因式分解解二元一次方程

合集下载

二元一次方程解法大全

二元一次方程解法大全

二元一次方程解法大全1、直接开平方法:直接开平方法就是用直接开平方求解二元一次方程的方法。

用直接开平方法解形如(x-m)2=n(n>0)的方程,其解为x=土根号F n+m.例 1.解方程(1) (3x+1)2=7 (2) 9x2-24x+16=11分析:(1)此方程显然用直接开平方法好做,(2)方程左边是完全平方式(3x-4)2, 右边=11>0,所以此方程也可用直接开平方法解。

⑴解:(3x+1)2=7X・ *. (3x+1 )2=5•••3x+仁土 (注意不要丢解)/. x=.••原方程的解为x1=,x2=(2) 解:9x2-24x+16=11.•.(3x-4)2=11A3x-4=±/. x=原方程的解为x1=,x2=2. 配方法:用配方法解方程ax2+bx+c=0(aH0)先将常数c移到方程右边:ax2+bx=-c将二次项系数化为1: x2+x=-方程两边分别加上一次项系数的一半的平方:x2+x+()2=-+()2方程左边成为一个完全平方式:(x+)2=当b"2-4ac20 时,x+=±.••x=(这就是求根公式)例2.用配方法解方程3x"2-4x-2=0(注:X"2是X的平方)解:将常数项移到方程右边3x A2-4x=2将二次项系数化为1: x2-x=方程两边都加上一次项系数一半的平方:x2-x+()2=+()2配方:(x-)2=直接开平方得:x-=±/.x=•••原方程的解为x1=,x2=.3. 公式法:把一元二次方程化成一般形式,然后计算判别式△=b2-4ac的值,当b2-4ac 20 时,把各项系数a,b,c 的值代入求根公式x=[-b±(b A2-4ac)A(1 /2)]/(2a),(b24ac20) 就可得到方程的根。

例3.用公式法解方程2x2-8x=-5解:将方程化为一般形式:2x2-8x+5=0.°.a=2,b=-8,c=5b A2-4ac=(-8)2-4X2X5=64-40=24>0/.x=[(-b±(b A2-4ac)A(1/2)]/(2a)二原方程的解为x1=,x2=.4. 因式分解法:把方程变形为一边是零,耙另一边的二次三项式分解成两个一次因式的积的形式,让两个一次因式分别等于零,得到两个一元一次方程,解这两个一元一次方程所得到的根,就是原方程的两个根。

二元一次方程解法大全

二元一次方程解法大全

二元一次方程解法大全 小编寄语:同学们对于二元一次方程的解法了解多少呢,自己又掌握了几种?下面小编为大家精心整理了二元一次方程的解法,供大家参考。

1、直接开平方法:直接开平方法就是用直接开平方求解二元一次方程的方法。

用直接开平方法解形如(x-m)2=n(n0)的方程,其解为x=根号下n+m.例1.解方程〔1〕(3x+1)2=7〔2〕9x2-24x+16=11分析:〔1〕此方程显然用直接开平方法好做,〔2〕方程左边是完全平方式(3x-4)2,右边=110,所以此方程也可用直接开平方法解。

〔1〕解:(3x+1)2=7(3x+1)2=53x+1=(注意不要丢解)x=原方程的解为x1=,x2=〔2〕解:9x2-24x+16=11(3x-4)2=113x-4=x=原方程的解为x1=,x2=2.配方法:用配方法解方程ax2+bx+c=0(a0)先将常数c移到方程右边:ax2+bx=-c将二次项系数化为1:x2+x=-方程两边分别加上一次项系数的一半的平方:x2+x+()2=-+()2方程左边成为一个完全平方式:(x+)2=当b^2-4ac0时,x+=x=(这就是求根公式)例2.用配方法解方程3x^2-4x-2=0(注:X^2是X的平方〕解:将常数项移到方程右边3x^2-4x=2将二次项系数化为1:x2-x=方程两边都加上一次项系数一半的平方:x2-x+()2=+()2配方:(x-)2=直接开平方得:x-=x=原方程的解为x1=,x2=.3.公式法:把一元二次方程化成一般形式,然后计算判别式△=b2-4ac的值,当b2-4ac0时,把各项系数a,b,c的值代入求根公式x=[-b(b^2-4ac)^(1/2)]/(2a),(b^2-4ac0)就可得到方程的根。

例3.用公式法解方程2x2-8x=-5解:将方程化为一般形式:2x2-8x+5=0a=2,b=-8,c=5b^2-4ac=(-8)2-425=64-40=240x=[(-b(b^2-4ac)^(1/2)]/(2a)原方程的解为x1=,x2=.4.因式分解法:把方程变形为一边是零,把另一边的二次三项式分解成两个一次因式的积的形式,让两个一次因式分别等于零,得到两个一元一次方程,解这两个一元一次方程所得到的根,就是原方程的两个根。

