概率论与数理统计复习资料
概率论与数理统计考研复习资料
概率论与数理统计复习第一章 概率论的基本概念一.基本概念随机试验E:(1)可以在相同的条件下重复地进行;(2)每次试验的可能结果不止一个,并且能事先明确试验的所有可能结果;(3)进行一次试验之前不能确定哪一个结果会出现.样本空间S: E 的所有可能结果组成的集合. 样本点(基本事件):E 的每个结果. 随机事件(事件):样本空间S 的子集.必然事件(S):每次试验中一定发生的事件. 不可能事件(Φ):每次试验中一定不会发生的事件. 二. 事件间的关系和运算1.A ⊂B(事件B 包含事件A )事件A 发生必然导致事件B 发生.2.A ∪B(和事件)事件A 与B 至少有一个发生.3. A ∩B=AB(积事件)事件A 与B 同时发生.4. A -B(差事件)事件A 发生而B 不发生.5. AB=Φ (A 与B 互不相容或互斥)事件A 与B 不能同时发生.6. AB=Φ且A ∪B=S (A 与B 互为逆事件或对立事件)表示一次试验中A 与B 必有一个且仅有一个发生. B=A, A=B . 运算规则 交换律 结合律 分配律 德•摩根律B A B A = B A B A =三. 概率的定义与性质1.定义 对于E 的每一事件A 赋予一个实数,记为P(A),称为事件A 的概率.(1)非负性 P(A)≥0 ; (2)归一性或规范性 P(S)=1 ;(3)可列可加性 对于两两互不相容的事件A 1,A 2,…(A i A j =φ, i ≠j, i,j=1,2,…),P(A 1∪A 2∪…)=P( A 1)+P(A 2)+…2.性质(1) P(Φ) = 0 , 注意: A 为不可能事件 P(A)=0 .(2)有限可加性 对于n 个两两互不相容的事件A 1,A 2,…,A n ,P(A 1∪A 2∪…∪A n )=P(A 1)+P(A 2)+…+P(A n ) (有限可加性与可列可加性合称加法定理) (3)若A ⊂B, 则P(A)≤P(B), P(B -A)=P(B)-P(A) .(4)对于任一事件A, P(A)≤1, P(A)=1-P(A) .(5)广义加法定理 对于任意二事件A,B ,P(A ∪B)=P(A)+P(B)-P(AB) . 对于任意n 个事件A 1,A 2,…,A n()()()()+∑+∑-∑=≤<<≤≤<≤=nk j i k j i nj i j i ni i n A A A P A A P A P A A A P 11121…+(-1)n-1P(A 1A 2…A n )四.等可能(古典)概型1.定义 如果试验E 满足:(1)样本空间的元素只有有限个,即S={e 1,e 2,…,e n };(2)每一个基本事件的概率相等,即P(e 1)=P(e 2)=…= P(e n ).则称试验E 所对应的概率模型为等可能(古典)概型.2.计算公式 P(A)=k / n 其中k 是A 中包含的基本事件数, n 是S 中包含的基本事件总数. 五.条件概率1.定义 事件A 发生的条件下事件B 发生的条件概率P(B|A)=P(AB) / P(A) ( P(A)>0).2.乘法定理 P(AB)=P(A) P (B|A) (P(A)>0); P(AB)=P(B) P (A|B) (P(B)>0).P(A 1A 2…A n )=P(A 1)P(A 2|A 1)P(A 3|A 1A 2)…P(A n |A 1A 2…A n-1) (n ≥2, P(A 1A 2…A n-1) > 0) 3. B 1,B 2,…,B n 是样本空间S 的一个划分(B i B j =φ,i ≠j,i,j=1,2,…,n, B 1∪B 2∪…∪B n =S) ,则 当P(B i )>0时,有全概率公式 P(A)=()()i ni i B A P B P∑=1当P(A)>0, P(B i )>0时,有贝叶斯公式P (B i |A)=()()()()()()∑==ni i i i i i B A P B P B A P B P A P AB P 1. 六.事件的独立性1.两个事件A,B,满足P(AB) = P(A) P(B)时,称A,B 为相互独立的事件.(1)两个事件A,B 相互独立⇔ P(B)= P (B|A) .(2)若A 与B ,A 与B ,A 与B, ,A 与B 中有一对相互独立,则另外三对也相互独立.2.三个事件A,B,C 满足P(AB) =P(A) P(B), P(AC)= P(A) P(C), P(BC)= P(B) P(C),称A,B,C 三事件两两相互独立. 若再满足P(ABC) =P(A) P(B) P(C),则称A,B,C 三事件相互独立.3.n 个事件A 1,A 2,…,A n ,如果对任意k (1<k ≤n),任意1≤i 1<i 2<…<i k ≤n.有()()()()kkii i i i i A P A P A P A A A P 2121=,则称这n 个事件A 1,A 2,…,A n相互独立.第二章 随机变量及其概率分布一.随机变量及其分布函数1.在随机试验E 的样本空间S={e}上定义的单值实值函数X=X (e)称为随机变量.2.随机变量X 的分布函数F(x)=P{X ≤x} , x 是任意实数. 其性质为:(1)0≤F(x)≤1 ,F(-∞)=0,F(∞)=1. (2)F(x)单调不减,即若x 1<x 2 ,则 F(x 1)≤F(x 2). (3)F(x)右连续,即F(x+0)=F(x). (4)P{x 1<X≤x 2}=F(x 2)-F(x 1). 二.离散型随机变量 (只能取有限个或可列无限多个值的随机变量)1.离散型随机变量的分布律 P{X= x k }= p k (k=1,2,…) 也可以列表表示. 其性质为: (1)非负性 0≤P k ≤1 ; (2)归一性 11=∑∞=k k p .2.离散型随机变量的分布函数 F(x)=∑≤xX kk P 为阶梯函数,它在x=x k (k=1,2,…)处具有跳跃点,其跳跃值为p k =P{X=x k } .3.三种重要的离散型随机变量的分布(1)X~(0-1)分布 P{X=1}= p ,P{X=0}=1–p (0<p<1) .(2)X~b(n,p)参数为n,p 的二项分布P{X=k}=()kn k p p k n --⎪⎪⎭⎫ ⎝⎛1(k=0,1,2,…,n) (0<p<1) (3))X~π(λ)参数为λ的泊松分布 P{X=k}=λλ-e k k !(k=0,1,2,…) (λ>0) 三.连续型随机变量1.定义 如果随机变量X 的分布函数F(x)可以表示成某一非负函数f(x)的积分F(x)=()dt t f x⎰∞-,-∞< x <∞,则称X 为连续型随机变量,其中f (x)称为X 的概率密度(函数). 2.概率密度的性质(1)非负性 f(x)≥0 ; (2)归一性 ⎰∞∞-dx x f )(=1 ;(3) P{x 1<X ≤x 2}=⎰21)(xx dx x f ; (4)若f (x)在点x 处连续,则f (x)=F / (x) .注意:连续型随机变量X 取任一指定实数值a 的概率为零,即P{X= a}=0 .3.三种重要的连续型随机变量的分布 (1)X ~U (a,b) 区间(a,b)上的均匀分布⎩⎨⎧=-0)(1a b x f其它b x a << . (2)X 服从参数为θ的指数分布.()⎩⎨⎧=-0/1θθx ex f 00≤>x x 若若 (θ>0). (3)X~N (μ,σ2)参数为μ,σ的正态分布222)(21)(σμσπ--=x ex f -∞<x<∞, σ>0. 特别, μ=0, σ2 =1时,称X 服从标准正态分布,记为X~N (0,1),其概率密度2221)(x e x -=πϕ , 标准正态分布函数⎰=Φ∞--xt dt e x 2221)(π, Φ(-x)=1-Φ(x) .若X ~N ((μ,σ2), 则Z=σμ-X ~N (0,1), P{x 1<X ≤x 2}=Φ(σμ-2x )-Φ(σμ-1x ).若P{Z>z α}= P{Z<-z α}= P{|Z|>z α/2}= α,则点z α,-z α, ±z α/ 2分别称为标准正态分布的上,下,双侧α分位点. 注意:Φ(zα)=1-α , z 1- α= -z α.四.随机变量X 的函数Y= g (X)的分布 1.若g(x k ) (k=1,2,…)的值全不相等,则由上表立得Y=g(X)的分布律.若g(x k ) (k=1,2,…)的值有相等的,则应将相等的值的概率相加,才能得到Y=g(X)的分布律. 2.连续型随机变量的函数若X 的概率密度为f X (x),则求其函数Y=g(X)的概率密度f Y (y)常用两种方法: (1)分布函数法 先求Y 的分布函数F Y (y)=P{Y ≤y}=P{g(X)≤y}=()()dx x f ky X k∑⎰∆其中Δk (y)是与g(X)≤y 对应的X 的可能值x 所在的区间(可能不只一个),然后对y 求导即得f Y (y)=F Y /(y) .(2)公式法 若g(x)处处可导,且恒有g /(x)>0 (或g / (x)<0 ),则Y=g (X)是连续型随机变量,其概率密度为()()()()⎩⎨⎧'=0y h y h f y f X Y其它βα<<y其中h(y)是g(x)的反函数 , α= min (g (-∞),g (∞)) β= max (g (-∞),g (∞)) .如果f (x)在有限区间[a,b]以外等于零,则 α= min (g (a),g (b)) β= max (g (a),g (b)) .第三章 二维随机变量及其概率分布 一.二维随机变量与联合分布函数1.定义 若X 和Y 是定义在样本空间S 上的两个随机变量,则由它们所组成的向量(X,Y)称为二维随机向量或二维随机变量.对任意实数x,y,二元函数F(x,y)=P{X ≤x,Y ≤y}称为(X,Y)的(X 和Y 的联合)分布函数. 2.分布函数的性质(1)F(x,y)分别关于x 和y 单调不减.(2)0≤F(x,y)≤1 , F(x,- ∞)=0, F(-∞,y)=0, F(-∞,-∞)=0, F(∞,∞)=1 .(3) F(x,y)关于每个变量都是右连续的,即 F(x+0,y)= F(x,y), F(x,y+0)= F(x,y) . (4)对于任意实数x 1<x 2 , y 1<y 2P{x 1<X ≤x 2 , y 1<Y ≤y 2}= F(x 2,y 2)- F(x 2,y 1)- F(x 1,y 2)+ F(x 1,y 1)二.二维离散型随机变量及其联合分布律1.定义 若随机变量(X,Y)只能取有限对或可列无限多对值(x i ,y j ) (i ,j =1,2,… )称(X,Y)为二维离散型随机变量.并称P{X= x i ,Y= y j }= p i j 为(X,Y)的联合分布律.也可列表表示.2.性质(1)非负性 0≤p i j ≤1 .