《高等数学二》期末复习题及答案_28171462418361700
高等数学2期末复习题与答案
《高等数学》2期末复习题一、填空题:1、函数得定义域就是 1≦X^2+Y^2<3 、2、设则、3、函数在点得全微分4.设则、设则、5、设而则6.函数在点(1,2)处沿从点(1,2)到点(2,)得方向导数就是7、改换积分次序 ; 、8.若L就是抛物线上从点A到点B得一段弧,则=9、微分方程得通解为、二、选择题:1. 等于 ( )(上下求导)A.2, B、 C、0 D、不存在2.函数得定义域就是( D )A. B、C、 D.3、 ( B )A、 B、C、 D、5、设,且F具有导数,则(D )A、;B、;C、 ;D、、6.曲线 ,,,在处得切向量就是 ( D )A. B、 C、 D、7.对于函数 ,原点 ( A )A.就是驻点但不就是极值点 B、不就是驻点 C、就是极大值点 D、就是极小值点8.设I=, 其中D就是圆环所确定得闭区域,则必有( )A.I大于零 B、I小于零 C、I等于零 D、I不等于零,但符号不能确定。
9、已知L就是平面上不包含原点得任意闭曲线,若曲线积分,则a等于( )、A -1B 1C 2D -210.若L为连接及两点得直线段,则曲线积分=( )A.0 B、1 C、 D、211、设D为则( )A、;B、 ;C、 ;D、、12、微分方程得通解为( )A、;B、;C、;D、13、( )就是微分方程在初始条件下得特解、A、;B、;C、;D、、三、计算题:1、设,求及,其中f 具有一阶连续偏导数、2.设, 求 ,3.求旋转抛物面在点处得切平面及法线方程。
4.求函数得极值5.计算,其中D就是由圆周及轴所围成得右半闭区域、6.计算,其中D就是以O(0,0),A(1,1),B(0,1)为顶点得三角形闭区域、7、计算 ,其中就是三个坐标面与平面所围成得区域、8、计算 ,其中L为圆得正向边界。
9、计算曲线积分其中L就是从O(0, 0)沿上半圆到A(2, 0)、10、验证:在整个面内,就是某个函数得全微分,并求出这样得一个函数、11、求微分方程得通解、12、求解微分方程得特解:13、解微分方程、四、应用题:1、用钢板制造一个容积为V得无盖长方形水池,应如何选择水池得长、宽、高才最省钢板、2、已知矩形得周长为24cm,将它绕其一边旋转而构成一圆柱体,试求所得圆柱体体积最大时得矩形面积、3、求抛物线所围成得闭区域得面积、4、求抛物面与锥面所围成得立体得体积、高等数学2期末复习题答案一、填空题:1、2、3、4、5、6、(注:方向导数)7、;8、(注:) 9、二、选择题:1、A;2、 D;3、 B;4、缺5、 D;6、 D;7、 A;8、 A;9、 A; 10、C;11、 C; 12、C; 13、D三、计算题:1、解:令,则2212sin 3sin 3x x z z u z v z z e y x e y f x f x u x v x u v∂∂∂∂∂∂∂''=⋅+⋅=+=⋅+⋅∂∂∂∂∂∂∂ 2212cos 3cos 3x x z z u z v z z e y y e y f y f y u y v y u v∂∂∂∂∂∂∂''=⋅+⋅=+=⋅+⋅∂∂∂∂∂∂∂ 2、 解:两方程分别两边对求偏导数,注意就是关于得二元函数,得即这就是以为未知量得二元线性方程组。
高等数学2(下册)试题答案以及复习要点汇总(完整版)
高等数学(2)试题答案以及复习要点汇总一. 选择题 (每题3分,共15分)1. 设(,)f x y 具有一阶连续偏导数,若23(,)f x x x =,224(,)2x f x x x x =-,则2(,)y f x x = [ A ](A) 3x x + ; (B) 2422x x + ; (C) 25x x + ; (D) 222x x + 。
解:选A 。
23(,)f x x x = 两边对 x 求导:222(,)(,)23x y f x x f x x x x +⋅=,将 224(,)2x f x x x x =- 代入得242222(,)3y x x xf x x x -+= ,故 23(,)y f x x x x =+ 。
2.已知()()dy y x x by dx x y axy 22233sin 1cos +++-为某二元函数的全微分,则a 和b 的值分别为 [ C ](A) –2和2; (B) –3和3;(C)2和–2; (D) 3和–3;解:选C 。
x y axy yP xy x by x Q cos 236cos 22-=∂∂=+=∂∂ 2,2=-=a b3. 设∑为曲面z =2-(x 2+y 2)在xoy 平面上方的部分,则⎰⎰∑=zdS I =[ D ]()⎰⎰-+-2202220412)(r rdr r r d A πθ; ()()⎰⎰+-202220412rdr r r d B πθ; ()()⎰⎰-202202rdr r d C πθ; ()()⎰⎰+-202220412rdr r r d D πθ 。
解:选D 。
()⎰⎰+-=202220412rdr r r d I πθ 。
4. 设有直线410:30x y z L x y --+=⎧⎨+-=⎩,曲面222z x y z =-+在点(1,1,1)处的切平面∏,则直线L 与平面∏的位置关系是: [ C ](A) L ⊂∏; (B) //L ∏; (C) L ⊥∏; (D) L 与∏斜交 。
高等数学2期末复习题与答案(可编辑修改word版)
x 2 + y 2 - 1 3 1- y 2《高等数学》2 期末复习题一、填空题:1. 函 数 z = + ln(3 - x 2 - y 2 ) 的 定 义 域 是 1≦X^2+Y^2<3 . 2.设 z = (1 + x ) y, 则∂z =∂y(1+ x ) yln(1+ x ) .3.函数 z = ln(1+ x 2 + y 2 ) 在点(1, 2) 的全微分dz = 1dx + 2 dy(1,2)3 34.设 f (x + y , xy ) = x 2 + y 2 , 则 f (x , y ) =.设 f (x + y , y) = x 2 - y 2 , 则 f (x , y ) = .x5. 设 z = e u sin v 而 u = xy v = x + y 则 ∂z =∂ye xy [x sin(x + y ) + cos(x + y )]6. 函数 z = x 2 + y 2 在点(1,2)处沿从点(1,2)到点(2,2 + )的方向导数是1+ 222 y 17. 改换积分次序⎰0dy ⎰y 2f (x , y )dx =; ⎰0 dy ⎰y -1f (x , y )dx = .8. 若 L 是抛物线 y 2 = x 上从点 A (1,-1) 到点 B (1,1) 的一段弧,则⎰xydx =L9. 微分方程(1+ e 2x )dy + ye 2x dx = 0 的通解为.二、选择题: 1.lim ( x , y )→(2,0) tan(xy )y 等于 ()(上下求导)A .2,B. 12C.0D.不存在2. 函 数 z = 的定义域是( D )A. {(x , y ) x ≥ 0, y ≥ 0} C. {(x , y ) y ≥ 0, x 2 ≥ y }B. {(x , y ) x 2 ≥ y } D. {(x , y ) x ≥ 0, y ≥ 0, x 2 ≥ y }3 x - y23.∂f (x , y ) | ∂x( x0 ,y 0 ) = ( B )A. lim ∆x →0 f (x 0 + ∆x , y 0 + ∆y ) - f (x 0 , y 0 )∆xB. lim∆x →0f (x 0 + ∆x , y 0 ) - f (x 0 , y 0 )∆xC. lim ∆x →0 f (x 0 + ∆x , y 0 + ∆y ) - f (x 0 + ∆x , y 0 )∆xD. lim∆x →0 f (x 0 + ∆x , y 0 ) ∆x5. 设 z = F (x 2 + y 2 ) ,且 F 具有导数,则∂z + ∂z= (D )∂x ∂yA. 2x + 2 y ;B. (2x + 2 y )F (x 2 + y 2 ) ;C. (2x - 2 y )F '(x 2 + y 2 ) ;D. (2x + 2 y )F '(x 2 + y 2 ) .6. 曲线 x = a cos t , y = a sin t , z = amt ,在 t = 处的切向量是 ( D )4A . (1,1, 2)B. (-1,1, 2)C. (1,1, 2m )D. (-1,1, 2m )7. 对于函数 f (x , y ) = x 2 + xy ,原点(0,0)( A )A .是驻点但不是极值点B.不是驻点C.是极大值点D.是极小值点8.设 I= ⎰⎰5Dx 2 + y 2 -1dxdy , 其中 D 是圆环1 ≤ x 2 + y 2 ≤ 4 所确定的闭区域, 则必有( ) A .I 大于零 B.I 小于零C.I 等于零D.I 不等于零,但符号不能确定。