二元一次方程的解法

二元一次方程的解法

(1)解:(3x+1)2=7×
∴(3x+1)2=5
∴3x+1=±(注意不要丢解)
∴x=
∴原方程的解为x1=,x2=
(2)解:9x2-24x+16=11
∴(3x-4)2=11
∴3x-4=±
∴x=
∴原方程的解为x1=,x2=
(x-5)(x+2)=0(方程左边分解因式)
∴x-5=0或x+2=0(转化成两个一元一次方程)
∴x1=5,x2=-2是原方程的解。
(2)解公因式法将方程左边分解因式)
∴x=0或2x+3=0(转化成两个一元一次方程)
例4.用因式分解法解下列方程:
(1)(x+3)(x-6)=-8(2)2x2+3x=0
(3)6x2+5x-50=0(选学)(4)x2-2(+)x+4=0(选学)
(1)解:(x+3)(x-6)=-8化简整理得
x2-3x-10=0(方程左边为二次三项式,右边为零)
解:将方程化为一般形式:2x2-8x+5=0
∴a=2,b=-8,c=5
b^2-4ac=(-8)2-4×2×5=64-40=24>0
∴x=[(-b±(b^2-4ac)^(1/2)]/(2a)
∴原方程的解为x1=,x2=.
4.因式分解法:把方程变形为一边是零,把另一边的二次三项式分解成两个一次因式的积的形式,让两个一次因式分别等于零,得到两个一元一次方程,解这两个一元一次方程所得到的根,就是原方程的两个根。这种解一元二次方程的方法叫做因式分解法。
2.配方法:用配方法解方程ax2+bx+c=0(a≠0)

方程与不等式的解法例题和知识点总结

方程与不等式的解法例题和知识点总结

方程与不等式的解法例题和知识点总结在数学的学习中,方程与不等式是非常重要的内容,它们在解决实际问题中有着广泛的应用。

下面我们将通过一些具体的例题来深入理解方程与不等式的解法,并对相关知识点进行总结。

一、方程的解法方程是含有未知数的等式,求解方程的目的就是找出未知数的值,使得等式成立。

1、一元一次方程形如 ax + b = 0(a ≠ 0)的方程叫做一元一次方程。

例:解方程 3x + 5 = 14解:首先,将常数项移到等号右边:3x = 14 5,即 3x = 9然后,将系数化为 1:x = 9 ÷ 3,解得 x = 3知识点总结:解一元一次方程的一般步骤为:去分母(若有)、去括号、移项、合并同类项、系数化为 1。

2、二元一次方程组由两个一次方程组成,并且含有两个未知数的方程组叫做二元一次方程组。

例:解方程组x + y = 5 ①2x y = 1 ②解:①+②得:3x = 6,解得 x = 2将 x = 2 代入①得:2 + y = 5,解得 y = 3所以方程组的解为 x = 2,y = 3知识点总结:解二元一次方程组的基本思想是消元,常用方法有代入消元法和加减消元法。

3、一元二次方程形如 ax²+ bx + c = 0(a ≠ 0)的方程叫做一元二次方程。

例:解方程 x² 4x + 3 = 0解:因式分解得:(x 1)(x 3) = 0所以 x 1 = 0 或 x 3 = 0解得 x₁= 1,x₂= 3知识点总结:一元二次方程的解法有直接开平方法、配方法、公式法和因式分解法。

求根公式为 x =b ± √(b² 4ac) /(2a)。

二、不等式的解法不等式是用不等号表示两个数或表达式之间关系的式子。

1、一元一次不等式形如 ax + b > 0 或 ax + b < 0(a ≠ 0)的不等式叫做一元一次不等式。

例:解不等式 2x 1 < 5解:移项得:2x < 5 + 1,即 2x < 6系数化为 1 得:x < 3知识点总结:解一元一次不等式的步骤与解一元一次方程类似,但要注意不等式两边乘或除以同一个负数时,不等号的方向要改变。

二元一次方程解法大全

二元一次方程解法大全

二元一次方程解法大全小编寄语:同学们对于二元一次方程的解法了解多少呢,自己又掌握了几种?下面小编为大家精心整理了二元一次方程的解法,供大家参考。

1、直接开平方法:直接开平方法就是用直接开平方求解二元一次方程的方法。

用直接开平方法解形如(x-m)2=n(n0)的方程,其解为x=根号下n+m. 例1.解方程〔1〕(3x+1)2=7〔2〕9x2-24x+16=11分析:〔1〕此方程显然用直接开平方法好做,〔2〕方程左边是完全平方式(3x-4)2,右边=110,所以此方程也可用直接开平方法解。

〔1〕解:(3x+1)2=7(3x+1)2=53x+1=(注意不要丢解)x=原方程的解为x1=,x2=〔2〕解:9x2-24x+16=11(3x-4)2=113x-4=x=原方程的解为x1=,x2=2.配方法:用配方法解方程ax2+bx+c=0(a0)先将常数c移到方程右边:ax2+bx=-c将二次项系数化为1:x2+x=-方程两边分别加上一次项系数的一半的平方:x2+x+()2=-+()2 方程左边成为一个完全平方式:(x+)2=当b^2-4ac0时,x+=x=(这就是求根公式)例2.用配方法解方程3x^2-4x-2=0(注:X^2是X的平方〕解:将常数项移到方程右边3x^2-4x=2将二次项系数化为1:x2-x=方程两边都加上一次项系数一半的平方:x2-x+()2=+()2配方:(x-)2=直接开平方得:x-=x=原方程的解为x1=,x2=.3.公式法:把一元二次方程化成一般形式,然后计算判别式△=b2-4ac的值,当b2-4ac0时,把各项系数a,b,c的值代入求根公式x=[-b(b^2-4ac)^(1/2)]/(2a),(b^2-4ac0)就可得到方程的根。