(2)归一性∑∑=i jij p 1 .3. (X,Y)的(X 和Y 的联合)分布函数F(x,y)=∑∑≤≤x x yy ij i j p三.二维连续型随机变量及其联合概率密度1.定义 如果存在非负的函数f (x,y),使对任意的x 和y ,有F(x,y)=⎰⎰∞-∞-yxdudv v u f ),(则称(X,Y)为二维连续型随机变量,称f(x,y)为(X,Y)的(X 和Y 的联合)概率密度. 2.性质 (1)非负性 f (x,y)≥0 . (2)归一性 1),(=⎰⎰∞∞-∞∞-d x d y y x f .(3)若f (x,y)在点(x,y)连续,则yx y x F y x f ∂∂∂=),(),(2(4)若G 为xoy 平面上一个区域,则⎰⎰=∈Gdxdy y x f G y x P ),(}),{(.四.边缘分布1. (X,Y)关于X 的边缘分布函数 F X (x) = P{X ≤x , Y<∞}= F (x , ∞) . (X,Y)关于Y 的边缘分布函数 F Y (y) = P{X<∞, Y ≤y}= F (∞,y)2.二维离散型随机变量(X,Y) 关于X 的边缘分布律 P{X= x i }=∑∞=1j ij p = p i·( i =1,2,…) 归一性11=∑∞=∙i i p .关于Y 的边缘分布律 P{Y= y j }= ∑∞=1i ij p = p·j( j =1,2,…) 归一性11=∑∞=∙j j p .3.二维连续型随机变量(X,Y)关于X 的边缘概率密度f X (x)=⎰∞∞-dy y x f ),( 归一性1)(=⎰∞∞-dx x f X关于Y 的边缘概率密度f Y (y)=x d y x f ⎰∞∞-),( 归一性1)(=⎰∞∞-dyy f Y五.相互独立的随机变量1.定义 若对一切实数x,y ,均有F(x,y)= F X (x) F Y (y) ,则称X 和Y 相互独立.2.离散型随机变量X 和Y 相互独立⇔p i j= p i ··p ·j( i ,j =1,2,…)对一切x i ,y j成立.3.连续型随机变量X 和Y 相互独立⇔f (x,y)=f X(x)f Y(y)对(X,Y)所有可能取值(x,y)都成立.六.条件分布1.二维离散型随机变量的条件分布定义 设(X,Y)是二维离散型随机变量,对于固定的j,若P{Y=y j }>0,则称 P{X=x i |Y=y j }为在Y= y j 条件下随机变量X 的条件分布律. 同样,对于固定的i,若P{X=x i }>0,则称,}{},{jj i j j i p p y Y P y Y x X P ∙=====P{Y=y j |X=x i }为在X=x i 条件下随机变量Y 的条件分布律.第四章 随机变量的数字特征一.数学期望和方差的定义随机变量X 离散型随机变量 连续型随机变量分布律P{X=x i }= p i ( i =1,2,…) 概率密度f (x)数学期望(均值)E(X)∑∞=1i i i p x (级数绝对收敛)⎰∞∞-dx x xf )((积分绝对收敛)方差D(X)=E{[X-E(X)]2}[]∑-∞=12)(i i i p X E x ⎰-∞∞-dx x f X E x )()]([2=E(X 2)-[E(X)]2 (级数绝对收敛) (积分绝对收敛) 函数数学期望E(Y)=E[g(X)] i i i p x g ∑∞=1)((级数绝对收敛) ⎰∞∞-dx x f x g )()((积分绝对收敛)标准差σ(X)=√D(X) .二.数学期望与方差的性质1. c 为为任意常数时, E(c) = c , E(cX) = cE(X) , D(c) = 0 , D (cX) = c 2D(X) . 2.X,Y 为任意随机变量时, E (X ±Y)=E(X)±E(Y) .3. X 与Y 相互独立时, E(XY)=E(X)E(Y) , D(X ±Y)=D(X)+D(Y) .4. D(X) = 0 ⇔P{X = C}=1 ,C 为常数.三.六种重要分布的数学期望和方差 E(X) D(X)1.X~ (0-1)分布P{X=1}= p (0<p<1) p p (1- p)2.X~ b (n,p) (0<p<1) n p n p (1- p)3.X~ π(λ) λ λ4.X~ U(a,b) (a+b)/2 (b-a) 2/12 5.X 服从参数为θ的指数分布 θ θ2 6.X~ N (μ,σ2) μ σ2 四.矩的概念随机变量X 的k 阶(原点)矩E(X k ) k=1,2,… 随机变量X 的k 阶中心矩E {[X-E(X)] k }随机变量X 和Y 的k+l 阶混合矩E(X k Y l ) l=1,2,…随机变量X 和Y 的k+l 阶混合中心矩E{[X-E(X)] k [Y-E(Y)] l}第六章 样本和抽样分布一.基本概念总体X 即随机变量X ; 样本X 1 ,X 2 ,…,X n 是与总体同分布且相互独立的随机变量;样本值x 1 ,x 2 ,…,x n 为实数;n 是样本容量.统计量是指样本的不含任何未知参数的连续函数.如:样本均值∑==n i i X n X 11 样本方差()∑--==n i i XX n S 12211 样本标准差S样本k 阶矩∑==n i k i k X n A 11( k=1,2,…) 样本k 阶中心矩∑-==n i ki k X X n B 1)(1( k=1,2,…),}{},{∙=====i j i i j i p p x X P y Y x X P二.抽样分布 即统计量的分布 1.X 的分布 不论总体X 服从什么分布, E (X ) = E(X) , D (X ) = D(X) / n .特别,若X~ N (μ,σ2 ) ,则X ~ N (μ, σ2/n) .2.χ2分布 (1)定义 若X ~N (0,1) ,则Y =∑=ni i X 12~ χ2(n)自由度为n 的χ2分布.(2)性质 ①若Y~ χ2(n),则E(Y) = n , D(Y) = 2n .②若Y 1~ χ2(n 1) Y 2~ χ2(n 2) ,则Y 1+Y 2~ χ2(n 1 + n 2).③若X~ N (μ,σ2 ), 则22)1(σS n -~ χ2(n-1),且X 与S 2相互独立.(3)分位点 若Y~ χ2(n),0< α <1 ,则满足αχχχχαααα=<>=<=>--))}(())({()}({)}({22/122/212n Y n Y P n Y P n Y P的点)()(),(),(22/122/212n n n n ααααχχχχ--和分别称为χ2分布的上、下、双侧α分位点. 3. t 分布(1)定义 若X~N (0,1),Y~ χ2(n),且X,Y 相互独立,则t=nY X~t(n)自由度为n 的t 分布. (2)性质①n →∞时,t 分布的极限为标准正态分布.②X ~N (μ,σ2 )时, nS X μ-~ t (n-1) .③两个正态总体相互独立的样本 样本均值 样本方差X~ N (μ1,σ12 ) 且σ12=σ22=σ2 X 1 ,X 2 ,…,X n1 X S 12Y~ N (μ2,σ22 ) Y 1 ,Y 2 ,…,Y n2Y S22则212111)()(n n S Y X w +---μμ~ t (n 1+n 2-2) , 其中 2)1()1(212222112-+-+-=n n S n S n S w(3)分位点 若t ~ t (n) ,0 < α<1 , 则满足αααα=>=-<=>)}({)}({)}({2/n t t P n t t P n t t P的点)(),(),(2/n t n t n t ααα±-分别称t 分布的上、下、双侧α分位点.注意: t 1- α (n) = - t α (n).4.F 分布 (1)定义 若U~χ2(n 1), V~ χ2(n 2), 且U,V 相互独立,则F =21n V n U ~F(n 1,n 2)自由度为(n 1,n 2)的F 分布.(2)性质(条件同3.(2)③)22212221σσS S ~F(n 1-1,n 2-1)(3)分位点 若F~ F(n 1,n 2) ,0< α <1,则满足)},({)},({21121n n F F P n n F F P αα-<=>ααα=<>=-))},(()),({(212/1212/n n F F n n F F P的点),(),(),,(),,(212/1212/21121n n F n n F n n F n n F αααα--和分别称为F 分布的上、下、双侧α分位点. 注意:.).(1),(12211n n F n n F αα=-第七章 参数估计一.点估计 总体X 的分布中有k 个待估参数θ1, θ2,…, θk .X 1 ,X 2 ,…,X n 是X 的一个样本, x 1 ,x 2 ,…,x n 是样本值.1.矩估计法先求总体矩⎪⎩⎪⎨⎧===),,,(),,,(),,,(2121222111k k k k k θθθμμθθθμμθθθμμ 解此方程组,得到⎪⎩⎪⎨⎧===),,,(),,,(),,,(2121222111k k k k k μμμθθμμμθθμμμθθ ,以样本矩A l 取代总体矩μ l ( l=1,2,…,k)得到矩估计量⎪⎪⎩⎪⎪⎨⎧===∧∧∧),,,(),,,(),,,(2121222111k k k k k A A A A A A A A A θθθθθθ,若代入样本值则得到矩估计值. 2.最大似然估计法若总体分布形式(可以是分布律或概率密度)为p (x, θ1, θ2,…, θk ),称样本X 1 ,X 2 ,…,Xn的联合分布∏==ni k i k x p L 12121),,,,(),,,(θθθθθθ 为似然函数.取使似然函数达到最大值的∧∧∧kθθθ,,,21 ,称为参数θ1, θ2,…,θk 的最大似然估计值,代入样本得到最大似然估计量.若L(θ1, θ2,…, θk )关于θ1, θ2,…, θk 可微,则一般可由 似然方程组0=∂∂i L θ 或 对数似然方程组 0ln =∂∂iLθ (i =1,2,…,k) 求出最大似然估计. 3.估计量的标准(1) 无偏性 若E(∧θ)=θ,则估计量∧θ称为参数θ的无偏估计量.不论总体X 服从什么分布, E (X )= E(X) , E(S 2)=D(X), E(A k )=μk =E(X k ),即样本均值X , 样本方差S 2,样本k 阶矩A k 分别是总体均值E(X),方差D(X),总体k 阶矩μk 的无偏估计,(2)有效性 若E(∧θ1 )=E(∧θ2)= θ, 而D(∧θ1)< D(∧θ2), 则称估计量∧θ1比∧θ2有效. (3)一致性(相合性) 若n →∞时,θθP →∧,则称估计量∧θ是参数θ的相合估计量.文 - 汉语汉字 编辑词条文,wen ,从玄从爻。
(完整版)概率论与数理统计复习提纲
1.基本思想: 用样本矩(原点矩或中心矩)代替相应的总体矩.
