高二数学选修2 1曲线与方程 课堂

合集下载

人教版【高中数学】选修2-1第二章曲线与方程的概念讲义

人教版【高中数学】选修2-1第二章曲线与方程的概念讲义

案例(二)——精析精练课堂合作探究重点难点突破知识点一曲线方程概念的理解1.在建立了平面直角坐标系之后,平面内的点和有序实数对之间就建立了一一对应关系,现在要求我们进一步研究平面内的曲线与含有两个变量的方程之间的关系.平面内的曲线可以理解为平面内符合某种条件的点的集合(或轨迹)也就是说:(1)曲线上的每一个点都要符合某种条件;(2)每个符合条件的点都要在曲线上既然平面内的点与作为它的坐标的有序实数对之间建立了对应关系,那么对应于符合某种条件的一切点,它的坐标是应该有制约的,也就是说它的横坐标与纵坐标之间受到某种条件的约束,所以探求符合某种条件的点的轨迹问题,就变为探求这些点的横坐标与纵坐标应满足怎样的约束条件的问题,含两个变量x、y的方程F(x,y)=0就标志着横坐标x与纵坐标y之间所受的约束.2.在曲线的方程的定义中,曲线上的点与方程的解之间的关系(1)和(2)缺一不可,而且两者是对曲线上的任意一点以及方程的任意一个实数解而言的从集合的角度来看,设A是曲线C上的所有点组成的点集,B是所有以方程F(x,y)=0的实数解为坐标的点组成的点集,则由关系(1)可知A⊆B,由关系(2)可知BCA;同时具有这两个关系,就有A=B.3.从充要条件的角度理解,即“某点在曲线上”与“点的坐标满足曲线的方程”之间是互为充要条件的.知识点二圆系方程1.曲线系:同时具有某一特征的一组曲线叫做一个曲线系;它们的共同方程叫做这个曲线系的曲线系方程2.圆系方程:(1)过两已知圆交点的圆系方程:两相交圆C:x2+y2+D1x+E1y+F1=0,C2:x2+y2+D2x+E2y+F2=0.则过其交点的圆系方程为:x2+y2+D1x+E1y+F1+λ(x2+y2+D2x+E2y+F2)=0(λ≠-1).(2)过直线与圆交点的圆系方程:直线Ax+By+C=0与圆x 2+y 2+Dx+Ey+F=0相交,则过其交点的圆系方程为:x 2+y 2+Dx+Ey+F+λ(Ax+By+C)=0. 典型例题分析题型1曲线的方程与方程的曲线 【例1】判断下列命题是否正确:①设点A(2,0)、B(0,2),则线段AB 的方程是x+y-2=0; ②到原点的距离等于5的动点的轨迹是y=x -25; ③到两坐标轴距离相等的点的轨迹方程是x 2-y 2=0. 解析 根据曲线与方程的定义,逐条检验“两性”答案 命题①中方程x+y-2=0表示一条直线,坐标满足该方程的点如(-1,3)等不在线段AB 上,故命题①错误;命题②中到原点距离等于5的动点的轨迹方程为x 2+y 2=52,方程y=x -25表示的曲线是圆x 2+y 2=25除去x 轴下半部分的曲线,故命题②错误命题③中到两坐标轴距离相等的点的轨迹方程为y=±x,满足x 2-y 2=0,反过来坐标满足方程x 2-y=0的点到两坐标轴的距离相等,故命题③正确规律总结 判断方程是否是曲线的方程,要从两个方面着手,一是检验点的坐标是否适合方程,二是检验以方程的解为坐标的点是否在曲线上【变式训练1】下列命题是否正确?若不正确,说明原因 (1)过点A(2,0)平行于y 轴的直线l 的方程是|x|=2; (2)到两坐标轴距离相等的点的轨迹方程是y=x答案(1)错误,因为以方程|x|=2的解为坐标的点,不都在直线l 上,直线l 只是方程|x|=2所表示的图形的一部分(2) 错误,因为到两坐标轴距离相等的点的轨迹有两条直线y=x 和y=-x,故y=x 不是所求的轨迹方程题型2曲线的交点【例2】求通过直线2x+y+4=0及圆x 2+y 2+2x-4y+1=0的交点,并且面积最小的圆的方程 解析 利用圆系公式可求出变圆的半径,参变量取适当值时可使变圆半径最小答案 设圆的方程是(x 2+y 2+2x-4y+1)+λ(2x+y+4)=0,即[x+(1+λ)2+(y+24-λ)=4161652+-λλ.设该圆半径为R,由圆面积公式S=πR 2,得R 2=4161652+-λλ取最小值的面积为最小.而R 2=45(λ-58)2+54,所以当λ=58时,圆面积最小.此时圆的方程是5x 2+5y 2+26x-12y+37=0.规律总结 最值问题要先列出目标函数,再利用合适的方法求最值【变式训练2】已知直线x+y+b=0与曲线x 2-1+y=0有公共点,则b 的取值范围是 .答案 联立两曲线方程,消去y 得x 2-x-(1+b)=0.由题意得△≥0,即1+4(1+b)≥0,解得b ≥-45规律 方法 总结1.判断方程是否是曲线方程,要从两方面着手,一是检验点的坐标是否适合方程,二是检验以方程的解为坐标的点是否在曲线上2.判断方程表示什么曲线,要对方程适当变形,变形过程一定要注意与原方程的等价 性,否则变形的方程表示的曲线就不是原方程的曲线,另外,变形的方法还有配方法、因式分 解法等3.在求轨迹方程时经常遇到已知一动点的轨迹方程,求另一动点的轨迹方程的问题, 而解决这类问题的解法称为代入法(或相关点法),而此法的关键是如何来表示出相关的点定时 巩固 检测基础训练1.如果命题“坐标满足方程f(x,y)=0的点都在曲线C 上”是不正确的,那么下列命题中正确的是 ( ) A.坐标满足f(x,y)=0的点都不在曲线C 上 B.曲线C 上的点的坐标不都满足方程f(x,y)=0C.坐标满足方程f(x,y)=0的点有些在曲线C 上,有些不在曲线C 上D.至少有一个不在曲线C 上的点,其坐标满足f(x,y)=0 【答案】D(点拨:由简易逻辑推理可得)2.已知圆C 的方程f(x,y)=0,点A(x 0,y 0)在圆外,点B(x ´,y ´)在圆上,则f(x,y)-f(x 0,y 0)+f(x ´,y ´)=0表示的曲线是 ( ) A.就是圆C B.过A 点且与圆C 相交的圆 C.可能不是圆 D.过A 点与圆C 同心的圆 【答案】D(点拨:由点B(x ´,y ´)在圆上, ∴f(x ´,y ´)=0,即方程为f(x,y)-f(x 0,y 0)=0, ∴方程过点A(x 0,y 0) 又f(x 0,y 0)为常数,∴f(x,y)-f(x 0,y 0)=0仍为圆的方程.)3.已知A(1,0),B(-1,0),动点M 满足|MA|-|MB|=2,则点M 的轨迹方程是 ( ) A.y=0(-1≤y ≤1) B.y=0(x ≥1) C.y=0(x ≤-1) D.y=0(|x|≥1) 【答案】C(点拨:由|MA|-|MB|=2可设M(x,y),则()()222211y x y x ++-+-=2整理得:y=0,又|MA|-|MB|>0,∴x ≤-1.)4.点P(2,-3)在曲线x 2-ay 2=1上,则a= . 【答案】31(点拔:将点代入方程中即可.) 5.已知两定点A(-1,0),B(2,0),动点P 满足21=PB PA,则P 点的轨迹方程是 . 【答案】x 2+4x+y 2=0(点披:将|PA|与|PB|用距离公式表示出整理即可,)6.过点P(2,4)作两条互相垂直的直线1l 、2l ,1l ,交x 轴于A 点,2l 交y 轴于B 点,求线段AB 的中点M 的轨迹方程.【答案】如下图,设M 点的坐标为(x ,y),则A(2x,0),B(0,2y)∵1l ⊥2l ,2l P(2,4),∴PA ⊥PB,k PA ·k PB =-1,而k PA =x x -=-12224(x ≠1),k PB =2042--y =2-y, ∴x-12·(2-y)=-1,整理得x+2y-5=0(x ≠1). ∵当x=1时,A(2.0),B(0,4∴AB 的中点M(1,2)也满足方程x+2y-5=0,综上所述,点M 的轨迹方程为x+2y-5=07.线段AB 的长度为10.它的两个端点分别在x 轴,y 轴上滑动,则AB 的中点P 的轨迹是什么? 【答案】解法一:由题意可知AB 的中点P 恒满足到原点(0,0)的题离为5,所以点P 的轨迹为以原点为圆心,以5为半径的圆.解法二:设P 点的坐标为(x,y),由中点坐标公式知A(2x ,0),B(0,2y),因为|AB|=10,所以2244y x +=10,即x 2+y 2=25,所以点P 的轨为以原点为圆心,以5为半径的圆能力提升8.如图所示的曲线方程是 ( )A.|x|-y=0B.x-|y|=0C.y x =0D.yx -1=0【答案】B(点拔:A 中y ≥0与图形不符,C 、D 中都不满足y= 0,而图形过原点,所以排除C 、D,只有B 符合题意.) 9.(1)方程(x+y-1)1-x =0表示什么曲线?(2)方程2x 2+y 2-4x+2y+3=0表示什么曲线? 【答案】(1)由方程(x+y-1)1-x =0可得⎩⎨⎧=-+≥-010,1y x x 或⎩⎨⎧=-≥-.01,01x x 即x+y-1=0(x ≥1)或x=1,表示直线x=1和射线x+y-1=0(x ≥1).(2)方程左边配方得2(x-1)2+(y+1)2=0,∵2(x-1)2≥0,(y+1)2≥0,∴⎪⎩⎪⎨⎧=+=-,0)1(,0)1(222y x 得⎩⎨⎧-==,1,1y x∴方程表示的图形是点A(1,-1).10.求经过两圆C 1:x 2+y 2+6x-16=0,C 2:x 2+y 2-4x-5=0的交点,且过点(2,1)的圆的方程. 【答案】 设圆的方为x 2+y 2+6x-16+λ(x 2+y 2-4x-5)=0又因为圆过点(2,1),代入方程得λ=81,所以所求圆的方程为x 2+y 2+6x-16+81(x 2+y 2-4x-5)=0.即9x 2+9y 2+44x-133=0.(点拨:过相交的两个圆C 1:x 2+y 2+D 1x+E 1y+F 1=0,C 2:x 2+y 2+D 2x+E 2y+F 2=0的交点的圆系方程为x 2+y 2+D 1x+E 1y+F 1+λ(x 2+y 2+D 2x+E 2y+F 2)=0(λ≠-1).11.设A(-c,0),B(c,0)(c>0)为两定点,动点P 到点A 的距离与到点B 的距离的比为定值a(a>0),试求点P 的轨迹方程,并探求点P 的轨迹 【答案】设动点P 的坐标是(x ,y),由PBPA =a(a>0)得2222)()(yc x y c x +-++=a,简得(1-a 2)x 2+2c(1+a 2)x+c 2(1-a 2)+(1-a 2)y 2=0.当a ≠1时,得x 2+221)1(2aa c -+x+c 2+y 2=0,整理得22211⎪⎪⎭⎫ ⎝⎛-+-c a a x +y 2=2212⎪⎭⎫ ⎝⎛-a ac ;当a=1时,化简得x=0,所以当a ≠1时,P 点的轨迹是以⎪⎪⎭⎫ ⎝⎛-+0,1122c a a 为圆心,122-a ac为半径的圆:当a=1时,P 点的轨迹是y 轴.。