例3.用公式法解方程2x2-8x=-5解:将方程化为一般形式:2x2-8x+5=0a=2,b=-8,c=5b^2-4ac=(-8)2-425=64-40=240x=[(-b(b^2-4ac)^(1/2)]/(2a)原方程的解为x1=,x2=.4.因式分解法:把方程变形为一边是零,把另一边的二次三项式分解成两个一次因式的积的形式,让两个一次因式分别等于零,得到两个一元一次方程,解这两个一元一次方程所得到的根,就是原方程的两个根。

解方程的方法2篇

解方程的方法2篇

解方程的方法2篇第1篇:解方程的常用方法解方程是我们数学学习中必备的一项技能,在解决实际问题中也有广泛的应用。

下面介绍一些常用的解方程的方法。

一、平移法平移法是将方程的两边同时加上或减去同一个数,使方程式变形。

这个数可以是常数,也可以是未知数。

例如:1、2x - 5 = 9,将5加到两边得2x = 14,再除以2得x = 7。

2、3(x + 2) = 15,先将括号里的式子乘以3,得到3x + 6 = 15,再减去6,得到3x = 9,最后除以3得x = 3。

二、因式分解法因式分解法是利用因式分解的原理将方程式分解成若干个乘积的形式,使得每个乘积均为零。

例如:1、x^2 - 4x = 0,先将方程式两侧约分得到x(x - 4) = 0,即x = 0或x - 4 = 0,最后解得x = 0或x = 4。

2、4x^2 - 25 = 0,将方程式两侧约分得到(2x + 5)(2x - 5) = 0,即2x + 5 = 0或2x - 5 = 0,最后解得x = -2.5或x = 2.5。

三、代入法代入法是将一个未知数用另一个已知量表示,代入原方程中,使得原方程只有一个未知数,然后求解。

例如:1、设y = 2x + 1,代入方程式3y - 2x - 4 = 0,得到3(2x + 1) - 2x - 4 = 0,即6x - 1 = 0,解得x = 1/6。

2、设y = 3x + 2,代入方程式4x + 3y - 5 = 0,得到4x + 3(3x + 2) - 5 = 0,即13x + 1 = 0,解得x = -1/13。

四、消元法消元法是将方程式中含有某个未知数的一项,用另一个方程式中相同未知数的系数乘以另一个未知数的值替换掉。

例如:1、方程组{2x + 3y = 7, x - y = 1},将第二个式子变形为x = y + 1,代入第一个式子得到2(y + 1) + 3y = 7,即5y + 2 = 7,解得y = 1,再代入x = y + 1,解得x = 2。

初一数学练习题因式分解二元一次方程

初一数学练习题因式分解二元一次方程

初一数学练习题因式分解二元一次方程文档编制序号:[KKIDT-LLE0828-LLETD298-POI08]练 习1、分解因式(1) bc ac ab a -+-2 (2) 1+--y x xy (3) y y x x 3922--- (4) yz z y x 2222---2、分解因式1) 3223y xy y x x --+ 2) b a ax bx bx ax -+-+-22 3) 181696222-+-++a a y xy x 4) a b b ab a 4912622-++- 5) 92234-+-a a a 6) y b x b y a x a 222244+-- 7) 222y yz xz xy x ++-- 8) 122222++-+-ab b b a a 9) )1)(1()2(+---m m y y 10) )2())((a b b c a c a -+-+3、分解因式 1) 24142++x x 2) 36152+-a a 3) 542-+x x 4) 22-+x x 5) 1522--y y 6) 24102--x x4、分解因式:1) 6752-+x x 2) 2732+-x x 3) 317102+-x x 4) 101162++-y y 5、应用因式分解计算 (1)2998998016++ (2)9879879879871232644565251368136813681368⨯+⨯+⨯+⨯ 6、已知2(1)()1a a a b ---=-,求222a b ab +-的值。