2.求总体X的分布中包含的m个未知参数 的矩估计步骤:
① 求出总体矩,即 ;② 用样本矩代替总体矩,列出矩估计方程:
③ 解上述方程(或方程组)得到 的矩估计量为:
④ 的矩估计值为:
3. 矩估计法的优缺点:
优点:直观、简单; 只须知道总体的矩,不须知道总体的分布形式.
(1) 分布的 分位点 (2) 分布的 分位点 其性质:
(3) 分布的 分位点 其性质
(4)N(0,1)分布的 分位点 有
第六章 参数估计
一、点估计:设 为来自总体X的样本, 为X中的未知参数, 为样本值,构造某个统计
量 作为参数 的估计,则称 为 的点估计量, 为 的估计值.
2.常用点估计的方法:矩估计法和最大似然估计法.
合概率函数(或联合密度函数) (或
称为似然函数.
3. 求最大似然估计的步骤:
(1)求似然函数:X离散: X连续:
(2)求 和似然方程:
(3)解似然方程,得到最大似然估计值:
(4)最后得到最大似然估计量:
4. 最大似然估计法是在各种参数估计方法中比较优良的方法,但是它需要知道总体X的分布形式.
四、估计量的评价标准
4.伯努利概型:
1.事件的对立与互不相容是等价的。(X)
2.若 则 。(X)
3. 。(X)
4.A,B,C三个事件恰有一个发生可表示为 。(∨)
5.n个事件若满足 ,则n个事件相互独立。(X)
6.当 时,有P(B-A)=P(B)-P(A)。(∨)
第二章 随机变量及其分布
一、随机变量的定义:设样本空间为 ,变量 为定义在 上的单值实值函数,则称 为随机变量,通常用大写英文字母,用小写英文字母表示其取值。
概率论与数理统计总复习知识点归纳
概率论与数理统计总复习知识点归纳1.概率论的基础概念-随机事件、样本空间和事件的关系。
-频率和概率的关系,概率的基本性质。
-古典概型和几何概型的概念。
-条件概率和乘法定理。
-全概率公式和贝叶斯公式。
-随机变量和概率分布函数的概念。
-离散型随机变量和连续型随机变量的定义、概率质量函数和概率密度函数的性质。
2.随机变量的数字特征-随机变量的数学期望、方差、标准差和切比雪夫不等式。
-协方差、相关系数和线性变换的数学期望和方差公式。
-两个随机变量的和、差、积的数学期望和方差公式。
3.大数定律和中心极限定理-大数定律的概念和三级强大数定律。
-中心极限定理的概念和中心极限定理的两种形式。
4.数理统计的基本概念和方法-总体、样本和抽样方法的概念。
-样本统计量和抽样分布的概念。
-点估计和区间估计的概念。
-假设检验的基本思想和步骤。
-正态总体的参数的假设检验和区间估计。
5.参数估计和假设检验的方法和推广-极大似然估计的原理和方法。
-矩估计的原理和方法。
-最小二乘估计的原理和方法。
-一般参数的假设检验和区间估计。
6.相关分析和回归分析-相关系数和线性相关的概念和性质。
-回归分析的一般原理。
-简单线性回归的估计和检验。
7.非参数统计方法-秩和检验和符号检验的基本思想和应用。
-秩相关系数的计算和检验。
8.分布拟合检验和贝叶斯统计-卡方拟合检验的原理和方法。
-正态总体参数的拟合优度检验。
-贝叶斯估计的基本思想和方法。
9.时间序列分析和质量控制-时间序列的基本性质和分析方法。
-时间序列预测的方法和模型。
-质量控制的基本概念和控制图的应用。
以上是概率论与数理统计总复习知识点的归纳,希望对你的复习有所帮助。
概率论及数理统计要点复习
概率论与数理统计 复习资料第一章随机事件与概率1.事件的关系 φφ=Ω-⋃⊂AB A B A AB B A B A(1) 包含:若事件A 发生,一定导致事件B 发生,那么,称事件B 包含事件A ,记作A B ⊂(或B A ⊃). (2) 相等:若两事件A 与B 相互包含,即A B ⊃且B A ⊃,那么,称事件A 与B 相等,记作A B =. (3) 和事件:“事件A 与事件B 中至少有一个发生”这一事件称为A 与B 的和事件,记作A B ⋃;“n 个事件1,2,,nA A A 中至少有一事件发生”这一事件称为1,2,,nA A A 的和,记作12nA A A ⋃⋃⋃(简记为1nii A =). (4) 积事件:“事件A 与事件B 同时发生”这一事件称为A 与B 的积事件,记作A B ⋂(简记为AB );“n 个事件1,2,,nA A A 同时发生”这一事件称为1,2,,nA A A 的积事件,记作12n A A A ⋂⋂⋂(简记为12nA A A 或1nii A =). (5) 互不相容:若事件A 和B 不能同时发生,即AB φ=,那么称事件A 与B互不相容(或互斥),若n 个事件1,2,,nA A A 中任意两个事件不能同时发生,即i j A A φ=(1≤i<j ≤几),那么,称事件 1,2,,n A A A 互不相容. (6) 对立事件:若事件A 和B 互不相容、且它们中必有一事件发生,即AB φ=且A B ⋃=Ω,那么,称A 与B 是对立的.事件A 的对立事件(或逆事件)记作A . (7) 差事件:若事件A 发生且事件B 不发生,那么,称这个事件为事件A 与B 的差事件,记作A B -(或AB ) .2.运算规则 (1)交换律:BA AB A B B A =⋃=⋃(2)结合律:)()( )()(BC A C AB C B A C B A =⋃⋃=⋃⋃ (3)分配律))(()( )()()(C B C A C AB BC AC C B A ⋃⋃=⋃⋃=⋃ (4)德摩根(De Morgan )法则:B A AB B A B A ⋃==⋃3.概率)(A P 满足的三条公理及性质: (1)1)(0≤≤A P (2)1)(=ΩP(3)对互不相容的事件n A A A ,,,21 ,有∑===nk kn k kA P A P 11)()((n 可以取∞)(4) 0)(=φP (5))(1)(A P A P -=(6))()()(AB P A P B A P -=-,若B A ⊂,则)()()(A P B P A B P -=-,)()(B P A P ≤ (7))()()()(AB P B P A P B A P -+=⋃(8))()()()()()()()(ABC P BC P AC P AB P C P B P A P C B A P +---++=⋃⋃ 4.古典概型:基本事件有限且等可能5.几何概率: 如果随机试验的样本空间是一个区域(可以是直线上的区间、平面或空间中的区域),且样本空间中每个试验结果的出现具有等可能性,那么规定事件A的概率为()A P A =的长度(或面积、体积)样本空间的的长度(或面积、体积)·6.条件概率(1) 定义:若0)(>B P ,则)()()|(B P AB P B A P =(2) 乘法公式:)|()()(B A P B P AB P = 若n B B B ,,21为完备事件组,0)(>i B P ,则有 (3) 全概率公式: ∑==ni iiB A P B P A P 1)|()()((4) Bayes 公式: ∑==ni iik k k B A P B P B A P B P A B P 1)|()()|()()|((5)贝努里概型与二项概率设在每次试验中,随机事件A发生的概率()(01)P A p p =<<,则在n 次重复独立试验中.,事件A恰发生k 次的概率为()(1),0,1,,k n k n n P k p p k n k -⎛⎫=-= ⎪⎝⎭,7.事件的独立性: B A ,独立)()()(B P A P AB P =⇔ (注意独立性的应用)下列四个命题是等价的:(i) 事件A 与B 相互独立;(ii) 事件A 与B 相互独立;(iii) 事件A 与B 相互独立;(iv) 事件A 与B 相互独立.8、思考题1.一个人在口袋里放2盒火柴,每盒n 支,每次抽烟时从口袋中随机拿出一盒(即每次每盒有同等机会被拿到)并用掉一支,到某次他迟早会发现:取出的那一盒已空了.问:“这时另一盒中恰好有m 支火柴”的概率是多少?2.设一个居民区有n 个人,设有一个邮局,开c 个窗口,设每个窗口都办理所有业务.c 太小,经常排长队;c 太大又不经济.现设在每一指定时刻,这n 个人中每一个是否在邮局是独立的,每个人在邮局的概率是p .设计要求:“在每一时刻每窗口排队人数(包括正在被服务的那个人)不超过m ”这个事件的概率要不小于a (例如,0.8,0.9.95a o =或),问至少须设多少窗口? 3.设机器正常时,生产合格品的概率为95%,当机器有故障时,生产合格品的概率为50%,而机器无故障的概率为95%.某天上班时,工人生产的第一件产品是合格品,问能以多大的把握判断该机器是正常的?第二章 随机变量与概率分布1. 离散随机变量:取有限或可列个值,i i p x X P ==)(满足(1)0≥i p ,(2)∑iip=1(3)对任意R D ⊂,∑∈=∈Dx i ii pD X P :)(2. 连续随机变量:具有概率密度函数)(x f ,满足(1)1)(,0)(-=≥⎰+∞∞dx x f x f ;(2)⎰=≤≤badx x f b X a P )()(;(3)对任意R a ∈,0)(==a X P3. 几个常用随机变量名称与记号分布列或密度数学期望 方差0—1分布 两点分布 ),1(p B p X P ==)1(,p q X P -===1)0(p pq二项式分布),(p n Bn k q p C k X P k n k kn ,2,1,0,)(===-,np npq泊松分布)(λP,2,1,0,!)