【全程复习方略】2014-2015学年高中数学 2.1.1曲线与方程课堂达标效果检测 新人教A版选修2-1

【全程复习方略】2014-2015学年高中数学 2.1.1曲线与方程课堂达标效果检测 新人教A版选修2-1

"【全程复习方略】2014-2015学年高中数学 2.1.1曲线与方程课堂达标效果检
测新人教A版选修2-1 "
1.方程(x-4y-12)[log2(x+2y)-3]=0的曲线经过点A(0,-3),B(0,4),
C,D(4,0)中的( )
A.0个
B.1个
C.2个
D.3个
【解析】选B.由对数的真数大于0,得x+2y>0,
所以A(0,-3),C不符合要求;
将B(0,4)代入方程检验,符合要求;将D(4,0)代入方程检验,不符合要求.故选B.
2.如图所示,方程x+|y-1|=0表示的曲线是( )
【解析】选B.由x+|y-1|=0,得x=-|y-1|≤0,故排除A,C,D.
3.两条曲线|y|=与x=-的交点坐标是( )
A.(-1,-1)
B.(0,0)和(-1,-1)
C.(-1,1)和(0,0)
D.(1,-1)和(0,0)
【解析】选B.根据曲线方程来看需x≤0,y≤0,排除C,D,把B中的两个点代入等式均成立,故选B.
4.已知0≤α≤2π,点P(cosα,si nα)在曲线(x-2)2+y2=3上,则α的值是.
【解析】因为P(cosα,sinα)在曲线(x-2)2+y2=3上,
所以(cosα-2)2+sin2α=3.整理得cosα=,
又因为0≤α≤2π,所以α=或.
答案:或
5.方程2x2+y2-4x+2y+3=0表示什么曲线?
【解析】对方程左边配方得2(x-1)2+(y+1)2=0. 因为2(x-1)2≥0,(y+1)2≥0,
所以解得
从而方程表示的图形是一个点(1,-1).。