《高等数学二》期末复习题及答案_28171462418361700
D
2 ,2t
x+y= 1
在第一象限内所围成的区域。
x= 0
14、(本题满分12分)一质点沿曲线>,= /从点(0,0,0)移动到点
z = r
(0, 1, 1),求在此过程中,力户=Jl + x*7-£ + 9所作的功W。
15、(本题满分10分)判别级数ynsin-的敛散性。
23、设L为连接(1,0)与(0,1)两点的直线段,则j(x+y)4s=
24、lim/x"=
(21。。)次+/ +1 _1
25、2=3,b=4,[与B的夹角是工,«')axb =2
26、已知三角形的顶点A(U,T),8(2J,0),C(0,0,2),则AABC的面积等于
27、点(2,3』)至1|点加2(274)的距离附|“[=
3、积分/=JJje4/b的值为x2+y2<4
4、若a,b为互相垂直的单位向量,则a b=
5、交换积分次序jjiZrJo /(x,yMy=
6、级数£(:+/)的和是
“1LJ
7、二一即=
Dxy,T)
8、二元函数z = sin(2x + 3y),则」=
9、设/(x, y)连续,交换积分次序J:八[J(x,y}dy=
11、B解:若级数£%收敛,由收敛的性质4G。三个选项依然是“■1
收敛的,而£(%+2)未必收敛,或者排除法选择B。/1.1
12、C解:二重积分|].f(#,y)d#dy的值与函数有关,与积分区域有关, 而与积分变量的字母表达没关系。
13、B解:利用平行向量对应的坐标成比例,Z=(84,-2),则
自考高等数学2试题及答案
自考高等数学2试题及答案一、选择题(每题3分,共30分)1. 下列函数中,满足f(2+x)=f(2-x)的是:A. f(x) = sin(x)B. f(x) = cos(x)C. f(x) = x^2D. f(x) = e^x答案:B2. 设函数f(x)在点x=a处可导,且f'(a)≠0,那么曲线y=f(x)在点(x=a, y=f(a))处的切线斜率为:A. f(a)B. f'(a)C. f(a+1)D. 0答案:B3. 不等式e^x > x^2在区间(0, +∞)上成立的充要条件是:A. x > 0B. x > 1C. x > 2D. x > 3答案:A4. 设数列{an}是等差数列,且a1=1,a2=3,a3=5,则此等差数列的公差d为:A. 1B. 2C. 3D. 4答案:B5. 曲线y=x^3在点(1,1)处的法线方程为:A. y=3x-2B. y=-3x+4C. y=3x+2D. y=-3x-2答案:B6. 设函数f(x)在区间[a,b]上连续,若f(x)在[a,b]上单调递增,则f(x)在[a,b]上:A. 有最大值和最小值B. 有最大值或最小值C. 有界但不一定有最大值或最小值D. 无界答案:A7. 二元函数z=xy^2在点(1,1)处的偏导数分别为:A. 1, 2B. 2, 1C. 1, 1D. 2, 28. 设函数f(x)在区间(-∞, +∞)上满足f(x)=f(x+3),则f(x)的周期为:A. 1B. 3C. 6D. 不确定答案:B9. 利用定积分的几何意义,计算曲边梯形的面积,其公式为:A. ∫[a,b] f(x) dxB. ∫[b,a] f(x) dxC. ∫[a,b] f(x) + g(x) dxD. ∫[a,b] f(x) - g(x) dx答案:A10. 微积分基本定理指出,若函数f(x)在区间[a,b]上连续,且F(x)是f(x)的一个原函数,则:A. F(b) - F(a) = f(b) - f(a)B. F(b) - F(a) = ∫[a,b] f(x) dxC. F(b) - F(a) = f(a) - f(b)D. F(b) - F(a) = ∫[b,a] f(x) dx答案:B二、填空题(每题4分,共20分)11. 若函数f(x)=x^2+1在区间[-1,2]上的最大值为M,则M=________。
高数2试题及答案
高数2试题及答案一、选择题(每题5分,共20分)1. 若函数f(x)=x^3-3x+1,则f'(x)等于:A. 3x^2-3B. x^3-3C. 3x^2-3xD. 3x^2答案:A2. 极限lim(x→0) (sin x)/x 的值是:A. 0B. 1C. πD. ∞答案:B3. 若函数f(x)=e^x,则f'(x)等于:A. e^xB. e^(-x)C. ln(e^x)D. 0答案:A4. 函数y=x^2-4x+4的图像与x轴的交点个数是:A. 0B. 1C. 2D. 3答案:C二、填空题(每题5分,共20分)1. 若函数f(x)=x^2-6x+8,则f(1)的值为____。
答案:32. 曲线y=x^3-3x在点(1,-2)处的切线斜率为____。
答案:03. 函数y=ln(x)的定义域为____。
答案:(0, +∞)4. 函数y=x^2-4x+4的最小值为____。
答案:0三、解答题(每题10分,共60分)1. 求函数y=x^3-3x^2+2x-1的导数。
答案:y'=3x^2-6x+22. 求极限lim(x→2) (x^2-4)/(x-2)。
答案:lim(x→2) (x^2-4)/(x-2) = lim(x→2) (2x) = 43. 求函数y=e^x+ln(x)的二阶导数。
答案:y''=e^x+1/x4. 求函数y=x^3-6x^2+11x-6在x=2处的切线方程。
答案:切线方程为y=-3x+85. 求函数y=x^2-4x+4的极值点。
答案:极值点为x=26. 求曲线y=x^3-3x在点(1,-2)处的法线方程。
答案:法线方程为y=x-1四、证明题(每题10分,共20分)1. 证明:若函数f(x)在点x=a处可导,则f(x)在点x=a处连续。
答案:略2. 证明:若函数f(x)在区间(a,b)上连续,则f(x)在(a,b)上一定存在极值。
答案:略。
高等数学二试题及答案
高等数学二试题及答案一、选择题1. 函数y=2x^3-3x^2+4x-1的导数为:A. 6x^2 - 6x + 4B. 6x^2 - 4x + 4C. 6x^3 - 6x^2 + 4D. 6x^3 - 6x + 4答案:A2. 极限lim(x→0) (sin(x) - x) / x^3的值为:A. 1B. 0C. 不存在D. 无穷大答案:A3. 曲线y=x^2在点x=1处的切线方程为:A. y=2x-1B. y=x+1C. y=2xD. y=x-1答案:A4. 定积分∫(0,1) x^2 dx的值为:A. 1/3B. 1/2C. 1D. 0答案:A5. 级数Σ(n=1 to ∞) (n^2 / 2^n)收敛于:A. 1B. 2C. 3D. 4答案:B二、填空题1. 函数z=e^(x+y)在点(0,0)的偏导数∂z/∂x为_________。
答案:12. 极限lim(x→∞) (1+1/x)^x的值为_________。