思考题:1、设n 为整数,用因式分解说明2(21)25n +-能被4整除。

2、在六位数abcdef 中,a=d, b=e, c=f, 求证这个六位数必能被7、11、13整除。

1、在方程组⎩⎨⎧+==-1312z y y x 、⎩⎨⎧=-=132x y x 、⎩⎨⎧=-=+530y x y x 、⎩⎨⎧=+=321y x xy 、 ⎪⎩⎪⎨⎧=+=+1111y x y x 、⎩⎨⎧==11y x 中,是二元一次方程组的有( )A 、2个B 、3个C 、4个D 、5个 2、如果x y y x b a b a 2427773-+-和是同类项,则x 、y 的值是( )A 、x =-3,y =2B 、x =2,y =-3C 、x =-2,y =3D 、x =3,y =-23、已知⎩⎨⎧-=-=23y x 是方程组⎩⎨⎧=-=+21by cx cy ax 的解,则a 、b 间的关系是( )A 、194=-a bB 、123=+b aC 、194-=-a bD 、149=+b a4、若二元一次方程73=-y x ,132=+y x ,9-=kx y 有公共解,则k 的取值为( )A 、3B 、-3C 、-4D 、4 5、若二元一次方程123=-y x 有正整数解,则x 的取值应为( )A 、正奇数B 、正偶数C 、正奇数或正偶数D 、06、⎩⎨⎧=-=+1392x y y x 12、⎪⎩⎪⎨⎧=---=+1213343144y x y x7、一张方桌由1个桌面,4条腿组成.如果1立方米木料可以做方桌的桌面5个或做桌腿30条,现在有25立方米木料,那么用多少木料做桌面,多少木料做桌腿,做出的桌面和桌腿恰好能配成方桌能配成多少张方桌8、一组同学去种树,如果每人种4棵,还剩下3棵树苗:如果每人种5棵,则少5棵,求人数与树苗数。

二元一次方程解法大全.

二元一次方程解法大全.

二元一次方程解法大全1、直接开平方法:直接开平方法就是用直接开平方求解二元一次方程的方法。

用直接开平方法解形如(x-m)2=n(n≥0)的方程,其解为x=±根号下n+m.例1.解方程(1)(3x+1)2=7(2)9x2-24x+16=11分析:(1)此方程显然用直接开平方法好做,(2)方程左边是完全平方式(3x-4)2,右边=11>0,所以此方程也可用直接开平方法解。

(1)解:(3x+1)2=7×∴(3x+1)2=5∴3x+1=±(注意不要丢解)∴x=∴原方程的解为x1=,x2=(2)解:9x2-24x+16=11∴(3x-4)2=11∴3x-4=±∴x=2.配方法:用配方法解方程ax2+bx+c=0(a≠0)先将常数c移到方程右边:ax2+bx=-c将二次项系数化为1:x2+x=-方程两边分别加上一次项系数的一半的平方:x2+x+()2=-+()2 方程左边成为一个完全平方式:(x+)2=当b^2-4ac≥0时,x+=±∴x=(这就是求根公式)例2.用配方法解方程3x^2-4x-2=0(注:X^2是X的平方)解:将常数项移到方程右边3x^2-4x=2将二次项系数化为1:x2-x=方程两边都加上一次项系数一半的平方:x2-x+()2=+()2配方:(x-)2=直接开平方得:x-=±∴x=3.公式法:把一元二次方程化成一般形式,然后计算判别式△=b2-4ac的值,当b2-4ac ≥0时,把各项系数a,b,c的值代入求根公式x=[-b±(b^2-4ac)^(1/2)]/(2a),(b^2-4ac≥0)就可得到方程的根。

例3.用公式法解方程2x2-8x=-5解:将方程化为一般形式:2x2-8x+5=0∴a=2,b=-8,c=5b^2-4ac=(-8)2-4×2×5=64-40=24>0∴x=[(-b±(b^2-4ac)^(1/2)]/(2a)∴原方程的解为x1=,x2=.4.因式分解法:把方程变形为一边是零,把另一边的二次三项式分解成两个一次因式的积的形式,让两个一次因式分别等于零,得到两个一元一次方程,解这两个一元一次方程所得到的根,就是原方程的两个根。

二元一次方程解法大全说课讲解

二元一次方程解法大全说课讲解

二元一次方程解法大全1、直接开平方法:直接开平方法就是用直接开平方求解二元一次方程的方法。

用直接开平方法解形如(x-m)2=n(n≥0)的方程,其解为x=±根号下n+m.例1.解方程(1)(3x+1)2=7(2)9x2-24x+16=11分析:(1)此方程显然用直接开平方法好做,(2)方程左边是完全平方式(3x-4)2,右边=11>0,所以此方程也可用直接开平方法解。

(1)解:(3x+1)2=7×∴(3x+1)2=5∴3x+1=±(注意不要丢解)∴x=∴原方程的解为x1=,x2=(2)解:9x2-24x+16=11∴(3x-4)2=11∴3x-4=±∴x=∴原方程的解为x1=,x2=2.配方法:用配方法解方程ax2+bx+c=0(a≠0)先将常数c移到方程右边:ax2+bx=-c将二次项系数化为1:x2+x=-方程两边分别加上一次项系数的一半的平方:x2+x+()2=-+()2方程左边成为一个完全平方式:(x+)2=当b^2-4ac≥0时,x+=±∴x=(这就是求根公式)例2.用配方法解方程3x^2-4x-2=0(注:X^2是X的平方)解:将常数项移到方程右边3x^2-4x=2将二次项系数化为1:x2-x=方程两边都加上一次项系数一半的平方:x2-x+()2=+()2配方:(x-)2=直接开平方得:x-=±∴x=∴原方程的解为x1=,x2=.3.公式法:把一元二次方程化成一般形式,然后计算判别式△=b2-4ac的值,当b2-4ac ≥0时,把各项系数a,b,c的值代入求根公式x=[-b±(b^2-4ac)^(1/2)]/(2a),(b^2-4ac≥0)就可得到方程的根。

