狭义相对论习题和答案

合集下载

狭义相对论习题和答案

狭义相对论习题和答案

作业6狭义相对论基础研究:惯性系中得物理规律;惯性系间物理规律得变换。

揭示:时间、空间与运动得关系.知识点一:爱因斯坦相对性原理与光速不变K 相对性原理:物理规律对所有惯性系都就是一样得,不存在任何一个特殊(如“绝对静止”)惯性系。

2s 光速不变原理:任何惯性系中,光在真空中得速率都相等。

(A )1(基础训练1)、宇宙飞船相对于地面以速度v 作匀速直线飞行,某一时刻飞船头部得宇航员 向飞船尾部发出一个光讯号,经过K 飞船上得钟)时间后,被尾部得接收器收到,则由此可知飞船得固 有长度为(c 表示真空中光速)(A) c ・t (B) V/ (C) (D)【解答】飞船得固有长度为飞船上得宇航员测得得长度,即为°知识点二:洛伦兹变换由牛顿得绝对时空观=> 伽利略变换,由爱因斯坦相对论时空观=> 洛仑兹变换。

(1) 在相对论中,时、空密切联系在一起(在X 得式子中含有t,t 式中含X)。

(2) 当u « c 时,洛仑兹变换=> 伽利略变换。

(3) 若UAC , P 式等将无意义1(自测与提髙5)、地而上得观察者测得两艘宇宙飞船相对于地而以速度v = 0. 90c 逆向飞行.其中一 艘飞船测得另一艘飞船速度得大小【解答】知识点三:时间膨胀(1) 固有时间:相对事件发生地静止得参照系中所观测得时间。

(2) 运动时间:相对事件发生地运动得参照系中所观测得时间。

(B )1 (基础训练2)、在某地发生两件事,静止位于该地得甲测得时间间隔为4 s,若相对于甲作匀速直线 运动得乙测得时间间隔为5 s,则乙相对于甲得运动速度就是(c 表示真空中光速)(A) (4/5) c. (B) (3/5) c ・ (C) (2/5) c ・ (D) ("5)c.【解答】飞行•当两飞船即将相遇时飞船在自己得天窗处相隔2s 发射两颗信号弹•在飞船得观测者测得两颗信 号弹相隔得时间间隔为多少?° 【解答】以地而为K 系,飞船A 为/T 系,以正东为x 轴正向侧飞船B 相对于飞船A 得相对速度-0.6c-0.8c0.8c 1一一^(一0・6。

狭义相对论作业习题及解答.doc

狭义相对论作业习题及解答.doc

4-7.某飞船自地球出发,相对地球以速率v=0.30c匀速飞向月球,在地球测得该旅程的距离为Zo=3.84xl()8m, 在地球测得该旅程的时间间隔为多少?在飞船测得该旅程的距离Z=?利用此距离求出:在飞船测得该旅程的时间间隔为多少?解:取地球为K惯性系、飞船为K,惯性系。

在地球测得该旅程的时间间隔为:Az = L Q/V M4.27(S)在地球地球测得的£o=3.84xlO8 (m),为地球〜月球的固有距离。

则在飞船测得该旅程的距离为在飞船观测,地球与月球共同以速率v=0.30c匀速运行,先是地球、随后是月球掠过飞船,则在飞船测得该旅程的时间间隔为:Ar = Z/v^4.07(s)说明:显然,飞船测自身旅程的时间间隔宜为固有时,在地球测得该旅程的&为观测时。

△t与显然满足狭义相对论时间膨胀效应,即4-8.在K惯性系测两个同时发生相距Im的事件(该两事件皆在X、X,轴)。

在K,惯性系测该两事件间距为2m, 问:在K,惯性系测该两事件发生的时间间隔为多少?解:在K系测两事件相距Ax=lm;同时发生则&=0.在K,系测两事件相距Ax,=2m;两事件发生的时间间隔为由洛伦兹变换,有Ax —M A/A X 1 Ax' ~ V3-/ = = -/ —/ = — 2 u —Jl-("/c)2 Jl-(“/c)2Jl-("/c)2 Ax 24-10.测得不稳定粒子广介子的固有寿命平均值TO=2.6X1O8S,(1)当它相对某实验室以0.80c的速度运动时,所测的平均寿命z应是多少?(2)在实验室测该介子在衰变前运行距离L应是多少?解:取花+介子、实验室为K,和K惯性系,沿该介子运行方向取为X、X,轴,在K,系中观测:也,=宣=2.6*10%, Ax,=0在K系中观测:也与皆为待求量。

由时间膨胀效应关系式,有T = M MI Jl-(v/c)2 =T J J1-(0.80C/C)2| 1~。

狭义相对论基础习题解答

狭义相对论基础习题解答

狭义相对论基础习题解答一 选择题1.判断下面几种说法是否正确 ( ) (1) 所有惯性系对物理定律都是等价的。

(2) 在真空中,光速与光的频率和光源的运动无关。

(3) 在任何惯性系中,光在真空中沿任何方向传播的速度都相同。

A. 只有 (1) (2) 正确B. 只有 (1) (3) 正确C. 只有 (2) (3) 正确D. 三种说法都正确解:答案选D 。

2. (1)对某观察者来说,发生在某惯性系中同一地点、同一时刻的两个事件,对于相对该惯性系作匀速直线运动的其它惯性系中的观察者来说,它们是否同时发生?(2)在某惯性系中发生于同一时刻、不同地点的两个事件,它们在其它惯性系中是否同时发生?关于上述两个问题的正确答案是:( )A. (1) 同时, (2) 不同时B. (1) 不同时, (2) 同时C. (1) 同时, (2) 同时D. (1)不同时, (2) 不同时 解:答案选A 。