答案:e3. 曲线y=2x^3在点x=-1处的法线方程为_________。
答案:y=-6x+24. 定积分∫(1,2) (2t^2 + 3t + 1) dt的值为_________。
答案:10/35. 幂级数Σ(n=0 to ∞) (x^n / 2^n)在|x|≤2时收敛于_________。
答案:1 + x三、计算题1. 求函数f(x)=ln(x^2-4)的反函数,并证明其在定义域内是单调的。
解:首先找到反函数的定义域,由于ln(x^2-4)的定义域为x^2-4>0,解得x^2>4,因此x<-2或x>2。
设y=ln(x^2-4),则x^2-4=e^y,解得x=±√(e^y+4)。
由于x<-2或x>2,我们选择x=√(e^y+4)作为反函数,定义域为y>ln(4)。
显然,当y>ln(4)时,函数√(e^y+4)是单调递增的,因此反函数也是单调的。
《高等数学二》考试题及答案
《高等数学(二)》期末复习题一、选择题1、若向量b 与向量)2,1,2(-=a 平行,且满足18-=⋅b a ,则=b ( A ) (A ) )4,2,4(-- (B )(24,4)--, (C ) (4,2,4)- (D )(4,4,2)--.2、在空间直角坐标系中,方程组2201x y z z ⎧+-=⎨=⎩代表的图形为 ( C )(A )直线 (B) 抛物线 (C ) 圆 (D)圆柱面 3、设22()DI xy dxdy =+⎰⎰,其中区域D 由222x y a +=所围成,则I =( D )(A)224ad a rdr a πθπ=⎰⎰ (B) 22402ad a adr a πθπ=⎰⎰(C)2230023a d r dr a πθπ=⎰⎰ (D) 2240012a d r rdr a πθπ=⎰⎰4、 设的弧段为:230,1≤≤=y x L ,则=⎰L ds 6 ( A )(A )9 (B) 6 (C )3 (D)235、级数∑∞=-11)1(n nn的敛散性为 ( B ) (A ) 发散 (B) 条件收敛 (C) 绝对收敛 (D) 敛散性不确定 6、二重积分定义式∑⎰⎰=→∆=ni i i i Df d y x f 10),(lim),(σηξσλ中的λ代表的是( D )(A )小区间的长度 (B)小区域的面积 (C)小区域的半径 (D)以上结果都不对 7、设),(y x f 为连续函数,则二次积分⎰⎰-1010d ),(d xy y x f x 等于 ( B )(A )⎰⎰-1010d ),(d xx y x f y (B) ⎰⎰-1010d ),(d yx y x f y(C)⎰⎰-x x y x f y 1010d ),(d(D)⎰⎰101d ),(d x y x f y8、方程222z x y =+表示的二次曲面是 ( A )(A )抛物面 (B )柱面 (C )圆锥面 (D ) 椭球面9、二元函数),(y x f z =在点),(00y x 可微是其在该点偏导数存在的( B ). (A ) 必要条件 (B ) 充分条件 (C ) 充要条件 (D ) 无关条件 10、设平面曲线L 为下半圆周 21,y x =--则曲线积分22()Lx y ds +=⎰( C )(A) 0 (B) 2π (C) π (D) 4π 11、若级数1nn a∞=∑收敛,则下列结论错误的是 ( B )(A)12nn a∞=∑收敛 (B)1(2)nn a∞=+∑收敛 (C)100nn a∞=∑收敛 (D)13nn a∞=∑收敛12、二重积分的值与 ( C )(A )函数f 及变量x,y 有关; (B) 区域D 及变量x,y 无关; (C )函数f 及区域D 有关; (D) 函数f 无关,区域D 有关。
大学数学二试题及答案
大学数学二试题及答案一、选择题(每题5分,共30分)1. 下列函数中,为奇函数的是:A. f(x) = x^2B. f(x) = |x|C. f(x) = x^3D. f(x) = sin(x)2. 微分方程 y'' - y = 0 的通解是:A. y = C1 * cos(x) + C2 * sin(x)B. y = C1 * e^x + C2 * e^(-x)C. y = C1 * x + C2 * x^2D. y = C1 * ln(x) + C2 * x3. 矩阵 A = \[\begin{matrix} 1 & 2 \\ 3 & 4 \end{matrix}\] 的行列式是:A. 1B. 2C. -2D. 54. 极限lim(x→0) (sin(x)/x) 的值是:A. 0B. 1C. -1D. 不存在5. 积分∫(0 to π) sin(x) dx 的值是:A. 0B. πC. -2D. 26. 函数 y = ln(x) 的反函数是:A. y = e^xB. y = e^(-x)C. y = 10^xD. y = x^e二、填空题(每题5分,共20分)1. 如果函数 f(x) 在点 x=a 处可导,则 f'(a) 表示______。
2. 函数 y = x^2 - 4x + 3 的顶点坐标是(______,______)。
3. 微分方程 y' + 2y = 0 的通解形式为 y = ______。
4. 函数 y = sin(x) 的不定积分是 ______。
三、解答题(每题10分,共50分)1. 求函数 f(x) = x^2 - 6x + 9 在区间 [2, 5] 上的最大值和最小值。
2. 证明:如果一个数列 {a_n} 收敛于 L,则其子数列 {a_{2n}} 也收敛于 L。
3. 计算定积分∫(0 to 1) (3x^2 - 2x + 1) dx。
高等数学二试题及答案
高等数学二试题及答案试题一:1. (10分) 在直角坐标系中,曲线 $y = \sqrt{x}$ 与 $y = -\sqrt{x}$ 交于两点 $A$ 和 $B$,且两点的横坐标之差为 $4$,求 $A$、$B$ 两点的坐标。
试题一答案解析:解析:我们可以通过将两个函数相等,来找到交点的横坐标。
$\sqrt{x} = -\sqrt{x}$将等式两边平方,得到$x = x$因此,两个函数相等的条件是 $x=0$。
又因为两个函数在对称轴 $y$ 轴上对称,所以 $A$、$B$ 两点的横坐标之差为 $4$,即 $B$ 点的横坐标是 $4$。
所以,$A$、$B$ 两点的坐标分别为 $(0, 0)$ 和 $(4, 0)$。
试题二:2. (15分) 计算 $\int_{0}^{1} (x^4 - 2x + 1) \ dx$。
试题二答案解析:解析:首先,我们需要对被积函数进行积分。
$\int_{0}^{1} (x^4 - 2x + 1) \ dx$通过对多项式逐项积分,得到$\int_{0}^{1} x^4 \ dx - \int_{0}^{1} 2x \ dx + \int_{0}^{1} 1 \ dx$根据积分的定义,我们可以进行求解:$\frac{1}{5}x^5 \Bigg|_{0}^{1} - x^2 \Bigg|_{0}^{1} + x\Bigg|_{0}^{1}$代入上下限进行计算,结果为:$\frac{1}{5} - 1 + 1 = \frac{1}{5}$所以,$\int_{0}^{1} (x^4 - 2x + 1) \ dx = \frac{1}{5}$。
试题三:3. (20分) 求函数 $f(x) = e^{2x}$ 在区间 $[0, 1]$ 上的最小值。
试题三答案解析:解析:对于给定的区间 $[0, 1]$,我们需要找到函数 $f(x) =e^{2x}$ 在该区间上的最小值。
首先,求函数的导数 $f'(x)$:$f'(x) = 2e^{2x}$在 $[0, 1]$ 区间上,我们可以通过求解导数为 $0$ 的点来找到函数的极值点。
第二学期高数(下)期末考试试卷及答案