例3.用公式法解方程2x2-8x=-5解:将方程化为一般形式:2x2-8x+5=0∴a=2,b=-8,c=5b^2-4ac=(-8)2-4×2×5=64-40=24>0∴x=[(-b±(b^2-4ac)^(1/2)]/(2a)∴原方程的解为x1=,x2=.4.因式分解法:把方程变形为一边是零,把另一边的二次三项式分解成两个一次因式的积的形式,让两个一次因式分别等于零,得到两个一元一次方程,解这两个一元一次方程所得到的根,就是原方程的两个根。

解方程的绝妙方法与实战技巧

解方程的绝妙方法与实战技巧

解方程的绝妙方法与实战技巧解方程是数学领域中的一项基础且重要的技能。

无论是在学校里的数学课程还是日常生活中的实际问题中,解方程都有着广泛的应用。

本文将介绍一些解方程的绝妙方法和实战技巧,帮助读者更好地应对解方程的挑战。

I. 一元一次方程的解法一元一次方程是最基础的方程类型,形式为ax + b = c,其中a、b、c为已知常数,x为未知数。

解这种方程只需要简单的代数运算即可。

例如,我们要解方程2x + 3 = 9。

我们可以通过反向运算来消去已知的常数。

首先,我们将等式两边都减去3,得到2x = 6。

然后,我们将等式两边都除以2,得到x = 3。

因此,方程的解为x = 3。

在解一元一次方程时,可以遵循以下几个绝妙方法和实战技巧:1. 代入法:将方程中的已知数值代入方程中,求解未知数。

2. 移项法:通过改变等式两边的项的位置,使方程变为x = 常数的形式,从而求得x的值。

3. 消元法:通过合并方程两边的同类项,逐步消除未知数前面的系数,最终得到x的值。

II. 二元一次方程组的解法二元一次方程组是包含两个未知数及其系数的方程组。

解二元一次方程组可以使用多种方法,如代入法、消元法和Cramer规则等。

这里我们将重点介绍代入法和消元法。

1. 代入法:选取其中一个方程,通过将另一个未知数的表达式代入该方程,得到一个只包含一个未知数的方程。

然后,可以使用一元一次方程的解法求解该方程,进而求得另一个未知数的值。

2. 消元法:通过相加或相减两个方程,可以消除其中一个未知数的系数,从而得到一个只包含另一个未知数的方程。

之后,使用一元一次方程解法求解该方程,再代回原方程,可以求得已消元的未知数的值。

III. 二次方程的解法二次方程是形如ax^2 + bx + c = 0的方程,其中a、b、c为已知常数,x为未知数。

解二次方程的方法有多种,包括配方法、公式法和因式分解法等。

以下是其中两种常用的解法:1. 配方法:通过变换方程形式,将二次方程转化为完全平方形式,从而容易求得x的值。

二元一次方程解法大全

二元一次方程解法大全

二元一次方程解法大全1、直接开平方法:直接开平方法就是用直接开平方求解二元一次方程的方法。

用直接开平方法解形如(x —m)2=n(n≥0)的方程,其解为x=±根号下n+m.例1.解方程(1)(3x+1)2=7(2)9x2-24x+16=11分析:(1)此方程显然用直接开平方法好做,(2)方程左边是完全平方式(3x—4)2,右边=11>0,所以此方程也可用直接开平方法解。

(1)解:(3x+1)2=7×∴(3x+1)2=5∴3x+1=±(注意不要丢解)∴x=∴原方程的解为x1=,x2=(2)解:9x2-24x+16=11∴(3x-4)2=11∴3x—4=±∴x=∴原方程的解为x1=,x2=2.配方法:用配方法解方程ax2+bx+c=0(a≠0)先将常数c移到方程右边:ax2+bx=—c将二次项系数化为1:x2+x=—方程两边分别加上一次项系数的一半的平方:x2+x+()2=—+()2方程左边成为一个完全平方式:(x+)2=当b^2-4ac≥0时,x+=±∴x=(这就是求根公式)例2.用配方法解方程3x^2—4x—2=0(注:X^2是X的平方)解:将常数项移到方程右边3x^2—4x=2将二次项系数化为1:x2—x=方程两边都加上一次项系数一半的平方:x2—x+()2=+()2配方:(x-)2=直接开平方得:x—=±∴x=∴原方程的解为x1=,x2=。

3.公式法:把一元二次方程化成一般形式,然后计算判别式△=b2—4ac的值,当b2—4ac ≥0时,把各项系数a,b,c的值代入求根公式x=[-b±(b^2-4ac)^(1/2)]/(2a),(b^2—4ac≥0)就可得到方程的根。