3.在狭义相对论中,下列说法中哪些是正确的?( )(1) 一切运动物体相对于观察者的速度都不能大于真空中的光速.(2) 质量、长度、时间的测量结果都随物体与观察者的相对运动状态而改变 (3) 在一惯性系中发生于同一时刻,不同地点的两个事件在其他一切惯性系中也是同时发生的.(4) 惯性系中的观察者观察一个与他作匀速相对运动的时钟时,会看到这时钟比与他相对静止的相同的时钟走得慢些。

A. (1),(3),(4)B.(1),(2),(4)C.(1),(2),(3)D.(2),(3),(4) 解:同时是相对的。

答案选B 。

4. 一宇宙飞船相对地球以0.8c 的速度飞行,一光脉冲从船尾传到船头。

飞船上的观察者测得飞船长为90m ,地球上的观察者测得光脉冲从船尾发出和到达船头两个事件的空间间隔为 ( )A. 90mB. 54mC. 270mD. 150m 解:x ′=90m, u =0.8c ,8790/(310)310s t -'∆=⨯=⨯2()/1(/)270m x x u t u c ''∆=∆+∆-=。

狭义相对论习题、答案与解法(2010.11.22)

狭义相对论习题、答案与解法(2010.11.22)

狭义相对论习题、答案与解答一. 选择题 1. 有下列几种说法:(1) 真空中,光速与光的频率、光源的运动、观察者的运动无关; (2) 在所有惯性系中光在真空中沿任何方向的传播速率都相同; (3) 所有惯性系对物理基本规律都是等价的。

请在以下选择中选出正确的答案(C )A 、 只有(1)、(2)正确;B 、 只有(1)、(3)正确;C 、 只有(2)、(3)正确;D 、 3种说法都不正确。

2.(1)对某观察者来说,发生在某惯性系同一地点、同一时刻两个事件,对于相对该惯性系做匀速直线运动的其他惯性系中的观察者来说,它们是否同时发生?(2)在某惯性系不同地点、同一时刻的两个事件,它们在其他惯性系中是否同时发生?(A )A 、(1)同时,(2)不同时;B 、(1)不同时,(2)同时;C 、(1)同时,(2)同时;D 、(1)不同时,(2)不同时。

参考答案:(1) ⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎨⎧=∆=∆-∆-∆='∆001222x t c v x c v t t 0='∆t(2) ⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎨⎧≠'∆='∆-''∆+'∆=∆001222x t c v x cv t t 2221c v x c v t -'∆=∆3.K 系中沿x 轴方向相距3m 远的两处同时发生两事件,在K '系中上述两事件相距5m 远,则两惯性系间的相对速度为(A ) A 、c )54( ; B 、c )53(; C 、c )52(; D 、c )51(。

参考答案:221cv vt x x --=' 221cv t v x x -∆-∆='∆ c c x x c v 54531122=⎪⎭⎫⎝⎛-=⎪⎭⎫ ⎝⎛'∆∆-=4.两个惯性系K 和K ',沿x x '轴方向作相对运动,相对速度为v ,设在K '系中某点先后发生两个事件,用固定于该系的钟测出两事件的时间间隔为0t ∆,而用固定在K 系的钟测出这两个事件的时间间隔为t ∆。

狭义相对论基础练习题及答案

狭义相对论基础练习题及答案

狭义相对论基础练习题一、填空1、一速度为U的宇宙飞船沿X轴的正方向飞行,飞船头尾各有一个脉冲光源在工作,处于船尾的观察者测得船头光源发出的光脉冲的传播速度大小为________________________;处于船头的观察者测得船尾光源发出的光脉冲的传播速度大小为________________________。

2、一门宽为a,今有一固有长度为L0(L>a)的水平细杆,在门外贴近门的平面内沿其长度方向匀速运动。

若站在门外的观察者认为此杆的两端可同时被拉进此门,则该杆相对于门的运动速率u至少为________________________。

3、在地球上进行的一场足球赛持续的时间为90秒,在以速率为0.8cυ=飞行的飞船上观测,这场球赛的持续时间为_______________________。

4、狭义相对论的两条基本原理中,相对性原理说的是_________________________________________;光速不变原理说的是_________________________________________。

5、当粒子的动能等于它静止能量时,它的运动速度为_______________________;当粒子的动量等于非相对论动量的2倍时,它的运动速度为______________________。

6、观察者甲以4c/5的速度(c为真空中光速)相对于静止的观察者乙运动,若甲携带一长度为L,截面积为S,质量为m的棒,这根棒安放在运动方向上,则甲携带测得此棒的密度为_____________________;乙测得此棒的密度为_______________。

7、一米尺静止在'K系,且与'X轴的夹角为30,'K系相对于K系的X轴的正向的运动速度为0.8c,则K系中测得的米尺的长度为L=___________;他与X轴的夹角为θ=___________。