人教版数学选修2-1:曲线方程课件求曲线方程的四种常用方法(共19张PPT)

人教版数学选修2-1:曲线方程课件求曲线方程的四种常用方法(共19张PPT)

二、参数法求曲线方程
例5 过点 P( 2 ,4) 作两条相互垂直的直线 l1, l2 ,若 l1 交 x 轴于点A,l2
交y 轴于点B,求线段AB的中点M的轨迹方程。
解析:设点M (x, y) 。
① 当直线 l1 的斜率垂直且不为0时,可设其方程为:y 4 k(x 2)
因为
l1 l2
建立适当的坐标系,求这条曲线的方程。
解析:如图:取直线 l 为轴,过点F且垂直于 直线 l 的直线为y轴,建立坐标系 xOy. 设点 M (x, y) 是曲线上任意一点,作MB x 轴
垂足为B,则M属于集合
P M || MF | | MB| 2 x2 (y 2)2 y 2 x2 (y 2)2 (y 2)2
③(四川卷)已知两定点 A(2,0), B(1,0) ,若动点P满足|PA|=2|PB|, 则点P的轨迹所围成的图形的面积等于( )
A B 4 C 8 D 9
二、直接法求曲线方程
例3 已知一条直线 l 和它上方的一个点F,点F到的距离是2.一条曲线 也 l 在的上方,它上面的每一点到F的距离减去到 l 的距离的差都是2,
二、相关点法求曲线方程
例4 在圆 x2 y2 4 上任取一点P,过点P作 x 轴的垂线段PD,D为垂
足。当点P在圆上运动时,线段PD的中点M的轨迹方程。
解析:设 M (x, y), P(x0, y0 ),则x

x0 , y

y0 2
.
因为点P在圆上,所以 x02 y02 4 。
把 x0 x, y0 2x 带入上式得:x2 4 y2 4.
所以点M的轨迹方程是 x2 4y2 4. 。
相关点法—知识总结与练习

【数学】2.1.1《曲线与方程》课件(新人教A版选修2-1)

【数学】2.1.1《曲线与方程》课件(新人教A版选修2-1)

例子:(2)画出函数 y
y 8
= 2x
2
(-1≤x≤2) 的图象C.
y
y = 2x 2
y = 2x 2
(-1≤x≤2)
8
-1
O
2
x
-1
O
2
x
符合条件①不符合条件②
符合条件②不符合条件 ①
例子:(2)画出函数 的图象C.
y 8
y = 2x
2
(-1≤x≤2)
y = 2x 2
(-1≤x≤2)
-1
O
2
x
y 1 -1 0 x 1 y 1 -2 -1 0 1 2 x y 1 -2 -1 0 1 2 x
图3
例2 证明以坐标原点为圆心,半径等于5的圆的方程是x2 +y2 = 25,并判断点M1(3,-4),M2(-3,2)是否在这个圆 上.
证明:(1)设M(x0,y0)是圆上任意一点.因为点M到坐标原点 的距离等于5,所以 x 0 2 + y 0 2 = 5 , 也就是xo2 +yo2 = 25. 即 (x0,y0) 是方程x2 +y2 = 25的解.
即:曲线上所有点的集合与此曲线的方程的解集能够 一一对应
集合的 观点
3、如果曲线C的方程是f(x,y)=0,那么点 P( x0 , y0 ) 在曲线C上的充要条件 是 f ( x0 , y0 ) = 0
学习例题巩固定义
例1判断下列结论的正误并说明理由 对(1)过点A(3,0)且垂直于x轴的直线为x=3 错(2)到x轴距离为2的点的轨迹方程为y=2 错(3)到两坐标轴距离乘积等于1的点的轨迹方程为xy=1 例2证明:圆心为坐标原点,半径为5的圆的方程是 y x2 + y2 = 25 5 M 1 (3,−4)、M( − 2 5, 是否在圆上 2) 并判断 2 变式训练: 变式训练:写出下列半圆的方程