(===-k k ek X P kλλλλ几何分布)(p G,2,1 ,)(1===-k p qk X P kp1 2p q 均匀分布),(b a Ub x a a b x f ≤≤-= ,1)(,2ba + 12)(2a b - 指数分布)(λE 0 ,)(≥=-x e x f x λλλ1 21λ正态分布),(2σμN222)(21)(σμσπ--=x ex fμ2σ标准正态分布的分布函数记作()x Φ,即()x Φ221()2t xx e dtπ--∞Φ=⎰,当出0x ≥时,()x Φ可查表得到;当0x <时,()x Φ可由下面性质得到()1()x x Φ-=-Φ.设2~(,)X N μσ,则有()()x F x μσ-=Φ;()()()b a P a X b μμσσ--<≤=Φ-Φ.4. 分布函数 )()(x X P x F ≤=,具有以下性质(1)1)( ,0)(=+∞=-∞F F ;(2)单调非降;(3)右连续; (4))()()(a F b F b X a P -=≤<,特别)(1)(a F a X P -=>; 特别的 ()()(0)P X a F a F a ==-- (5)对离散随机变量,∑≤=xx i ii px F :)(;(6)对连续随机变量,⎰∞-=xdt t f x F )()(为连续函数,且在)(x f 连续点上,)()('x f x F =5. 正态分布的概率计算 以)(x Φ记标准正态分布)1,0(N 的分布函数,则有 (1)5.0)0(=Φ;(2))(1)(x x Φ-=-Φ;(3)若),(~2σμN X ,则)()(σμ-Φ=x x F ;(4)以αu 记标准正态分布)1,0(N 的上侧α分位数,则)(1)(αααu u X P Φ-==> 6. 随机变量的函数 )(X g Y =(1)离散时,求Y 的值,将相同的概率相加;(2)X 连续,)(x g 在X 的取值范围内严格单调,且有一阶连续导数,则|))((|))(()('11y g y g f y f X Y --=,若不单调,先求分布函数,再求导。
《概率论与数理统计》综合复习资料全
《概率论与数理统计》综合复习资料一、填空题1、一个盒子中有10 个球,其中有 3 个红球, 2 个黑球, 5 个白球,从中取球两次,每次取一个(无放回),则:第二次取到黑球的概率为;取到的两只球至少有一个黑球的概率为。
2、 X 的概率密度为 f ( x)1 e x2 2 x 1(x) ,则DX。
3、已知随机变量X ~N(1,1),Y~N(3,1) 且 X 与Y 相互独立,设随机变量Z 2X Y 5,则EX;DX。
4、已知随机变量X 的分布列为X-102P k0.40.2p则: EX=;DX =。
5、设X与Y独立同分布,且X~N(2,22) ,则D( 3X2Y) =。
6、设对于事件A、B、 C有 P(A)P(B)1,P(ABC)1P(C),412P( AB) P( BC )P(AC)1。
,则 A 、 B、 C 都不发生的概率为87、批产品中一、二、三等品各占60% 、30%、 10%,从中任取一件,结果不是三等品,则取到的是二等品的概率为。
8、相互独立,且概率分布分别为1,1 y 3f (x)e ( x 1)x) ;( y)(,其它则:E(X Y)=;E(2X3 2 )=。
Y9 、已知工厂A、 B 生产产品的次品率分别为2%和1%,现从由A、 B 工厂分别占30%和70%的一批产品中随机抽取一件,发现是次品,则该产品是 B 工厂的概率为。
10、设X、Y的概率分布分别为, 1 x 54e4 y,y01/ 4( x);( y),,其它0y0则: E(X 2Y) =;(X 2 4 ) =。
E Y二、选择题1、设X 和 Y 相互独立,且分别服从N(1,22) 和N (1,1),则。
A .P{ X Y 1}1/ 2B.P{ X Y0}1/ 2C .P{ X Y0}1/ 2D.P{ X Y 1}1/ 22、已知P( A)0.4,P(B)0.6,P(B | A)0.5 ,则P( A B)。
A .1B.0.7C .0.8D .0.53、设某人进行射击,每次击中的概率为1/3,今独立重复射击10 次,则恰好击中 3 次的概率为。
高等教育自学考试概率论与数理统计(经管类04183)复习资料
概率论与数理统计(经管类04183)第一章 随机事件与概率复习要点:一、事件的关系和运算 1.常用表示公式A ,B ,C .至少发生一个;都发生;都不发生;恰好发生一个;至多发生一个. 2.互不相容与对立 3.差的不同表示法 4.特殊关系事件间的运算(1),B A ⊂则.,,,不相容与B A ,A B B A B B A A AB ⊂=-=+=Φ (2)A ,B 互不相容,则.,,,,B A B A B A B A B A AB ⊂=+=-=-=ΩΦ 5.对偶律 画图.二、概率的性质 1.基本性质 2.推论(1)有限可加性 (2))(1)(A P A P -=;(3))()()(,A P B P A B P B A -=-⊂;(4))()()()(AB P B P A P B A P -+=+, )()()(AB P A P B A P -=-,)()()()()()()()(ABC P BC P AC P AB P C P B P A P C B A P +---++=++ 三、古典概型注意:1.上下一致;2.不重复,不遗漏;3. 事件复杂时考虑对立事件. 四、条件概率 1.条件概率)()()|(A P AB P A B P =2.乘法公式)()()()(),|()()(AB |C P A |B P A P ABC P A B P A P AB P == 3.全概率公式和贝叶斯公式n A A ,,1 —原因,在先,B —结果,在后.时间上的先后,逻辑上的先后.五、事件的独立性 1.定义 2.等价条件 3.n 个事件 4.性质(1)B ,A B A,B A B A ;;;,,独立性等价;(2)n A A ,,1 相互独立.其中一部分必相互独立;若干个换成对立事件仍相互独立;分成几组,各组的运算结果间相互独立.5.利用独立性计算概率),(()()()()(1)(B A)P P B P A P B P A P B A P -+=-=+)()()(B P A P B A P =- )()1)(11n n A P A P(A A P -=++最终化为事件乘积的概率. 6.n 重贝努利试验概率的计算:1.推算题 独立性→条件概率→互不相容→包含→一般2.文字题 独立性→全、逆概公式→条件概率→古典概型第二章 随机变量及其概率分布复习要点: 一、分布函数 1.定义 2.性质3.计算概率二、离散型随机变量 1.概率分布 2.性质求概率分布:(1)先找X 的取值;(2)求X 取每个值的概率(可少求一个). 3.求概率利用概率的可加性. 4.分布函数三、连续型随机变量 1.密度 2.性质求密度中的参数. 3.求概率 4.分布函数 (1)求参数(2)与密度的关系 四、重要分布 1.0—1分布 2.二项分布 3.泊松分布 4.均匀分布6.正态分布对称性,概率的计算.五、随机变量函数的分布1.离散型Y=g(X).先找Y的取值,再利用X的分布律和可加性计算Y的分布概率.2.连续型了解分布函数法第三章多维随机变量及其概率分布复习要点:一、多维随机变量及其分布函数二、离散型随机变量1.概率分布2.性质求概率分布:(1)先找X、Y的取值,得(X,Y)的取值(交叉);(2)求(X,Y)取每个值的概率(可少求一个).3.求概率利用概率的可加性.三、连续型随机变量1.密度2.性质求密度中的参数.3.求概率四、边际分布与独立性1.离散型表上作业.2.连续型注意逆问题:由独立性及边际分布找联合分布.五、重要分布1.二维均匀分布知道何时两分量独立.2.二维正态分布知道边际分布.五、两个随机变量的函数的分布1.离散型Z=X+Y,Z=XY.先找Z的取值,再利用(X,Y)的分布律和可加性计算Z的分布概率.2.两个独立连续型随机变量之和的分布了解卷积公式独立的正态分布的线性组合仍为正态分布.第四章随机变量的数字特征复习要点:1.单个随机变量(1)离散型 (2)连续型n nn p x X E ∑=)( ⎰+∞∞-=xf(x)dx X E )(n nn p x g X g E )()]([∑= ⎰+∞∞-=dx x f x g X g E )()()]([n nnp x X E ∑=22)( ⎰+∞∞-=dx x f x X E )()(222.两个随机变量 (1)离散型ij ij i j p y x g Y X,g E ),()]([∑∑= ij ijij p yx XY E ∑∑=)(∙∑∑∑==i ii ijii jpx p x X E )(j j jij ij jp yp y E(Y ∙∑∑∑==)(2)连续型dy dx y x f y x g Y X,g E ⎰⎰+∞∞-+∞∞-=),(),()]([ dy dx y x f y x XY E ⎰⎰+∞∞-+∞∞-=),()(==⎰⎰+∞∞-+∞∞-dxdy y x xf X E ),()(⎰+∞∞-dx x xf X )( ==⎰⎰+∞∞-+∞∞-dxdy y x f y Y E ),()(⎰+∞∞-dy y f y Y )(建议:用边际分布求各分量的期望及其函数的期望. 3.性质 二、方差 1.定义2.等价公式3.性质随机变量的标准化.三、重要分布的期望、方差 四、协方差 1.定义Cov (X ,Y )=E [X -E (X )]E [Y -E (Y )]),(2)()()(Y X Cov Y D X D Y X D ++=+),(2)()()(Y X abCov Y D b X D a bY aX D 22++=+2.