例3.用公式法解方程2x2—8x=-5解:将方程化为一般形式:2x2-8x+5=0∴a=2,b=—8,c=5b^2—4ac=(-8)2—4×2×5=64-40=24>0∴x=[(—b±(b^2-4ac)^(1/2)]/(2a)∴原方程的解为x1=,x2=。

初二数学知识点:二元一次方程解法大全

初二数学知识点:二元一次方程解法大全

初二数学知识点:二元一次方程解法大全成功不是将来才有的,而是从决定去做的那一刻起,持续累积而成。

小编给大家准备了初二数学知识点:二元一次方程,欢迎参考!1、直接开平方法:直接开平方法就是用直接开平方求解二元一次方程的方法。

用直接开平方法解形如(x-m)2=n(n0)的方程,其解为x=根号下n+m.例1.解方程(1)(3x+1)2=7(2)9x2-24x+16=11分析:(1)此方程显然用直接开平方法好做,(2)方程左边是完全平方式(3x-4)2,右边=110,所以此方程也可用直接开平方法解。

(1)解:(3x+1)2=7(3x+1)2=53x+1=(注意不要丢解)x=原方程的解为x1=,x2=(2)解:9x2-24x+16=11(3x-4)2=113x-4=x=原方程的解为x1=,x2=2.配方法:用配方法解方程ax2+bx+c=0(a0)先将常数c移到方程右边:ax2+bx=-c将二次项系数化为1:x2+x=-方程两边分别加上一次项系数的一半的平方:x2+x+()2=-+()2 方程左边成为一个完全平方式:(x+)2=当b^2-4ac0时,x+=x=(这就是求根公式)例2.用配方法解方程3x^2-4x-2=0(注:X^2是X的平方) 解:将常数项移到方程右边3x^2-4x=2将二次项系数化为1:x2-x=方程两边都加上一次项系数一半的平方:x2-x+()2=+()2配方:(x-)2=直接开平方得:x-=x=原方程的解为x1=,x2=.3.公式法:把一元二次方程化成一般形式,然后计算判别式△=b2-4ac的值,当b2-4ac0时,把各项系数a,b,c的值代入求根公式x=[-b(b^2-4ac)^(1/2)]/(2a),(b^2-4ac0)就可得到方程的根。

例3.用公式法解方程2x2-8x=-5解:将方程化为一般形式:2x2-8x+5=0a=2,b=-8,c=5b^2-4ac=(-8)2-425=64-40=240x=[(-b(b^2-4ac)^(1/2)]/(2a)原方程的解为x1=,x2=.4.因式分解法:把方程变形为一边是零,把另一边的二次三项式分解成两个一次因式的积的形式,让两个一次因式分别等于零,得到两个一元一次方程,解这两个一元一次方程所得到的根,就是原方程的两个根。

中考数学知识讲解:二元一次方程的概念及解法

中考数学知识讲解:二元一次方程的概念及解法

中考数学知识讲解:二元一次方程的概念及解法二元一次方程有关概念(1)概念:含有两个未知数,并且未知数的项的次数都是1,这样的方程叫做二元一次程.(2)一般形式:ax+by=c(a≠0,b≠0).(3)使二元一次方程两边的值相等的两个未知数的值,叫做二元一次方程的解.(4)解的特点:一般地,二元一次方程有无数个解.二元一次方程的解法1、直接开平方法:直接开平方法就是用直接开平方求解二元一次方程的方法。

用直接开平方法解形如(x-m)2=n(n≥0)的方程,其解为x=±根号下n+m.例1.解方程(1)(3x+1)2=7(2)9x2-24x+16=11分析:(1)此方程显然用直接开平方法好做,(2)方程左边是完全平方式(3x-4)2,右边=11>0,所以此方程也可用直接开平方法解。

(1)解:(3x+1)2=7×∴(3x+1)2=5∴3x+1=±(注意不要丢解)∴x=∴原方程的解为x1=,x2=(2)解:9x2-24x+16=11∴(3x-4)2=11∴3x-4=±∴x=∴原方程的解为x1=,x2=2.配方法:用配方法解方程ax2+bx+c=0(a≠0)先将常数c移到方程右边:ax2+bx=-c将二次项系数化为1:x2+x=-方程两边分别加上一次项系数的一半的平方:x2+x+()2=-+()2方程左边成为一个完全平方式:(x+)2=当b^2-4ac≥0时,x+=±∴x=(这就是求根公式) 例2.用配方法解方程3x^2-4x-2=0(注:X^2是X的平方)解:将常数项移到方程右边3x^2-4x=2将二次项系数化为1:x2-x=方程两边都加上一次项系数一半的平方:x2-x+()2=+()2配方:(x-)2=直接开平方得:x-=±∴x=∴原方程的解为x1=,x2=.3.公式法:把一元二次方程化成一般形式,然后计算判别式△=b2-4ac的值,当b2-4ac≥0时,把各项系数a,b,c的值代入求根公式x=[-b±(b^2-4ac)^(1/2)]/(2a),(b^2-4ac≥0)就可得到方程的根。