人教新课标版数学高二选修2-1讲义 2.1曲线与方程

人教新课标版数学高二选修2-1讲义 2.1曲线与方程

2.1 曲线与方程2.1.1 曲线与方程2.1.2 求曲线的方程1.结合已学过的曲线与方程的实例,了解曲线与方程的对应关系.(了解)2.理解“曲线的方程”与“方程的曲线”的概念.(重点)3.通过具体的实例掌握求曲线方程的一般步骤,会求曲线的方程.(难点)[基础·初探]教材整理1曲线的方程与方程的曲线阅读教材P34~P35例1以上部分内容,完成下列问题.一般地,在直角坐标系中,如果某曲线C上的点与一个二元方程f(x,y)=0的实数解建立了如下的关系:(1)曲线上点的坐标都是____________;(2)以这个方程的解为坐标的点都是__________,那么,这个方程叫做________,这条曲线叫做方程的曲线.【答案】这个方程的解曲线上的点曲线的方程设方程f(x,y)=0的解集非空,如果命题“坐标满足方程f(x,y)=0的点都在曲线C上”是不正确的,则下列命题正确的是()A.坐标满足方程f(x,y)=0的点都不在曲线C上B.曲线C上的点的坐标都不满足方程f(x,y)=0C.坐标满足方程f(x,y)=0的点有些在曲线C上,有些不在曲线C上D.一定有不在曲线C上的点,其坐标满足f(x,y)=0【解析】本题考查命题形式的等价转换,所给命题不正确,即“坐标满足方程f(x,y)=0的点不都在曲线C上”是正确的.“不都在”包括“都不在”和“有的在,有的不在”两种情况,故选项A、C错,选项B显然错.【答案】 D教材整理2求曲线方程的步骤阅读教材P36“例3”以上部分,完成下列问题.已知M(-2,0),N(2,0),则以MN为斜边的直角三角形的直角顶点P的轨迹方程是____________.【解析】设P(x,y),∵△MPN为直角三角形,∴MP2+NP2=MN2,∴(x+2)2+y2+(x-2)2+y2=16,即x2+y2=4.∵M,N,P不共线,∴x≠±2,∴轨迹方程为x2+y2=4(x≠±2).【答案】x2+y2=4(x≠±2)[小组合作型]对曲线的方程和方程的曲线的定义的理解(1)过点A(2,0)平行于y轴的直线与方程|x|=2之间的关系;(2)到两坐标轴的距离的积等于5的点与方程xy=5之间的关系;(3)第二、四象限角平分线上的点与方程x+y=0之间的关系.【导学号:37792038】【精彩点拨】曲线上点的坐标都是方程的解吗?以方程的解为坐标的点是否都在曲线上?【自主解答】(1)过点A(2,0)平行于y轴的直线上的点的坐标都是方程|x|=2的解,但以方程|x|=2的解为坐标的点不一定都在过点A(2,0)且平行于y轴的直线上.因此|x|=2不是过点A(2,0)平行于y轴的直线的方程.(2)到两坐标轴的距离的积等于5的点的坐标不一定满足方程xy=5,但以方程xy=5的解为坐标的点与两坐标轴的距离之积一定等于5.因此到两坐标轴的距离的积等于5的点的轨迹方程不是xy=5.(3)第二、四象限角平分线上的点的坐标都满足x+y=0,反之,以方程x+y =0的解为坐标的点都在第二、四象限角平分线上.因此第二、四象限角平分线上的点的轨迹方程是x+y=0.1.分析此类问题要严格按照曲线的方程与方程的曲线的定义.2.定义中有两个条件,这两个条件必须同时满足,缺一不可.条件(1)保证了曲线上所有的点都适合条件f (x ,y )=0;条件(2)保证了适合条件的所有点都在曲线上,前者是说这样的轨迹具有纯粹性,后者是说轨迹具有完备性.两个条件同时成立说明曲线上符合条件的点既不多也不少,才能保证曲线与方程间的相互转化.[再练一题]1.已知方程x 2+(y -1)2=10.(1)判断点P (1,-2),Q (2,3)是否在此方程表示的曲线上;(2)若点M ⎝ ⎛⎭⎪⎫m 2,-m 在此方程表示的曲线上,求实数m 的值. 【解】 (1)因为12+(-2-1)2=10,(2)2+(3-1)2=6≠10,所以点P (1,-2)在方程x 2+(y -1)2=10表示的曲线上,点Q (2,3)不在方程x 2+(y -1)2=10表示的曲线上.(2)因为点M ⎝ ⎛⎭⎪⎫m 2,-m 在方程x 2+(y -1)2=10表示的曲线上, 所以x =m 2,y =-m 适合方程x 2+(y -1)2=10,即⎝ ⎛⎭⎪⎫m 22+(-m -1)2=10. 解得m =2或m =-185.故实数m 的值为2或-185.由方程研究曲线(1)(x +y -1)x -1=0;(2)2x 2+y 2-4x +2y +3=0;(3)(x -2)2+y 2-4=0.【精彩点拨】 (1)方程(x +y -1)x -1=0中“x +y -1”与“x -1”两式相乘为0可作怎样的等价变形?(2)在研究形如Ax 2+By 2+Cx +Dy +E =0的方程时常采用什么方法?(3)由两个非负数的和为零,我们会想到什么?【自主解答】 (1)由方程(x +y -1)x -1=0可得 ⎩⎪⎨⎪⎧ x -1≥0,x +y -1=0或x -1=0, 即x +y -1=0(x ≥1)或x =1.故方程表示一条射线x +y -1=0(x ≥1)和一条直线x =1.(2)对方程左边配方得2(x -1)2+(y +1)2=0.∵2(x -1)2≥0,(y +1)2≥0,∴⎩⎪⎨⎪⎧ 2(x -1)2=0,(y +1)2=0,解得⎩⎪⎨⎪⎧x =1,y =-1. 从而方程表示的图形是一个点(1,-1).(3)由(x -2)2+y 2-4=0,得⎩⎪⎨⎪⎧ x -2=0,y 2-4=0,∴⎩⎪⎨⎪⎧ x =2,y =2或⎩⎪⎨⎪⎧x =2,y =-2.因此,原方程表示两个点(2,2)和(2,-2).1.判断方程表示什么曲线,就要把方程进行同解变形,常用的方法有:配方法、因式分解或化为我们熟悉的曲线方程的形式,然后根据方程、等式的性质作出准确判定.2.方程变形前后应保持等价,否则,变形后的方程表示的曲线不是原方程代表的曲线,另外,当方程中含有绝对值时,常借助分类讨论的思想.[再练一题]2.方程xy2-x2y=2x所表示的曲线()A.关于x轴对称B.关于y轴对称C.关于原点对称D.关于x-y=0对称【解析】同时以-x代替x,以-y代替y,方程不变,所以方程xy2-x2y=2x所表示的曲线关于原点对称.【答案】 C[探究共研型]求曲线的方程探究1【提示】建立坐标系的基本原则:(1)让尽量多的点落在坐标轴上;(2)尽可能地利用图形的对称性,使对称轴为坐标轴.建立适当的坐标系是求曲线方程的首要一步,应充分利用图形的几何性质,如中心对称图形,可利用对称中心为原点建系;轴对称图形以对称轴为坐标轴建系;条件中有直角,可将两直角边作为坐标轴建系等.探究2求曲线方程时,有些点的条件比较明显,也有些点的条件要通过变形或转化才能看清,有些点的运动依赖于另外的动点,请你归纳一下求曲线方程的常用方法?【提示】一般有三种方法:一直接法;二定义法;三相关点法,又称为代入法.在解题中,我们可以根据实际题目选择最合适的方法.求解曲线方程过程中,要特别注意题目内在的限制条件.在Rt△ABC中,斜边长是定长2a(a>0),求直角顶点C的轨迹方程.【导学号:37792039】【精彩点拨】(1)如何建立坐标系?(2)根据题意列出怎样的等量关系?(3)化简出的方程是否为所求轨迹方程?【自主解答】取AB边所在的直线为x轴,AB的中点O为坐标原点,过O与AB垂直的直线为y轴,建立如图所示的直角坐标系,则A(-a,0),B(a,0),设动点C为(x,y).由于|AC|2+|BC|2=|AB|2,所以((x+a)2+y2)2+((x-a)2+y2)2=4a2,整理得x2+y2=a2.由于当x=±a时,点C与A或B重合,故x≠±a.所以所求的点C的轨迹方程为x2+y2=a2(x≠±a).1.求曲线方程的一般步骤(1)建系设点;(2)写几何点集;(3)翻译列式;(4)化简方程;(5)查漏排杂:即证明以化简后方程的解为坐标的点都是曲线上的点.2.一般情况下,化简前后方程的解集是相同的,步骤(5)可以省略不写,如有特殊情况,可适当予以说明,另外,根据情况,也可以省略步骤(2),直接列出曲线方程.3.没有确定的坐标系时,要求方程首先必须建立适当的坐标系,由于建立的坐标系不同,同一曲线在坐标系的位置不同,其对应的方程也不同,因此要建立适当的坐标系.[再练一题]3.已知一曲线在x轴上方,它上面的每一点到点A(0,2)的距离减去它到x轴的距离的差都是2,求这条曲线的方程.【解】设曲线上任一点的坐标为M(x,y),作MB⊥x轴,B为垂足,则点M属于集合P={M||MA|-|MB|=2}.由距离公式,点M适合的条件可表示为x2+(y-2)2-y=2.化简得x2=8y.∵曲线在x轴上方,∴y>0.∴(0,0)是这个方程的解,但不属于已知曲线.∴所求曲线的方程为x2=8y(y≠0).1.已知直线l:x+y-3=0及曲线C:(x-3)2+(y-2)2=2,则点M(2,1)()A.在直线l上,但不在曲线C上B.在直线l上,也在曲线C上C.不在直线l上,也不在曲线C上D.不在直线l上,但在曲线C上【解析】将M(2,1)代入直线l和曲线C的方程,由于2+1-3=0,(2-3)2+(1-2)2=2,所以点M既在直线l上,又在曲线C上.【答案】 B2.在直角坐标系中,方程|x|·y=1的曲线是()【解析】 当x >0时,方程为xy =1,∴y >0,故在第一象限有一支图象;当x <0时,方程为-xy =1,∴y >0,故在第二象限有一支图象.【答案】 C3.已知两点M (-2,0),N (2,0),点P 满足PM →·PN →=4,则点P 的轨迹方程为________.【解析】 设点P 的坐标为P (x ,y ),由PM →·PN →=(-2-x ,-y )·(2-x ,-y )=x 2-4+y 2=4,得x 2+y 2=8,则点P 的轨迹方程为x 2+y 2=8.【答案】 x 2+y 2=84.设圆C :(x -1)2+y 2=1,过原点O 作圆的任意弦,求所作弦的中点的轨迹方程.【导学号:37792040】【解】 法一:如图所示,设OQ 为过O 的一条弦,P (x ,y )为其中点,连接CP ,则CP ⊥OQ .OC 的中点为M ⎝ ⎛⎭⎪⎫12,0,连接MP ,则|MP |=12|OC |=12,得方程⎝ ⎛⎭⎪⎫x -122+y 2=14. 由圆的范围,知0<x ≤1.即所求弦中点的轨迹方程为⎝ ⎛⎭⎪⎫x -122+y 2=14,0<x ≤1.法二:如图所示,由垂径定理,知∠OPC =90°,所以动点P 在以M ⎝ ⎛⎭⎪⎫12,0为圆心,OC 为直径的圆上. 由圆的方程,得⎝ ⎛⎭⎪⎫x -122+y 2=14, 由圆的范围,知0<x ≤1.即所求弦中点的轨迹方程为⎝ ⎛⎭⎪⎫x -122+y 2=14,0<x ≤1.。