第二学期期末高数(下)考试试卷及答案1 一、 填空题(每空 3 分,共 15 分) 1.设()=⎰22t xFx e dt ,则()F x '=-22x xe.2.曲面sin cos =⋅z x y 在点,,⎛⎫⎪⎝⎭1442ππ处的切平面方程是--+=210x y z .3.交换累次积分的次序:=(),-⎰⎰2302xxdx f x y dy.4.设闭区域D 是由分段光滑的曲线L 围成,则:使得格林公式: ⎛⎫∂∂-=+ ⎪∂∂⎝⎭⎰⎰⎰D LQ P dxdy Pdx Qdy x y 成立的充分条件是:()(),,和在D上具有一阶连续偏导数P x y Q x y .其中L 是D 的取正向曲线;5.级数∞=-∑1nn 的收敛域是(],-33.二、 单项选择题 (每小题3分,共15分)1.当→0x ,→0y 时,函数+2423x yx y 的极限是()DA.等于0;B. 等于13;C. 等于14; D. 不存在.2.函数(),=zf x y 在点(),00x y 处具有偏导数(),'00x f x y ,(),'00y f x y 是函数在该点可微分的()CA.充分必要条件;B.充分但非必要条件;C.必要但非充分条件;D. 既非充分又非必要条件.3.设()cos sin =+x ze y x y ,则==10x y dz()=BA.e ;B. ()+e dx dy ;C.()-+1e dx dy ; D. ()+x e dx dy .4.若级数()∞=-∑11nn n a x 在=-1x 处收敛,则此级数在=2x处()AA.绝对收敛;B.条件收敛;C.发散;D.收敛性不确定. 5.微分方程()'''-+=+3691x y y y x e 的特解*y 应设为()DA. 3x ae ;B. ()+3x ax b e ;C.()+3x x ax b e ; D. ()+23x x ax b e .三.(8分)设一平面通过点(),,-312,而且通过直线-+==43521x y z,求该平面方程. 解:()(),,,,,--312430A B(),,∴=-142AB 平行该平面∴该平面的法向量()()(),,,,,,=⨯-=--5211428922n ∴所求的平面方程为:()()()----+=83912220x y z即:---=8922590xy z四.(8分)设(),=yzf xy e ,其中(),f u v 具有二阶连续偏导数,试求∂∂z x 和∂∂∂2zx y.解:令=uxy ,=y v e五.(8分)计算对弧长的曲线积分⎰L其中L 是圆周+=222xy R 与直线,==00x y在第一象限所围区域的边界.解:=++123L L L L其中: 1L :(),+=≥≥22200x y R x y 2L :()=≤≤00x y R3L : ()=≤≤00y x R而Re ==⎰⎰1202RR L e Rdt ππ故:()Re =+-⎰212R R Le π六、(8分)计算对面积的曲面积分∑⎛⎫++ ⎪⎝⎭⎰⎰423z x y dS ,其中∑为平面++=1234x y z在第一卦限中的部分. 解:xy D :≤≤⎧⎪⎨≤≤-⎪⎩023032x y x=3-==⎰⎰323200x dx 七.(8分)将函数()=++2143f x x x ,展开成x 的幂级数.解:()⎛⎫=-=⋅-⋅ ⎪+++⎝⎭+111111121321613f x x x x x , 而()∞=⋅=-+∑01111212n n n x x , (),-11()∞=-⋅=+∑01116313nn n n x x , (),-33()()∞+=⎛⎫∴=-+ ⎪⎝⎭∑10111123nnn n f x x , (),-11八.(8分)求微分方程:()()+-+-+=42322253330xxy y dx x y xy y dy 的通解.解:∂∂==-∂∂263P Qxy y y x, ∴原方程为:通解为:++-=532231332x y x y y x C 九.幂级数:()()!!!!=++++⋅⋅⋅++⋅⋅⋅246212462nx x x x y x n1.试写出()()'+y x y x 的和函数;(4分)2.利用第1问的结果求幂级数()!∞=∑202nn x n 的和函数.(8分)解:1、()()!!!-'=+++⋅⋅⋅++⋅⋅⋅-35213521n x x x y x x n (),-∞∞ 于是()()!!'+=++++⋅⋅⋅=23123x x x y x y x x e (),-∞∞ 2、令:()()!∞==∑202nn x S x n由1知:()()'+=x S x S x e 且满足:()=01S通解:()()--=+=+⎰12xx xxx Sx eC e e dx Cee 由()=01S ,得:=12C ;故:()()-=+12x x S x e e十.设函数()f t 在(),+∞0上连续,且满足条件其中Ωt 是由曲线⎧=⎨=⎩2z ty x ,绕z 轴旋转一周而成的曲面与平面=zt (参数>0t )所围成的空间区域。
高等数学二(A)期末考试试题.docx
太原科技大学2013/2014学年第2学期《高等数学二》课程试卷B卷、填空题(每小题4分,共20分)1、已知Z=/2(2xy),其中/■为任意可微函数,则备=2、函数的定义域是___________________________________ln(l-x z-y z) ----------------------------------------------3、化下述积分为极坐标下的累次积分I =dyf^y~y2 f(x,y) dx _________________________________________________4、设曲线L的质量密度函数为戒3+力,则L的质量可表示为,又若I为二=x(0 « x « 1),则其质量等于5、已知lim”* a n = a> 0,则级数S^=i(—)n,0 < a <a nb的敛散性是____________________注:填空题由于数据丢失具体数据不详, 凭本人根据图片猜测而来,如有错误还请大家尽快指出 1.2小题可以肯定正确。
二、单项选择题(每小题4分,共20分)1、设z=<p(x + y)-巾(x - y),其中<p,小具有二阶连续导数, 则必有()_ d2z d2z - - d2z行一d2z d2z - - d2z d2z _A、—^+—^=0 B> —— = 0 C、—=0 D> —-=0 dx2 dy2dxdy dx2dy2dxdy dydx2、若函数笑/(X )=0,务I(X y)=°测,(勺)在(W。
)是A、连续且可微B、连续但不一定可微C、可微但不一定连续D、不一定可微也不一定连续3、1=贷dy丁疽刁3x2y2 dx,则交换积分次序后,得()A> \=j^ dxjf^3x2y2 dy B> \=ff^ dx 3x2y2 dyC. \=f^ dx f^~x2 3x2y2 dy D> \=f^ dx 3x2y2 dy4、1=]^ xe cosxy tan(xy)dxdy, D: |x| < 1, |y| « 1,则1=()A> 0 B> e C、 1 D > e-25、若级数蠢=1 %收敛于S,贝U级数Xn=l(U n + U n+1)().A、收敛于2sB、收敛于2s-UiC、收敛于2S+U1D、发散三、求下列偏导数(每小题5分,共10分)<、FL - -r^ du du1.设心,求源菽2.设u=x2+ y2 + z2,x=rcos 6 sin(p,y=rsin 0,z=rcos 伊,求房,舞.四、在椭圆x2 + 4y2 = 4上求一点使其到直线2% + 3,-6 = 0的距离最短。
高等数学二试题及答案
高等数学二试题及答案一、选择题(每题5分,共20分)1. 设函数f(x)=x^3-3x+1,则f'(x)等于()。
A. 3x^2-3B. 3x^2+3C. x^2-3x+1D. x^2+3x+1答案:A2. 计算定积分∫(0到1) (2x+1)dx的值是()。