等价公式Cov (X ,Y )=E (XY )-E (X )E (Y )3.性质 五、相关系数 1.定义2.性质3.不相关独立⇒E (XY )=E (X )E (Y )⇔⇔+=±)()()(Y D X D Y X D Cov (X ,Y )=0⇔不相关二维正态分布的特殊性.第五章 大数定律与中心极限定理复习要点:一、切贝雪夫不等式二、大数定律 知道结论.三、中心极限定理1.独立同分布序列的中心极限定理).,(~2n1i i n n N X σμ∑=)()(21σμΦn n a a X P ni i -≈≤∑=2.棣—拉中心极限定理X ~B (n ,p ).X ~N (np ,np (1-p )).).)1(()(p np np a a X P --≈≤Φ第六章 统计量及其抽样分布复习要点:一、概念 1.总体与样本 2.统计量定义;样本均值、样本方差、样本标准差、样本矩(了解). 二、几种统计量的分布 1.2χ分布(1)构造;(2)可加性;(3)分位数. 2.t 分布(1)构造;(2)对称性;(3)分位数. 3.F 分布(1)构造;(2)倒数;(3)分位数. 三、正态总体的抽样分布 单正态总体第七章 参数估计本章重点: 一、点估计 1.矩估计一个参数θ.(1))(θμg EX ==;(2) )ˆ(ˆθμg =;(3)解出θˆ. 2.极大似然估计一个参数θ.(1));(θ∏==n1i i x p L ;(2) lnL ;(3)0d dlnL=θ;(4)解出θˆ. 3.评判标准(1)无偏性.2σμ与的无偏估计;(2)有效性;(3)相合性. 二、区间估计1.概念2.单个正态总体的置信区间第八章 假设检验复习要点: 一、概念 1.基本概念2.步骤3.两类错误二、单个正态总体的假设检验 1.已知方差,检验均值 (u ) (1)双边;(2)单边.2.未知方差,检验均值 (t ) (1)双边;(2)单边.3.未知均值,检验方差 (χ2) (1)双边;(2)单边.三、两个正态总体的假设检验 1.已知方差,检验均值 (u ) (1)双边;(2)单边.2.未知方差但相等,检验均值 (t ) (1)双边;(2)单边.3.未知均值,检验方差 (F ) (1)双边;(2)单边.四、大样本下任意总体的参数检验第九章 回归分析复习要点:回归系数和回归常数的估计公式,了解F 检验.。
概率论与数理统计复习资料
概率论与数理统计复习资料### 概率论与数理统计复习资料#### 第一章:概率论基础1. 概率的定义与性质- 事件的概率定义- 概率的公理化体系- 概率的加法和乘法规则2. 条件概率与事件独立性- 条件概率的计算- 事件独立性的定义与性质- 贝叶斯定理3. 随机变量及其分布- 离散型随机变量及其分布律- 连续型随机变量及其概率密度函数- 随机变量的期望值与方差4. 多维随机变量及其分布- 联合分布函数- 边缘分布函数- 协方差与相关系数5. 大数定律与中心极限定理- 切比雪夫不等式- 伯努利大数定律- 中心极限定理的应用#### 第二章:数理统计基础1. 样本与统计量- 样本均值、方差与标准差- 样本矩- 顺序统计量2. 参数估计- 点估计与区间估计- 估计量的优良性准则- 极大似然估计3. 假设检验- 假设检验的基本原理- 单样本假设检验- 双样本假设检验4. 方差分析- 单因素方差分析- 双因素方差分析- 方差分析的计算步骤5. 回归分析- 一元线性回归- 多元线性回归- 回归模型的诊断#### 第三章:概率分布与随机过程1. 常见概率分布- 二项分布- 泊松分布- 正态分布2. 随机过程的基本概念- 随机过程的定义- 马尔可夫链- 泊松过程3. 随机过程的参数估计- 随机过程的均值与方差估计- 随机过程的回归分析4. 随机过程的模拟- 蒙特卡洛方法- 随机模拟的应用5. 随机过程的统计推断- 随机过程的假设检验- 随机过程的参数估计#### 第四章:统计决策与贝叶斯统计1. 统计决策理论- 损失函数- 风险函数- 决策规则2. 贝叶斯统计- 贝叶斯后验概率- 贝叶斯估计- 贝叶斯决策3. 贝叶斯网络- 贝叶斯网络的结构- 贝叶斯网络的推理- 贝叶斯网络的应用4. 统计推断的贝叶斯方法- 贝叶斯假设检验- 贝叶斯参数估计5. 贝叶斯模型选择- 贝叶斯信息准则- 交叉验证通过以上内容的复习,可以对概率论与数理统计的基本概念、理论及其应用有一个系统的理解。
(完整版)自考概率论与数理统计复习资料要点总结
i《概率论与数理统计》复习提要(1) 0 P(A) 1 ( 2)P( ) 1(1) 定义:若 P(B) 0,则 P(A| B)P(AB)P(B)(2)乘法公式:P(AB) P(B)P(A| B)若B 1, B 2, B n 为完备事件组,P(B i )0,则有n(3)全概率公式: P(A) P(B i )P(A| B i )i 1(4)Bayes 公式: P(B k | A)P(Bk)P(A|B k)P(B i )P(A|BJi 17.事件的独立性:A, B 独立 P( AB) P(A)P(B)(注意独立性的应用)第二章随机变量与概率分布1 •离散随机变量:取有限或可列个值,P(X x i ) p i 满足(1) p i 0 , (2) p i =11.事件的关系 AB A B AB A B AAB2.运算规则(1)A B BA ABBA(2) (AB) CA (BC)(AB)C A(BC)(3) (AB)C (AC) (BC) (AB) C (A C)(B(4) AB ABABAB第一章随机事件与概率3•概率P(A)满足的三条公理及性质: C)(4) P() 0 (5) P(A) 1 P(A)(6) P(A B) P(A) P(AB) ,若 A B , 则P(BA) P(B) P(A) ,P(A) P(B)(7) P(A B) P(A) P(B) P(AB)(8) P(ABC) P(A) P(B) P(C)P(AB)P(AC) P(BC)P(ABC)n(3)对互不相容的事件 A l , A 2, , A n ,有P( A k )k 1k 1(n 可以取)4. 古典概型:基本事件有限且等可能5. 几何概率6. 条件概率P(A k )(3)对任意D R, P(X D) p:X i D2.连续随机变量:具有概率密度函数f (x),满足(1) f (x) 0, f(x)dx 1 ;b(2) P(a X b) f (x)dx ; ( 3)对任意a R,P(X a) 0a4.分布函数F(x) P(X x),具有以下性质(1)F( ) 0, F( ) 1 ; (2)单调非降;(3)右连续;(4)P(a X b) F(b) F(a),特别P(X a) 1 F(a);(5)对离散随机变量,F(x) P i ;i:为x(6)对连续随机变量,F(x) x'f(t)dt为连续函数,且在f (x)连续点上,F (x) f (x)5.正态分布的概率计算以(x)记标准正态分布N (0,1)的分布函数,则有(1)(0) 0.5 ; (2)(2 x x) 1 (x) ; (3)若X ~ N(,),则F(x) ((4)以u记标准正态分布N(0,1)的上侧分位数,则P(X u ) 1 (u )6.随机变量的函数Y g(X)(1)离散时,求Y的值,将相同的概率相加;(2)X连续,g(x)在X的取值范围内严格单调,且有一阶连续导数,则f Y(y) f x(g 1(y)) |(g 1(y))' |单调,先求分布函数,再求导。
概率论与数理统计总复习知识点归纳
D( X ) E( X 2 ) E 2 ( X ), Cov( X ,Y ) E( XY ) EXEY
XY Cov( X ,Y ) / D( X )D(Y )
⑴ E(aX+b)=aE(X)+b,D(aX+b)=a2D(X)
⑵ E(∑iλi Xi)=∑i λi E(Xi)
(3) D(λ1X±λ2Y)=λ12D(X)+λ22D(Y) ±2λ1λ2Cov(X,Y)
0.587
法二 用Bayes公式:
P (C) = 0.1, P(C ) 0.9;
P (D/C) = 0.3*0.8+0.7*0.2,
P(D / C ) 0.3*0.2.
C
C
于是有
D
P(C / D)
P(C ) P(D / C )
P(C) P(D / C) P(C ) P(D / C )
i 1
i 1
i 1
例3 已知X~ f(x),求Y= -X2的概率密度。 解 用分布函数法。
y<0 时,FY(y) = P(Y≤y) = P(-X2 ≤y) P(X y) P(X y)
FX ( y ) [1 FX ( y )] y≥0 时, FY(y) = P(Y≤y) =1
于是Y的概率密度为
fY ( y) fX (
y)
1 2
( y)1/ 2
fX
(
y ) 1 ( y)1/2 2
1 2
(
y)1/ 2[
fX
(
y) fX (
y )] , y 0
fY (y) 0 , y 0
例4 设二维随机变量(X,Y )的联合密度函数为:
f
( x,
y)
非常全面的概率论与数理统计复习材料
为 21 的倍数的概率 p2;
解:p1=错误!=错误!, p2= 错误!= 错误!
前提是如果在某一区域任取一 例 1 把长度为 a 的棒任意折成三段,求它们可以构成一个三角形的概率;
点,而所取的点落在中任意两 解:设折得的三段长度分别为 x,y 和 a-x-y,那么,样本空间,S={x,y|0xa,0ya,0a-x-ya};
A、A=
B、AB= C、A错误!=
D、B=错误!