高中数学选修21圆锥曲线与方程市公开课一等奖课件名师大赛获奖课件

高中数学选修21圆锥曲线与方程市公开课一等奖课件名师大赛获奖课件

数学 选修2-1
第二章 圆锥曲线与方程
自主学习 新知突破
合作探究 课堂互动
高效测评 知能提升
顶点 A 可在直线 BC 上方,也可在下方. 1 分
若点 A 在 BC 上方,设 H(x,y),则 A(x,2).
当 x≠±1 时,kAC=x-2 1,kBH=x+y 1,
4分
由 AC⊥BH,得 kAC·kBH=-1,即x-2 1·x+y 1=-1,化简
数学 选修2-1
第二章 圆锥曲线与方程
自主学习 新知突破
合作探究 课堂互动
高效测评 知能提升
求曲线方程的普通环节
数学 选修2-1
第二章 圆锥曲线与方程
自主学习 新知突破
合作探究 课堂互动
高效测评 知能提升
对的认识求曲线方程的普通环节 求曲线方程的五个环节构成一种有机的整体,每一步都 有其特点和重要性.第一步在具体问题中有两种状况. (1)所研究的问题中已给定了坐标系,此时就在给定的 坐标系中求方程即可;
数学 选修2-1
第二章 圆锥曲线与方程
自主学习 新知突破
合作探究 课堂互动
高效测评 知能提升
(2)对称性:用-y 代 y 方程不变,曲线关于 x 轴对称.
数学 选修2-1
第二章 圆锥曲线与方程
自主学习 新知突破
合作探究 课堂互动
高效测评 知能提升
(3)单调性:设 0≤x1≤x2<1,0≤x21<x22, ∴1-x1>1-x2>0,故1-x12x1<1-x22x2, 即 y21<y22. ∴曲线在第一象限单调递增,在第四象限单调递减,如 图所示.
(2)已知方程 x2+y2=5 表示的曲线 F 经过点 A( 2,m), 求 m 的值.

