小孩竖直向上抛出一球.球相对于电梯初速率200=v m/s .试问:(1) 从地面算起,球能达到的最大高度为多大? (2) 抛出后经过多长时间再回到电梯上?解:(1) 球相对地面的初速度=+='v v v 030 m/s 抛出后上升高度9.4522='=gh v m/s离地面高度 H = (45.9+10) m =55.9 m (2) 球回到电梯上时电梯上升高度=球上升高度 2021)(gt t t -+=v v v08.420==gt v s 10.一球从高h 处落向水平面,经碰撞后又上升到h 1处,如果每次碰撞后与碰撞前速度之比为常数,问球在n 次碰撞后还能升多高? 解: g h /212v = ;;/21;/21222211 v v g h g h ==g h n n /212v =由题意,各次碰撞后、与碰撞前速度之比均为k ,有v v v v v v 2122212222212/;;/;/-===n n k k k将这些方程连乘得出:nn n n n hkh h h k 2222//=== , vv又v v h h k //12212== 故()111//-==n n nn h h h h h h11.一物体悬挂在弹簧上作竖直振动,其加速度为-=a ky ,式中k 为常量,y 是以平衡位置为原点所测得的坐标. 假定振动的物体在坐标y 0处的速度为v 0,试求速度v 与坐标y 的函数关系式.解: yt y y t a d d d d d d d d v v v v ===又 -=a ky ∴ -k =y v d v / d y⎰⎰+=-=-C ky y ky 222121 , d d v v v已知 =y y 0 ,=v v 0 则 20202121ky C --=v)(220202y y k -+=v v12 有一宽为l 的大江,江水由北向南流去.设江中心流速为u 0,靠两岸的流速为零.江中任一点的流速与江中心流速之差是和江心至该点距离的平方成正比.今有相对于水的速度为0v的汽船由西岸出发,向东偏北45°方向航行,试求其航线的轨迹方程以及到达东岸的地点.解:以出发点为坐标原点,向东取为x 轴,向北取为y 轴,因流速为-y 方向,由题意可得 u x = 0u y = a (x -l /2)2+b 令 x = 0, x = l 处 u y = 0, x = l /2处 u y =-u0 代入上式定出a 、b,而得 ()x x l lu u y --=204 船相对于岸的速度v(v x ,v y )明显可知是 2/0v v =x y y u +=)2/(0v v , 将上二式的第一式进行积分,有 t x 20v =还有,x y t x x y t y y d d 2d d d d d d 0v v ====()x x l l u --20042v 即 ()x x l l u x y--=020241d d v因此,积分之后可求得如下的轨迹(航线)方程:'32020032422x l u x l u x y v v +-= 到达东岸的地点(x ',y ' )为 ⎪⎪⎭⎫⎝⎛-=='='=003231v , u l y y l x lx13.当一列火车以36 km/h 的速率水平向东行驶时,相对于地面匀速竖直下落的雨滴,在列车的窗子上形成的雨迹与竖直方向成30°角.(1) 雨滴相对于地面的水平分速有多大?相对于列车的水平分速有多大? (2) 雨滴相对于地面的速率如何?相对于列车的速率如何? 解:(1) 题给雨滴相对于地面竖直下落,故相对于地面的水平分速为零.雨滴相对于列车的水平分速与列车速度等值反向为10 m/s ,正西方向.(2) 设下标W 指雨滴,t 指列车,E 指地面,则有WE v = t W v + vtE , v tE =10 m/s v WE 竖直向下,v W t 偏离竖直方向30°,由图求得雨滴相对于地面的速率为 v WE = v tE ctg30o =17.3 m/s雨滴相对于列车的速率 2030sin ==tEt W v v m/s14.一人自原点出发,25 s 内向东走30 m ,又10 s 内向南走10 m ,再15 s 内向正西北走18 m .求在这50 s 内,(1) 平均速度的大小和方向; (2) 平均速率的大小.解:(1) BC AB OA OC ++=)45sin )45cos (18)10(30j i j i︒+︒-+-+= j i73.227.17+=,方向φ =8.98°(东偏北)=∆=∆∆=t t r //0.35 m/s方向东偏北8.98°(2) (路程)()181030++=∆S m=58m,16.1/=∆∆=t S v m/s15 河水自西向东流动,速度为10 km/h .一轮船在水中航行,船相对于河水的航向为北偏西30°,相对于河水的航速为20 km/h. 此时风向为正西,风速为10 km/h .试求在船上观察到的烟囱冒出的烟缕的飘向.(设烟离开烟囱后很快就获得与风相同的速度)Wt v WEv tEv30°OCAB东y 北φπ/4 西 南x解:记水、风、船和地球分别为w , f ,s 和e ,则水-地、风-船、风-地和船-地间的相对速度分别为we V 、fs V 、fe V 和se V.由已知条件we V =10 km/h ,正东方向.fe V =10 km/h ,正西方向. sw V =20 km/h ,北偏西030方向.根据速度合成法则: se V =sw V +weV由图可得: se V =310 km/h ,方向正北.同理 fs V =fe V -se V , 由于fe V=-we V∴ fs V =sw V , fs V的方向为南偏西30°在船上观察烟缕的飘向即fs V的方向,它为南偏西30°.fewe北 东。