8、某加速器将电子加速到能量E=2×106eV时,该电子的动能Ek=_______________________eV。

第3章-狭义相对论练习册答案.doc

第3章-狭义相对论练习册答案.doc

第3章 狭义相对论一、选择题1(B),2(C),3(C),4(C),5(B),6(D),7(C),8(D),9(D),10(C) 二、填空题 (1). c(2). 4.33×10-8s(3). ∆x /v , 2)/(1)/(c x v v -∆(4). c (5). 0.99c (6). 0.99c(7). 8.89×10-8 s (8).c 321(9). 2/3c =v ,2/3c =v(10). 9×1016 J, 1.5×1017 J 三、计算题1. 在K 惯性系中观测到相距∆x = 9×108 m 的两地点相隔∆t =5 s 发生两事件,而在相对于K 系沿x 方向以匀速度运动的K '系中发现此两事件恰好发生在同一地点.试求在K '系中此两事件的时间间隔.解:设两系的相对速度为v , 根据洛仑兹变换, 对于两事件,有 2)/(1c t x x v v -'+'=∆∆∆22)/(1(c x )/c t t v v -'+'=∆∆∆由题意: 0='∆x可得 ∆x = v ∆t 及 2)/(1c t t v -'=∆∆,由上两式可得 2)/(1c t t v -='∆∆2/122))/()((c x t ∆∆-== 4 s2.在K 惯性系中,相距∆x = 5×106 m 的两个地方发生两事件,时间间隔∆t = 10-2 s ;而在相对于K 系沿正x 方向匀速运动的K '系中观测到这两事件却是同时发生的.试计算在K '系中发生这两事件的地点间的距离∆x '是多少?解:设两系的相对速度为v .根据洛仑兹变换, 对于两事件,有 2)/(1c t x x v v -'+'=∆∆∆22)/(1(c x )/c t t v v -'+'=∆∆∆由题意: 0='∆t可得 x c t ∆∆=)/(2v及 2)/(1c x x v -='∆∆由上两式可得 x '∆2/1222])/()[(c t c x ∆∆-=2/1222][t c x ∆∆-== 4×106 m3. 一艘宇宙飞船的船身固有长度为L 0 =90 m ,相对于地面以=v 0.8 c (c 为真空中光速)的匀速度在地面观测站的上空飞过.(1) 观测站测得飞船的船身通过观测站的时间间隔是多少? (2) 宇航员测得船身通过观测站的时间间隔是多少?解:(1) 观测站测得飞船船身的长度为=-=20)/(1c L L v 54 m则 ∆t 1 = L /v =2.25×10-7 s(2) 宇航员测得飞船船身的长度为L 0,则∆t 2 = L 0/v =3.75×10-7 s4. 一飞船和慧星相对于地面分别以0.6c 和0.8c 速度相向运动,在地面上观察,5s 后两者将相撞,问在飞船上观察,二者将经历多长时间间隔后相撞?解:两者相撞的时间间隔Δt = 5s 是运动着的对象—飞船和慧星—发生碰撞的时间间隔,因此是运动时.在飞船上观察的碰撞时间间隔Δt`是以速度v = 0.6c 运动的系统的本征时,根据时间膨胀公式21(/)t v c ∆=-,可得时间间隔为2`1(/)t t v c ∆=∆-= 4(s).5. 在惯性系中,有两个静止质量都是m 0的粒子A 和B ,它们以相同的速率v 相向运动,碰撞后合成为一个粒子,求这个粒子的静止质量M 0.解:设粒子A的速度为A v ,粒子B的速度为B v,合成粒子的运动速度为V .由动量守恒得220220220/1/1/1cV VM c m c m BBAA-=-+- v v v v因1v v v ==B A ,且B A v v-=,所以 0=V .即合成粒子是静止的.由能量守恒得2022202220/1/1c M c c m c c m =-+-v v解出 2200/12cm M v -=6. 两个质点A 和B ,静止质量均为m 0.质点A 静止,质点B 的动能为6m 0c 2.设A 、B 两质点相撞并结合成为一个复合质点.求复合质点的静止质量.解:设复合质点静止质量为M 0,运动时质量为M .由能量守恒定律可得 2202mc c m Mc +=其中mc 2为相撞前质点B 的能量. 202020276c m c m c m mc =+= 故 08m M = 设质点B 的动量为p B ,复合质点的动量为p .由动量守恒定律 B p p =利用动量与能量关系,对于质点B 可得42042420224c qm c m c m c p B ==+对于复合质点可得 420424202264c m c M c M c P ==+ 由此可求得 20202020164864m m m M =-= 004m M =四 研讨题1. 相对论的时间和空间概念与牛顿力学的有何不同?有何联系?参考解答:牛顿力学时空观的基本观点是,长度和时间的测量与运动(或说与参考系)无关;而相对论时空观的基本观点是,长度和时间的测量不仅与运动有关,还与物质分布有关。

狭义相对论习题、答案与解法(2010.11.22)

狭义相对论习题、答案与解法(2010.11.22)

狭义相对论习题、答案与解答一. 选择题 1. 有下列几种说法:(1) 真空中,光速与光的频率、光源的运动、观察者的运动无关; (2) 在所有惯性系中光在真空中沿任何方向的传播速率都相同; (3) 所有惯性系对物理基本规律都是等价的。

请在以下选择中选出正确的答案(C )A 、 只有(1)、(2)正确;B 、 只有(1)、(3)正确;C 、 只有(2)、(3)正确;D 、 3种说法都不正确。

2.(1)对某观察者来说,发生在某惯性系同一地点、同一时刻两个事件,对于相对该惯性系做匀速直线运动的其他惯性系中的观察者来说,它们是否同时发生?(2)在某惯性系不同地点、同一时刻的两个事件,它们在其他惯性系中是否同时发生?(A )A 、(1)同时,(2)不同时;B 、(1)不同时,(2)同时;C 、(1)同时,(2)同时;D 、(1)不同时,(2)不同时。

参考答案:(1) ⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎨⎧=∆=∆-∆-∆='∆001222x t c v x c v t t 0='∆t(2) ⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎨⎧≠'∆='∆-''∆+'∆=∆001222x t c v x cv t t 2221c v x c v t -'∆=∆3.K 系中沿x 轴方向相距3m 远的两处同时发生两事件,在K '系中上述两事件相距5m 远,则两惯性系间的相对速度为(A ) A 、c )54( ; B 、c )53(; C 、c )52(; D 、c )51(。

参考答案:221cv vt x x --=' 221cv t v x x -∆-∆='∆ c c x x c v 54531122=⎪⎭⎫⎝⎛-=⎪⎭⎫ ⎝⎛'∆∆-=4.两个惯性系K 和K ',沿x x '轴方向作相对运动,相对速度为v ,设在K '系中某点先后发生两个事件,用固定于该系的钟测出两事件的时间间隔为0t ∆,而用固定在K 系的钟测出这两个事件的时间间隔为t ∆。