高中数学选修2-1人教A版:.1抛物线及其标准方程ppt课件

高中数学选修2-1人教A版:.1抛物线及其标准方程ppt课件
2 . ———————————— y M

OF
x
四、点与抛物线的位置关系
y
F
.
o
x
五、抛物线定义的应用
1,求抛物线标准方程 2,涉及抛物线的最值问题
五、抛物线的通径、焦半径、焦点弦
1、通径:
y
通过焦点且垂直对称轴的直线,
P (x0, y0 )
与抛物线相交于两点,连接这 OF
x
两点的线段叫做抛物线的通径。
F
O
x
B (x2, y2)
焦点弦公式: ABx1x2p
焦点弦的性质
y 1、抛物线的焦点弦AB的长是否存
A
在最小值?若存在,其最小值为
多少?
O Fx B
垂直于对称轴的焦点弦最短,叫做抛 物线的通径,其长度为2p.
2、A、B两点的坐标是否存在相关关
系?若存在,其坐标之间的关系如
何?
yA
O Fx B
2
p 1
1 k2
p tan
d 2
1 tan 2
1 1 tan 2
S 2p 2
tan 2
p tan
2
p2
1 tan 2 2 sin
斜率为 1 的直线 l 经过抛物线 y2 4x 的焦点 F , 且与抛物线相交于 A,B 两点,求线段 AB 的长.
解这题,你有什么方法呢?
法一:直接求两点坐标,计算弦长(运算量一般较大); 法二:设而不求,运用韦达定理,计算弦长(运算量一般);
法三:活用定义,运用韦达定理,计算弦长.
法四:纯几何计算,这也是一种较好的思维.
解法1 F1(1 , 0), l的 方 程 为 : yx1 yy2x4x1x26x10

数学:2.1《曲线与方程》课件(新人教A版选修2-1)

数学:2.1《曲线与方程》课件(新人教A版选修2-1)
y
1
y
1
y
1
-1
0
x 1
-2 -1 0 1 2
x
-2 -1 0 1 2
x


练习2 练习3

课堂练习2:下述方程表示的图形分别是 下图中的哪一个?
① x - y =0
Y
② |x|-|y|=0
Y
③ x-|y|=0
Y 1 Y
1
O 1 X
1
O 1 X -1 O
1
1 X O -1 1 X
-1
A
B
C
D
①表示 B
变式练习
课堂练习1:下列各题中,下图各曲线的曲线方 程是所列出的方程吗?为什么? (1)曲线C为过点A(1,1),B(-1,1)的 折线(如图(1))其方程为(x-y)(x+y)=0; 不是 (2)曲线C是顶点在原点的抛物线其方 程为x+ y =0; 不是 (3)曲线C是Ⅰ, Ⅱ象限内到x轴,y轴 的距离乘积为1的点集其方程为y= 。 是
说明:1.曲线的方程——反映的是图形所满足的数量关系; 方程的曲线——反映的是数量关系所表示的图形. 继续
例1判断下列结论的正误并说明理由 对 (1)过点A(3,0)且垂直于x轴的直线 的方程为x=3; 错 (2)到 x 轴距离为 2 的点的轨迹方程为 y=2 ; 错 (3)到两坐标轴距离乘积等于k 的点的 轨迹方程为xy=k.
②表示 C
③表示 D
为 ( x 3) ( y 2) 2 , 直线
2 2
么( C ) A.点P在直线上,但不在圆上
l 的方程为x+y-3=0, 点P的坐标为(2,1),那
B.点P在圆上,但不在直线上;

人教新课标版数学高二选修2-1课件曲线与方程

人教新课标版数学高二选修2-1课件曲线与方程
普通高中课程标准实验教科书 数学选修2-1
2.1.1 曲线与方程
教学目标
1.了解曲线上的点与方程的解之间的一一对应关系. 2.初步领会“曲线的方程”与“方程的曲线”的概念. 3.学会根据已有的情境资料找规律,学会分析、判断曲线与方程的 关系,强化“形”与“数”的统一以及相互转化的思想方法.
下图为卫星绕月球飞行示意图,据图回答下面问题:假 若卫星在某一时间内飞行轨迹上任意一点到月球球心和月球 表面上一定点的距离之和近似等于定值2a,视月球为球体, 半径为R,你能写出一个轨迹的方程吗?
1 2345
解析答案
课堂小结
(1)判断点是否在某个方程表示的曲线上,就是检验该点的坐标是不是方 程的解,是否适合方程.若适合方程,就说明点在曲线上;若不适合,就 说明点不在曲线上. (2)已知点在某曲线上,可将点的坐标代入曲线的方程,从而可研究有关 参数的值或范围问题.
返回
答案
探究点1 曲线与方程的概念应用 例1 证明与两条坐标轴的距离的积是常数k(k>0)的点的轨迹方程是xy=±k.
反思与感悟
解析答案
探究点2 曲线与方程关系的应用 例2 如果曲线C上的点的坐标(x,y)都是方程F(x,y)=0的解,那么( ) A.以方程F(x,y)=0的解为坐标的点都在曲线C上 B.以方程F(x,y)=0的解为坐标的点有些不在曲线C上 C.不在曲线C上的点的坐标都不是方程F(x,y)=0的解 D.坐标不满足F(x,y)=0的点不在曲线C上
自主学习
知识点一 曲线与方程的概念 一般地,在直角坐标系中,如果某曲线C(看作点的集合或适合某种条
件的点的轨迹)上的点与一个二元方程f(x,y)=0的实数解建立了如下的关
系:
(1) 曲线上点的坐标 都是这个方程的解;

人教版选修2-1【数学】1双曲线定义与标准方程 (共33张PPT)教育课件

人教版选修2-1【数学】1双曲线定义与标准方程 (共33张PPT)教育课件
















































过高Biblioteka 的奢望,

































































































(x c)2y2(x c)2y2 2 a
2
2
(x c )2 y 2 2 a (x c )2 y 2

高中数学选修2-1课件:2.4.1抛物线及其标准方程

高中数学选修2-1课件:2.4.1抛物线及其标准方程

解:如图,在接收天线的轴截面所在平面内建立直角坐标系, 使接收天线的顶点(即抛物线的顶点)与原点重合。
设抛物线的标准方程是 y2 2 px( p 0) , y
由已知条件
A
可得,点A的坐标是 (0.5, 2.4) ,
代入方程,得 2.42 2 p0.5
. o
Fx
即 p 5.76
B
所以,所求抛物线的标准方程是 y 2 11.52x ,焦点的坐标
二次函数 是抛物线?
思考:
的图像为什么
当a>0时与当a<0时,结论都为:
新知应用:
例1
(1)已知抛物线的标准方程是 y 2 = 6 x ,求它 的焦点坐标及准线方程
焦点F (
3 2
,0)
准线:x =-
3 2
(2)已知抛物线的焦点坐标是 F(0,-2), 求抛物线的标准方程
x 2 =-8 y
例2:一种卫星接收天线的轴截面如下图所示。卫星波束呈近似 平行状态射入轴截面为抛物线的接收天线,经反射聚集到焦点 处。已知接收天线的径口(直径)为4.8m,深度为0.5m。建立 适当的坐标系,求抛物线的标准方程和焦点坐标。
解法二:以定点F 为原点,过点F 垂直于L的直线为x 轴建
立直角坐标系(如下图所示),则定点F (0, 0) ,L 的方程
为x p
设动点 M (x, y),由抛物线定义得
x2 y2 x p
y p 2
2
化简得: 2 px ( p 0)
还是不够简捷
二、标准方程的推导
y
解法三:以过F且垂直于 l 的直
二、标准方程的推导
解法一:以 L为 y轴,过点F 垂直于L的直线为 x 轴建
立直角坐标系(如下图所示),取定点F到定直线L的