运 A1,A2,…,An 构成的一个完备事件组或分斥指 A1,A2,…,An 两两互不相容,且错误!Ai=
算
交换律 A∪B=B∪A A∩B=B∩A 运
结合律 A∪B∪C=A∪B∪C A∩B∩C=A∩B∩C 算
分配律 A∪B∩C=AC∪BC A∩B∪C=A∪C∩B∪C 法
题 例 3 某物品成箱出售,每箱 20 件,假设各箱中含 0、1 件次品的概率分别为和,一顾客在购买时,他可以开箱,从箱中任取
三件检查,当这三件都是合格品时,顾客才买下该箱物品,否则退货;试求:1 顾客买下该箱的概率 ;
2 顾客买下该箱物品,问该箱确无次品的概率 ;
解:设事件 A0—箱中 0 件次品, A1—箱中 1 件次品,事件 B—买下该箱;由已知 PA0=, PA1=,
必然事件---每次试验中必定发生的事件; 不可能事件--每次试验中一定不发生的事件;
事 包含 AB 件 相等 A=B 之 对立事件,也称 A 的逆事件 间 互斥事件 AB=也称不相容事件 的 A,B 相互独立 PAB=PAPB 关
例 1 事件 A,B 互为对立事件等价于 D A、A,B 互不相容 B、A,B 相互独立 C、A∪B=Ω D、A,B 构成对样本空间的一个剖分 例 2 设 PA=0,B 为任一事件,则 C A、A= B、AB C、A 与 B 相互独立 D、A 与 B 互不相容
概率论与数理统计复习资料知识点总结
《概率论与数理统计》第一章 随机事件与概率1.事件的关系 φφ=Ω-⋃⊂AB A B A AB B A B A 2.运算规则 (1)BA AB A B B A =⋃=⋃(2))()( )()(BC A C AB C B A C B A =⋃⋃=⋃⋃(3)))(()( )()()(C B C A C AB BC AC C B A ⋃⋃=⋃⋃=⋃ (4)B A AB B A B A ⋃==⋃3.概率)(A P 满足的三条公理及性质: (1)1)(0≤≤A P (2)1)(=ΩP(3)对互不相容的事件n A A A ,,,21 ,有∑===nk kn k kA P A P 11)()((n 可以取∞)(4) 0)(=φP (5))(1)(A P A P -=(6))()()(AB P A P B A P -=-,若B A ⊂,则)()()(A P B P A B P -=-,)()(B P A P ≤ (7))()()()(AB P B P A P B A P -+=⋃(8))()()()()()()()(ABC P BC P AC P AB P C P B P A P C B A P +---++=⋃⋃ 4.古典概型:基本事件有限且等可能5.几何概率 6.条件概率(1) 定义:若0)(>B P ,则)()()|(B P AB P B A P =(2) 乘法公式:)|()()(B A P B P AB P = 若n B B B ,,21为完备事件组,0)(>i B P ,则有 (3) 全概率公式: ∑==ni iiB A P B P A P 1)|()()((4) Bayes 公式: ∑==ni iik k k B A P B P B A P B P A B P 1)|()()|()()|(7.事件的独立性: B A ,独立)()()(B P A P AB P =⇔ (注意独立性的应用)第二章 随机变量与概率分布1. 离散随机变量:取有限或可列个值,i i p x X P ==)(满足(1)0≥i p ,(2)∑iip=1(3)对任意R D ⊂,∑∈=∈Dx i ii pD X P :)(2. 连续随机变量:具有概率密度函数)(x f ,满足(1)1)(,0)(-=≥⎰+∞∞dx x f x f ;(2)⎰=≤≤badx x f b X a P )()(;(3)对任意R a ∈,0)(==a X P4. 分布函数 )()(x X P x F ≤=,具有以下性质(1)1)( ,0)(=+∞=-∞F F ;(2)单调非降;(3)右连续; (4))()()(a F b F b X a P -=≤<,特别)(1)(a F a X P -=>; (5)对离散随机变量,∑≤=xx i ii px F :)(;(6)对连续随机变量,⎰∞-=xdt t f x F )()(为连续函数,且在)(x f 连续点上,)()('x f x F =5. 正态分布的概率计算 以)(x Φ记标准正态分布)1,0(N 的分布函数,则有 (1)5.0)0(=Φ;(2))(1)(x x Φ-=-Φ;(3)若),(~2σμN X ,则)()(σμ-Φ=x x F ;(4)以αu 记标准正态分布)1,0(N 的上侧α分位数,则)(1)(αααu u X P Φ-==> 6. 随机变量的函数 )(X g Y =(1)离散时,求Y 的值,将相同的概率相加;(2)X 连续,)(x g 在X 的取值范围内严格单调,且有一阶连续导数,则|))((|))(()('11y g y g f y f X Y --=,若不单调,先求分布函数,再求导。
概率论与数理统计总复习
随
机 试 验
可能结果
基 本 事 件
Ai
只有两个
不含任何ω Φ
Ai Aj 完
不可能 i j 备 Ai任何组合事件A p(Ai ) 0事
Ai
i
必然
Ωi
Ai
件 组
Ai
等
1 P(A i) n
概 完
i 1,2, n 备
事
件
可能结果
条件:
组
贝努利试验
n次重复
定义 随机变量 X 的取值可以一一列举(有限或无限)
称X 为离散型随机变量。
分布律(分布列) 表示法
公式法
PX xk pk
k 1,2,
列表法 X x1 x2
xk
xn
pk p1 p2
pk
pn
性质
1. PX xk 0 k 1,2,
n
2. pk 1
7 7
k 1
2、连续性随机变量 定义 对于随机变量X,若存在非负函数
将 F( y) 用 F[h( y)] 及有关函数表述出来。
利用 F '( y) f ( y) 求出Y的密度函数。
f
(
y)
F
(h(
y))'
h(
y)
h'
(
y)
0
y
其他
14
14
三、二维随机变量及其分布
(一)二维随机变量(X,Y) 的分布函数
定义 对于任意实数 x, y 二元函数
F(x, y) P{X x,Y y}
X为离散型其分布列为 PX xk pk
k 1,2,, n.
X为连续型其密度函数为 f (x).
概率论与数理统计复习资料
2)矩估计、最大似然估计;
3)无偏估计、有效估计 ; 4)求置信区间; 5)假设检验。
概率论与数理统 计复习课
(统计部分)
第五章
“大数定律和中心极限定理”
“切比雪夫不等式”
16 ♀设 n 是 n 次独立重复试验中事件A出现的次数,
♀随机变量X 满足:E(X)=,D(X)=2,则由切比雪夫 1 不等式有 P{| X | 4}
2
(C) S
2 2
2 (D) vS 服从自由度为v的分布
服从自由度为 n 的分布
2
2
2
7.设随机变量 X ~ N 0,1和Y ~ N 0,2,并相互独 立, 则( ) 2 1 2 2 2 (A) X Y 服从 分布 3 3 2 1 1 (B) X 2 Y 2 服从 分布 2 2 2 1 2 (C) X Y 服从 分布
本,则 ( X i X ) /
2 2 i 1
( n 1)
2
2
2.设总体X N (0,22 ) , X 1 , X 2 , X 3 , X 4 为来自
X的一个样本,设 Y a( X1 2 X 2 ) b(3 X 3 4 X 4 ) ,
2
则当a =1/20,b=1/100 时Y 服从
1 n
i 1
n
( X i ) 2 是2的最大似然估
计量
2e 2( x ) , x 13 设总体X的概率密度为 f ( x ) 0, x 其中 > 0是未知参数. X1, X2,…,Xn 是来自X的样本.
求 的矩 估计量及最大似然估计量, 并判断它们是否 是 的无偏估计量.
概率论与数理统计期末考试复习
j 1
此公式即为贝叶斯公式;
P(Bi ) ,i 1,2 ,…,n ,通常叫先验概率; P(Bi / A) ,i 1,2 ,…,n ,通常 称为后验概率;贝叶斯公式反映了“因果”的概率规律,并作出了“由
果朔因”的推断;
我们作了n 次试验,且满足
每次试验只有两种可能结果, A 发生或 A 不发生;
n 次试验是重复进行的,即 A 发生的概率每次均一样;
称事件 A 与事件 B 互不相容或者互斥;基本事件是互不相容的;
-A 称为事件A 的逆事件,或称A 的对立事件,记为 A ;它表示A 不发生 的事件;互斥未必对立;
②运算:
结合率:ABC=ABC A∪B∪C=A∪B∪C
分配率:AB∪C=A∪C∩B∪C A∪B∩C=AC∪BC
7 概率 的公 理化 定义
2° PΩ =1
3° 对于两两互不相容的事件 A1, A2 ,…有 常称为可列完全可加性;
则称 PA 为事件 A 的概率;
1° 1,2 n ,
2°
P(1 )
P( 2
)
P( n
)
1 n
;
设任一事件 A ,它是由1,2 m 组成的,则有
PA=(1) (2 ) (m ) = P(1) P(2 ) P(m )
则称 X 为连续型随机变量; f (x) 称为 X 的概率密度函数或密度函
数,简称概率密度;
密度函数具有下面 4 个性质:
1° f (x) 0 ;
2° f (x)dx 1;
3 离散与 积分元 f (x)dx 在连续型随机变量理论中所起的作用与
连续型 P(X xk) pk 在离散型随机变量理论中所起的作用相类似; 随机变
用;
Φ-x=1-Φx 且 Φ0= 1 ;
概率论与数理统计复习资料
ˆ ( B) 2
1 3 X 1 X 4 4
2
ˆ (C ) 3
1 ˆ4 ( X1 X 2 ) ( D) 2
5、假设检验问题中,第一类错误是指 (A)原假设 H 0 为真,经检验后接受 H 0 (B)原假设 H 0 为真,经检验后拒绝 H 0 (C)原假设 H 0 为伪,经检验后接受 H 0 (D)原假设 H 0 为伪,经检验后拒绝 H 0
解: 因为, 2 未知,所以 的 95%的置信区间为
S S ( X t0.025 (8) , X t0.025 (8) ) n n 用 n 9, x 57.5, s 8.3, t0.025 (8) 2.306 代 入 得
的 95%的置信区间为 (51.12, 63.88)
2
x 2334
当 H 0成立时,统计量
11.25 9 对于 0.05 ,查表得分位数,u0.025 1.96 ,因此这一
W {| u | 1.96}
u
X 2350
~ N (0.1),
假设检验问题的拒绝域为
由 x 2334, 得 2334 2350 U 4.24 1.96 11.25 3
5、设总体 X ~ N ( , 2 ) , X 1 , X 2 为来自总体 X 的样本,
1 1 1 2 ˆ 则估计量 1 X 1 X 2 ,ˆ 2 X 1 X 2 中是 的无 2 3 3 3
偏估计量的为 .