第四章 狭义相对论习题以及答案

第四章 狭义相对论习题以及答案

第4章狭义相对论习题及答案一 选择题1.下列几中说法:(1) 所有惯性系对物理基本规律都是等价的。

(2) 在真空中,光的速度与光的频率、光源的运动状态无关。

(3) 在任何惯性系中,光在真空中沿任何方向的传播速度都相同。

其中哪些说法是正确的?(A) 只有(1)、(2)是正确的。

(B) 只有(1)、(3)是正确的。

(C) 只有(2)、(3)是正确的。

(D) 三种说法都是正确的。

2.边长为a 的正方形薄板静止于惯性系K 的XOY 平面内,且两边分别与X ,Y 轴平行。

今有惯系K ′以0.8c(c 为真空中的光速)的速度相对于K 系沿X 轴作匀速直线运动,则从K ′系测得薄板的面积为(A)a ². (B)0.6a ² (C)0.8a ² (D)a ²/0.63.在某地发生两件事,静止位于该地的甲测得时间间隔为4s ,若相对于甲作匀速直线运动的乙测得时间间隔为5s ,测乙相对于甲的运动速度是(C 表示真空中光速)(A )(4/5)C (B )(3/5)C (C )(1/5)C (D )(2/5)C4.α粒子在加速器中被加速,其质量为静止质量的3倍时,动能为静止能量的(A)2倍 (B)3倍 (C)4倍 (D)5倍5.把一个静止质量为m 0的粒子,由静止加速到v=0.6c(c 为真空中光速)需作的功等于(A)0.18m 0c2 (B)0.25m 0c 2 (C)0.36m 0c 2 (D)1.25m 0c 2二 填空题1.狭义相对论的两条基本原理中,相对性原理说的是 __;光速不变原理说的是__________________________________.2.已知惯性系S ′相对于惯性系S 系以0.5c 的匀速度沿X轴的负方向运动,若从S ′系的坐标原点O′沿X轴正方向发出一光波,则S 系中测得此光波的波速为_____ ____.3.π+介子是不稳定的粒子,在它自己的参照系中测得平均寿命是2.6×10-8s ,如果它相对实验以0.8c (c 为真空中光速)的速度运动,那么实验坐标系中测得π+介子的寿命是____s.4.一门宽为 a.今有一固有长度为l 0(l 0>a)的水平细杆,在门外贴近门的平面内沿其长度方向匀速运动。

大学物理狭义相对论习题及答案

大学物理狭义相对论习题及答案

1 第5章狭义相对论习题及答案1. 牛顿力学的时空观与相对论的时空观的根本区别是什么?二者有何联系?答:牛顿力学的时空观认为自然界存在着与物质运动无关的绝对空间和时间,这种空间和时间是彼此孤立的;狭义相对论的时空观认为自然界时间和空间的量度具有相对性,时间和空间的概念具有不可分割性,而且它们都与物质运动密切相关。

在远小于光速的低速情况下,狭义相对论的时空观与牛顿力学的时空观趋于一致。

2. 狭义相对论的两个基本原理是什么?答:狭义相对论的两个基本原理是:(1)相对性原理在所有惯性系中,物理定律都具有相同形式;(2)光速不变原理在所有惯性系中,光在真空中的传播速度均为c ,与光源运动与否无关。

3.你是否认为在相对论中,一切都是相对的?有没有绝对性的方面?有那些方面?举例说明。

解在相对论中,不是一切都是相对的,也有绝对性存在的方面。

如,光相对于所有惯性系其速率是不变的,即是绝对的;又如,力学规律,如动量守恒定律、能量守恒定律等在所有惯性系中都是成立的,即相对于不同的惯性系力学规律不会有所不同,此也是绝对的;还有,对同时同地的两事件同时具有绝对性等。

4.设'S 系相对S 系以速度u 沿着x 正方向运动,今有两事件对S 系来说是同时发生的,问在以下两种情况中,它们对'S 系是否同时发生?(1)两事件发生于S 系的同一地点;(2)两事件发生于S 系的不同地点。

解由洛伦兹变化2()vt t x c g ¢D =D -D 知,第一种情况,0x D =,0t D =,故'S 系中0t ¢D =,即两事件同时发生;第二种情况,0x D ¹,0t D =,故'S 系中0t ¢D ¹,两事件不同时发生。

5-5飞船A 中的观察者测得飞船B 正以0.4c 的速率尾随而来,一地面站测得飞船A 的速率为0.5c ,求:(1)地面站测得飞船B 的速率;(2)飞船B 测得飞船A 的速率。

大学物理-狭义相对论习题和解答

大学物理-狭义相对论习题和解答

⎪ ⎪⎪ v第十七章 狭义相对论17—1 设有一宇宙飞船,相对于地球作匀速直线运动,若在地球上测得飞船的长度为其静止长度的一半,问飞船相对地球的速度是多少?[解] 飞船静止长度l 0 为其固有长度,地球上测得其长度为运动长度,由长度收缩公式,有:l = l 0= l 0 2解得: = c 2即: v =c = 0.866c 217—2 宇宙射线与大气相互作用时能产生 介子衰变,此衰变在大气上层放出 粒子,已知 粒子的速率为 v = 0.998c ,在实验室测得静止 粒子的平均寿命为2.2 ⨯10-6 s ,试问在 8000m 高空产生的 粒子能否飞到地面?[解] 地面上观测到的 子平均寿命与固有寿命之间的关系t = t 0子运行距离l = vt = v t 0子能飞到地面。

= 0.998c ⨯ 2.2⨯10- = 1042m17—3 在 S 系中观测到两个事件同时发生在 x 轴上,其间距离为 1m ,在 S ,系中观测这两个事件之间的距离是 2m 。