高二数学选修2-1课件231_双曲线的定义及其标准方程新人教A版.ppt

高二数学选修2-1课件231_双曲线的定义及其标准方程新人教A版.ppt
焦点: F1(–c,0), F2(c,0)
思考:换为如右图建系呢? y
标准方程:
y2 x2 1 (a>0,b>0)
a2 b2
F1•
O
x
•M • F2
焦点: F1(0, c), F2(0, –c)
思考:a, b, c有何关系? c2=a2+b2
c最大,a与b的大小无规定
定义 MF1 MF2 2a,0 2a F1F2
移项得,
4cx 4a2 4a (x c)2 y2 .
cx a2 a (x c)2 y2 .
推导方程
两边再平方得:
(cx
a2 )2
a2
x
c2
y2
.
c2x2 2a2cx a4 a2x2 2a2cx a2c2 a2 y2
c2x2 a2x2 a2 y2 a2c2 a4
轨迹方程. 先建系
x2 y2 1 (x<-2) 4 12
课堂练习
2、若双曲线
x2 y2 25 9
1
上的一点P到
一个焦点的距离为12,则它到另一个焦
点的距离是_2_或_2_2 _.
yP
F1 O
F2 x
课堂练习
3、已知双曲线
x2 9
y2 4
1
,A、B为过左焦点F1的直线与
双曲线左支的两个交点,|AB|=9,F2为右焦点,则△AF2B的
复习引入
问题1:椭圆的定义是什么?
平面内与两个定点 F1, F2的距离的和
等于常数(大于|F1F2|)的点的轨迹 叫做椭圆。
问题2:平面内与两定点的距离的差
为非零常数的点的轨迹如何呢?
刚看的是 MF1 MF2 2a (a是常数)

高二数学选修课件:2-1-1曲线与方程的概念

高二数学选修课件:2-1-1曲线与方程的概念

[解析]
① ②
得 2x2-11x-13=0, 13 即(2x-13)(x+1)=0,得 x1=-1,x2= . 2 将 x=-1 代入①得
人 教 B 版 数 学
第二章
圆锥曲线与方程
[例2] 求曲线2y2+3x+3=0与曲线x2+y2-4x-5=0 的公共点.
[分析] 曲线和曲线的公共点,即 的解
人 教 B 版 数 学
2y2+3x+3=0 2 x +y2-4x-5=0
因此解方法程组即可求得.
第二章
圆锥曲线与方程
2y2+3x+3=0, 由 2 2 x +y -4x-5=0,
人 教 B 版 数 学
表示两圆公切线的方程.(但应注意此圆系中不包含圆C2)
[答案] 1.方程F(x,y)=0的曲线 曲线C的方程 4.两圆公共弦所在直线
第二章
圆锥曲线与方程
人 教 B 版 数 学
第二章
圆锥曲线与方程
[例 1]
已知方程 x2+(y-1)2=10.
人 教 B 版 数 学
(1)判断点 P(1,-2),Q( 2,3)是否在此方程表示的 曲线上; m (2)若点 M( ,-m)在此方程表示的曲线上,求 m 的 2 值.
系数法求椭圆的标准方程.
第二章
圆锥曲线与方程
(3)掌握椭圆的几何性质,掌握标准方程中的a、b、c、
e的几何意义,以及a、b、c、e之间的相互关系. (4)了解双曲线的定义,并能根据双曲线定义恰当地选 择坐标系,建立及推导双曲线的标准方程. (5)会用待定系数法求双曲线标准方程中的a、b、c,
人 教 B 版 数 学
能根据条件确定双曲线的标准方程.
(6)使学生了解双曲线的几何性质,能够运用双曲线的 标准方程讨论它的几何性质,能够确定双曲线的形状特 征.

高二数学选修2-1课件抛物线及其标准方程新人教A版1.ppt

高二数学选修2-1课件抛物线及其标准方程新人教A版1.ppt
例1. 若点M到定点F(5,0)距离和它到
定直线 l : x 16 的距离的比是常数 5 ,
5
求点M的轨迹方程.
x2
y2
4
11Biblioteka 91、若点F是定直线l外一定点,动点M 到点F的距离与它到直线l的距离之比等 于常数e(e>1),则点M的轨迹是双曲线
吗? 是!称为双曲线的第二定义
试与椭圆的第二定义比较
B1
B
4. |
11 AF | | BF |
1 p
5.A,O, B1三点共线.
直线与抛物线的关系
尝试练习
已知抛物线y2=4x,过定点A(-2, 1)的直 线l的斜率为k,下列情况下分别求k的取值 范围: 1. l与抛物线有且仅有一个公共点; 2. l与抛物线恰有两个公共点; 3. l与抛物线没有公共点.
移动,F是抛物线的焦点,则|MF|+|MA|
的最小值是( 3 ),此时M的坐标是 (( 1 ,1) )
5.已知M是抛物线
y
1
4
x2上一动点,M
4
到其准线的距离为d1 , M到直线x+y=2的
距离为d2 , 则d1+d2的最小值是( 3 2 ).
2
y2 16x.
6. 若点M到点F(4,0)的距离比它到
直线l:x+5=0的距离少1,求点M的轨
迹方程.
yM
l
y2 16x或x2 8y.
y2 16x.
OF x
7.如图,一个动圆M与一个定圆C外切, 且与定直线l相切,则圆心M的轨迹是什 么?
M
l
C
以点C为焦点的抛物线.
例1 一种卫星接收天线的轴截面如图
所示,卫星波束呈近似平行状态射入轴
相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2.1曲线和方程
—— 2.1.1曲线和方程
1
? 主要内容:
? 曲线和方程的概念、意义及曲线和方程的两个基 本问题
? 重点和难点:
? 曲线和方程的概念