6、设总体 X ~ N ( , 2 ) , X1 , X 2 , X 3 是来自总体 X 的样本,
t0.05 (35) 1.6896 ,
t0.05 (36) 1.6883 , t0.025 (35) 2.0301 , t0.025 (36) 2.028
《概率论与数理统计》总复习资料
《概率论与数理统计》总复习资料概率论部分1.古典概型中计算概率用到的基本的计数方法。
例1:袋中有4个白球,5个黑球,6个红球,从中任意取出9个球,求取出的9个球中有1个白球、3个黑球、5个红球的概率.解:设B ={取出的9个球中有1个白球、3个黑球、5个红球}样本空间的样本点总数:915C n ==5005事件B 包含的样本点:563514C C C r ==240,则P (B )=240/5005=0.048例2:在0~9十个整数中任取四个,能排成一个四位偶数的概率是多少?解:考虑次序.基本事件总数为:410A =5040,设B ={能排成一个四位偶数}。
若允许千位数为0,此时个位数可在0、2、4、6、8这五个数字中任选其一,共有5种选法;其余三位数则在余下的九个数字中任选,有39A 种选法;从而共有539A =2520个。
其中,千位数为0的“四位偶数”有多少个?此时个位数只能在2、4、6、8这四个数字中任选其一,有4种选法;十位数与百位数在余下的八个数字中任选两个,有28A 种选法;从而共有428A =224个。
因此410283945)(A A A B P -==2296/5040=0.4562.概率的基本性质、条件概率、加法、乘法公式的应用;掌握事件独立性的概念及性质。
例1:事件A 与B 相互独立,且P (A )=0.5,P (B )=0.6,求:P (AB ),P (A -B ),P (A B )解:P (AB )=P (A )P (B )=0.3,P (A -B )=P (A )-P (AB )=0.2,P (A B )=P (A )+P (B )-P (AB )=0.8例2:若P (A )=0.4,P (B )=0.7,P (AB )=0.3,求:P (A -B ),P (A B ),)|(B A P ,)|(B A P ,)|(B A P 解:P (A -B )=0.1,P (A B )=0.8,)|(B A P =)()(B P AB P =3/7,)|(B A P =)()()()()(B P AB P B P B P B A P -==4/7,|(B A P =)(1)()()(B P B A P B P B A P -==2/33.准确地选择和运用全概率公式与贝叶斯公式。
概率论与数理统计复习资料
概率论与数理统计复习资料概率论与数理统计复习资料概率论与数理统计是数学中的重要分支,广泛应用于各个领域。
无论是在自然科学、社会科学还是工程技术领域,概率论与数理统计都扮演着重要的角色。
为了更好地理解和应用这门学科,我们需要进行系统的复习和总结。
本文将为大家提供一些有关概率论与数理统计的复习资料,帮助大家更好地掌握这门学科。
一、概率论概率论是研究随机事件发生的可能性的数学学科。
它以概率为基础,通过建立数学模型来描述随机事件的规律性。
在概率论的学习中,我们需要掌握以下几个重要概念:1. 随机事件:随机事件是指在一定条件下可能发生也可能不发生的事件。
例如,掷硬币的结果、骰子点数的出现等都属于随机事件。
2. 概率:概率是描述随机事件发生可能性的数值。
它的取值范围在0到1之间,0表示不可能发生,1表示必然发生。
3. 随机变量:随机变量是指随机事件的结果所对应的数值。
它可以是离散型的,也可以是连续型的。
离散型随机变量的取值是有限或可数的,例如掷骰子的点数;连续型随机变量的取值是无限的,例如身高、体重等。
4. 概率分布:概率分布是随机变量所有可能取值及其对应的概率的分布规律。
离散型随机变量的概率分布可以用概率质量函数来描述,连续型随机变量的概率分布可以用概率密度函数来描述。
5. 期望:期望是随机变量取值的平均值,反映了随机变量的平均水平。
对于离散型随机变量,期望可以通过加权平均的方式计算;对于连续型随机变量,期望可以通过积分的方式计算。
二、数理统计数理统计是研究如何从样本中获取总体信息的学科。
它通过对样本数据进行分析和推断,来对总体进行估计和推断。
在数理统计的学习中,我们需要掌握以下几个重要概念:1. 总体与样本:总体是指研究对象的全体,样本是从总体中抽取的一部分个体。
样本是对总体的一种观察和研究。
2. 统计量:统计量是样本数据的函数,用于对总体参数进行估计。
例如,样本均值、样本方差等都是统计量。
3. 抽样分布:抽样分布是指统计量的分布规律。
《概率论与数理统计》复习资料要点总结
《概率论与数理统计》复习提要第一章随机事件与概率1.事件的关系φφ=Ω-⋃⊂AB A B A AB B A B A 2.运算规则(1)BAAB A B B A =⋃=⋃ (2))()( )()(BC A C AB C B A C B A =⋃⋃=⋃⋃(3)))(()( )()()(C B C A C AB BC AC C B A ⋃⋃=⋃⋃=⋃(4)BA AB B A B A ⋃==⋃ 3.概率)(A P 满足的三条公理及性质:(1)1)(0≤≤A P (2)1)(=ΩP (3)对互不相容的事件n A A A ,,,21 ,有∑===nk kn k kA P A P 11)()( (n 可以取∞)(4)0)(=φP (5))(1)(A P A P -=(6))()()(AB P A P B A P -=-,若B A ⊂,则)()()(A P B P A B P -=-,)()(B P A P ≤(7))()()()(AB P B P A P B A P -+=⋃(8))()()()()()()()(ABC P BC P AC P AB P C P B P A P C B A P +---++=⋃⋃4.古典概型:基本事件有限且等可能5.几何概率6.条件概率(1)定义:若0)(>B P ,则)()()|(B P AB P B A P =(2)乘法公式:)|()()(B A P B P AB P =若n B B B ,,21为完备事件组,0)(>i B P ,则有(3)全概率公式:∑==ni iiB A P B P A P 1)|()()((4)Bayes 公式:∑==ni iik k k B A P B P B A P B P A B P 1)|()()|()()|(7.事件的独立性:B A ,独立)()()(B P A P AB P =⇔(注意独立性的应用)第二章随机变量与概率分布1.离散随机变量:取有限或可列个值,i i p x X P ==)(满足(1)0≥i p ,(2)∑iip=1(3)对任意R D ⊂,∑∈=∈Dx i ii pD X P :)(2.连续随机变量:具有概率密度函数)(x f ,满足(1)1)(,0)(-=≥⎰+∞∞dx x f x f ;(2)⎰=≤≤badx x f b X a P )()(;(3)对任意R a ∈,0)(==a X P 3.几个常用随机变量名称与记号分布列或密度数学期望方差两点分布),1(p B p X P ==)1(,pq X P -===1)0(p pq 二项式分布),(p n B n k q p C k X P kn k k n ,2,1,0,)(===-,npnpqPoisson 分布)(λP,2,1,0,!)(===-k k e k X P kλλλλ几何分布)(p G,2,1 ,)(1===-k p qk X P k p 12p q 均匀分布),(b a U b x a a b x f ≤≤-= ,1)(,2b a +12)(2a b -指数分布)(λE 0,)(≥=-x e x f x λλλ121λ正态分布),(2σμN 222)(21)(σμσπ--=x ex f μ2σ4.分布函数)()(x X P x F ≤=,具有以下性质(1)1)( ,0)(=+∞=-∞F F ;(2)单调非降;(3)右连续;(4))()()(a F b F b X a P -=≤<,特别)(1)(a F a X P -=>;(5)对离散随机变量,∑≤=xx i ii px F :)(;(6)对连续随机变量,⎰∞-=xdt t f x F )()(为连续函数,且在)(x f 连续点上,)()('x f x F =5.正态分布的概率计算以)(x Φ记标准正态分布)1,0(N 的分布函数,则有(1)5.0)0(=Φ;(2))(1)(x x Φ-=-Φ;(3)若),(~2σμN X ,则()(σμ-Φ=x x F ;(4)以αu 记标准正态分布)1,0(N 的上侧α分位数,则)(1)(αααu u X P Φ-==>6.随机变量的函数)(X g Y =(1)离散时,求Y 的值,将相同的概率相加;(2)X 连续,)(x g 在X 的取值范围内严格单调,且有一阶连续导数,则|))((|))(()('11y g y g f y f X Y --=,若不单调,先求分布函数,再求导。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
自考04183概率论与数理统计(经管类)笔记-自考概率论与数理统§1.1 随机事件1.随机现象:确定现象:太阳从东方升起,重感冒会发烧等;不确定现象:随机现象:相同条件下掷骰子出现的点数:在装有红、白球的口袋里摸某种球出现的可能性等;其他不确定现象:在某人群中找到的一个人是否漂亮等。
结论:随机现象是不确定现象之一。
2.随机试验和样本空间随机试验举例:E1:抛一枚硬币,观察正面H、反面T出现的情况。
E2:掷一枚骰子,观察出现的点数。
E3:记录110报警台一天接到的报警次数。
E4:在一批灯泡中任意抽取一个,测试它的寿命。