求在 S ,中测得的这两个事件发生的时间间隔。

[解] 在 S 系中两事件时间间隔∆t = 0, 由 Lorentz 变换x ' = x - ut t ' = t - u x c 2 ⎧ ∆x ' ⎪ 得: =⎨ ⎪∆t ' = ⎩∆t - ∆x ∆x c 2 = - c 2 将∆x ' = 2m , ∆x = 1m 代入上两式,得u = 3 c , 2∆t ' = -5.77 ⨯10-9 s 17—4 远方一颗星体以 0.80c 的速率离开我们,我们接收到它辐射来的闪光按 5 昼夜的周期变化,求固定在这星 1 - ( v )2 c 3 3 1 - ⎪ ⎛ v ⎫2 ⎝ c ⎭1 - ⎪ ⎛ v ⎫2 ⎝ c ⎭ 1 - (u / c )2 1 - (u / c )21 - (u / c )2 1 - (u / c )21 - 0.8021 - 0.99652 1 - (u / c )2 1 - (u / c )2 0 体上的参考系中测得的闪光周期。

《狭义相对论》精典习题

《狭义相对论》精典习题

1
u2 c2
v 1
u
u c2
v
S’ u
S’ u
S
v t
x1
x
x’ x2 x
22
Δ x Δ x uΔ t v u
Δt v
1
u2 c2
1
u c2
v
L u
L v
1
u c2
v
L
v v
u
1
u c2
v
1
u2 c2
v u
u2 1 c2
v u
L
1 v
u c2
1
u2 c2
(结果相同)
23
0 x1 t1
x x2 t2
Δ xuΔt
1 2
Δ x Δ x
7c
7c 8.75c
1 2 1 0.6c / c2 0.8
x=7c 小,S系中事件1、2是同时发生的。
x=8.75c 大,S’系中事件1、2是必不是同时发生的。 31
S’ u
0’ S 飞船 x’ 0
v
彗星
x
x1 t1
问:(1)飞船上看,彗星的速度多大? (2)飞船上看,再经过多少时间相撞?
飞船
0.6c
0.8c 慧星
26
【解】 (1)飞船上看,彗星的速度多大?
设u地、面v为分S别系为,飞飞船船、为彗S’星系相对地面的速度
根据洛仑兹变换,在飞船系中,彗星的速度
S’ u
0’ S 飞船 x’ 0
v vx u
v
1
u c2
vx
彗星 x
0.8c 0.6c 0.946c 1 0c.62(c 沿 0-.8x’c方向)

18狭义相对论习题精选(解析版)

18狭义相对论习题精选(解析版)

\2探18狭义相对论习题精选(解析版)狭义相对论的两条基本假设 1.经典的相对性原理一速度的合成法则 2.光的传播与经典的速度合成法则存在矛盾,狭义相对论提出的两条基本假设是:相对性 原理与光速不变原理。

3•“事件”概念是理解同时的相对性的基础,“地面上认为同时的两个事件,对于沿着两个事件发生地的连线的观察者来说,更靠前面的那个事件发生在先”要记住这个结论。

二、时间和空间的相对性1.长度的相对性:I =1。

-C )2.例题12cm 2在S 系测得该圆面积为多少?已知 S'系在t = t ‘ = 0时与S 系坐标轴重合,以-0.8c 的速度沿公共轴X - x'运动。

解:在S '系中观测此圆时,与平行方向上的线度将收缩为 R 庄2•时间的相对性:三、狭义相对论的其它三个结论1•相对论速度变换公式:u + V V = --- ' --u +v 1+-^ 2.相对论质量公式:V 2 1 -㈠ c3.质能方程:E =mc4.相对论动能:E K =E-E 02 2=mc -m o c1.S 系中平面上一个静止的圆的面积为而与垂直方向上的线度不变,仍为2R ,所以测得的面积为(椭圆面积)l x =1; =1; =「si n30由S 系测得尺在ox 方向的投影的长度为:(式中a 、b 分别表示椭圆的长半轴和短半轴)2.S 系中记录到两事件空间间隔心x=600m ,时间间隔 A t =8x10^3,而s 系中记录A t '=O ,求s '系相对s 系的速度。

解:设相对速度为V ,在S 系中记录到两事件的时空坐标分别为(x 1,t 1)>(x 2,t 2) ; S 系中记录到两事件的时空坐标分别(x 1, t 1)为及(X 2 ,t 2 )。

得:i t ' =0, i x = 600m, i t = 8x 10」S3. 一根米尺静止在s 系中,和OX 轴成30角,如果S 系中测得该米尺与 ox 轴成45角,s 系相对s 系的速度是多少? s 系中测得米尺长度是多少?解:如图,由题意知,在S '系中米尺在ox '及o 'y '方向上的投影的长度为:设在S 系中测得米尺长为l,则米尺在ox,oy 方向上的投影的长度为:AT7(_!• 1l x =lcos45 I ; =lsi n45即 l^l ;因为尺在o ;方向上的投影长度不变即:I ; =1;S = Tiab =兀」1L 〔v 〕2 —丫 2丿由洛仑兹变换得:=巾 2 -t l )-冷(X 2 -XLc根据题意得:I ; = I 'COS301; =1 si n30 其中 l' = 1m于是有l yl;l xl x =匚』1-匸】 即 I 'si n30" = l 'cos30;|1-⑴=V 2丿Y 2丿^^^^£sin3^^o.7o7mcos45 cos454.宇宙飞船相对于地面以速度V 作匀速直线飞行,某一时该飞船头部的宇航员向飞船尾部发出一个光讯号,经过 A t (飞船上的钟)时间后,被尾部的接收器收到,则飞船的固有长度 是多少? 解:飞船的固有长度就是相对于飞船静止的观察者测得的飞船长度。

章狭义相对论基础习题解答

章狭义相对论基础习题解答

章狭义相对论基础习题解答Revised at 2 pm on December 25, 2020.狭义相对论基础习题解答一选择题1. 判断下面几种说法是否正确( )(1) 所有惯性系对物理定律都是等价的。