曲线和方程之间有 什么对应关系Байду номын сангаас?
2
1.研究直线和圆的基本方法是什么? 这种方法的思路是怎样的?
坐标法;借助坐标系,把点与坐标、曲线与方 程联系起来,再通过方程研究曲线的几何性质.
5
分析特例归纳定义2
y
以原点为圆心,5为半径的圆 曲线
O
x
到原点的距离等于5
条件
满足关系:
x2+y2=25
方程
(1)、如果M (x0 , y0 )是圆上的点,那么 M (x0 , y0 ) 一定是这个方程的解
(2)、如果M ( x0 , y0 )是方程 ( x ? a )2 ? ( y ? b)2 ? r 2 的解,那么以它为坐标
0x
(1) l 上点的坐标都是方程 x-y=0的解
(2)以方程 x-y=0 的解为坐标的点都
在 l上
4
直线l与方程y=x的关系:
(1)l上任意一点 M(x 0,y0)的坐标都是方程 y=x 的解; (2)以方程 y=x的解(x0,y0)为坐标的点都在 l上. 即:直线 l上的点与方程 y=x的解之间是 一一对应 的.
12
判断正误
已知坐标满足方程 F(x,y)=0 的点都在曲线 C上 (1)若点M(x,y) 的坐标是方程 F(x,y)=0 的解,则点 M在
曲线上。× × (2)曲线C上的点的坐标都满足方程 F(x,y)=0 。 × (3)凡是坐标不满足方程 F(x,y)=0 的点都不在曲线 C上。
(4)不在曲线 C上的点的坐标不一定不满足方程
? ? ? ? 可以变形为 (1 ? ) x2 ? (1 ? ) y 2 ? (6 ? 4 ) x ? 16 ? 5 ? 0
因为 ? ? ?1, 得
(x ?
3? 1?
2? ?
)
2
?
y2
?
9?2 ? 9? ? (1 ? ?)2
25

因为方程①中等号右端大于0,所以它是一个圆 的方程. 两圆交点的坐标满足两已知圆的方程,当然 也满足方程①,因此方程①表示的圆通过两圆的交点 .
2.直线的方程与方程的直线
(1)以一个方程的解为坐标的点都在这条直线上; (2)这条直线上所有点的坐标都是这个方程的解.
3
分析特例归纳定义1
求第一、三象限里两轴间夹角平分线的坐标满 足的关系
l ? ? 第一、三象限角平分线
点的横坐标与纵坐标相等 x=y(或x-y=0)
曲线
条件
方程
y l x-y=0 得出关系:
的点一定在圆上。
6
分析特例归纳定义
曲线的方程,方程的曲线
给定曲线 C与二元方程 F(x,y)=0,若满足 (1)曲线上的点坐标都是这个方程的解 (2)以这个方程的解为坐标的点都是曲线上的点 那么这个方程 F(x,y)=0叫做这条曲线 C的方程,
这条曲线 C叫做这个方程的曲线
y
F(x,y)=0
0
x
8
10
说明
1. 概念是判断曲线的方程与方程的曲线的依据, 在概念 中①②两个关系必须同时成立,缺一不 可.
即曲线上的点与方程的解是一一对应的 .
2. 如果曲线 C的方程是 F(x,y)=0, 则
M(x0,y0) ∈C
F(x 0,y0)=0.
? ? 曲线C用集合的特征判断性是质否描述法,可以
描述为 C ? M ( x,在y)曲F线( x上, y) ? 0
√ F(x,y)=0 。
14
学习例题巩固定义
判断下列结论的正误并说明理由
对(1)过点A(3,0)且垂直于x轴的直线为x=3 对(2)到两坐标轴距离乘积等于 1的点的轨迹方程为|xy|=1 错(3)已知定点A(-1,0),B(1,0)使∠AMB为指教的点M的轨迹方程 是x2+y2=1
例2 判断下列各方程是对应曲线的方程吗?若不是,请 说明理由。
? 求证:对任意不等于-1的实数 ,方程
? x2 ? y2 ? 6x ? 16 ? ( x2 ? y2 ? 4x ? 5) ? 0
是通过两个已知圆交点的圆的方程。
分析思路: (1)证明表示一个圆;(——复习学过的圆的表示形式) (2)证明此圆过两个圆的交点。
17
学习例题巩固定义
证明:方程
? x2 ? y2 ? 6x ? 16 ? (x2 ? y2 ? 4x ? 5) ? 0
的依据
11
明察秋毫
如果曲线 C上的点坐标 (x,y)都是方程 F(x,y)=0 的解,
那么(D )
A、以方程 F(x,y)=0 的解为坐标的点都在曲线 C上。 B、以方程 F(x,y)=0 的解为坐标的点,有些不在曲线上。 C、不在曲线 C上的点的坐标都不是方程 F(x,y)=0 的解。 D、坐标不满足 F(x,y)=0 的点不在曲线 C上。
(1)曲线:到两条坐标轴距离相等的点的轨迹;
× 方程: |x|-y=0.
(2)曲线:等腰三角形 ABC的底边BC的中线;
方程:x=0. × 15
横纵坐标相等 的点的轨迹
到两坐标轴距 离相等的点的 轨迹
第一、二象限 的角平分线
|y|=|x| y=|x| y=x
16
学习例题巩固定义
例3 已知两圆
C1 : x2 ? y2 ? 6x ? 16 ? 0, C2 : x2 ? y2 ? 4x ? 5 ? 0,
思考
(1)说明过A(2,0)平行于y轴的直线与方程︱x︱=2的关系
过点A(2,0) 平行于y轴的直线l的方程是︱x︱=2吗?为什么?
①、直线上的点的坐标都满足方程︱ x︱=2 ②、满足方程︱x︱=2的点不一定在直线上 结论:过A(2,0)平行于y轴的直线的方程不是︱x︱=2
y 到y轴距离等于2的点的轨迹方程是x=2 吗? (2)已知曲线C的方程为y=x2-2x+A4,问点A(3,1), B(2,4), C(1,3) 是否在曲线C上?如何判断0 ? 2 x
18
思考与讨论
上题中,若 ? ? 1 ,那么得到的方程还是圆吗?
若不是,这个方程表示什么图形,与两个已知圆有 什么关系?
19
? 曲线与方程的概念及其简单应用; ? 数形结合的思想方法; ? 由特殊到一般的归纳方法.
23
相关文档
最新文档