E5:记录某物理量(长度、直径等)的测量误差。
E6:在区间[0,1]上任取一点,记录它的坐标。
随机试验的特点:①试验的可重复性;②全部结果的可知性;③一次试验结果的随机性,满足这些条件的试验称为随机试验,简称试验。
样本空间:试验中出现的每一个不可分的结果,称为一个样本点,记作。
所有样本点的集合称为样本空间,记作。
举例:掷骰子:={1,2,3,4,5,6},=1,2,3,4,5,6;非样本点:“大于2点”,“小于4点”等。
3.随机事件:样本空间的子集,称为随机事件,简称事件,用A,B,C,…表示。
只包含一个样本点的单点子集{}称为基本事件。
必然事件:一定发生的事件,记作不可能事件:永远不能发生的事件,记作4.随机事件的关系和运算由于随机事件是样本空间的子集,所以,随机事件及其运算自然可以用集合的有关运算来处理,并且可以用表示集合的文氏图来直观描述。
(1)事件的包含和相等包含:设A,B为二事件,若A发生必然导致B发生,则称事件B包含事件A,或事A包含于事件B,记作,或。
性质:例:掷骰子,A:“出现3点”,B:“出现奇数点”,则。
注:与集合包含的区别。
相等:若且,则称事件A与事件B相等,记作A=B。
(2)和事件概念:称事件“A与B至少有一个发生”为事件A与事件B的和事件,或称为事件A与事件B的并,记作或A+B。
解释:包括三种情况①A发生,但B不发生,②A不发生,但B发生,③A与B都发生。
性质:①,;②若;则。
推广:可推广到有限个和无限可列个,分别记作和举例:A:“掷骰子出现的点数小于3”与B:“掷骰子点数大于4”则A∪B{1,2,5,6}(3)积事件概念:称“事件A与事件B同时发生”为事件A与事件B的积事件,或称为事件A与B的交,记作A∩B或AB。
如需精美完整排版,请QQ: 1273114568解释:A∩B只表示一种情况,即A与B同时发生。
性质:①,;②若,则AB=A。
推广:可推广到有限个和无限可列个,分别记作和。
举例:A:“掷骰子出现的点数小于5”与B:“掷骰子点数大于2”则AB={3, 4}(4)差事件概念:称“事件A发生而事件B不发生”为事件A与事件B的差事件,记作A-B.性质:① A-;②若,则A-B=。
举例:A:“掷骰子出现的点数小于5”与B:“掷骰子点数大于2”则A-B={1,2}(5)互不相容事件概念:若事件A与事件B不能同时发生,即AB=,则称事件A与事件B互不相容。
推广:n个事件A1,A2,…,A n两两互不相容,即A i A j=,i≠j,i,j=1,2,…n。
举例:A:“掷骰子出现的点数小于3”与B:“掷骰子点数大于5”则A与B互不相容。
(6)对立事件:概念:称事件“A不发生”为事件A的对立事件,记做.解释:事件A与B互为对立事件,满足:①AB=ф;②A∪B=Ω举例:A:“掷骰子出现的点数小于3”与B:“掷骰子点数大于2”则A与B相互对立性质:①;②,;③A-B==A-AB;如需精美完整排版,请QQ: 1273114568注意:教材第5页的第三条性质有误。
④A与B相互对立A与B互不相容.小结:关系:包含,相等,互不相容,互为对立;运算:和,积,差,对立.(7)事件的运算性质①(和、积)交换律A∪B=B∪A,A∩B=B∩A;②(和、积)结合律(A∪B)∪C=A∪(B∪C),(A∩B)∩C=A∩(B∩C);③(和、积)分配律A∪(B∩C)=(A∪B)∩(A∪C);A∩(B∪C)=(A∩B)∪(A∩C)④对偶律;.例1 习题1.1,5(1)(2)设A,B为两个随机事件,试利用事件的关系与运算证明:证明:证明:例2.习题1.1,6请用语言描述下列事件的对立事件:(1)A表示“抛两枚硬币,都出现正面”;答案::“抛两枚硬币,至少有一枚出现反面”。
(2)B表示“生产4个零件,至少有1个合格”。
答案::“生产4个零件,没有1个是合格的”。
§1.2 概率1.频率与概率(1)频数与频率:在相同条件下进行n次试验,事件A发生n A次,则称n A为事件A发生的频数;而比值n A/n称为事件A发生的频率,记作f n(A).(2)f n(A)的试验特性:随n的增大,f n(A)稳定地趋于一个数值,称这个数值为概率,记作P(A).(3)由频率的性质推出概率的性质①推出①②,推出②P(ф)=0,P(Ω)=1③A,B互不相容,推出③P(A∪B)=P(A)=P(B),可推广到有限多个和无限可列多个. 如需精美完整排版,请QQ: 12731145682.古典概型概念:具有下面两个特点的随机试验的概率模型,称为古典概型:①基本事件的总数是有限个,或样本空间含有有限个样本点;②每个基本事件发生的可能性相同。
计算公式:例3.P9 例1-8。
抛一枚均匀硬币3次,设事件A为“恰有1次出现正面”,B表示“3次均出现正面”,C表示“至少一次出现正面”,试求P(A),P(B),P(C)。
解法1 设出现正面用H表示,出现反面用T表示,则样本空间Ω={HHH,THH,HTH,HHT,TTH,THT,HTT,TTT},样本点总数n=8,又因为A={TTH,THT,HTT},B={HHH},C={HHH,THH,HTH,HHT,TTH,THT,HTT},所以A,B,C中样本点数分别为r A=3,r B=1,r c=7,则解法2 抛一枚硬币3次,基本事件总数n=23,事件A包含了3个基本事件:“第i次是正面,其他两次都是反面”,i=1,2,3,而且r A=3。
显然B就是一个基本事件,它包含的基本事件数r B=1它包含的基本事件数r C=n-r B=23-1=7,故例4.P10 例1-12。
一批产品共有100件,其中3件次品。
现从这批产品中接连抽取两次,每次抽取一件,考虑两种情况:(1)不放回抽样,第一次取一件不放回,第二次再抽取一件;(2)放回抽样,第一次取一件检查后放回,第二次再抽取一件。
试分别针对上述两种情况,求事件A“第一次抽到正品,第二次抽到次品”的概率。
解:(1)(2)3.概率的定义与性质(1)定义:设Ω是随机试验E的样本空间,对于E的每一个事件A赋予一个实数,记为P(A),称P(A)为事件A的概率,如果它满足下列条件:①P(A)≥0;②P(Ω)=1;③设,,…,,…是一列互不相容的事件,则有.(2)性质①,;②对于任意事件A,B有;③;④.如需精美完整排版,请QQ: 1273114568设P(A)=0.7,P(B)=0.6,P(A-B)=0.3,求解:(1)P(A-B)=P(A)-P(AB)∴P(AB)=P(A)-P(A-B)=0.7-0.3=0.4例6. 习题1.2 13设A,B,C为三个随机事件,且P(A)=P(B)=P(C)=,P(AB)=P(BC)=,P(AC)=0。
求:(1)A,B,C中至少有一个发生的概率;(2)A,B,C全不发生的概率。
解:(1)“A,B,C至少有一个发生”表示为A∪B∪C,则所求概率为P(A∪B∪C)=P(A)+P(B)+P(C)-P(AB)-P(AC)-P(BC)+P(ABC)§1.3 条件概率1.条件概率与乘法公式条件概率定义:设A,B为两个事件,在已知事件B发生的条件下,事件A发生的概率,称为事件B发生条件下事件A发生的条件概率,记做P(A|B).例7 P13例1-17.某工厂有职工400名,其中男女职工各占一半,男女职工中技术优秀的分别为20人与40人,从中任选一名职工,试问:(1)该职工技术优秀的概率是多少?(2)已知选出的是男职工,他技术优秀的概率是多少?解:设A表示“选出的职工技术优秀”,B表示“选出的职工为男职工”。
按古典概型的计算方法得:(1)(2)计算公式:设AB为两个事件,且P(B)>0,则。
乘法公式:当P(A)>0时,有P(AB)=P(A)P(B|A);当P(B)>0时,有P(AB)=P(B)P(A|B).推广:①设P(AB)>0,则P(ABC)=P(A)P(B|A)P(C|AB)②设,则例8 P15例1-22.盒中有5个白球2个黑球,连续不放回地在其中取3次球,求第三次才取到黑球的概率。
解:设A i(i=1,2,3)表示“第i次取到黑球”,于是所求概率为2.全概率公式与贝叶斯公式(1)划分:设事件,,…,满足如下两个条件:①,,…,互不相容,且,i=1,2,…,n;②,即,,…,至少有一个发生,则称,,…,为样本空间Ω的一个划分。
当,,…,为样本空间Ω的一个划分时,每次试验有且仅有其中一个发生。
(2)全概公式:设随机试验的样本空间为Ω,,,…,为样本空间Ω的一个划分,B为如需精美完整排版,请QQ: 1273114568 证明:注意:当0<P(A)<1时,A与就是Ω的一个划分,对任意事件B则有全概公式的最简单形式:例9 P15例1-24盒中有5个白球3个黑球,连续不放回地从中取两次球,每次取一个,求第二次取球取到白球的概率。
解:设A表示“第一次取球取到白球”,B表示“第二次取球取到白球”,则例10 P16 例1-25在某工厂中有甲、乙、丙三台机器生产同一型号的产品,它们的产量各占30%,35%,35%,并且在各自的产品中废品率分别为5%,4%,3%,求从该厂的这种产品中任取一件是废品的概率。
解:设A1表示“从该厂的这种产品中任取一件产品为甲所生产”,A2表示“从该厂的这种产品中任取一件产品为乙所生产”,A3表示“从该厂的这种产品中任取一件产品为丙所生产”,B表示“从该厂的这种产品中任取一件为次品”,则如需精美完整排版,请QQ: 1273114568由全概率公式得=30%×5%+35%×4%+35%×3%=3.95%(3)贝叶斯公式:设随机试验的样本空间为Ω,,,…,为样本空间Ω的一个划分,B为任意一个事件,且P(B)>0,则,i=1,2,…,n.注意:①在使用贝叶斯公式时,往往先利用全概公式计算P(B);②理解贝叶斯公式“后验概率”的意义.例题11 P17 例1-28【例1-28】在例1-25的假设下,若任取一件是废品,分别求它是由甲、乙、丙生产的概率。