(2) 在真空中,光速与光的频率和光源的运动无关。

(3) 在任何惯性系中,光在真空中沿任何方向传播的速度都相同。

A. 只有 (1) (2) 正确B. 只有 (1) (3) 正确C. 只有 (2) (3) 正确D. 三种说法都正确解:答案选D 。

2. (1)对某观察者来说,发生在某惯性系中同一地点、同一时刻的两个事件,对于相对该惯性系作匀速直线运动的其它惯性系中的观察者来说,它们是否同时发生?(2)在某惯性系中发生于同一时刻、不同地点的两个事件,它们在其它惯性系中是否同时发生?关于上述两个问题的正确答案是:( )A.(1) 同时, (2) 不同时B. (1) 不同时, (2) 同时C.(1) 同时, (2) 同时D. (1) 不同时, (2) 不同时解:答案选A 。

3.在狭义相对论中,下列说法中哪些是正确的( )(1)一切运动物体相对于观察者的速度都不能大于真空中的光速.(2)质量、长度、时间的测量结果都随物体与观察者的相对运动状态而改变(3)在一惯性系中发生于同一时刻,不同地点的两个事件在其他一切惯性系中也是同时发生的.(4)惯性系中的观察者观察一个与他作匀速相对运动的时钟时,会看到这时钟比与他相对静止的相同的时钟走得慢些。

A. (1),(3),(4)B. (1),(2),(4)C. (1),(2),(3)D. (2),(3),(4)解:同时是相对的。

答案选B 。

4. 一宇宙飞船相对地球以的速度飞行,一光脉冲从船尾传到船头。

飞船上的观察者测得飞船长为90m ,地球上的观察者测得光脉冲从船尾发出和到达船头两个事件的空间间隔为 ( )A. 90mB. 54mC. 270mD. 150m 解: x ′=90m, u = c , 8790/(310)310s t -'∆=⨯=⨯()270m x x u t ''∆=∆+∆=。

第04章(狭义相对论)习题答案

第04章(狭义相对论)习题答案

1 1 - ( u / c ) 2
(SI) ]
解:由题意,车厢上的观察者测得的这两个痕迹之间的距离为固有长度 L 0 ,而地面上 的观察者测看来,这两个痕迹是随车厢一起运动的,测得长度会发生相对论长度收缩,则
L 0 =
1 1 u 2 c 2
4-5 在惯性系 S 中,有两事件发生于同一地点,且第二事件比第一事件晚发生Dt =2s;而 在另一惯性系 S'中,观测第二事件比第一事件晚发生Dt¢=3s.那么在 S'系中发生两事件 8 的地点之间的距离是多少?[6.72×10 m] 解: 设两惯性系的相对运动速度为 u , 由题意, S 系中测得的两事件的时间间隔 Dt = 2 s 为固有时间,根据相对论时间膨胀效应, S ¢ 系测得的时间间隔
¢= Dt
Dt 1 u c 2
2
即: 3 =
2 1 u c 2
2
解得: u =
5 c 3
则 S ¢ 系中发生的这两事件的地点之间的距离 L 为:
L = u Dt =
5 8 c ´ 3 » 6.71´ 10 m 3
4-6
一体积为 V0,质量为 m0 的立方体沿其一棱的方向相对于观察者 A 以速度 v 运动.观
t 0
1 u 2 c 2
则 5 =
4 1 u 2 c 2
解得: u =
3 c 5
4-2
-6 m 子是一种基本粒子,在相对于 m 子静止的坐标系中测得其寿命为 t 0 =2×10 s.如
果 m 子相对于地球的速度为v = 0.988c (c 为真空中光速),则在地球坐标系中测出的 m 子的 寿命是多长?[1.29×10 5 s] 解:由题意, m 子的固有寿命为 t 0 = 2 ´10 s ,根据相对论时间膨胀效应,对于地面 参考系运动的 m 子的寿命为: t=

狭义相对论练习册答案

狭义相对论练习册答案

狭义相对论练习册答案狭义相对论是爱因斯坦于1905年提出的理论,它主要研究在不同惯性参考系中物理定律的不变性。

以下是一些狭义相对论的练习题及其答案。

练习一:时间膨胀假设一个宇航员以接近光速的速度(例如0.9c)旅行了10光年。

根据狭义相对论,宇航员经历的时间与地面观察者测量的时间有何不同?答案:根据狭义相对论的时间膨胀公式:\[ \Delta t' = \frac{\Delta t}{\gamma} \]其中,\( \Delta t \) 是地面观察者测量的时间,\( \Delta t' \) 是宇航员经历的时间,\( \gamma = \frac{1}{\sqrt{1-v^2/c^2}} \) 是洛伦兹因子。

对于0.9c的速度,\( \gamma \) 大约为2.294。

因此,宇航员经历的时间是:\[ \Delta t' = \frac{10}{2.294} \approx 4.36 \text{ 光年} \]练习二:长度收缩一个物体在静止参考系中的长度是10米。

当它以0.9c的速度相对于观察者运动时,观察者会测量到的长度是多少?答案:长度收缩公式为:\[ L = L_0 \sqrt{1-v^2/c^2} \]其中,\( L \) 是运动参考系中的长度,\( L_0 \) 是静止参考系中的长度。

代入数值:\[ L = 10 \times \sqrt{1-(0.9)^2} \approx 4.5 \text{ 米} \]练习三:质能等价一个质量为1千克的物体,当它以接近光速的速度运动时,它的相对论质量是多少?答案:相对论质量公式为:\[ m = m_0 / \sqrt{1-v^2/c^2} \]其中,\( m \) 是相对论质量,\( m_0 \) 是静止质量。

对于0.9c的速度,\( \gamma \) 大约为2.294。

因此,相对论质量是:\[ m = 1 / \sqrt{1-(0.9)^2} \approx 2.294 \text{ 千克} \]练习四:速度相加两个物体A和B,A相对于地面以0.6c的速度运动,B相对于A以0.8c的速度运动。