A. 3/2B. 2C. 1D. 1/2答案:A3. 设数列{an}满足a1=1,an+1=2an+1,求a3的值是()。
A. 5B. 7C. 9D. 11答案:C4. 若矩阵A=| 1 2 |,矩阵B=| 3 4 |,则AB的行列式值是()。
| 5 6 | | 7 8 |A. 2B. 3C. 4D. 5答案:C二、填空题(每题5分,共20分)1. 设函数f(x)=x^2-6x+8,则f(x)的最小值是_________。
答案:22. 计算极限lim(x→0) (sinx/x)的值是_________。
答案:13. 设函数f(x)=x^3-3x^2+2,求f''(x)的值是_________。
答案:6x-64. 设矩阵A=| 1 2 |,求矩阵A的逆矩阵A^-1是_________。
| 2 3 |答案:| -3/2 1/2 || 1/2 -1/3 |三、解答题(每题10分,共60分)1. 求函数f(x)=x^3-6x^2+11x-6在x=1处的切线方程。
答案:首先求导数f'(x)=3x^2-12x+11,代入x=1得到f'(1)=8,然后求f(1)=6,所以切线方程为y-6=8(x-1),即8x-y-2=0。
2. 计算定积分∫(0到π) sinx dx。
答案:∫(0到π) sinx dx = [-cosx](0到π) = -cos(π) + cos(0) = 2。
3. 设数列{an}满足a1=1,an+1=3an-2,求数列的前5项。
答案:a1=1,a2=3a1-2=1,a3=3a2-2=1,a4=3a3-2=1,a5=3a4-2=1,所以前5项为1, 1, 1, 1, 1。
高等数学二期末复习题及答案
高等数学二期末复习题及答案集团标准化办公室:[VV986T-J682P28-JP266L8-68PNN]《高等数学(二)》期末复习题一、选择题1、若向量与向量)2,1,2(-=a 平行,且满足18-=⋅,则=( )(A ) )4,2,4(-- (B )(24,4)--,(C ) (4,2,4)- (D )(4,4,2)--.2、在空间直角坐标系中,方程组2201x y z z ⎧+-=⎨=⎩代表的图形为 ( )(A )直线 (B) 抛物线 (C ) 圆 (D)圆柱面 3、设22()DI x y dxdy =+⎰⎰,其中区域D 由222x y a +=所围成,则I =( )(A) 22400a d a rdr a πθπ=⎰⎰ (B) 224002ad a adr a πθπ=⎰⎰(C)2230023a d r dr a πθπ=⎰⎰ (D) 2240012a d r rdr a πθπ=⎰⎰4、 设的弧段为:230,1≤≤=y x L ,则=⎰L ds 6 ( )(A )9 (B) 6 (C )3 (D) 235、级数∑∞=-11)1(n nn的敛散性为 ( )(A ) 发散 (B) 条件收敛 (C) 绝对收敛 (D) 敛散性不确定6、二重积分定义式∑⎰⎰=→∆=ni i i i Df d y x f 10),(lim ),(σηξσλ中的λ代表的是( )(A )小区间的长度 (B)小区域的面积 (C)小区域的半径 (D)以上结果都不对 7、设),(y x f 为连续函数,则二次积分⎰⎰-1010d ),(d xy y x f x 等于 ( )(A )⎰⎰-1010d ),(d xx y x f y(B) ⎰⎰-1010d ),(d yx y x f y(C)⎰⎰-xx y x f y 1010d ),(d(D)⎰⎰1010d ),(d x y x f y8、方程222z x y =+表示的二次曲面是 ( )(A )抛物面 (B )柱面 (C )圆锥面 (D )椭球面9、二元函数),(y x f z =在点),(00y x 可微是其在该点偏导数存在的( ). (A ) 必要条件 (B ) 充分条件 (C ) 充要条件 (D ) 无关条件10、设平面曲线L 为下半圆周 y =则曲线积分22()L x y ds +=⎰( )(A) 0 (B) 2π (C) π (D) 4π11、若级数1n n a ∞=∑收敛,则下列结论错误的是 ( )(A)12n n a ∞=∑收敛 (B) 1(2)n n a ∞=+∑收敛 (C)100nn a∞=∑收敛 (D) 13n n a ∞=∑收敛12、二重积分的值与 ( )(A )函数f 及变量x,y 有关; (B) 区域D 及变量x,y 无关; (C )函数f 及区域D 有关; (D) 函数f 无关,区域D 有关。
(最终版)2022高数2期末复习卷子
1. 求微分方程y x dxdy23=的通解. 2. 求微分方程()()0x 22=−++dy y x y dx xy 满足初始条件1,0==y x 的特解. 3. 求微分方程x e y x sin 3+=''的通解. 4. 求微分方程056=+'−''y y y 的通解. 5. 求微分方程096=+'+''y y y 的通解. 第八章1. 已知()4,2,3−=a()2,1,1−=b ,求b a •,b a ⨯.2. 求过点()111,,且与平面013z -y x 2=++平行的平面方程.第九章1. 设xy x z sin 2=,求yx z x z dz y z x z ∂∂∂∂∂∂∂∂∂222,,,,.2. 设,求yx ux u du y u x u ∂∂∂∂∂∂∂∂∂222,,,,.3. 求函数()568,33+−+=xy y x y x f 的极值.4. 求函数xy z =在条件1=+y x 下的极大值.5. 求()1ln 12222−+++=y x yx z 的定义域.6. 求()22,yx xy y x f +=,求()1,1−f .7. ()()220,1,2lim yx xyy x +−→计算二重积分:1. ()⎰⎰+=Dd y x I δ2,其中D 区域是由2,2==x x y 及x 轴围城的区域.2. ⎰⎰=Ddxdy y x I 22,其中D 区域是由双曲线1=xy ,直线2=x 和x y =围城的区域.3. ()⎰⎰+=Ddxdy y x I 22,其中D 是圆环9422≤+≤y x .4. 三重积分计算:dxdydz z G⎰⎰⎰cos xsiny ,其中(){}20,20,10,,ππ≤≤≤≤≤≤=z y x z y x G5. 三重积分计算:()dxdydz z y x G ⎰⎰⎰++其中(){}20,10,11,,≤≤≤≤≤≤−=z y x z y x G .第11章1. ⎰L xyds ,其中L 为x y 2=从()00,到()21,的直线段.2. ⎰L ds y ,其中L 为抛物线2x y =从()00,到()11,的一段弧.3. ()⎰+L ds y x 22,其中L 为圆周222a y x =+.4. 计算曲线积分()()dy x y dx L −++⎰y x ,其中L 为 (1)抛物线x y =2从()11,到()24,的一段弧. (2)从()11,到()24,的直线段.5. 验证曲线积分与路径无关,并计算其值:()()()()dy y x x −++⎰d y x 3210,,第12章1. 判断级数的敛散性: (1)∑∞=121n n(2)∑∞=++1)2(1n n n n(3)∑∞=1!2n nn(4)∑∞=+−1232n1n n n2. 判断交错级数的绝对收敛还是条件收敛: (1)()nn n 1111∑∞=−−(2)()nn n 41111∑∞=−−(3)()∑∞=+−1121n nn(4)()()∑∞=+−121n n n n3. 求级数的和. (1)()n n n3111∑∞=− (2)()nn n2511∑∞=−(3)()∑∞=+111n n n 4.求级数()∑∞=−125n n n nx 的收敛域.5.求级数∑∞=123n nnn x的收敛半径和收敛域.。
同济二版高等数学(下)期末复习试题