初二数学知识点:二元一次方程解法大全

初二数学知识点:二元一次方程解法大全

初二数学知识点:二元一次方程解法大全成功不是将来才有的,而是从决定去做的那一刻起,持续累积而成。

小编给大家准备了初二数学知识点:二元一次方程,欢迎参考!1、直接开平方法:直接开平方法就是用直接开平方求解二元一次方程的方法。

用直接开平方法解形如(x-m)2=n(n0)的方程,其解为x=根号下n+m. 例1.解方程(1)(3x+1)2=7(2)9x2-24x+16=11分析:(1)此方程显然用直接开平方法好做,(2)方程左边是完全平方式(3x-4)2,右边=110,所以此方程也可用直接开平方法解。

(1)解:(3x+1)2=7(3x+1)2=53x+1=(注意不要丢解)x=原方程的解为x1=,x2=(2)解:9x2-24x+16=11(3x-4)2=113x-4=x=原方程的解为x1=,x2=2.配方法:用配方法解方程ax2+bx+c=0(a0)先将常数c移到方程右边:ax2+bx=-c将二次项系数化为1:x2+x=-方程两边分别加上一次项系数的一半的平方:x2+x+()2=-+()2 方程左边成为一个完全平方式:(x+)2=当b^2-4ac0时,x+=x=(这就是求根公式)例2.用配方法解方程3x^2-4x-2=0(注:X^2是X的平方)解:将常数项移到方程右边3x^2-4x=2将二次项系数化为1:x2-x=方程两边都加上一次项系数一半的平方:x2-x+()2=+()2配方:(x-)2=直接开平方得:x-=x=原方程的解为x1=,x2=.3.公式法:把一元二次方程化成一般形式,然后计算判别式△=b2-4ac的值,当b2-4ac0时,把各项系数a,b,c的值代入求根公式x=[-b(b^2-4ac)^(1/2)]/(2a),(b^2-4ac0)就可得到方程的根。

例3.用公式法解方程2x2-8x=-5解:将方程化为一般形式:2x2-8x+5=0a=2,b=-8,c=5b^2-4ac=(-8)2-425=64-40=240x=[(-b(b^2-4ac)^(1/2)]/(2a)原方程的解为x1=,x2=.4.因式分解法:把方程变形为一边是零,把另一边的二次三项式分解成两个一次因式的积的形式,让两个一次因式分别等于零,得到两个一元一次方程,解这两个一元一次方程所得到的根,就是原方程的两个根。

二元一次方程解法大全

二元一次方程解法大全

二元一次方程解法大全1、直接开平方法:直接开平方法就是用直接开平方求解二元一次方程的方法。

用直接开平方法解形如(x-m)2=n(n≥0)的方程,其解为x=±根号下n+m.例1.解方程(1)(3x+1)2=7(2)9x2-24x+16=11分析:(1)此方程显然用直接开平方法好做,(2)方程左边是完全平方式(3x-4)2,右边=11>0,所以此方程也可用直接开平方法解。

(1)解:(3x+1)2=7×∴(3x+1)2=5∴3x+1=±(注意不要丢解)∴x=∴原方程的解为x1=,x2=(2)解:9x2-24x+16=11∴(3x-4)2=11∴3x-4=±∴x=∴原方程的解为x1=,x2=2.配方法:用配方法解方程ax2+bx+c=0(a≠0)先将常数c移到方程右边:ax2+bx=-c将二次项系数化为1:x2+x=-方程两边分别加上一次项系数的一半的平方:x2+x+()2=-+()2方程左边成为一个完全平方式:(x+)2=当b^2-4ac≥0时,x+=±∴x=(这就是求根公式)例2.用配方法解方程3x^2-4x-2=0(注:X^2是X的平方)解:将常数项移到方程右边3x^2-4x=2将二次项系数化为1:x2-x=方程两边都加上一次项系数一半的平方:x2-x+()2=+()2配方:(x-)2=直接开平方得:x-=±∴x=∴原方程的解为x1=,x2=.3.公式法:把一元二次方程化成一般形式,然后计算判别式△=b2-4ac的值,当b2-4ac ≥0时,把各项系数a,b,c的值代入求根公式x=[-b±(b^2-4ac)^(1/2)]/(2a),(b^2-4ac≥0)就可得到方程的根。

例3.用公式法解方程2x2-8x=-5解:将方程化为一般形式:2x2-8x+5=0∴a=2,b=-8,c=5b^2-4ac=(-8)2-4×2×5=64-40=24>0∴x=[(-b±(b^2-4ac)^(1/2)]/(2a)∴原方程的解为x1=,x2=.4.因式分解法:把方程变形为一边是零,把另一边的二次三项式分解成两个一次因式的积的形式,让两个一次因式分别等于零,得到两个一元一次方程,解这两个一元一次方程所得到的根,就是原方程的两个根。