狭义相对论基础练习题及答案

狭义相对论基础练习题及答案

狭义相对论基础练习题一、填空1、一速度为U的宇宙飞船沿X轴的正方向飞行,飞船头尾各有一个脉冲光源在工作,处于船尾的观察者测得船头光源发出的光脉冲的传播速度大小为________________________;处于船头的观察者测得船尾光源发出的光脉冲的传播速度大小为________________________。

2、一门宽为a,今有一固有长度为L0(L>a)的水平细杆,在门外贴近门的平面内沿其长度方向匀速运动。

若站在门外的观察者认为此杆的两端可同时被拉进此门,则该杆相对于门的运动速率u至少为________________________。

3、在地球上进行的一场足球赛持续的时间为90秒,在以速率为0.8cυ=飞行的飞船上观测,这场球赛的持续时间为_______________________。

4、狭义相对论的两条基本原理中,相对性原理说的是_________________________________________;光速不变原理说的是_________________________________________。

5、当粒子的动能等于它静止能量时,它的运动速度为_______________________;当粒子的动量等于非相对论动量的2倍时,它的运动速度为______________________。

6、观察者甲以4c/5的速度(c为真空中光速)相对于静止的观察者乙运动,若甲携带一长度为L,截面积为S,质量为m的棒,这根棒安放在运动方向上,则甲携带测得此棒的密度为_____________________;乙测得此棒的密度为_______________。

7、一米尺静止在'K系,且与'X轴的夹角为30,'K系相对于K系的X轴的正向的运动速度为0.8c,则K系中测得的米尺的长度为L=___________;他与X轴的夹角为θ=___________。

8、某加速器将电子加速到能量E=2×106eV时,该电子的动能Ek=_______________________eV。

力学习题-第11章狭义相对论(含答案)

力学习题-第11章狭义相对论(含答案)

3. 设 S 和 S′是两个相对作匀速直线运动的惯性系,则在 S 系中同一时刻、不同地点发生的
两个事件,在 S′系一定不同时发生 答案:对
4. 两只相对运动的标准时钟 A 和 B,从 A 所在的所在惯性系观察,走得快得是 A,从 B 所 在的所在惯性系观察,走得快得是 B。 答案:对
5. 可以同时发生的两个事件的空间间隔,在它们同时发生的惯性系中最短 答案:错
D. 惯性系与非惯性系之间 答案:C
7. 设 S′系的 X′轴与 S 系的 X 轴始终重合,S′系相对 S 系以匀速 u 沿 X(X′)轴运动,一刚 性直尺固定在 S′系中,它与 X′轴正向的夹角为 45 度,则在 S 系中测量该尺与 X 轴正向的夹 角为
A. 大于 45 度 B. 等于 45 度 C. 小于 45 度 D. 若 u 沿 X′轴正向则大于 45 度、若 u 沿 X′轴负向则小于 45 度 答案:A
第十一单元 狭义相对论 单元测验题 一、单选题 1. 设地球可看做惯性系,则按照牛顿力学的经典时空观,下列说法错误的是 A. 在地球上同时发生的两个事件,在人造卫星上观察也是同时发生的 B. 在地球上两个事件相隔 1 小时发生,在人造卫星上观察也相隔 1 小时 C. 在地球上某处测量向各个方向传播的光速大小,结果都相同 D. 在地面上测量一列火车的长度,火车静止时和高速运动时测量的结果相同 答案:C
10. 自然界中任何真实物体在真空中的运动速度都不能大于 c
答案:对
6. 可以同地发生的两个事件的时间间隔,在它们同地发生的惯性系中最短 答案:对
7. 在惯性系中观测,运动物体在其运动方向上的长度要缩短 答案:对
8. 当两个参考系的相对运动速度远小于光速时,可用伽利略变换代替洛伦兹变换 答案:对
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

作业6 狭义相对论基础
研究:惯性系中得物理规律;惯性系间物理规律得变换。

揭示:时间、空间与运动得关系.
知识点一:爱因斯坦相对性原理与光速不变
1。

相对性原理:物理规律对所有惯性系都就是一样得,不存在任何一个特殊 (如“绝对静止”)惯性系。

2。

光速不变原理:任何惯性系中,光在真空中得速率都相等。

( A )1(基础训练1)、宇宙飞船相对于地面以速度v 作匀速直线飞行,某一时刻飞船头部得宇航员向飞船尾部发出一个光讯号,经过t (飞船上得钟)时间后,被尾部得接收器收到,则由此可知飞船得固有长度为(c表示真空中光速)
(A) c·t (B) v·t (C) (D) 【解答】
飞船得固有长度为飞船上得宇航员测得得长度,即为c ·∆t 。

知识点二:洛伦兹变换
由牛顿得绝对时空观⇒伽利略变换,由爱因斯坦相对论时空观⇒洛仑兹变换。

(1)在相对论中,时、空密切联系在一起(在x 得式子中含有t,t 式中含x)。

(2)当u 〈< c时,洛仑兹变换 ⇒ 伽利略变换。

(3)若u ≥ c, x '式等将无意义
1(自测与提高5)、地面上得观察者测得两艘宇宙飞船相对于地面以速度 v = 0、90c 逆向飞行.其中一艘飞船测得另一艘飞船速度得大小v ′=__、 【解答】
知识点三:时间膨胀
(1)固有时间:相对事件发生地静止得参照系中所观测得时间。

(2)运动时间:相对事件发生地运动得参照系中所观测得时间。

(B )1(基础训练2)、在某地发生两件事,静止位于该地得甲测得时间间隔为4 s,若相对于甲作匀速
直线运动得乙测得时间间隔为5 s,则乙相对于甲得运动速度就是(c 表示真空中光速)
(A) (4/5) c. (B) (3/5) c. (C) (2/5) c 。