高数〔2〕期末复习题一、填空题1. 322()y y xy x '''+=为___ 二 ___阶微分方程.2. 微分方程dy x dx =的通解为212y x c=+ .3. 微分方程04=-''y y 的通解为___x x e c e c y 2221-+=___.4. 点(1,2,1)M --到平面0522=--+z y x 的距离是 4 .5. 空间点(4,4,2)M -关于xoy 平面的对称点坐标为 (4,4,2)--6. y0z 平面的曲线z y a =+ 绕z 轴旋转生成的曲面方程为_222()z a x y -=+_.7. 将xoy 面上的双曲线221x y -=绕X 轴旋转一周,所形成的曲面方程为_________________________.9. 三单位向量c b a ,,满足0=++c b a ,则a b b c c a ⋅+⋅+⋅= .10. 函数()22ln 1z x y =+-域为 .11. 设函数22e y xz +=,则z d = .12. 已知函数324),(y x y x y x f -+=,则=∂∂x f.13. 设21()y xdz e xdy ydx x =-,则22zy ∂=∂ .14. 曲面122-+=y x z 在点〔2,1,4〕处的切平面方程为__________.15. 曲线23,,x t y t z t ===在点〔1,1,1〕处的切线方程为___________.16.由二重积分的几何意义,计算二重积分221x y +≤σ=⎰⎰________.17. 改变积分次序210(,)x x dx f x y dy =⎰⎰.18. 在直角坐标系下将二重积分化为累次积分,其中D 为11≤+x ,1≤y 围成的区域,则(,)d d Df x y x y =⎰⎰ .19. 幂级数121n nn x n ∞=+∑的收敛半径为 . 20. 幂级数12nnn x n ∞=∑的收敛半径为 .21.幂级数4)n n x ∞=-的收敛域为___________.二、选择题1. 微分方程22(1)0y dx x dy --=是〔 〕微分方程.A. 一阶线性齐次B. 一阶线性非齐次C. 可别离变量D. 二阶线性方程2. 方程 0y y '''-= 的通解为 〔 〕.A. 12x y C C e =+B. 12()x y e C x C =+C. 12x y C C e -=+D.12()x y e C x C -=+ 3.以下微分方程中,通解为)sin cos (212x C x C e y x +=的方程是〔 〕. A.054=-'-''y y yB .054=+'-''y y yC .052=+'-''y y yD .x e y y y 254=+'-''4. 与向量)0,1,1(-垂直的单位向量是 〔 〕.A .)0,21,21( B .)0,21,21(C .)0,1,1(D .)0,1,1(-5. 设(2,3,2)a =,(2,4,)b c =-,a b ⊥,则常数c =〔 〕.C. 4D. 56. 直线327x y z==-与平面3278x y z -+=的位置关系是 〔 〕.A.线与面平行但不相交B.线与面垂直C.直线在平面上D.线与面斜交7. 方程322=++z y x 表示的曲面是 〔 〕.A. 旋转抛物面B. 圆柱面C. 圆锥面D. 球面8. 以下曲面方程为抛物柱面方程的是 〔 〕.A .222z y x =+B .2222a z y x =++C .222z y x =-D .242+=x y9. 等式〔 〕是正确的.A. 01a =(0a 是单位向量)B. ||||||cos(,)a b a b a b ⋅=C. 222()()()a b a b ⋅=D. ||||||sin(,)a b a b a b ⨯=10. 函数1ln()z x y =+的定义域是 〔 〕. B. {}0|),(≠+y x y x C. {}1|),(>+y x y x D. {}10|),(≠+>+y x y x y x 且11. 函数3322(,)339f x y x y x y x =-++-的极大值点是 〔 〕.A. (1,0)B. (1,2)C. (3,0)-D. (3,2)-12. 设22y x x z ++=,则(1,1)zy -∂=∂ 〔 〕.A.211+B. 21-C. 211-D. 2113. 设二元函数22sin y z y e x =-,则dz =〔 〕.A.2yye dy ;C.2(2sin cos )(2)y yx x dx ye y e dy -++; D. (2sin cos )x x dx -.14. 曲线 2,1 ,1t z t ty t t x =+=+= 对应 t = 1的点处的切向量为〔 〕.A. )1,2,21(; B. (1, -4, 8) ;C. (1,1,1);D. (1,2,3).15. 函数 22z x y = 当1,1,0.2,0.1x y x y ==∆=∆=- 时的全微分为 ( ) .A. 0.20B. 0.20-C. 0.1664-D. 0.1664 16. 以224y x z --=为顶,0=z 为底,侧面为柱面122=+y x 的曲顶柱体体积是〔 〕.A.22d πθ⎰⎰B. 2202d ππθ-⎰⎰21d πθ⎰⎰D. 2204d πθ⎰⎰17. 二重积分22214x y x d σ≤+≤⎰⎰可表达为累次积分〔 〕.A.223201cos d r drπθθ⎰⎰ B.223201cos r dr d πθθ⎰⎰C.222dx dy-⎰D.121dy dx-⎰18. 二重积分2214(,)x dx f x y dy⎰⎰ 交换积分次序后成为〔 〕.A. 100(,)dy f x y dx ⎰B. 120(,)dy f x y dx ⎰C.210(,)dy f x y dx⎰D.201(,)dy f x y dx⎰19. 以下级数中,发散的级数是〔 〕.①2211n n ∞=+∑ ②2111n n ∞=⎛⎫+ ⎪⎝⎭∑ ③31113n n n ∞=⎛⎫+ ⎪⎝⎭∑④1n ∞=∑A. ①③B. ①④C. ②③D. ②④20. 以下级数中,收敛的级数为〔 〕.①11n n ∞=∑ ②3121n n ∞=∑ ③14!n n n ∞=∑ ④∑∞=+1)11ln(n nA. ①③B. ①④C. ②③D. ②④21. 以下说法不正确的选项是 〔 〕.A. ∑∞=1n nn x 的收敛域为 [-1, 1 );B.∑∞=1n nka与∑∞=1n na同时发散 ;C. 假设∑∞=1||nnu收敛,则∑∞=1nnu收敛;D. ∑∞=1)3(nnx的收敛半径是3 .三、解答题1. 求微分方程dxyedye xx=+)1(的通解.2. 求微分方程()sin tan0y x dx xdy-+=的通解.3. 求微分方程2x yy e-'=满足初始条件0|0xy==的特解.4. 求过点(2,0,3)-且与直线247035210x y zx y z-+-=⎧⎨+-+=⎩垂直的平面方程.5. 与z轴垂直的直线l在平面1=+yx上且过点(2,1,4)-,求其方程.6. 求平行于平面12=--+zyx和12=+-+zyx,且通过点)1,2,1(-的直线方程.7. 设函数),,(xyzxyxfw=,求xw∂∂,yw∂∂, zw∂∂.8. 设函数)(222yxfyxz++=,求xz∂∂,yz∂∂.9. 设),(22xyyxfz-=,其中f是可微函数,求yzxz∂∂∂∂,.10. 设vez u sin=,而yxvxyu+==,,试求yzxz∂∂∂∂,.11. 方程2=-yzxe z确定二元函数),(yxfz=,求dz.12. 设),(yxfz=由方程xyzzx=+)2sin(确定,求yzxz∂∂∂∂,.13. 求yzeyxu++=2sin的全微分.14. 计算二重积分⎰⎰+-Dy x yx d d e )(22,其中D 是由0,0≥≥y x ,122≤+y x 所围区域.,d d ⎰⎰y x xy 2,2y x y x ==-所围成的闭区域.16. 计算⎰⎰-+Dyx y x d d )12(,其中D 是由直线0=x ,0=y 及12=+y x 围成的区域.17. 求幂级数1n n x n ∞=∑的收敛域及和函数()S x18. 求幂级数∑∞=+0)1(n nxn 的收敛域及和函数()S x .19. 求幂级数211121n n x n ∞-=-∑的收敛域及和函数()S x .四、应用题1. 要设计一个容量为8m 3的长方体无盖水箱, 问长、宽、高为多少时用料最省?2. 求内接于半径为R的球面,且具有最大体积的长方体.3. 求函数222(,,)23f x y z x y z=++在平面11x y z++=上的最小值.4. 计算由平面0=x,0=y及1x y+=所围成的柱体被平面0=z及抛物面226x y z+=-截得的立体的体积.5. 求圆柱面122=+yx与平面2,0=+-+=zyxz所围成的立体的体积. 6. 求由曲面222yxz+=及2226yxz--=所围成的立体的体积.。