十字相乘法

十字相乘法
我思
我进步
因式分解法解二元一次方程的具体方法有那些? (1)提取公因式: 3x² =4x (2)利用平方差公式: x² -7=0
(3)十字相乘法: 1 x2+(a+b)x+ab= (x+a)(x+b).
a b
1
二.十字相乘法解方程(1)
解方程:x² +3x-18=0
x 6
x
-3
解:方程可化为 (x+6)(x-3)=0 x1 6, x2 3
-5x+3x=-2x
解方程:x² -7x+10=0
解:
(x-5)(x-2)=0
x1 5, x2 2
x x
-5 -2
-5x+(-2x)=-7x
练习:用因式分解法解二元一次方程
x 6x 8 0
2
x 2x 4 0 解:
x 2 0 x 4 0
x1 2, x2 4
(1).(把二次项和常数项)因式分解竖直写; x² =x· x -18=6×(-3) (2).十字相乘相加验中项; -3x+6x=3x (3).横向写出两因式; (x+6)(x-3)=0
解方程:x² -2x-15=0
解:方程可化为(x+3)(x-5)=0
x
x
3 -5
x1 3 , x 2 5
练习:用因式分解法解二元一次方程
x² -5x+6=0
解: x 2x 3 0
x 2 0, x- 3 0
x1 2, x2 3
练习:用因式分解法解二元一次方程
x² +x-20=0
解:
x 5x 4 0
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

5
x2 x解:方程的两边同时 Nhomakorabea以x,得
x 1.
原方程的解为x 1.
这样解是否正确呢?
方程的两边同时除以同一个 不等于零的数,所得的方程与原 方程 同解。
x2 x
解:移项,得
x2 x 0,
x(x 1) 0
x 0,或x 1 0
原方程的解为: x1 0, x2 1. 注:如果一元二次方程有实数根, 那么一定有两个实数根.
解:移项,得
3x(x 2) 5(x 2) 0
(x 2)(3x 5) 0
x+2=0或3x-5=0
∴ x1=-2 , x2=
5 3
2、(3x+1)2-5=0 解:原方程可变形为
(3x+1+ 5)(3x+1- 5)=0
3x+1+ 5=0或3x+1- 5=0
∴ x1=

3
5 1
, x2= 3
x1
11, 2
x2
11. 2
5 3x2x 1 4x 2
解:化为一般式为
6x2 - x -2 = 0.
6 x 42 5 2x2
解:变形有 ( x -4 ) 2 - ( 5 - 2x )2=0.
因式分解,得
( x - 4 - 5 + 2x )( x - 4 + 5 -2x ) = 0.
解:设小圆形场地的半径为r 根据题意 ( r + 5 )2×π=2r2π. 因式分解,得
r 5 2r r 5 2r 0.
于是得 r 2r 5 0或r 2r 5 0.
r1
5 2
1
,
r2
5 1 2
(舍去).
答:小圆形场地的半径是 5 m. 2 1
( 3x - 9 )( 1 - x ) = 0.
有 3x - 9 = 0 或 1 - x = 0, x1 = 3 , x2 = 1.
右化零 两因式
简记歌诀: 左分解 各求解
例2、解下列方程
(1)3x(x 2) 5(x 2) (3)(3x 1)2 5 0
(1)3x(x 2) 5(x 2)
快速回答:下列各方程的根分 别是多少?
(1)x(x 2) 0 x1 0, x2 2
(2)( y 2)( y 3) 0 y1 2, y2 3
(3)(3x
2)(2x
1)
0
x1
2 3
,
x2
1 2
9x2-25=0
解:原方程可变形为
(3x+5)(3x-5)=0
3X+5=0 或 3x-5=0
3 3x2 6x 3, 4 4x2 121 0
解:化为一般式为
x2-2x+1 = 0.
解:因式分解,得
( 2x + 11 )( 2x- 11 ) = 0.
因式分解,得
( x-1 )( x-1 ) = 0.
有 2x + 11 = 0 或 2x - 11= 0,
有 x - 1 = 0 或 x - 1 = 0, x1=x2=1.
x1
5 3 , x2
5. 3
练习
(1) x2+x=0 解: 因式分解,得
x ( x+1 ) = 0. 得 x = 0 或 x + 1 =0, x1=0 , x2=-1.
2 x2 2 3x 0
解: 因式分解,得
x x 2 3 0.
得 x 0 或 x 2 3 0,
x1 0, x2 2 3.
复习引入:
1、已学过的一元二次方程解法有什么?
直接开平方法 配方法 公式法
2如果AB =0,那么回又怎样的等式 成立
AB=0A=0或B=0
以上解方程 x10 4.9x 0的方法是如何
使二次方程降为一次的?
x10 4.9x 0 ①
x 0 或 1 0 4.9x 0, ②
可以发现,上述解法中,由①到②的过程,不是用开方降 次,而是先因式分解使方程化为两个一次式的乘积等于0 的形式,再使这两个一次式分别等于0,从而实现降次, 这种解法叫做因式分解法.
下面的解法正确吗?如果不正确, 错误在哪?
解方程 (x 5)(x 2) 18
解: 原方程化为 (x 5)(x 2) 3 6
由x 5 3,得x 8;
( )
由x 2 6,得x 4.
原方程的解为x1 8或x2 4.
2.把小圆形场地的半径增加5m得到大圆形场地,场地面 积增加了一倍,求小圆形场地的半径.
相关文档
最新文档