(D) (1/5) c 、 【解答】
()
222
002
4311551/t v t v c c c t v c ∆⎛⎫⎛⎫⎛⎫
∆=
⇒=-⇒=-= ⎪ ⎪ ⎪∆⎝⎭⎝⎭⎝⎭
-
2(自测与提高12)、飞船以0。

8c 得速度相对地球向正东飞行,飞船以0.6c得速度相对地球向正西方
向飞行.当两飞船即将相遇时飞船在自己得天窗处相隔2s 发射两颗信号弹。

在飞船得观测者测得两颗信号弹相隔得时间间隔为多少? 【解答】
以地面为K 系,飞船A 为K ˊ系,以正东为x轴正向;则飞船B 相对于飞船A 得相对速度
220.60.8 1.4
'0.9460.810.80.61(0.6)
1B A B A B v v c c v c c v c c v c c
----=
===-+⨯---
知识点四:长度收缩
(1)固有长度:相对物体静止得参照系测得物体得长度。

(2)运动长度:棒运动时测得得它得长度。

说明:只有棒沿运动方向放置时长度收缩!
(C )1(基础训练3)、 K 系与K’系就是坐标轴相互平行得两个惯性系,K '系相对于K系沿Ox 轴正方向匀速运动.一根刚性尺静止在K'系中,与O’x’轴成 30°角.今在K系中观测得该尺与Ox 轴成 45°角,则K '系相对于K系得速度就是:
(A) (2/3)c . (B) (1/3)c 、 (C) (2/3)1/2
c 、 (D) (1/3)1/2c 、 【解答】
K'系中:
K 系中:()2
'tan 45'1/1/3x x y y l l l l v c v ===⇒-=⇒= (C )2(自测与提高4)、一匀质矩形薄板,在它静止时测得其长为a ,宽为b ,质量为m 0。

由此可算出其面积密度为m 0 /ab 、假定该薄板沿长度方向以接近光速得速度v作匀速直线运动,此时再测算该矩形薄板得面积密度则为 (A) (B) (C) (D)
【解答】
22'''''(1/)m m
a b b a b ab v c σ==⇒===
-
3(基础训练7)、一门宽为a 、今有一固有长度为l 0 (l0 > a )得水平细杆,在门外贴近门得平面内沿其长度方向匀速运动。

若站在门外得观察者认为此杆得两端可同时被拉进此门,则该杆相对于门得运动速率u 至少为___、
【解答】门外得观察者测得杆得长度
4(自测与提高10)、一隧道长为L ,宽为d,高为h ,拱顶为半圆,如图.设想一列车以极高得速度v 沿隧道长度方向通过隧道,若从列车上观测,(1) 隧道得尺寸如何?(2) 设列车得长度为l 0,它全部通过隧道得时间就是多少? 【解答】
(1) 宽、高及拱顶都不变,长度变为 (2)
5(基础训练10)、两只飞船相向运动,它们相对地面得速率就是v 。

在飞船A中有一边长为a 得正方形,飞船A 沿正方形得一条边飞行,问飞船B 中得观察者测得该图形得周长就是多少? 【解答】
知识点五:在相对论中,能量、动量、角动量等守恒量以及与守恒量传递相联系得物理量,如力、功等,都面临重新定义得问题。

1、相对论质量:m 0(静止质量), m(速率υ运动得粒子得质量)
2、相对论动量:
3、相对论动能:
4、静止能量:
5、总能:
6、质量亏损: 释放能量:∆E = ∆mc 2
( C )1、(自测与提高3)设某微观粒子得总能量就是它得静止能量得K 倍,则其运动速度得大小为 (以c表示真空中得光速) (A) . (B) 、 (C) 、 (D) . 【解答】
22
00
1
E mc Km c m Km v
K
==⇒==⇒=⇒=
2(基础训练8)、(1) 在速度___情况下粒子得动量等于非相对论动量得两倍。

(2) 在速度____情况下粒子得动能等于它得静止能量.
【解答】
(1)
(2)
222
000
22
k
E mc m c m c m m v
=-=⇒==⇒=
3(自测与提高8)、已知一静止质量为m0得粒子,其固有寿命为实验室测量到得寿命得1/n,则此粒子得动能就是__、
【解答】
4(基础训练12)、在惯性系中,有两个静止质量都就是m0得粒子A与B,它们以相同得速率v相向运动,碰撞后合成为一个粒子,求这个粒子得静止质量。

【解答】
由动量守恒知:碰后形成得粒子静止。

由能量守恒得
22
00
A B
E m c E E m
''
==+=⇒=
5(基础训练13)、要使电子得速度从v1=1、2×108m/s增加到v2 =2。

4×108m/s必须对它做多少功?
(电子静止质量m e =9.11×10-31kg)
【解答】
214
21
4.7210()
e
A E E E m c J
-
=∆=-=-=⨯
6(基础训练15)、已知μ子得静止能量为105。

7MeV,平均寿命为2。

2⨯10—6s,试求动能为150M eV得μ子得速度v与平均寿命τ。

【解答

2
2220
002
1)
0.91
k
k
m c
E mc m c m c
m c E
v c
=-=⇒=
+
⇒===
附加题:
1(自测与提高14)、(1) 质量为m0 得静止原子核(或原子)受到能量为E 得光子撞击,原子核(或原子)将光子得能量全部吸收,则此合并系统得速度(反冲速度)以及静止质量各为多少?(2) 静止质量为得静止原子发出能量为E 得光子,则发射光子后原子得静止质量为多大?
【解答】
(1)设合并系统得速度为v,质量为M ,静止质量为M0、由动量守恒与能量守恒得:
222
00
22
;
/
m c E Mc m c E
Ec
v M
m c E c
p E c Mv
M m ⎧+=+
⇒===

+
==

⇒=== (2) 设静止质量为。

由动量守恒与能量守恒得:
()
22
/
/
m c E M c
p E c M v M m m M M
⎧''
+-=
⎪⎪
'''
==⇒==


''
=
⎪⎩。

相关文档
最新文档