高等数学2(下册)试题答案以及复习要点(完整版)
高等数学(2)试题答案以及复习要点汇总一. 选择题 (每题3分,共15分)1. 设(,)f x y 具有一阶连续偏导数,若23(,)f x x x =,224(,)2x f x x x x =-,则2(,)y f x x = [ A ] (A) 3x x + ; (B) 2422x x + ; (C) 25x x + ; (D) 222x x + 。
解:选A 。
23(,)f x x x = 两边对 x 求导:222(,)(,)23x y f x x f x x x x +⋅=,将 224(,)2x f x x x x =- 代入得 242222(,)3y x x xf x x x -+= ,故 23(,)y f x x x x =+ 。
2.已知()()dy y x x by dx x y axy 22233sin 1cos +++-为某二元函数的全微分,则a 和b 的值分别为 [ C ] (A) –2和2; (B) –3和3; (C)2和–2; (D) 3和–3;解:选C 。
x y axy yPxy x by x Q cos 236cos 22-=∂∂=+=∂∂ 2,2=-=a b3. 设∑为曲面z =2-(x 2+y 2)在xoy 平面上方的部分,则⎰⎰∑=zdS I =[ D ]()⎰⎰-+-2202220412)(rrdr r r d A πθ;()()⎰⎰+-22220412rdr r r d B πθ; ()()⎰⎰-22202rdr r d C πθ;()()⎰⎰+-22220412rdr r r d D πθ。
解:选D 。
()⎰⎰+-=22220412rdr r r d I πθ 。
4. 设有直线410:30x y z L x y --+=⎧⎨+-=⎩,曲面222z x y z =-+在点(1,1,1)处的切平面∏,则直线L 与平面∏的位置关系是: [ C ] (A) L ⊂∏; (B) //L ∏; (C) L ⊥∏; (D) L 与∏斜交 。
高等数学2(下册)试题答案以及复习要点汇总(完整版)
高等数学(2)试题答案以及复习要点汇总一. 选择题 (每题3分,共15分)1. 设(,)f x y 具有一阶连续偏导数,若23(,)f x x x =,224(,)2x f x x x x =-,则2(,)y f x x = [ A ](A) 3x x + ; (B) 2422x x + ; (C) 25x x + ; (D) 222x x + 。
解:选A 。
23(,)f x x x = 两边对 x 求导:222(,)(,)23x y f x x f x x x x +⋅=,将 224(,)2x f x x x x =- 代入得 242222(,)3y x x xf x x x -+= ,故 23(,)y f x x x x =+ 。
2.已知()()dy y x x by dx x y axy 22233sin 1cos +++-为某二元函数的全微分,则a 和b 的值分别为 [ C ] (A) –2和2; (B) –3和3; (C)2和–2; (D) 3和–3;解:选C 。
x y axy yPxy x by x Q cos 236cos 22-=∂∂=+=∂∂ 2,2=-=a b3. 设∑为曲面z =2-(x 2+y 2)在xoy 平面上方的部分,则⎰⎰∑=zdS I =[ D ]()⎰⎰-+-2202220412)(rrdr r r d A πθ;()()⎰⎰+-22220412rdr r r d B πθ; ()()⎰⎰-22202rdr r d C πθ;()()⎰⎰+-22220412rdr r r d D πθ。
解:选D 。
()⎰⎰+-=22220412rdr r r d I πθ 。
4. 设有直线410:30x y z L x y --+=⎧⎨+-=⎩,曲面222z x y z =-+在点(1,1,1)处的切平面∏,则直线L 与平面∏的位置关系是: [ C ] (A) L ⊂∏; (B) //L ∏; (C) L ⊥∏; (D) L 与∏斜交 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1、 2、 3、 、选择题 若向量 (A ) (C ) 《高等数学(二)》期末复习题b 与向量a (2, 1, 2)平行,且满足a b 18,则b ((4, 2, 4) (4, 2, 4 ) 在空间直角坐标系中,方程组 (A )直线 (B) 抛物线 (A )(x 2 D 20d(C) 4、 设L 为: (A ) 5、级数 6、 (A ) (B ) (2, 4, 4 ) (D ) (4,4, 2 ).x 2y 2)dxdy ,其中区域 0 a 2rdr \2dr 0x 1,0 (B) 6发散 (B) 重积分定义式 (A )小区间的长度 3-的弧段 2 (C ) 的敛散性为 条件收敛 f(x, y)d (D) ,则 z 0代表的图形为()(C )圆 (B ) (C ) nlim 0..i 1 7、设f (x, y)为连续函数,则二次积分 1 1 x (A )0d y 0 1 x 1(C)0 dy 。
8、方程2z x 2(A )抛物面(D) 圆柱面2a 所围成,L 6dS (D) f( a20 a adr 2绝对收敛 rdr(D) 敛散性不确定 中的代表的是( ) (B)小区域的面积 (C)小区域的半径 (D)以上结杲都不对 x f (x,y)dx f (x, y)dx1 dx 0 (B )(D)2y 表示的二次曲面是 ((B )柱面f (x,y)dy 等于() 1 1 y0dy 0 f (x, y)dx 1 10dy 0 f (x,y)dx(C )圆锥面(D ) 椭球面9、二元函数z f (x,y)在点(X 。
, y o )可微是其在该点偏导数存在的((A ) 必要条件 (B )充分条件 (C )充要条件 (D )无关条件10、设平面曲线L 为下半圆周 y ・、1 x 2,则曲线积分L (X 2 y 2)ds (A) 0 (B ) (C) (D)11、若级数 a n 收敛,则下列结论错误的是 n 1 12、 (A) 2a n 收敛(B) n 1 (a n n 1 2)收敛 (C) 重积分 的值与 a n 收敛 (D)100 3a n 收敛1(A )函数f 及变量x,y 有关; (B) (C )函数f 及区域D 有关; (D) 13、已知 a//b 且 a (1,2, 1), b (x,4, 区域 函数f 无关, (A ) -2 (B ) 2 n D 及变量x,y 无关; 2),则 x =( (C ) -3 区域 D 有关。
(D ) 3 14、在空间直角坐标系中,方程组 z 22 2 x y代表的图形为 y 1 (A )抛物线 (B) 双曲线 (C )(D) 直线15、设 z arctan(x y),则一^ =y16、 (A) sec 2(x y)1 (x y)2(B)1 (x y)2(C )1 (xy)2(D )1 (x y)21 1 重积分0dy y 2f (x, y)dx 交换积分次序为1 (A )dx 0 x0 f (x, y)dy(B )y 2dx 010 f (x, y)dy1 (C)dx10 f(x, y)dy(D)x 210dx 0 f (x, y)dy17、若已知级数 U n 收敛, n 1S n 是它的前 n 项之和,则此级数的和是((A ) S n (B)U n(C)lim S nn(D)lim U nn18、设L 为圆周:x 2 y 216,则曲线积分I ? 2 xyds 的值为(2 220、平面 2x y z6 0与直线x 2—3 ——4的交点坐标为( )11 2(A)( 1,1, 2) (B) (2, 3, 4) (C ( 1,2, 2)(D)(2, 1, 1)21、考虑二元函数的下面 4条性质: ②f (x, y )在点(x o , y o )处的两个偏导数连续;④f (x, y )在点(x o , y o )处的两个偏导数存在19、设直线方程为---,则该直线必(0 12)(A ) 过原点且 x 轴(B ) 过原点且 y 轴 (C ) 过原点且z 轴(D )过原点且 //X 轴 (A) 1(B) 2(C 1(D)①f (x, y )在点(x o , y o )处连续; ③f (x, y)在点(x o , y o )处可微; 若用“ P Q ”表示可由性质 P 推出性质Q ,则有(A )②③①(B )③② ①(C ) ③ ④ ① (D )(A)(2 1(B)1 n 1') >J n 1n 12 n23、 设zxsin y ,则- z=(y w<2i — (A )一(C <22 21 ln(1 -) n 1 n)1)n n2n 2(D)(D) '224、设a 为常数,则级数(1)n 1 cos a(n 1n绝对收敛 (D ) 收敛性与a 的取值有关25、设常数k 0,则级数 (1)n -(A )发散(B )条件收敛(C )绝对收敛)(D )敛散性与k 的取值有关1 1 226o dxx 「dy(A)(B) e(C)(D) e22、下列级数中绝对收敛的级数是()(C) (A )发散(B ) 条件收敛 (C )填空题221、 lim — x 01 y 0 -xy xy 2、二元函数 sin (2 x3y),则上 x 3、 积分I e x 2 y 2d x 2 y 2 4 的值为 4、若 a, b 为互相垂直的单位向量, 则 a b 5、 、 1 x 2 交换积分次序 ° dx ° f (x, y)dy 6、 1 1 级数n1^ ?) 的和是 7、 lim 2 C y 0 xy 8、 二元函数 z sin(2x 3 y),则一z y 9、 设f(x, y)连续,交换积分次序 1 dx 0f (x,y)dy 10、设曲线L : x 则?(2sin■ Lx 3ycosx)ds11、 若级数 n (U n 1 1)收敛,则 lim u n n 12、 若f(x y, x y) 2 y 则 f(x,y) 1、114、 已知 a b 且 a (1,1,3),b (0,x, 1),则 x = _____________________ 15、 设 z ln(x 3 y 3),贝廿 dz (11)16、设f (x, y)连续,交换积分次序 1 ydy y2 f(x,y)dx17、级数 u nn 1则级数 U n u n 1的和是18、设L 为圆周:x 2R 2 ,则曲线积分I? xs in yds 的值为2 21 cos(x y ) lim(X,y) (0,0) (x 2 y 2)e xylimSn 凶2 x 0 xy a若 a 3i j 2k,b i 2j k,则 a b三、解答题x2、 (本题满分12分)计算二重积分e y dxdy ,其中D 由y 轴及开口向右的抛物线D2y x 和直线y 1围成的平面区域。
3、 (本题满分12分)求函数u ln (2x 3y 4z 2)的全微分du 。
24y 2, (x,y)(0,0)4、 (本题满分12分)证明:函数f (x, y) x y在点(0, 0) 0, (x,y)(0,0)19、20、已知a V j, 21、22、 已知向量a 、b 满足a b 0, a2,则 a b23、 设L 为连接(1,0)与(0,1) 两点的直线段,则 L (x y)ds24、2 li^——— (x,y)(0,0)' 2 2yy 2 1 125、a与b 的夹角是?,则 a b26、 已知三角形的顶点 1),B(2,1,0),C(0,0,2),则 ABC 的面积等于27、 点M i 2,3,1到点M 2 2,7,4 的距离 M 1M 229、 lim:0xy30、函数f(x,y) 2(y 3) (x 1)e xy,求 f x (1,3)1、(本题满分12分)求曲面z e z2xy 3在点(1,2,0)处的切平面方程。
的两个偏导数存在,但函数 f (x, y )在点(0, 0)处不连续。
115、 (本题满分10分)判别级数 n sin的敛散性。
n 1n16、 (本题满分20分)求一条过点A ( 1,0,4)与一平面 :3x 4y z 100平行,且与直线L :》J 匕卫Z 相交的直线方程.1 15、(本题满分 10 分) 用比较法判别级数n1(2n=)n 的敛散性。
6、(本题满分 12 分) 求球面 x 2z 2 14在点(1,2,3)处的法线方程。
7、(本题满分 12 分) 计算|(x 22y 2)dxdy ,其中 D {( x, y)1x 2 y 2 4}。
8、(本题满分 12 分) ur力FX, y,x 的作用下,质点从(0,0,0)点沿L yt2t 移至 t 2uu(1,2,1)点,求力F 所做的功9、(本题满分12分) 计算函数xsin ( yz )的全微分。
10、(本题满分 10 分) 求级数的和。
n 1n(n 1)11、(本题满分 12 分) 求球面2 2 2x y z 14在点(1,2,3)处的切平面方程。
12、(本题满分 12 分)In ( xxyy 2),求 x — y —。
x y13、(本题满分 12 分) 求(1D2y )dxdy ,其中 D 是由 y x , y 0,x 2 y 21在第一象限内所围成的区域。
14、(本题满分12分) 一质点沿曲线t 从点(0,0,0)移动到点(0,1,1),求在此过程中, t 2力 F , 1x 4i yjk 所作的功W 。
417、(本题满分 求椭球面x 2 20分)2 22y 3z21上的点M ,使直线L: x2面上18 (本题满分 12 分) 计算一重积分 Ixy dxdy|x| |y| 119、(本题满分 12 分) 已知 yz zx xy 1,确定的z20、 (本题满分 12 分) 设zxyf (x, y)是由方程e ze z 21、 (本题满分10 分) 计算一 二次积分1y 2 dy y cosx dx222、 (本题满分 10 分) 计算函数z2e sin xy 的全微分.23、 (本题满分 10 分) 计算一重积分-^d其中6 iD: 0< x < 1,0< y w 1 . D 1 x2e 所确定的隐函数,求2 12 dy y cosx dx .2/弓在过M z(x, y),求 dz 。
24、 (本题满分 10 分) 已知向量a(1,1,1), bi 2j4k ,求a b 和a25、 (本题满分 10 分) 求曲面x xy xyz 9在点(1,2,3)处的切平面方程•》期末复习题答案1、 2、 3、4、选择题 点的切平z x、z y .解:利用平行向量对应的坐标成比例, 18 (2, 1,2) (2t, t,2t) 解:将z 1代入x 2 解:用极坐标计算方便, (x 2 222y 2)dxdy0 d(2t, t,2t),又因4t 4t9t(4,2, 4)0得到 1,此时图形为圆。